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Abstract 

Exzsting programmmg environments for clusters are 
typically built on top of a point-to-point commun.ica- 
tion layer (send and recezve) over local area networks 
(LANs) and, as a result: suffer from poor performance 
in the collective communication part. For example, a 
broadcast that is implemented using a TCP/IP proio- 
co1 (which IS a point-to-point protocol) over a L.4N is 
obviously inefficient as rt is not utiliz-zng the fact that 
the LAN is a broadcast m.edium. WP have observed 
tha:t the main diflet-enc-e between a dzstributed com- 
puiing paradigm and a message passtng parallel com- 
puting paradigm is that, in a distributed environment 
the activaty of every processor 2s independent wh.ile 
in a parallel environment the collection of the user- 
communication layers 2n the processors can be mod- 
eled as a single global program. W’f’ have formalized 
thr requirements by defining the notion of a correct 
global program. Thas notion provides a precise spec- 
ifil,ation of the interface between the transport layer 
and the user-comm,uniccttion layer. We have developed 
PCODE, a new communication prolocol that is driven 
by a global program, and proved its correctness. 

WC have implemented the PCODE protocol on a col- 
lection of IBM RS/SOOO workstations and on a col- 
lection of Silicon Graph,ics Indigo workstations. both 
communicating via UDP broadcast The experimen- 
tal results we obtained indicate that the performance 
advantage of PCODE over the current point-to-poznt 
approach (TCP) can be as h.igh as an order of magni- 
tude on a cluster of 16 workstations. 
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1 Introduction 
Parallel computing on clusters of workstations and 
personal computers has very high potential, since it 
leverages existing hardware and software. In fact, 
there are a number of existing commercial parallel pro- 
gramming environments that can run on top of CIUS- 
ters of workstations [3, 11, 15, 181. 
Parallel programming environments offer the user a 
convenient way to express parallel computation and 
communication. The communication part consists of 
the usual point-to-point communication as well as col- 
lective communication. Examples of collective com- 
munication operations include one-to-all broadcast, 
all-to-all broa.dcast, global combine operation, scatter 
and gather. 
The need for collective communication arises fre- 
quently in parallel computation. Collective commu- 
nication operations simplify the programming of ap- 
plications for parallel computers, facilitate the imple- 
mentation of efficient communication schemes on var- 
ious machines, promote the portability of applications 
across different architectures, and reflect conceptual 
grouping of processes. In particular, collective com- 
munication is extensively used in many scientific ap- 
plications for which the interleaving of stages of local 
computations with stages of global communication is 
possible (see [lo]). Collective communication routines 
can operate over the entire set of process’s that are 
created at the beginning of an application or over user- 
specified groups of processes [4, 141. 
However, existing programming environments for clus- 
ters are built, on top of a point-to-point communica- 
tion layer (send and receive) over local area networks 
(LANs) and, as a result, suffer from poor communi- 
cation performance. For example, a broadcast that 
is implemented using a TCP/IP protocol (which is a 
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“reliable” point-to-point protocol) over a LAN is obvi- 
ously inefficient as it is not utilizing the fact that the 
LAN is a broadcast medium. 
The system model that we consider in this paper con- 
sists of a set of processors that communicate via asyn- 
chronous and unreliable broadcast messages. A pro- 
cessor has three logical layers of software (see Fig- 
ure 1). The lowest layer is a LAN,-communication 
layer, typically a User Datagram Protocol (UDP), that 
interfaces the LAN. The second layer is the transport 
layer (this is where our new protocol fits). The upper 
layer is the user-communication layer, which in our 
case is a set of collective communication routines of a 
parallel programming environment. 
Our goal is to create a transport layer which utilizes 
the fact that a LAN is a broadcast domain and to make 
the collective communication part of a parallel pro- 
gramming environment more efficient The challenge 
in achievin 
facility wit a 

this goal is that, the LA.N-communication 
in a broadcast domain, typically a User 

Datagram Protocol (UDP , is unreliable. We make 
use of special properties o f’ the parallel programming 
environment in order to save in communication cost, 
in code complexity, and in CPU overhead. 
R.cliable broadcast in distributed systems is a topic 
that has been studied extensively for more than a 
decade [12]. In fact, there are a number of existing 
projects and systems t.hat. provide a reliable t,rans- 
port layer as well as other servic.es for distributed 
computin 
Psync 
‘I’ot~ern i 

Examples are the V system [8], ISIS [5], 
16, Amoeba [l!)], Trans [13], ‘I’ransis [l] and ‘i 
21. However, we ha.ve observed that, the prop- 

ert ies required from the user-cornn-lllllicatiori layer a.- 
sociated with relia,ble broadcast# Ijrotocols for dis- 
trzbuted systems are different from t,he properties of 
the user-communication layer associated with parallel 
systems. 

