
PCODE: An Efficient and Reliable Collective Communication
Protocol for Unreliable Broadcast Domains

Jehoshua Bruck* Danny Dolev+ Ching-Tien HoI Rimon Ornis Ray Strongz

*California Institute of Technology
Mail Code 116-81

Pasadena, CA !)1125
bruck@systems.caltech.edu

$IBM Almaden Research Center
650 Harry R,oad

San Jose, CA 95120
{ho,strong}@almaden.ibm.com

Abstract

Exzsting programmmg environments for clusters are
typically built on top of a point-to-point commun.ica-
tion layer (send and recezve) over local area networks
(LANs) and, as a result: suffer from poor performance
in the collective communication part. For example, a
broadcast that is implemented using a TCP/IP proio-
co1 (which IS a point-to-point protocol) over a L.4N is
obviously inefficient as rt is not utiliz-zng the fact that
the LAN is a broadcast m.edium. WP have observed
tha:t the main diflet-enc-e between a dzstributed com-
puiing paradigm and a message passtng parallel com-
puting paradigm is that, in a distributed environment
the activaty of every processor 2s independent wh.ile
in a parallel environment the collection of the user-
communication layers 2n the processors can be mod-
eled as a single global program. W’f’ have formalized
thr requirements by defining the notion of a correct
global program. Thas notion provides a precise spec-
ifil,ation of the interface between the transport layer
and the user-comm,uniccttion layer. We have developed
PCODE, a new communication prolocol that is driven
by a global program, and proved its correctness.

WC have implemented the PCODE protocol on a col-
lection of IBM RS/SOOO workstations and on a col-
lection of Silicon Graph,ics Indigo workstations. both
communicating via UDP broadcast The experimen-
tal results we obtained indicate that the performance
advantage of PCODE over the current point-to-poznt
approach (TCP) can be as h.igh as an order of magni-
tude on a cluster of 16 workstations.

--
‘Supported in part by the NSF Young Investigator Award

CCR-9457811, by a grant from the IBM Almeden Research
Center, San Jose, California and by a grant from the AT&T
Foundation.

1063-7133/95 $4.00 0 1995 IEEE

+Institute of CS
Hebrew University
Jerusalem, Israel

dolev@cs.huji.ac.il

%Jniversity of Maryland
Institute of Advanced Computer Studies

College Park, MD 20742
rimon@umiacs.umd.edu

1 Introduction
Parallel computing on clusters of workstations and
personal computers has very high potential, since it
leverages existing hardware and software. In fact,
there are a number of existing commercial parallel pro-
gramming environments that can run on top of CIUS-
ters of workstations [3, 11, 15, 181.
Parallel programming environments offer the user a
convenient way to express parallel computation and
communication. The communication part consists of
the usual point-to-point communication as well as col-
lective communication. Examples of collective com-
munication operations include one-to-all broadcast,
all-to-all broa.dcast, global combine operation, scatter
and gather.
The need for collective communication arises fre-
quently in parallel computation. Collective commu-
nication operations simplify the programming of ap-
plications for parallel computers, facilitate the imple-
mentation of efficient communication schemes on var-
ious machines, promote the portability of applications
across different architectures, and reflect conceptual
grouping of processes. In particular, collective com-
munication is extensively used in many scientific ap-
plications for which the interleaving of stages of local
computations with stages of global communication is
possible (see [lo]). Collective communication routines
can operate over the entire set of process’s that are
created at the beginning of an application or over user-
specified groups of processes [4, 141.
However, existing programming environments for clus-
ters are built, on top of a point-to-point communica-
tion layer (send and receive) over local area networks
(LANs) and, as a result, suffer from poor communi-
cation performance. For example, a broadcast that
is implemented using a TCP/IP protocol (which is a

130

Proceedings of the 9th International Parallel Processing Symposium (IPPS '95)
1063-7133/95 $10.00 © 1995 IEEE

“reliable” point-to-point protocol) over a LAN is obvi-
ously inefficient as it is not utilizing the fact that the
LAN is a broadcast medium.
The system model that we consider in this paper con-
sists of a set of processors that communicate via asyn-
chronous and unreliable broadcast messages. A pro-
cessor has three logical layers of software (see Fig-
ure 1). The lowest layer is a LAN,-communication
layer, typically a User Datagram Protocol (UDP), that
interfaces the LAN. The second layer is the transport
layer (this is where our new protocol fits). The upper
layer is the user-communication layer, which in our
case is a set of collective communication routines of a
parallel programming environment.
Our goal is to create a transport layer which utilizes
the fact that a LAN is a broadcast domain and to make
the collective communication part of a parallel pro-
gramming environment more efficient The challenge
in achievin
facility wit a

this goal is that, the LA.N-communication
in a broadcast domain, typically a User

Datagram Protocol (UDP , is unreliable. We make
use of special properties o f’ the parallel programming
environment in order to save in communication cost,
in code complexity, and in CPU overhead.
R.cliable broadcast in distributed systems is a topic
that has been studied extensively for more than a
decade [12]. In fact, there are a number of existing
projects and systems t.hat. provide a reliable t,rans-
port layer as well as other servic.es for distributed
computin
Psync
‘I’ot~ern i

Examples are the V system [8], ISIS [5],
16, Amoeba [l!)], Trans [13], ‘I’ransis [l] and ‘i
21. However, we ha.ve observed that, the prop-

ert ies required from the user-cornn-lllllicatiori layer a.-
sociated with relia,ble broadcast# Ijrotocols for dis-
trzbuted systems are different from t,he properties of
the user-communication layer associated with parallel
systems.

