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Consider a complete communication network on n nodes. In synchronous 2-counting, the 
nodes receive a common clock pulse and they have to agree on which pulses are “odd” and 
which are “even”. Furthermore, the solution needs to be self-stabilising (reaching correct 
operation from any initial state) and tolerate f Byzantine failures (nodes that send arbitrary 
misinformation). Prior algorithms either require a source of random bits or a large number 
of states per node. In this work, we give fast state-optimal deterministic algorithms for 
the first non-trivial case f = 1. To obtain these algorithms, we develop and evaluate 
two different techniques for algorithm synthesis. Both are based on casting the synthesis 
problem as a propositional satisfiability (SAT) problem; a direct encoding is efficient for 
synthesising time-optimal algorithms, while an approach based on counter-example guided 
abstraction refinement discovers non-optimal algorithms quickly.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Synchronous counting In the synchronous C-counting problem, n nodes have to count clock pulses modulo C . Starting from 
any initial configuration, the system has to stabilise so that all nodes agree on the counter value. Put otherwise, eventually 
all nodes have to consistently label each clock pulse with values incrementing modulo C .

In this work, we consider a fully-connected synchronous communication network of n nodes with identifiers from the set 
{0, 1, . . . , n − 1}. Each node is a finite state machine with s states, and after every state transition, each node broadcasts its 
current state to all other nodes—effectively, each node can see the current states of all other nodes. An algorithm specifies 
(1) the new state for each observed state, and (2) how to map the internal state of a node to its output.
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Byzantine fault tolerance In a fault-free system, the C-counting problem is trivial to solve. For example, we can designate 
node 0 as a leader, and then all nodes (including the leader itself) can follow the leader: if the current state of the leader 
is c, the new state is c + 1 mod C . This algorithm will stabilise in time t = 1, and we only need s = C different states.

However, we are interested in algorithms that tolerate Byzantine failures. Some number f of the nodes may be faulty. 
A faulty node may send arbitrary misinformation to non-faulty nodes, including different information to different nodes 
within the same round. For example, if we have nodes 0, 1, 2, 3 and node 2 is faulty, node 0 might observe the state vector 
(0, 1, 1, 1), while node 1 might observe the state vector (0, 1, 0, 1).

Our goal is to design an algorithm with the following guarantee: even if we have up to f faulty nodes, no matter 
what the faulty nodes do, the system will stabilise so that after t rounds all non-faulty nodes start to count clock pulses 
consistently modulo C . We will give a formal problem definition in Section 4.

Synchronous counting can be used as a fault-tolerant co-ordination primitive in systems where a synchronous clock 
signal is available, but the clock pulses have not been labelled in any manner, for example, there is no distinction between 
even and odd clock pulses. In general, a C-counter can be used as a fault-tolerant round counter that assigns explicit round 
numbers for each clock pulse.

State of the art Both randomised and deterministic algorithms for synchronous counting (often also referred to as digital 
clock synchronisation) have been presented in the literature (see Section 2). However, prior algorithms tend to be expensive 
to implement in hardware: they require a source of random bits or complicated circuitry.

In this work, we use a single parameter s, the number of states per node, to capture the complexity of an algorithm. If 
one resorts to randomness, it is possible to solve 2-counting with the trivially optimal number of s = 2 states—at the cost 
of a slow stabilisation time (see Sections 2 and 5). However, it is not at all clear whether a small number of states suffices 
for deterministic algorithms.

Contributions We employ computational techniques to design deterministic 2-counting algorithms that have the smallest 
possible number of states. Our contributions are two-fold:

1. we present new algorithms for the synchronous counting problem,
2. we develop new computational techniques for constructing self-stabilising Byzantine fault-tolerant algorithms.

Our focus is on the first non-trivial case of f = 1. The case of n = 1 is trivial, and by prior work it is known that there is 
no algorithm for 1 < n < 4. We give a detailed analysis of 2-counting for n ≥ 4:

• there is no deterministic algorithm for f = 1 and n = 4 with s = 2 states,
• there is a deterministic algorithm for f = 1 and n ≥ 4 with s = 3 states,
• there is a deterministic algorithm for f = 1 and n ≥ 6 with s = 2 states.