The main cont,ributions of t,he paper are: 

* We have studied the requirements associated with 
collective communic:ation for parallel computing. 
We have observed that, the main difference be- 
tween a distributed computing paradigm and a 
message passing parallel computing paradigm is 
t,hat, in a distributed environment the activ- 
it,y of every processor is independent while in a 
parallel environment the collectsion of the usfar- 
communication layers in the processors can be 
modeled as a szngle global program. Also, the typ- 
ical fault model in parallel computing (which is 
the fault model we will be assuniing) is that if a 
single processor fails then the execution stops and 
t)he recovery is handled by global techniques (such 
as check-pointing) at the application layer, aud 
not at, the communica~tion layer In distributl:d 
comput#ing environments a message that is re- 
ceived from the net,work by the t,ransport layer 
is delivered to the user-communication layer. ‘Ilre 
notion of dehvered has a different meaning in pa,r- 
allel computing environments, where a message 
is expected by t(he receivers. Namely, a message 

l 

. 

l 

The 

is not just delivered to but also requested by the 
user-communication layers at the receivers. 

We have formalized the requirements by defin- 
ing the notion of a correct global program. This 
notion provides a precise specification of the in- 
terface between the transport layer and the user- 
communication layer. We also formally defined 
the interface between the transport layer and the 
LAN-communication layer. We note here that the 
notion of a global program fits well with the no- 
tion of a Single Program Multiple Data (SPMD) 
in parallel computing. It allows concurrent exe- 
cution of point-to-point communication as well as 
communication over groups of processors. 

We have developed a new communication proto- 
col that is driven by a global program, and proved 
its correctness. The protocol has a number of 
new ingredients that take advantage of the fact 
that (i) we have a global program and (ii) that 
the communication layer is a broadcast domain. 
We call this new protocol PCODE, for Parallel 
Computing On Distributed Environments. 

We have implemented the PCODE protocol on a 
collection of IBM RS/SOOO workstations and on a 
collection of Silicon Graphics Indigo workstations, 
both communicating via UDP broadcast. The ex- 
perimental results we obtained indicate that the 
performance advantage of PCODE over the cur- 
rent point-to-point approach (TCP) can be as 
high as an order of magnitude on a cluster of 16 
workstations. 

paper is organized as follows. In the next section! 
we present the properties and requirements associated 
with parallel computing, define the notion of a correct 
global program and specify the properties of the LAN- 
communication layer. The description of PCODE is 
done in three steps. First, in Section 3 we describe a 
simple protocol (that assumes infinite buffers). Next, 
in Section 4 we extend the simple protocol to a more 
practical protocol (it uses finite buffers). The proofs of 
correctness of both protocols are omitted here due to 
space limitation. In Section 5 we indicate additional 
extensions and ideas in PCODE that facilitate perfor- 
mance improvements. In Section 6 we describe the 
environment we have created to conduct performance 
evaluation of PCODE and present experilnental re- 
sults. Finally, Section 7 concludes the paper. 

2 Formalization of the Model 
In this section we will formally describe the computa- 
tion/communication model of the distributed/parallel 
system that we are interested in. We then, in the next 
two sections, will use the model to prove the correct- 
ness of our protocols. The system consists of proces- 
sors t,hat communic.ate via asynchronous and unreli- 
able broadcast messages. Although we expect that 
some messages might be lost, we assume that the con- 
tent of a received message is not corrupted. A proces- 
sor has three logical layers of software (see Figure 1). 
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The lowest layer is a LAN-communication layer (typi- 
cally UDP) that interfaces the LAN, The second ‘layer 
is the transport layer (this is where our new proto- 
col fits). The upper layer is the user-communication 
layer, which in our case is a set of collective commu- 
nication routines of a parallel programming environ- 
ment. We will describe the upper and lower interfaces 
to the transport layer and then specify the properties 
of the transport layer. 

2.1 The Global Program 
The calls that the user-communication layer at each 
node can make to the transport layer are either 
multicast or request. We model the collection of calls 
to the transport layer made by all t,he processors in 
the system aa a sing/c global pro,gram. The function 
Program maps Processors x PositiveIntegers into 
a set Ccrlls consisting of all possible transport layer 
calls from the user-communication layers and the null 
operation that we call skip. More specifically, for each 
processor p and each positive integer i, we assume t,hat 
Program(p, i) haa one of the following three forms: 

l multicas$,(m: T) where m  is a message and -r is 
a nonempty set of processors (not including p) to 
receive the multicast message m from p. 

l reques$,(q,T) where p # q is a processor to re- 
ceive a multicast message from q, and T is a set, 
of processors including p but not, q. 

l skip. 