The main cont,ributions of t,he paper are:

* We have studied the requirements associated with
collective communic:ation for parallel computing.
We have observed that, the main difference be-
tween a distributed computing paradigm and a
message passing parallel computing paradigm is
t,hat, in a distributed environment the activ-
it,y of every processor is independent while in a
parallel environment the collectsion of the usfar-
communication layers in the processors can be
modeled as a szngle global program. Also, the typ-
ical fault model in parallel computing (which is
the fault model we will be assuniing) is that if a
single processor fails then the execution stops and
t)he recovery is handled by global techniques (such
as check-pointing) at the application layer, aud
not at, the communica~tion layer In distributl:d
comput#ing environments a message that is re-
ceived from the net,work by the t,ransport layer
is delivered to the user-communication layer. ‘Ilre
notion of dehvered has a different meaning in pa,r-
allel computing environments, where a message
is expected by t(he receivers. Namely, a message

l

.

l

The

is not just delivered to but also requested by the
user-communication layers at the receivers.

We have formalized the requirements by defin-
ing the notion of a correct global program. This
notion provides a precise specification of the in-
terface between the transport layer and the user-
communication layer. We also formally defined
the interface between the transport layer and the
LAN-communication layer. We note here that the
notion of a global program fits well with the no-
tion of a Single Program Multiple Data (SPMD)
in parallel computing. It allows concurrent exe-
cution of point-to-point communication as well as
communication over groups of processors.

We have developed a new communication proto-
col that is driven by a global program, and proved
its correctness. The protocol has a number of
new ingredients that take advantage of the fact
that (i) we have a global program and (ii) that
the communication layer is a broadcast domain.
We call this new protocol PCODE, for Parallel
Computing On Distributed Environments.

We have implemented the PCODE protocol on a
collection of IBM RS/SOOO workstations and on a
collection of Silicon Graphics Indigo workstations,
both communicating via UDP broadcast. The ex-
perimental results we obtained indicate that the
performance advantage of PCODE over the cur-
rent point-to-point approach (TCP) can be as
high as an order of magnitude on a cluster of 16
workstations.

paper is organized as follows. In the next section!
we present the properties and requirements associated
with parallel computing, define the notion of a correct
global program and specify the properties of the LAN-
communication layer. The description of PCODE is
done in three steps. First, in Section 3 we describe a
simple protocol (that assumes infinite buffers). Next,
in Section 4 we extend the simple protocol to a more
practical protocol (it uses finite buffers). The proofs of
correctness of both protocols are omitted here due to
space limitation. In Section 5 we indicate additional
extensions and ideas in PCODE that facilitate perfor-
mance improvements. In Section 6 we describe the
environment we have created to conduct performance
evaluation of PCODE and present experilnental re-
sults. Finally, Section 7 concludes the paper.

2 Formalization of the Model
In this section we will formally describe the computa-
tion/communication model of the distributed/parallel
system that we are interested in. We then, in the next
two sections, will use the model to prove the correct-
ness of our protocols. The system consists of proces-
sors t,hat communic.ate via asynchronous and unreli-
able broadcast messages. Although we expect that
some messages might be lost, we assume that the con-
tent of a received message is not corrupted. A proces-
sor has three logical layers of software (see Figure 1).

131

Proceedings of the 9th International Parallel Processing Symposium (IPPS '95)
1063-7133/95 $10.00 © 1995 IEEE

The lowest layer is a LAN-communication layer (typi-
cally UDP) that interfaces the LAN, The second ‘layer
is the transport layer (this is where our new proto-
col fits). The upper layer is the user-communication
layer, which in our case is a set of collective commu-
nication routines of a parallel programming environ-
ment. We will describe the upper and lower interfaces
to the transport layer and then specify the properties
of the transport layer.

2.1 The Global Program
The calls that the user-communication layer at each
node can make to the transport layer are either
multicast or request. We model the collection of calls
to the transport layer made by all t,he processors in
the system aa a sing/c global pro,gram. The function
Program maps Processors x PositiveIntegers into
a set Ccrlls consisting of all possible transport layer
calls from the user-communication layers and the null
operation that we call skip. More specifically, for each
processor p and each positive integer i, we assume t,hat
Program(p, i) haa one of the following three forms:

l multicas$,(m: T) where m is a message and -r is
a nonempty set of processors (not including p) to
receive the multicast message m from p.

l reques$,(q,T) where p # q is a processor to re-
ceive a multicast message from q, and T is a set,
of processors including p but not, q.

l skip.

Each processor p is executing the same program and
making the calls Program(p, i), starting with i = 1
and incrementing i by 1 after each call. Thus, the
index i identifies the execution order within each pro-
cessor.
A global Program is said to be correct if the following
three assumptions are satisfied:

Assumption 1 (Matched Calls)
zf Program(p, i) = multicastp(m,T) then “9 E
?‘ a Program(q, i) = request,(p,T)” and “q $Z
(7’ u {p} 3 Proyram(q, i) = skip”; and if
Program q, i) = requ,estQl(pr T) then there is a pro- 1
~ssor p such that Pro!qram(p, i) := mzslticnst,(m, 7’).

While the first assumption relates to the syntax of a
correct program the next two assumptions relate to
t,he execution of a correct program.

Assumption 2 (Iteration) Each processor y zssues
the call Program(p, 1) and issurs Program(p, i + 1)
after Program(p, i) returns.