Overall, we develop more than a dozen different algorithms with different characteristics, each of which can be also gen-
eralised to a larger number of nodes. See Fig. 1 for an overview of the time–space tradeoffs that we achieve with our 
algorithms.

With very few states per node, our algorithms are easy to implement in hardware. For example, a straightforward 
implementation of our algorithm for f = 1, n = 4, and s = 3 requires just 2 bits of storage per node, and a lookup table 
with 34 = 81 entries. All of our computer-designed algorithms are freely available online [1] in a machine-readable format. 
While our algorithms are synchronous 2-counters, they can be easily composed to construct synchronous 2b-counters for 
any positive integer b (see Section 3 for details).

This work can be seen as a case study of applying synthesis techniques in the area of distributed algorithms. We demon-
strate that the synthesis of non-trivial self-stabilising Byzantine fault-tolerant algorithms is indeed possible with the help 
of modern propositional satisfiability (SAT) solvers [6,26]. We describe two complementary approaches for the synthesis of 
synchronous 2-counting algorithms and give an empirical comparison of their relative performance:

1. a direct encoding as SAT,
2. a SAT-based counter-example guided abstraction refinement (CEGAR) [13,14] approach.
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Fig. 1. Time–space tradeoffs in our computer-designed algorithms. The figure shows s (the number of states) for each combination of n (the number of 
node) and t (the stabilisation time).

Both approaches make it possible to use modern SAT solvers and to benefit from the steady progress in SAT solver tech-
nology. As we will see, the former approach is typically more efficient for tightly-specified problems (e.g., synthesising both 
space-optimal and time-optimal algorithms), while the latter is more promising for more relaxed problems (e.g., synthesis-
ing space-optimal algorithm regardless of the stabilisation time).

Structure Section 2 covers related work and Section 3 discusses applications of synchronous 2-counters. Section 4 gives 
a formal definition of the problem, and Section 5 gives two examples of human-designed algorithms. Section 6 gives a 
graph-theoretic interpretation that is helpful in the analysis of counting algorithms. In Section 7 we show that (1) we can 
increase n for free, without affecting the parameters f , s, or t; this enables us to focus on small values of n, and (2) we can 
generalise the algorithms to a larger class of network topologies with a slight cost in stabilisation time. Section 8 presents 
an overview of the use of computers in algorithm design and highlights the new results for synchronous counting. Section 9
describes a direct formulation of the synthesis problem for synchronous counting algorithms as propositional satisfiability. 
Section 10 describes the SAT-based counter-example guided abstraction refinement synthesis technique. Finally, Section 11
overviews the results of the empirical evaluation of the two different synthesis techniques, suggesting a tradeoff between 
establishing the existence of any algorithm and finding optimal algorithms.

2. Related work

Randomised algorithms for synchronous counting Randomised algorithms for synchronous 2-counting are known, with differ-
ent time–space tradeoffs.

The algorithm by Dolev and Welch [23] requires only s = 3 states, but the expected stabilisation time is 2O (n− f ) . On the 
other hand, it is possible to attain short stabilisation times using randomisation. For example, the algorithm by Ben-Or et 
al. [3] stabilises in expected constant time. However, it requires �(2 f ) states and private channels (i.e., the adversary has 
limited information on the system’s state).

Deterministic algorithms for synchronous counting The fastest known deterministic algorithm is due to Dolev and Hoch [20], 
with a stabilisation time of O ( f ). However, the algorithm is not well suited for a hardware implementation. It uses as a 
building block several instances of algorithms that solve the Byzantine consensus problem—a non-trivial task in itself. The 
number of states is also large, as some storage is needed for each Byzantine consensus instance.

Consensus lower bounds for synchronous counting Binary consensus is a classical problem that has been studied in the context 
of Byzantine fault tolerance; see, e.g., the textbook by Lynch [44] for more information. In brief, the problem is defined as 
follows. Each node has a binary input, and all non-faulty nodes have to produce the same binary output, 0 or 1. If all inputs 
are equal to 0, the common output has to be 0, and if all inputs are equal to 1, the common output has to be 1; otherwise 
the common output can be either 0 or 1. It is easy to show that synchronous 2-counting is at least as difficult to solve as 
binary consensus.