Each processor p is executing the same program and 
making the calls Program(p, i), starting with i = 1 
and incrementing i by 1 after each call. Thus, the 
index i identifies the execution order within each pro- 
cessor. 
A global Program is said to be correct if the following 
three assumptions are satisfied: 

Assumption 1 (Matched Calls) 
zf Program(p, i) = multicastp(m,T) then “9 E  
?‘ a Program(q, i) = request,(p,T)” and “q $Z 
(7’ u {p} 3 Proyram(q, i) = skip”; and if 
Program q, i) = requ,estQl(pr T) then there is a pro- 1 
~ssor p such that Pro!qram(p, i) := mzslticnst,( m, 7’). 

While the first assumption relates to the syntax of a 
correct program the next two assumptions relate to 
t,he execution of a correct program. 

Assumption 2 (Iteration) Each processor y zssues 
the call Program(p, 1) and issurs Program(p, i + 1) 
after Program(p, i) returns. 

Assumption 3 (Maximum Message Size) There 
IS a maximum message stze and each finite buffer has 
room for at least one message. 

2.2 LAN-Communication Layer 
The LAN communication layer (typically a UDP) 
has a broadcast capability. The calls made by the 
transport layer to the LAN-communication layer are 
broadcast of a message and receive of a message. Al- 
though some messages may be lost, we assume that if 
a message is broadcast infinitely many times it will be 
received infinitely many times by all other processors. 
Formally, we have the two following assumptions. 

Assumption 4 (Eventual Receipt) If the same 
message is broadcast infinitely many times from one 
processor then it will be received infinitely many times 
at every other processor. 

Assumption 5 (Sane Receipt) 1f a message is re- 
ceived at a target processor then it was previously sent 
by fhe source processor claim.ed. 

2.3 A Correct Transport Layer and Its 
Properties 

In t,his subsection we specify the notion of a correct 
transport layer and specify its main props-srties. 
A transport layer is correct if any correct Program 
that runs over it with a set P of processors, without 
any processor failure, salisfies t.he following proposi- 
tions. 

Proposition 1 (Progress) (Vp E P) Program(p, i) 
is eventually issued. 

Proposition 2 (Correct delivery) 
(Vp, q E  P) If Progrnm(p, i) = multicas$(m,T) 
and Program.(q, i) = requestq(p,T), tht,n at p the 
multicast returns and at Q  the messaqe m is delivered 
and the request returns. - 

It is easy to see that a correct transport layer has the 
following properties: 

Property 1 (Delivery by a Request) Messages 
are delivered once to the user-communacation layer 
only in response to requests. The request returns aj- 
ter the correct message is delivered. 

Property 2 (FIFO Delivery) Messages from the 
same source processor are delivered to the targef set 
in the order in which they were m.ulticast. 

Note that throughout the paper we use the term “de- 
liver” as delivering a message from the transport layer 
up to the user-communication layer in the same pro- 
cessor. In the next two sections, we will describe 
protocols that implement a correct tralrsport layer 
assuming that Assumptions 4 and 5 on the LAN- 
communication layer are satisfied. The proof of cor- 
rect.ness of the protocols is accomplished by proving 
that the foregoing two propositions are true, namely, 
that we get progress and correct delivery. 
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3 A Simple Protocol (PO) 
The PO protocol is described in Figures 2 to 5. This 
protocol includes only what is essential for correct- 
ness. It assumes unbounded memory space for keep- 
ing a copy of the messages that have been sent out. 
Therefore it is obviously unrealistic and is also ineffi- 
&ant. It is presented here to provide a basic idea of 
the general protocol. The main idea in PO is that we 
guarantee reliable delivery by using the fact that ev- 
ery multicast has a matching request. In particular, 
a NACK is generated infinitely many times (using a 
timer) upon a request which can not be satisfied, until 
the request is satisfied. 
be make the following remarks for clarification of the 
protocol described in Figures 2 to 5. 

We present the protocol which will be executed 
at each processor. We assume each processor is 
preassigned some unique pid which is stored in tlhe 
variable myid. Furthermore, at the initializat,ion 
of the protocol each processor receives the pids of 
all other processors. We also use PmYid to denote 
the executing (current) processor. 

Each processor has a set of input buffers, one 
for each sender. Each input buffer can hold at, 
least one message. This idea helps in provid- 
ing the property of non-interference between noes- 
sages from different sources. We note t,hat this is 
an implementation choice and other solutions are 
possible. 