Assumption 3 (Maximum Message Size) There
IS a maximum message stze and each finite buffer has
room for at least one message.

2.2 LAN-Communication Layer
The LAN communication layer (typically a UDP)
has a broadcast capability. The calls made by the
transport layer to the LAN-communication layer are
broadcast of a message and receive of a message. Al-
though some messages may be lost, we assume that if
a message is broadcast infinitely many times it will be
received infinitely many times by all other processors.
Formally, we have the two following assumptions.

Assumption 4 (Eventual Receipt) If the same
message is broadcast infinitely many times from one
processor then it will be received infinitely many times
at every other processor.

Assumption 5 (Sane Receipt) 1f a message is re-
ceived at a target processor then it was previously sent
by fhe source processor claim.ed.

2.3 A Correct Transport Layer and Its
Properties

In t,his subsection we specify the notion of a correct
transport layer and specify its main props-srties.
A transport layer is correct if any correct Program
that runs over it with a set P of processors, without
any processor failure, salisfies t.he following proposi-
tions.

Proposition 1 (Progress) (Vp E P) Program(p, i)
is eventually issued.

Proposition 2 (Correct delivery)
(Vp, q E P) If Progrnm(p, i) = multicas$(m,T)
and Program.(q, i) = requestq(p,T), tht,n at p the
multicast returns and at Q the messaqe m is delivered
and the request returns. -

It is easy to see that a correct transport layer has the
following properties:

Property 1 (Delivery by a Request) Messages
are delivered once to the user-communacation layer
only in response to requests. The request returns aj-
ter the correct message is delivered.

Property 2 (FIFO Delivery) Messages from the
same source processor are delivered to the targef set
in the order in which they were m.ulticast.

Note that throughout the paper we use the term “de-
liver” as delivering a message from the transport layer
up to the user-communication layer in the same pro-
cessor. In the next two sections, we will describe
protocols that implement a correct tralrsport layer
assuming that Assumptions 4 and 5 on the LAN-
communication layer are satisfied. The proof of cor-
rect.ness of the protocols is accomplished by proving
that the foregoing two propositions are true, namely,
that we get progress and correct delivery.

132

Proceedings of the 9th International Parallel Processing Symposium (IPPS '95)
1063-7133/95 $10.00 © 1995 IEEE

3 A Simple Protocol (PO)
The PO protocol is described in Figures 2 to 5. This
protocol includes only what is essential for correct-
ness. It assumes unbounded memory space for keep-
ing a copy of the messages that have been sent out.
Therefore it is obviously unrealistic and is also ineffi-
&ant. It is presented here to provide a basic idea of
the general protocol. The main idea in PO is that we
guarantee reliable delivery by using the fact that ev-
ery multicast has a matching request. In particular,
a NACK is generated infinitely many times (using a
timer) upon a request which can not be satisfied, until
the request is satisfied.
be make the following remarks for clarification of the
protocol described in Figures 2 to 5.

We present the protocol which will be executed
at each processor. We assume each processor is
preassigned some unique pid which is stored in tlhe
variable myid. Furthermore, at the initializat,ion
of the protocol each processor receives the pids of
all other processors. We also use PmYid to denote
the executing (current) processor.

Each processor has a set of input buffers, one
for each sender. Each input buffer can hold at,
least one message. This idea helps in provid-
ing the property of non-interference between noes-
sages from different sources. We note t,hat this is
an implementation choice and other solutions are
possible.

An important dat,a struct.urtA is the Personal
Counter Vector, denoted as pcv. It is an array of
the size of the processor set. It reflects the highest
consecutive personal counter that has been seen
by Pmyjd from each processor. When the Persnn-
alCount on an incoming message is not consecu-
tive with the pczt fo,r the sender, the message must
be either too early (for instance, due to message
losses) or too late (for instance, when this mes-
sage is a resend, and the origina. one has already
been received).

The target set, 1’ is specified as part of every mes-
sage m that is targeted to T The target field
of the message is overloaded for convenience of
the presentation. It is sometimes referred to a.s
a set, and other times as a single processor. The
meaning should be clear from the context.

To broadcast m means to send a message m over
the broadcast medium of the communication net-
work. Every processor on the network can then
receive it.

To resend a message is to broadcast it exactly it9
was done the first time it was sent out, with the
same counter.

When a message is received from the communica-
tion layer (receive(m)) it can be found in a place

reserved for the incomin messages until the pro-
cedure handle(m) is cal ed. ‘i When we want to
specifically keep this message for further use, we
clearly state that the message is being kept (e.g.
added to a buffer).

4 A Practical Protocol (PI)
Due to space limitation, the pseudocode of the Pl pro-
tocol is omitted here and can be found in [6]. This
protocol is different from PO in that it does not as-
sume unbounded memory space. Hence it is practical
but can still be optimized. In PO a sender kept a copy
of every message it sent. The new in red&t in Pl is
a mechanism to deal with the discar f ing of messages
at the sender after it has been ,verified t.hat all the
processors in the t,arget set handled them. The sla2us
mechanism provides a means by which to know when
a sent message can safely be discarded.

5 The PCODE Protocol

The PCODE protocol is an expansion of PO and Pl.
It includes many additional features which make it
efficient, but do not change the basic properties of PO
and Pl. The pseudocode of the PCODE protocol can
be found in [6].