Lemma 1. If we have a 2-counting algorithm A that stabilises in time t, we can design an algorithm that solves binary consensus in 
time t, for the same parameters n and f .

Proof. Let x(0) and x(1) be some configurations that may occur during the correct operation of A after it has stabilised, so 
that in configuration x(a) all nodes output a. More specifically:

• For any a = 0, 1 and j = 0, 1, 2, . . ., if we initialise the system with configuration x(a) and run A for j rounds, all 
non-faulty nodes output (a + j) mod 2.
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Fig. 2. A 2-counter for n = 2, viewed as an electronic circuit.

First assume that t is even. Each node i receives its input a for the binary consensus problem. We use the element i of 
x(a) to initialise the state of node i. Then we run A for t rounds. Finally, the output of algorithm A forms the output of 
the binary consensus instance. To see that the algorithm is correct, we make the following observations: (1) All non-faulty 
nodes produce the same output at time t , regardless of the input. (2) If all inputs had the same value a, we used x(a) to 
initialise all nodes, and hence the final output is a.

For an odd t , we can use the same approach if we complement the inputs. In summary, A can be used to solve binary 
consensus in time t . �

Now we can invoke the familiar lower bounds related to the consensus problem:

• no algorithm can tolerate f ≥ n/3 failures [51],
• no deterministic algorithm can solve the problem in t < f + 1 rounds [32].

Pulse synchronisation Both 2-counting and pulse synchronisation [3,16,19,23] have a superficially similar goal: produce well-
separated, (approximately) synchronised clock pulses in a distributed system in a fault-tolerant manner. However, there are 
also many differences: in pulse synchronisation the task is to construct a clock pulse without any external reference, while 
in 2-counting we are given a reference clock and we only need to label each clock pulse as “even” or “odd”, or put oth-
erwise, construct a clock that ticks at a slower rate. In general, once pulse synchronisation has been solved, a C-counting 
algorithm can be used to generate explicit round numbers in a fault-tolerant manner. Also the models of computation for 
the two problems differ—for pulse synchronisation, a relevant model is an asynchronous network with some bounds on 
propagation delays and clock drifts. For further discussion on this topic, see a recent survey by Dolev et al. [19].

In summary, a 2-counting algorithm does not solve the pulse synchronisation problem, and a pulse synchronisation 
algorithm does not solve the 2-counting problem. However, if one is designing a distributed system that needs to produce 
synchronised clock ticks in a fault-tolerant manner, either of the approaches may be applicable.

Computational algorithm design The computational element of our work can be interpreted as a form of algorithm synthesis. 
In synthesis, the task is to algorithmically find an algorithm or a protocol that satisfies a given specification. The idea of 
synthesising circuits was proposed by e.g. Church [11] already in the 1960s and there exists a vast body of work related to 
synthesis.

Classic work on model checking [12,45] consider algorithms for synthesis of both shared-memory and message-passing 
protocols by solving the satisfiability of certain temporal logic formulas. Unfortunately, synthesis of distributed systems 
is often intractable both in theory and practice—distributed synthesis problems are often either of high complexity or 
undecidable [30,50,52]. However, despite the hardness of synthesis—or because of it—several techniques have been proposed 
to make synthesis tractable [29,31,37].

In contrast to applying general synthesis techniques, that is, algorithms for synthesising a general class of problems, com-
binatorial search algorithms have also been applied to solve specific synthesis problems. For example, SAT solvers have been 
used for, e.g., circuit synthesis [7,34,35,41,42], synthesis from safety specifications [8], controller synthesis [47], program 
sketching [54], synthesising sorting networks [10,15,48], and synthesising local graph algorithms [36,53].