An important dat,a struct.urtA is the Personal 
Counter Vector, denoted as pcv. It is an array of 
the size of the processor set. It reflects the highest 
consecutive personal counter that has been seen 
by Pmyjd from each processor. When the Persnn- 
alCount on an incoming message is not consecu- 
tive with the pczt fo,r the sender, the message must 
be either too early (for instance, due to message 
losses) or too late (for instance, when this mes- 
sage is a resend, and the origina. one has already 
been received). 

The target set, 1’ is specified as part of every mes- 
sage m that is targeted to T The target field 
of the message is overloaded for convenience of 
the presentation. It is sometimes referred to a.s 
a set, and other times as a single processor. The 
meaning should be clear from the context. 

To broadcast m means to send a message m over 
the broadcast medium of the communication net- 
work. Every processor on the network can then 
receive it. 

To resend a message is to broadcast it exactly it9 
was done the first time it was sent out, with the 
same counter. 

When a message is received from the communica- 
tion layer (receive(m)) it can be found in a place 

reserved for the incomin messages until the pro- 
cedure handle(m) is cal ed. ‘i When we want to 
specifically keep this message for further use, we 
clearly state that the message is being kept (e.g. 
added to a buffer). 

4 A Practical Protocol (PI) 
Due to space limitation, the pseudocode of the Pl pro- 
tocol is omitted here and can be found in [6]. This 
protocol is different from PO in that it does not as- 
sume unbounded memory space. Hence it is practical 
but can still be optimized. In PO a sender kept a copy 
of every message it sent. The new in red&t in Pl is 
a mechanism to deal with the discar f ing of messages 
at the sender after it has been ,verified t.hat all the 
processors in the t,arget set handled them. The sla2us 
mechanism provides a means by which to know when 
a sent message can safely be discarded. 

5 The PCODE Protocol 

The PCODE protocol is an expansion of PO and Pl. 
It includes many additional features which make it 
efficient, but do not change the basic properties of PO 
and Pl. The pseudocode of the PCODE protocol can 
be found in [6]. 

5.1 The Global Counter 

In addition t,o the personal counters, each processor 
keeps a GlobalCounter which roughly counts the num- 
ber of messages sent on the whole system The pro- 
cessor adds this counter to every message it sends 
out. Each processor will increment its GlobalCounter 
whenever it sends out a message or delivers up one 
carrying a higher GlobalCounter than it already 
has. Notice that, unlike the PersonalCounter, the 
GlobalCounter is not necessarily unique for different 
messages since two processors broadcasting concur- 
rently may use the same GlobalCounter, However, 
the GlobalCounter provides a method to control the 
flow of messages on the network as well as a method for 
possible early detection of lost messages as described 
below. 
A message can be safely delivered if it is carrying a 
consecutive PersonalCounter, even if there is a gap 
in the GlobalCounter it is carrying, but the receiving 
process should not update its own GlobalCounter if 
there is such a gap. To avoid unnecessary delay in 
the delivery of a message, we deliver messages imme- 
diately, even if they have a gap in the GlobalCounter, 
but in that case we remember the count,er for later up- 
dating. We keep a list of the counters which created 
such a gap and were attached to a message that has 
already been delivered. Whenever the GlobalCounter 
is updated we will check this list to see if any of its 
counters can now be updated. This is necessary in 
order to keep track of the GlobalCounters we received 
from each processor, for the purpose of flow control, 
as described in the next subsection. 
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5.2 Flow Control 

111 addition to the GlobalCounter, each processor 
keeps a vect,or gee, the size of the processor set. 
Here, gcv[i] holds t,he last GlobalCounter that pro- 
cc’ssor Pmyid has seen on a message from processor 
i. If the minimum on gee is too far from the maxi- 
mum (which is the current GlobalCounter) this means 
tllat too many messages have not, yet been deliv- 
ered, they might be lost,, and there may he a lot 
ol‘ messaee traffic on the network. Therefore when 
the differgnce between the minimum and the maxi- 
nmm on gcv is greater than a FLOW-WINDOW size, 
f’rn,id wiil stopsending, until the difference decreases. 
FLOW-WINDOW is a tunable size (See [l] regard- 
ing flow windows). Note that the difference bet.ween 
the minimum and maximum will also be large when 
the user communication layer on a processor is not, 
initiating the sending of messages. For this reason 
every processor will send out PROGRESS messages 
whenever it sees t,hat the difference is too large, or 
when it is requested to do so by another processor. A 
PROGR,ESS message is simply a message that, holds 
t,he current Glob&Counter of the sender. This will 
enable the other processors t,o update the sender’s 
ycv. See Subsection 5.5 for the actual sending of the 
progress rnessages. Notice that the GlobalCounter 
ou a PROGRESS message is no’t. ‘Loriginal” in the 
sense that it was not necessarily incremented to its 
current size by the sending process (which is t(he 
c;Be for a GlobalCounter on a REGULAR message). 
‘l’herefore a process receiving a PROGRESS message 
may not increment its own GlobalCounter accord- 
ing to the one OIL the message. ‘J’hc GlobalCounter 
should be incremented only when a message is re- 
ccived from the sender which originated the counter. 
The PROGRESS messages may be used only to in- 
crement the gcv of their sender. Therefore when we 
update the GlobalCounter and when we save counters 
(as described in Subsection 5.1 above) we distinguish 
between “original” and ‘?lon-original’ counters. 