5.1 The Global Counter

In addition t,o the personal counters, each processor
keeps a GlobalCounter which roughly counts the num-
ber of messages sent on the whole system The pro-
cessor adds this counter to every message it sends
out. Each processor will increment its GlobalCounter
whenever it sends out a message or delivers up one
carrying a higher GlobalCounter than it already
has. Notice that, unlike the PersonalCounter, the
GlobalCounter is not necessarily unique for different
messages since two processors broadcasting concur-
rently may use the same GlobalCounter, However,
the GlobalCounter provides a method to control the
flow of messages on the network as well as a method for
possible early detection of lost messages as described
below.
A message can be safely delivered if it is carrying a
consecutive PersonalCounter, even if there is a gap
in the GlobalCounter it is carrying, but the receiving
process should not update its own GlobalCounter if
there is such a gap. To avoid unnecessary delay in
the delivery of a message, we deliver messages imme-
diately, even if they have a gap in the GlobalCounter,
but in that case we remember the count,er for later up-
dating. We keep a list of the counters which created
such a gap and were attached to a message that has
already been delivered. Whenever the GlobalCounter
is updated we will check this list to see if any of its
counters can now be updated. This is necessary in
order to keep track of the GlobalCounters we received
from each processor, for the purpose of flow control,
as described in the next subsection.

133

Proceedings of the 9th International Parallel Processing Symposium (IPPS '95)
1063-7133/95 $10.00 © 1995 IEEE

5.2 Flow Control

111 addition to the GlobalCounter, each processor
keeps a vect,or gee, the size of the processor set.
Here, gcv[i] holds t,he last GlobalCounter that pro-
cc’ssor Pmyid has seen on a message from processor
i. If the minimum on gee is too far from the maxi-
mum (which is the current GlobalCounter) this means
tllat too many messages have not, yet been deliv-
ered, they might be lost,, and there may he a lot
ol‘ messaee traffic on the network. Therefore when
the differgnce between the minimum and the maxi-
nmm on gcv is greater than a FLOW-WINDOW size,
f’rn,id wiil stopsending, until the difference decreases.
FLOW-WINDOW is a tunable size (See [l] regard-
ing flow windows). Note that the difference bet.ween
the minimum and maximum will also be large when
the user communication layer on a processor is not,
initiating the sending of messages. For this reason
every processor will send out PROGRESS messages
whenever it sees t,hat the difference is too large, or
when it is requested to do so by another processor. A
PROGR,ESS message is simply a message that, holds
t,he current Glob&Counter of the sender. This will
enable the other processors t,o update the sender’s
ycv. See Subsection 5.5 for the actual sending of the
progress rnessages. Notice that the GlobalCounter
ou a PROGRESS message is no’t. ‘Loriginal” in the
sense that it was not necessarily incremented to its
current size by the sending process (which is t(he
c;Be for a GlobalCounter on a REGULAR message).
‘l’herefore a process receiving a PROGRESS message
may not increment its own GlobalCounter accord-
ing to the one OIL the message. ‘J’hc GlobalCounter
should be incremented only when a message is re-
ccived from the sender which originated the counter.
The PROGRESS messages may be used only to in-
crement the gcv of their sender. Therefore when we
update the GlobalCounter and when we save counters
(as described in Subsection 5.1 above) we distinguish
between “original” and ‘?lon-original’ counters.

5.3 Early Detection of Message Loss
III PO and Pl we know that a message is missing
only if it is requested by the user-communication
layer. When messages are actua!lly lost by the TlDP
layer, we can often ident,ify the loss even before the
nlessage is requestsed. If we receive a message with
I’ersonalCount not. consecutive I;O pcv of the sender.
we have probably lost, some message(s) (though they
nlay still arrive later). l[n this case we can send a
NACK to the sender, requesting the missing mes-
sage(s), thus improving our chances of having the
ntessage ready when it is requested. When using the
C:lobalCoun.ter described in the previous subsection,
we can also check for ga.ps in this counter, which in-
dlcate possible message loss in the same way as the
gaps in the PersonalCount. We cannot identify the
sr>nder of the messages that we lost. but if we broad-
cast a NACK the sender will be able to identify its
owu messages and resend them. A benefit of detect,-
PzIg message loss by the GlobalCounter is that even if
t,he sender has stopped sending new messages, as long

as some other processor has seen the lost message and
sent a new one after that, we may see a gap in the
GlobalCounter. Since the GlobalCounter is not pre-
cise, it may not help detect a loss when more than
one messa e wits given t,he same GlobalCounter. The
Personal 8 ount will detect every loss, as long as we
receive further messages from the same sender.

5.4 Saving Early Messages
In PO and Pl, if a message is too early (i.e., there is a
gap in the PersonalCount) we ignore the message. In
PCODE we maintain a buffer of waiting rnessages, in
which we keep messages which have arrived too early,
until they can be accepted. Whenever we accept a
message we can check this buffer to see if the next
message we expect is already there. When the buffer
is full - we will ignore the “too early” message as in
PO and Pl. This mechanism can reduce the number of
messages that have to be resent when a message loss
occurs.

5.5 Periodic Status Messages
In Pl, messages will be discarded from the buffer of
sent, messages only when the processor has a rnes-
sage to multicast and has found the buffer full. It
would obviously be better to try and discard rnes-
sages before the buffer is full, so as not to slow
down the user’s application. Therefore each proces-
sor should send STATUS messages periodically (the
same STATUS messages used in Pl). A processor
can determine when to send a STATUS message by
looking at the GlobalCounter, and remelubering the
GlobalCounter that was sent on t,he last STATUS
message. If the (;lobalCounter has grown more than
STATUS-WINDOW (a tunable size) since the last
STATUS message was sent, the processor will send
out a new one. The STATUS messages can also be
used as PROGRESS messages, which are described
in Subsection 5.2 above. Since both STATUS and
PROGRESS messages are usually useful to the pro-
tocol, we combine the two. The messages of type
STATUS will in fact include the PROGRESS infor-
mation as well (which is simply the GlobalCounter).
When handling t,hese messages both issues will be
taken care of. Whether we are required to send STA-
TUS or PROGRESS inforrnation, we will always send
the “augmented” STATUS message.

5.6 Sending Point-to-Point Messages
Though our goal is to make use of the broadcast
medium, in some cases the message is intended only
for a small number of processors, or even one recipi-
ent, namely. a point-to-point message. In this case it
would be undesirable to broadcast the message, thus
forcing all the processors oa the network to read it
and process it. This occurs either when the user-
communicat)ion layer specifies a target group of size
one, or for certain control messages---e.g., a NACK
message indicating message loss from a known sender.
In t.hese cases we can sc*nd t#he messages I)y UDP. us-
ing the specific host’s address instead of t,he broadcast
address. The recovery of the point-to-point messages

134

Proceedings of the 9th International Parallel Processing Symposium (IPPS '95)
1063-7133/95 $10.00 © 1995 IEEE

cannot be done by the mechanism used for the re-
covery of broadcast messages, since this mechanism
relies on the fact that all processors can receive all
the messages. Therefore a separate mechanism must
be supported to deal with recovery of point-to-point
messages. Such a mechanism is simple to construct.

5.7 Timeouts
In PO and Pl we had only one type of NACK, which
is issued when a request is issued from the user-
communication layer, if the requested message is not
ready. In PCODE we have two more types of NACKs,
which are issued when gaps are found in the PER-
SONAL or in the GLOBAL counters. PO through I’1
set a periodic timer for resending a NACK only in the
case of a REQUEST NACK, which is the only case
in which the protocol may deadlock if the NACK is
not resent. In PCODE we set a timer for all types of
NACKs. Every NACK will be periodically resent until
it has been satisfied with the required messages. In the
case of an unsatisfied request, PCODE does not issue
a NACK immediately, but waits for an initial timeout
in order to give the message a chance to arrive. If the
message does not arrive within this timeout, a RE-
QUEST NACK is issued, and a periodic timer is set.
The length of the timeouts for the different NACKs
may be tuned, as described in Section 6.5.

6 Implementation and Performance
Evaluation

In this section we will present the implementation ef-
fort of PCODE and the environment that we have set
up for performance evaluation. We will also present
the results of our measurements, which clearly express
the advantage of our approach.

6.1 The Environment
We have implemented a prototype of the PCODE pro-
tocol in C. The prototype was initially developed on
a collection of RS/6000 workstations using the AIX
operating system and communicating via UDP over
a lOMbit Ethernet LAN. The results in this paper
were obtained on a collection of Silicon Graphics In-
digo machines with R4060 processors, using the IRIX
operating system and communicating via IJDP over a
lOMbit Ethernet LAN.
The transport layer runs as a background daemon.
This enables PCODE to treat the messages coming in
from the LAN-communication layer while the user-
cornmunic.ation layer is blocked, e.g., waiting for a
request call to return. Therefore the PCODE protocol
and the user-communication layer are implemented as
two separate processes. The communication between
them is done using TCP sockets. Ideally the two lay-
ers would be integrated into one multi-thread process,
thus eliminating the time used for Ini*er-Process Com-
munication (IPC).

6.2 The User-Communication Layer
In our initial experimems we have assumed that the
global program (the user-communication layer) is per-

forming an all-to-all broadcast in which each proces-
sor broadcasts a message to all other processors. For
this we used two different drivers. One written in
RAPID [9], th e o th er is a simple C program for the
user-communication layer which runs through the se-
quence of multicast/request that corresponds to an
all-to-all broadcast. The driver runs through this se-
quence a large number of times and measures the aver-
age time it takes. We have observed certain variability
in the times measured between individual communica-
tion events. As a result, we have developed techniques
for obtaining an average time per call as a figure of
merit for our protocol.
We tried implementing the all-to-all broadcast in two
ways. In one implementation each processor broad-
casts its message in turn. While one processor calls
multicast, all the other processors call the correspond-
ing request. In the second implementation each pro-
cessor first calls multicast, and then calls a series
of requests, one for each other processor. Our tests
showed that the time for an all-to-all broadcast using
PCODE is better when using the second implementa-
tion. When using TCP, On the other hand, it is better
to use the first implementation. The results in the fol-
lowing section were obtained using for each system the
implementation that gives better results.
In our discussions hereafter, we will refer to the “time
per call”. This time is obtained by dividing the aver-
age time measured for the all-to-all broadcast by the
number of machines in the configuration. The term
“time per call” is not accurate, since it is in fact an
average of the time for one multicast and the time for
N - 1 requests, where N is the number of machines.
This normalization enables us to compare the perfor-
mance over a changing number of machines.