5.3 Early Detection of Message Loss 
III PO and Pl we know that a message is missing 
only if it is requested by the user-communication 
layer. When messages are actua!lly lost by the TlDP 
layer, we can often ident,ify the loss even before the 
nlessage is requestsed. If we receive a message with 
I’ersonalCount not. consecutive I;O pcv of the sender. 
we have probably lost, some message(s) (though they 
nlay still arrive later). l[n this case we can send a 
NACK to the sender, requesting the missing mes- 
sage(s), thus improving our chances of having the 
ntessage ready when it is requested. When using the 
C:lobalCoun.ter described in the previous subsection, 
we can also check for ga.ps in this counter, which in- 
dlcate possible message loss in the same way as the 
gaps in the PersonalCount. We cannot identify the 
sr>nder of the messages that we lost. but if we broad- 
cast a NACK the sender will be able to identify its 
owu messages and resend them. A benefit of detect,- 
PzIg message loss by the GlobalCounter is that even if 
t,he sender has stopped sending new messages, as long 

as some other processor has seen the lost message and 
sent a new one after that, we may see a gap in the 
GlobalCounter. Since the GlobalCounter is not pre- 
cise, it may not help detect a loss when more than 
one messa e wits given t,he same GlobalCounter. The 
Personal 8 ount will detect every loss, as long as we 
receive further messages from the same sender. 

5.4 Saving Early Messages 
In PO and Pl, if a message is too early (i.e., there is a 
gap in the PersonalCount) we ignore the message. In 
PCODE we maintain a buffer of waiting rnessages, in 
which we keep messages which have arrived too early, 
until they can be accepted. Whenever we accept a 
message we can check this buffer to see if the next 
message we expect is already there. When the buffer 
is full - we will ignore the “too early” message as in 
PO and Pl. This mechanism can reduce the number of 
messages that have to be resent when a message loss 
occurs. 

5.5 Periodic Status Messages 
In Pl, messages will be discarded from the buffer of 
sent, messages only when the processor has a rnes- 
sage to multicast and has found the buffer full. It 
would obviously be better to try and discard rnes- 
sages before the buffer is full, so as not to slow 
down the user’s application. Therefore each proces- 
sor should send STATUS messages periodically (the 
same STATUS messages used in Pl). A processor 
can determine when to send a STATUS message by 
looking at the GlobalCounter, and remelubering the 
GlobalCounter that was sent on t,he last STATUS 
message. If the (;lobalCounter has grown more than 
STATUS-WINDOW (a tunable size) since the last 
STATUS message was sent, the processor will send 
out a new one. The STATUS messages can also be 
used as PROGRESS messages, which are described 
in Subsection 5.2 above. Since both STATUS and 
PROGRESS messages are usually useful to the pro- 
tocol, we combine the two. The messages of type 
STATUS will in fact include the PROGRESS infor- 
mation as well (which is simply the GlobalCounter). 
When handling t,hese messages both issues will be 
taken care of. Whether we are required to send STA- 
TUS or PROGRESS inforrnation, we will always send 
the “augmented” STATUS message. 

5.6 Sending Point-to-Point Messages 
Though our goal is to make use of the broadcast 
medium, in some cases the message is intended only 
for a small number of processors, or even one recipi- 
ent, namely. a point-to-point message. In this case it 
would be undesirable to broadcast the message, thus 
forcing all the processors oa the network to read it 
and process it. This occurs either when the user- 
communicat)ion layer specifies a target group of size 
one, or for certain control messages---e.g., a NACK 
message indicating message loss from a known sender. 
In t.hese cases we can sc*nd t#he messages I)y UDP. us- 
ing the specific host’s address instead of t,he broadcast 
address. The recovery of the point-to-point messages 
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cannot be done by the mechanism used for the re- 
covery of broadcast messages, since this mechanism 
relies on the fact that all processors can receive all 
the messages. Therefore a separate mechanism must 
be supported to deal with recovery of point-to-point 
messages. Such a mechanism is simple to construct. 