6.3 Optimizing TCP
In order to optimize broadcast time, protocols using
TCP must usually be tailor made., considerin the
number of processes participating m the broa f cast,
and which process should receive which information.
This is true for all point-to-point communication, and
specifically for TCP, which performs differently for dif-
ferent patterns of communication on the connection.
In order to compare PCODE to TCP, we implemented
a TCP program which implements the multicast and
request calls, as defined in this paper, simply by using
TCP point to point connections, which are reliable.
Unlike PCODE, the TCP program does not run sepa-
rately from the driver. It is linked with the driver and
run as one process. This fact gives TCP the advan-
tage that it does not need IPC communication. Since
we were using the same atomic calls as in PCODE,
namely multicast and request, we could not fully op-
timize TCP. E.g., we could not parallelize the multi-
casts - a multicast must be completed before the next
one can begin. The TCP multicast was implemented
as a series of sends, one to each target processor.

6.4 Results
We tested the protocol on up to 16 machines. The
machines were not dedicated to the tests, but the load

135

Proceedings of the 9th International Parallel Processing Symposium (IPPS '95)
1063-7133/95 $10.00 © 1995 IEEE

apart from the tests themselves was not high. The
messages were of sizes of up to IKbyte, since at the
F’CODE level we are interested only in sending UDP
packets.
To obtain a measure of “ms per call” for a certain
configuration and message size, we ran a number of
tests, each one of 1000 rounds of all-to-all broadcast.
For each test we obtained the average time per round,
and divided it by the number of machines. We then
took an average over the results on each of the ma-
chines for each of the tests and i.his final average is
the “ms per call” for this configuration and messa e
size. The variance of the results is usually under 10 % o.
In the next 2 subsections we compare PCODE to TCP
and to distributed transport layers.

6.4.1 Comparing to TCP

In Figures 6 and 7 we show the time per call plotted
against the number of machines in the configuration
with message size 20 bytes and 1 Kbyte, respectively.
The figures compare the PCODE curve to the TCP
curve. With message size 20 PCODE is not faster
than TCP on up t,o 8 machines. With larger config-
urations and larger message sizes PCODE is always
faster, up to an order of magnitude faster with 16 ma-
chines and message size 1K. It is clear t,hat while the
‘I‘CP timegrows linearly with the number of machines,
the PCODE time hardly grows at all.
Figures 8 and 9 show t,he time per ~:a11 against the mes-
sage size, for a c.onfiguration of 3 and 16 machines,
respectively. Each plot compares the PCODE time
with the TCP time for the same configuration. On 3
lnachines we see again tha,t PCODJ: is notS fast.er IShan
‘I‘CP when the message size is less IShan I K. Neverthe-
Itss it is evident that the PCODE,: curve almost stops
growing towards the PK message size, while the TCP
curve is growing steadily. On I6 machines the ‘KY
t Ime grows very fast, with t,he message size. This shows
1 hat, the performance of PCODE scales much htbtter
c-ompared with the solutSion based on TCI’.

6.4.2 Comparing to Distributed Broadcast
Layers

In comparing our results t,o those previously published
for distributed transport layers, like Transis, one has
to notice that parallel protocols have a built-in syn-
chronization which influences t.h+s performance. For
chxample, each all-to-all requires all machines to syn-
c,hronize. Moreover, in a typical distributed broadcast
layer a slow machine hardly infllltsnces the through-
put measured, whereas in a synchronous mode it slows
down every other machine.
In Transis the report,ed measurelnents are for maxi-
lnum flooding of the network, and do not measure la-
i ency. In Horus [17] the results refer t,o packing several
short messages on a single UDP packet. We tried to
bring the measurements t,o a common ground, for that
we performed a few experiments ill which we imitated

E;nhrrsansmission patterns of MPI [14] over Transis and

Our experiments show that PCODE’s performance is
comparable to that of the other distributed broadcast
layers. In Figures 10 and 11 we show the results of
running repeated all-to-all broadcast calls in an MPI
mode on different systems, with a message size of 20
bytes and 1 Kbytes, respectively, over a changing num-
ber of machines. The all-to-all broadca.st is imple-
mented in the second version (see previous section).
Note that the PCODE timings in these two figures
were measured in different runs from those presented
in Figures 6 through 9.
We compared to Transis running over Lansis as well as
Transis running over the Token Ring protocol for mes-
sage recovery and ordering. Note that all but PCODE
are protocols which have been tuned and optimized
over some period of time now, while PCODE is a
newly developed protocol. It is evident that PCODE
performs better than Transis using the Ring, but, the
same as Transis using Lansis. Horus per,(brms better
than all the tested systems. We note here that Horus
is implemented as one multi-threaded process, as ide-
ally we would like to implement PCODE. We believe
that with such an implementation and with some fur-
ther tuning PCODE should eventually perform better
than any general distributed broadcast layer, since its
requirements are more lenient.

6.5 Tuning the Constants
In the previous 3 sections describing the protocols, we
mentioned that several parameters of the algorithm
are tunable. As an example of what can be accom-
plished by such tuning, we experimented with the size
ofone of t,he timeout delays. The specific delay was the
length of time to wait between the arrival of a request
for a message not yet received and the sending of a
NACK to the source. The longer the delay, the longer
it would t,ake to deliver a message that was actually
lost; however, the shorter the delay, the more likely
that the NACK and its response would bca wasted be-
cause the required message was actually in transit. In
our experiment, as we raised the delay, we observed
a significant increase in the number of NACKs sent
and a slight rise in the overall t ime per ca.11. The best
timing obviously depends on the reliabilit,y of the net-
work as well as the speed of the machines, but it is
clear that a real improvement in time can be achieved
by appropriately tuning the constants.