5.7 Timeouts 
In PO and Pl we had only one type of NACK, which 
is issued when a request is issued from the user- 
communication layer, if the requested message is not 
ready. In PCODE we have two more types of NACKs, 
which are issued when gaps are found in the PER- 
SONAL or in the GLOBAL counters. PO through I’1 
set a periodic timer for resending a NACK only in the 
case of a REQUEST NACK, which is the only case 
in which the protocol may deadlock if the NACK is 
not resent. In PCODE we set a timer for all types of 
NACKs. Every NACK will be periodically resent until 
it has been satisfied with the required messages. In the 
case of an unsatisfied request, PCODE does not issue 
a NACK immediately, but waits for an initial timeout 
in order to give the message a chance to arrive. If the 
message does not arrive within this timeout, a RE- 
QUEST NACK is issued, and a periodic timer is set. 
The length of the timeouts for the different NACKs 
may be tuned, as described in Section 6.5. 

6 Implementation and Performance 
Evaluation 

In this section we will present the implementation ef- 
fort of PCODE and the environment that we have set 
up for performance evaluation. We will also present 
the results of our measurements, which clearly express 
the advantage of our approach. 

6.1 The Environment 
We have implemented a prototype of the PCODE pro- 
tocol in C. The prototype was initially developed on 
a collection of RS/6000 workstations using the AIX 
operating system and communicating via UDP over 
a lOMbit Ethernet LAN. The results in this paper 
were obtained on a collection of Silicon Graphics In- 
digo machines with R4060 processors, using the IRIX 
operating system and communicating via IJDP over a 
lOMbit Ethernet LAN. 
The transport layer runs as a background daemon. 
This enables PCODE to treat the messages coming in 
from the LAN-communication layer while the user- 
cornmunic.ation layer is blocked, e.g., waiting for a 
request call to return. Therefore the PCODE protocol 
and the user-communication layer are implemented as 
two separate processes. The communication between 
them is done using TCP sockets. Ideally the two lay- 
ers would be integrated into one multi-thread process, 
thus eliminating the time used for Ini*er-Process Com- 
munication (IPC). 

6.2 The User-Communication Layer 
In our initial experimems we have assumed that the 
global program (the user-communication layer) is per- 

forming an all-to-all broadcast in which each proces- 
sor broadcasts a message to all other processors. For 
this we used two different drivers. One written in 
RAPID [9], th e o th er is a simple C program for the 
user-communication layer which runs through the se- 
quence of multicast/request that corresponds to an 
all-to-all broadcast. The driver runs through this se- 
quence a large number of times and measures the aver- 
age time it takes. We have observed certain variability 
in the times measured between individual communica- 
tion events. As a result, we have developed techniques 
for obtaining an average time per call as a figure of 
merit for our protocol. 
We tried implementing the all-to-all broadcast in two 
ways. In one implementation each processor broad- 
casts its message in turn. While one processor calls 
multicast, all the other processors call the correspond- 
ing request. In the second implementation each pro- 
cessor first calls multicast, and then calls a series 
of requests, one for each other processor. Our tests 
showed that the time for an all-to-all broadcast using 
PCODE is better when using the second implementa- 
tion. When using TCP, On the other hand, it is better 
to use the first implementation. The results in the fol- 
lowing section were obtained using for each system the 
implementation that gives better results. 
In our discussions hereafter, we will refer to the “time 
per call”. This time is obtained by dividing the aver- 
age time measured for the all-to-all broadcast by the 
number of machines in the configuration. The term 
“time per call” is not accurate, since it is in fact an 
average of the time for one multicast and the time for 
N - 1 requests, where N is the number of machines. 
This normalization enables us to compare the perfor- 
mance over a changing number of machines. 

6.3 Optimizing TCP 
In order to optimize broadcast time, protocols using 
TCP must usually be tailor made., considerin the 
number of processes participating m  the broa f cast, 
and which process should receive which information. 
This is true for all point-to-point communication, and 
specifically for TCP, which performs differently for dif- 
ferent patterns of communication on the connection. 
In order to compare PCODE to TCP, we implemented 
a TCP program which implements the multicast and 
request calls, as defined in this paper, simply by using 
TCP point to point connections, which are reliable. 
Unlike PCODE, the TCP program does not run sepa- 
rately from the driver. It is linked with the driver and 
run as one process. This fact gives TCP the advan- 
tage that it does not need IPC communication. Since 
we were using the same atomic calls as in PCODE, 
namely multicast and request, we could not fully op- 
timize TCP. E.g., we could not parallelize the multi- 
casts - a multicast must be completed before the next 
one can begin. The TCP multicast was implemented 
as a series of sends, one to each target processor. 

6.4 Results 
We tested the protocol on up to 16 machines. The 
machines were not dedicated to the tests, but the load 
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apart from the tests themselves was not high. The 
messages were of sizes of up to IKbyte, since at the 
F’CODE level we are interested only in sending UDP 
packets. 
To obtain a measure of “ms per call” for a certain 
configuration and message size, we ran a number of 
tests, each one of 1000 rounds of all-to-all broadcast. 
For each test we obtained the average time per round, 
and divided it by the number of machines. We then 
took an average over the results on each of the ma- 
chines for each of the tests and i.his final average is 
the “ms per call” for this configuration and messa e 
size. The variance of the results is usually under 10 %  o. 
In the next 2 subsections we compare PCODE to TCP 
and to distributed transport layers. 

6.4.1 Comparing to TCP 

In Figures 6 and 7 we show the time per call plotted 
against the number of machines in the configuration 
with message size 20 bytes and 1 Kbyte, respectively. 
The figures compare the PCODE curve to the TCP 
curve. With message size 20 PCODE is not faster 
than TCP on up t,o 8 machines. With larger config- 
urations and larger message sizes PCODE is always 
faster, up to an order of magnitude faster with 16 ma- 
chines and message size 1K. It is clear t,hat while the 
‘I‘CP timegrows linearly with the number of machines, 
the PCODE time hardly grows at all. 
Figures 8 and 9 show t,he time per ~:a11 against the mes- 
sage size, for a c.onfiguration of 3 and 16 machines, 
respectively. Each plot compares the PCODE time 
with the TCP time for the same configuration. On 3 
lnachines we see again tha,t PCODJ: is notS fast.er IShan 
‘I‘CP when the message size is less IShan I K. Neverthe- 
Itss it is evident that the PCODE,: curve almost stops 
growing towards the PK message size, while the TCP 
curve is growing steadily. On I6 machines the ‘KY 
t Ime grows very fast, with t,he message size. This shows 
1 hat, the performance of PCODE scales much htbtter 
c-ompared with the solutSion based on TCI’. 

6.4.2 Comparing to Distributed Broadcast 
Layers 

In comparing our results t,o those previously published 
for distributed transport layers, like Transis, one has 
to notice that parallel protocols have a built-in syn- 
chronization which influences t.h+s performance. For 
chxample, each all-to-all requires all machines to syn- 
c,hronize. Moreover, in a typical distributed broadcast 
layer a slow machine hardly infllltsnces the through- 
put measured, whereas in a synchronous mode it slows 
down every other machine. 
In Transis the report,ed measurelnents are for maxi- 
lnum flooding of the network, and do not measure la- 
i ency. In Horus [17] the results refer t,o packing several 
short messages on a single UDP packet. We tried to 
bring the measurements t,o a common ground, for that 
we performed a few experiments ill which we imitated 

E;nhrrsansmission patterns of MPI [14] over Transis and 

Our experiments show that PCODE’s performance is 
comparable to that of the other distributed broadcast 
layers. In Figures 10 and 11 we show the results of 
running repeated all-to-all broadcast calls in an MPI 
mode on different systems, with a message size of 20 
bytes and 1 Kbytes, respectively, over a changing num- 
ber of machines. The all-to-all broadca.st is imple- 
mented in the second version (see previous section). 
Note that the PCODE timings in these two figures 
were measured in different runs from those presented 
in Figures 6 through 9. 
We compared to Transis running over Lansis as well as 
Transis running over the Token Ring protocol for mes- 
sage recovery and ordering. Note that all but PCODE 
are protocols which have been tuned and optimized 
over some period of time now, while PCODE is a 
newly developed protocol. It is evident that PCODE 
performs better than Transis using the Ring, but, the 
same as Transis using Lansis. Horus per,(brms better 
than all the tested systems. We note here that Horus 
is implemented as one multi-threaded process, as ide- 
ally we would like to implement PCODE. We believe 
that with such an implementation and with some fur- 
ther tuning PCODE should eventually perform better 
than any general distributed broadcast layer, since its 
requirements are more lenient. 