7 Concluding Remarks
We have studied the requirements associated with col-
lective communication for parallel computing. We
have observed that the main difference between a dis-
tributed computing paradigm and a message passin
parallel computing paradigm is that, in a distribute dg
environment the activity of every processor is inde-
pendent while in a parallel environrnent the collection
of the user-communication layers in the processors can
be modeled as a single global program. We have for-
malized the requirements by defining the notion of a

1.76

Proceedings of the 9th International Parallel Processing Symposium (IPPS '95)
1063-7133/95 $10.00 © 1995 IEEE

correct global program. This notion provides a pre-
cise specification of the interface between the trans-
port layer and the user-communication layer. We
have developed PCODE, a new communication pro-
tocol that is driven by a global program, and proved
its correctness. We have implemented the PCODE
protocol and run it over a collection of up to 16 IBM
RS/SOOO workstations, using the AIX operating sys-
tem as well as over Silicon Graphics Indigo machines
with R4000 processors, using the IRIX operating sys-
tem. In both cases the workstations were communi-
cating via UDP over a lOMbit Ethernet LAN. The
esperimental results indicate that an improvement in
performance of roughly an order of magnitude (in the
citie of 16 workstations) can be obtained using our ap-
proach compared to current approaches. Initial results
also show that PCODE’s performance is comparable
to other distributed broadcast layers.
We note here that PCODE is just, one possible imple-
mentation of the transport, layer as formally defined.
Recently, we have developed another new protocol,
called User-level Reliable Transport Protocol (URTP),
for this purpose 171. The URTP protocol, which ex-
teitds the AIX kernel, runs on LAN of IBM RS/6000
workstations. Note that the ideas presented in this pa-
per can be easily extended to any Network of Worksta-
t,ions that, provides an lmreliable broadcast transport
protocol (e.g. ATM).

Acknowledgements
W(* would like to thank especially Dalia Malki for her
invaluable advice, coding ideas and trouble shooting.
Thanks to Yair Amir for his coding ideas and advice
on IPC and to Jim Wiley for useful help and advice
on AIX.

References
Y. Amir, D. Dolev, S. Kramer and D. Malki,
“Transis: A communication subs-system for high
availability,” Proceedings of the 2tnd Interna-
tional Symposium on Fault-Tolerant Computing,
IEEE, pp. 76-84, 1992.

Y. Amir, L.E. Moser, P.M. Melliar-Smith, D.A.
Agarwal and P. Ciarfella, “Fast. message order-
ing and membership using a logical token-passing
ring”, Proceedinas of the 13th, International Con-
ference on Dist&buted Computing Systems. pp.
551-560, May 1993

V. Bala, J. Bruck, R. Bryant, R. Cypher, P. de
Jong, P. Elustondo, D Frye, A Ho, C.T. Ho, G.
Irwin, S. Kipnis. R. Lawrence and M. Snir, “The
IBM External IJser Interface for Scalable Parallel
Systems”, Parallel (lomputing, Vol. 20, No. 4, pp.
445-462, April 19911.

V. Bala, J. Bruck, R. Cypher, 1’. Elustondo, A.
Ho, C.T. Ho, S. Kipms, and M Snir, “CCL: A
portable and tunable collective communication li-
brary for scalable parallel computers”, Interna-
tional Parallel Processing Symposium, pp. 835-
844, Cancun, Mexico, April 1994. To appear in

Fl

PI

PI

PI

PI

DOI

illI

P21

ii31

WI

PI

[I61

IEEE Trans. on Parallel and Distributed Com-
puting, February 1995.

K. Birman, R. Cooper, T. A. Joseph, K.
Marzullo, M. Makpangou, K. Kane, F. Schmuck
and M. Wood, The ISIS System Manual, Dept. of
$ogyputer Science, Cornell University, September

J. Bruck, D. Dolev, C.T. Ho, R. Orni and R.
Strong, PCODE: An Eficient and Reliable Col-
lective Communication Protocol for Unreliable
Broadcast Domains, IBM Research Report RJ
9895, September 1994.

J. Bruck, D. Dolev, C.T. Ho, M. Rosu and
R. Strong, Eficient Message Passin! Interface

cv
MPI) for Parallel Computing on (%4sters of

orkstations, IBM Research Report, RJ 9925,
December 1994.

D. R. Cheriton and W. Zwaenepoel, “Distribmed
process groups in the V kernel,” ACM Trans. on
Computer Systems, 2(3), pp. 77-107, May 1985.

D. Dolev, R. Strong, and E. Wimmers, “Experi-
ence with RAPID prototypes”, Proceedings of the
IEEE International Workshop on Raped Systems
Prototyping, Grenoble, June 1994.

G. Fox, M. Johnson, G. Lyzenga, S. Otto, J.
Salmon, and D. Walker, Solving Problems on
Concurrent Processors, Volume I: General Tech-
nigues and Regular Problems, Prentice-Hall, E:n-
glewood Cliffs, New Jersey, 1988.

G. A. Geist, M. T. Heath, B. W’. Peyton,
and P. II. Worley, *‘A user’s guide to PICL: a
Portable Instrumented Communication Library”,
ORNL Technical Report, ORNL/TM-11616, Oc-
tober 1990.

V. Hadzilacos and S. Toueg, “Fault-tolerant
broadcasts and related problems”, Chapter 5 in
Distributed Systems, second edition, Edited by S.
Mullender, ACM Press New York, 1993.

P. M. Melliar-Smith, L. E. Moser and V.
Agrawala, “Broadcast protocols for distributed
systems”, IEEE Trans. on Parallel and Dis-
tributed Systems, January 1990.

Message Passing Interface Forum, Dowment for
a Standard Message-Passing Interface, University
of Tennessee, Technical Report No. CS-93-214,
November, 1993.

J. F. Palmer, “The NCUBE family of parallel su-
percomputers”, Proceedings of the International
Conference on Computer Design, IEEE:, 1986.

L. L. Peterson, N. C. Bucholtz and R. D. Schlicht-
ing, “Preserving and using cont,ext information
in mterprocess communication,” ACM Trans. on
Computer Systems, 7 (3), pp. 217-246. 1989.

137

Proceedings of the 9th International Parallel Processing Symposium (IPPS '95)
1063-7133/95 $10.00 © 1995 IEEE

[17] R. van Renesse, K. P. Birman, R. Cooper,
B. Glade, and P. Stephenson, “Reliable Multi-
cast between Microkernels”, Proceedings of Ihe
USENIX workshop on Micro-Kernels and Other
Kernel Architectures, pp. 27-28, April 1992.

[18] A. Skjellum and A. P. Leung, “Zipcode: a
portable multicomputer communication library
atop the reactive kernel”, Proceedings of the
5th Distributed Memory Computing Conference,
IEEE, pp. 328--337, April 1990.

[I91 A. S. Tanenbaum, M. F. Kaashoek and H. E. Bal,
“Parallel programming using shared objects and
broadcasting,” IEEE Computer, vol. 25, 1992.

I I

, multicast Cm. T)

.

rerelve (in)
it

bmdcart cm)
LAN-Communication Layer

handle (m) {
q = msender;
T = m.target;
if (q == myid) then

return;
case (m.type) of
REGULAR ms :

if the ready s ot for q is not free then f
return;

if (m.PersonalCount # pcv[qj + 1) then
return;

pcv[q] = m.PersonalCount;
if (myid is a member of T) then

put m into ready slot for q;
NACK msg:

if (T == myid) then
resend m’ from buffer of sent messages for

which m’.PersonalCount > m.LastRcvd;
return; }

Figure 1: The three logical layers of software in a pro-
cessor. Figure 3: PO: Procedure handle

do forever {
If there is a multicast (m, T) issued

from the layer above then
communicate (111, T);

If there is a request (cl, T) for a message
to be delivered then

if there is a ready message m from source q then
deliver (m);

else {
IssueNack (q):
denote there is a pending request (q! T); }

rf there is an incoming receive (m) then {
handle (m);
if there is a pending request

(msender, m.target) then
if m is in the ready slot

from source m sender then {
deliver (m) 1
inactivate the nack timer (if it was set);
denote that there is no pending request; } }

if the nack timer has expired then
if there is a pending request (q, T) then

IssueNack (q); }

Figure 2: PO: The main control loop.

communicate (m, T)
I increment pcv[myid ;

m.PersonalCount = pcv[myid];
m.sender = myid;
m.type = REGULAR msg;
m.target = T;
broadcast m;
Keep m in buffer of sent messages; }

Figure 4: PO: Procedure communicate.

IssueNack (q) {
msender = myid;
m.type = NACK msg;
m.target = q;
m.LastRcvd = pcv[q];
broadcast m;
set the nack timer; }

Figure 5: PO: Procedure IssueNack.

138

Proceedings of the 9th International Parallel Processing Symposium (IPPS '95)
1063-7133/95 $10.00 © 1995 IEEE

5 o-o PCODE
x- - -x TCP r

c c cx

4 /
/

2 4 6 0
Number of machines

10 12 14 16

Figure 6: The time per broadcast of 20 byte message Figure 9: The time per broadcast
as a function of the number of machines. as a function of message sizes.

01 30 T- o--o PCODE

25 x- c - -x TCP

20

15 II ,

2 4 6 8 10 12 14 16
number of machines

Figure 7: The time per broadcast. of 1 Kbyte message
as a function of the number of machrnes.

Figure 10: Comparison of the time per bwadcast on
PCODE and related prot,ocols for 20 byte Inessages.

o-0 PCODE

E o.o!
0 200 400 600 800 1000

message size

Frgure 8: The time per broadcast call on 3 machines
as a function of message sizes.

Figure 11: Comparison of the time per broadcast on
PCODE and related probocols for 1 Kbyte messages.

30- o-o PCODE
x- - -x TCP #

25- 0
0

20 .- 0
Ax/

15 .- dH
.XR .

lo---
.

/X@ .
5-H0

message size

0 *"
c

I _ I - I I c
0 200 400 600 800 1000

g) 3.0

i E" 2.5

g 2.0
m
; 1.5

jj 1.0

1 0.5
9

call on 16 machines

i-o PCODE
x- - -x Horus
++ Lansis

sh .Z > -m-o Ring
*w .4+.-.+.-.-.-.-c

. .+
:‘...-

. . . -.
..

* . ~’ . . E

)(---- ‘c,
-)(------>

I I ! I I I 1

4 6 8 10 12 14 16
Number of machines

C-- -x
-c*--_$(,-

o-c PCODE
x- - -x Horus

2 0.5-- +......+ Lansis

i 0.0 4 I I 0 -.-0 ! Rinq
E 2 4 6 8 10 12 14 16

Number 01 machines

139

Proceedings of the 9th International Parallel Processing Symposium (IPPS '95)
1063-7133/95 $10.00 © 1995 IEEE