6.5 Tuning the Constants 
In the previous 3 sections describing the protocols, we 
mentioned that several parameters of the algorithm 
are tunable. As an example of what can be accom- 
plished by such tuning, we experimented with the size 
ofone of t,he timeout delays. The specific delay was the 
length of time to wait between the arrival of a request 
for a message not yet received and the sending of a 
NACK to the source. The longer the delay, the longer 
it would t,ake to deliver a message that was actually 
lost; however, the shorter the delay, the more likely 
that the NACK and its response would bca wasted be- 
cause the required message was actually in transit. In 
our experiment, as we raised the delay, we observed 
a significant increase in the number of NACKs sent 
and a slight rise in the overall t ime per ca.11. The best 
timing obviously depends on the reliabilit,y of the net- 
work as well as the speed of the machines, but it is 
clear that a real improvement in time can be achieved 
by appropriately tuning the constants. 

7 Concluding Remarks 
We have studied the requirements associated with col- 
lective communication for parallel computing. We 
have observed that the main difference between a dis- 
tributed computing paradigm and a message passin 
parallel computing paradigm is that, in a distribute dg 
environment the activity of every processor is inde- 
pendent while in a parallel environrnent the collection 
of the user-communication layers in the processors can 
be modeled as a single global program. We have for- 
malized the requirements by defining the notion of a 
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correct global program. This notion provides a pre- 
cise specification of the interface between the trans- 
port layer and the user-communication layer. We 
have developed PCODE, a new communication pro- 
tocol that is driven by a global program, and proved 
its correctness. We have implemented the PCODE 
protocol and run it over a collection of up to 16 IBM 
RS/SOOO workstations, using the AIX operating sys- 
tem as well as over Silicon Graphics Indigo machines 
with R4000 processors, using the IRIX operating sys- 
tem. In both cases the workstations were communi- 
cating via UDP over a lOMbit Ethernet LAN. The 
esperimental results indicate that an improvement in 
performance of roughly an order of magnitude (in the 
citie of 16 workstations) can be obtained using our ap- 
proach compared to current approaches. Initial results 
also show that PCODE’s performance is comparable 
to other distributed broadcast layers. 
We note here that PCODE is just, one possible imple- 
mentation of the transport, layer as formally defined. 
Recently, we have developed another new protocol, 
called User-level Reliable Transport Protocol (URTP), 
for this purpose 171. The URTP protocol, which ex- 
teitds the AIX kernel, runs on LAN of IBM RS/6000 
workstations. Note that the ideas presented in this pa- 
per can be easily extended to any Network of Worksta- 
t,ions that, provides an lmreliable broadcast transport 
protocol (e.g. ATM). 
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, multicast Cm. T) 

. 

rerelve (in) 
it 

bmdcart cm) 
LAN-Communication Layer 

handle (m) { 
q = msender; 
T = m.target; 
if (q == myid) then 

return; 
case (m.type) of 
REGULAR ms : 

if the ready s ot for q is not free then f 
return; 

if (m.PersonalCount # pcv[qj + 1) then 
return; 

pcv[q] = m.PersonalCount; 
if (myid is a member of T) then 

put m  into ready slot for q; 
NACK msg: 

if (T == myid) then 
resend m’ from buffer of sent messages for 

which m’.PersonalCount > m.LastRcvd; 
return; } 

Figure 1: The three logical layers of software in a pro- 
cessor. Figure 3: PO: Procedure handle 

do forever { 
If there is a multicast (m, T) issued 

from the layer above then 
communicate (111, T); 

If there is a request (cl, T) for a message 
to be delivered then 

if there is a ready message m from source q then 
deliver (m); 

else { 
IssueNack (q): 
denote there is a pending request (q! T); } 

rf there is an incoming receive (m) then { 
handle (m); 
if there is a pending request 

(msender, m.target) then 
if m  is in the ready slot 

from source m  sender then { 
deliver (m) 1 
inactivate the nack timer (if it was set); 
denote that there is no pending request; } } 

if the nack timer has expired then 
if there is a pending request (q, T) then 

IssueNack (q); } 

Figure 2: PO: The main control loop. 

communicate (m, T) 
I increment pcv[myid ; 

m.PersonalCount = pcv[myid]; 
m.sender = myid; 
m.type = REGULAR msg; 
m.target = T; 
broadcast m; 
Keep m in buffer of sent messages; } 

Figure 4: PO: Procedure communicate. 

IssueNack (q) { 
msender = myid; 
m.type = NACK msg; 
m.target = q; 
m.LastRcvd = pcv[q]; 
broadcast m; 
set the nack timer; } 

Figure 5: PO: Procedure IssueNack. 
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Figure 7: The time per broadcast. of 1 Kbyte message 
as a function of the number of machrnes. 

Figure 10: Comparison of the time per bwadcast on 
PCODE and related prot,ocols for 20 byte Inessages. 
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Frgure 8: The time per broadcast call on 3 machines 
as a function of message sizes. 

Figure 11: Comparison of the time per broadcast on 
PCODE and related probocols for 1 Kbyte messages. 
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