3. Applications

Counters as frequency dividers We can visualise a C-counter as an electronic circuit that consists of n components (nodes); 
see Fig. 2. Each node i has a register xi that stores its current state—one of the values 0, 1, . . . , s −1. There is a logical circuit 
g that maps the current state to the output, and another logical circuit Ai that maps the current states of all nodes to the 
new state of node i. At each rising edge of the clock pulse, register xi is updated.

If the clock pulses are synchronised, regardless of the initial states of the registers, after t clock pulses the system has 
stabilised so that the outputs are synchronised and they are incremented (modulo C ) at each clock pulse.

In particular, if we have an algorithm for 2-counting, it can be used as a frequency divider: given synchronous clock pulses 
at rate 1, it produces synchronous clock pulses at rate 1/2.
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Fig. 3. Composition of 2-counters.

From 2-counters to C-counters Given a 2-counting algorithm, it is also possible to devise C-counters for larger values of 
C > 2. For example, we can compose b layers of 2-counters to build a clock that counts modulo 2b ; see Fig. 3. In a syn-
chronous system, a composition of self-stabilising algorithms is self-stabilising [22]. For the purposes of the analysis, we can 
wait until layer i − 1 stabilises, use this as the initial state of layer i, and then argue that the nodes on layer i receive a syn-
chronous clock pulse and hence they will eventually stabilise. In a similar fashion, it is possible to compose two 2b -counters 
to attain 22b-counters, and so on [3].

Moreover, recent work [43] shows how to devise a C-counter for any C > 1 by first constructing a suitable O ( f )-counter. 
The O ( f )-counter is used to provide round numbers for a modified consensus protocol. Using the consensus protocol, it is 
possible to attain a C-counter for any C > 1. For the case f = 1, the required O ( f )-counter can be constructed by composing 
only constantly many 2-counters. Thus, starting from just 2-counters, it is possible to construct C-counters for any C > 1.

Counters in mutual exclusion With a C-counter we can implement mutual exclusion and time division multiple access in a fairly 
straightforward manner. If we have C = n nodes and one shared resource (e.g., a transmission medium), we can let node 
i to access the resource when its own counter has value i. Care is needed with the actions of faulty nodes, though—for 
further information on achieving fault-tolerant mutual exclusion, see, e.g., Moscibroda and Oshman [49]. Again 2-counting is 
of particular interest, as it may be leveraged by more complex mutual exclusion algorithms.

4. Problem formulation

We will now formalise the C-counting problem and the synthesis problem, and introduce the definitions that we will 
use in this work. Throughout this work, we will follow the convention that nodes, states, and time steps are indexed from 0. 
We use the notation [k] = {0, 1, . . . , k − 1}.

Intuitively, the model of computing is as follows. The system consists of a fully-connected message-passing network of n
nodes where all nodes have unique identifiers from the set [n]. All nodes first broadcast their state to all other nodes in the 
network along the communication links. Moreover, the communication links are labelled so that nodes know from which 
node a message originated. Thus, after broadcasting, each node receives a vector of messages which the node uses to decide 
on a new state.

Simplifications As our focus is primarily on 2-counters, we will now fix C = 2; the definitions are straightforward to gener-
alise.

In prior work, algorithms have made use of a function that maps the internal state xi of a node to its output g(xi). 
However, in this work we synthesise algorithms that do not need any such mapping: for our positive results, an identity 
mapping is sufficient, and for the negative result, we study the case of s = 2 which never benefits from a mapping. Hence 
we will now give a formalisation that omits the output mapping.

Algorithms Fix the following parameters:

• n = the number of nodes,
• f = the maximum number of faulty nodes,
• s = the number of internal states.

An algorithm A specifies a state transition function Ai : [s]n → [s] for each node i ∈ [n]. Here [s]n is the set of observed 
configurations of the system.

Projections Let F ⊆ [n], |F | ≤ f be the set of faulty nodes. We define the projection πF as follows: for any observed config-
uration u ∈ [s]n , let πF (u) be a vector x such that xi = ∗ if i ∈ F and xi = ui otherwise. For example,

π{2,4}((0,1,0,1,1)) = (0,1,∗,1,∗).

This gives us the set V F = πF ([s]n) of actual configurations. Two actual configurations are particularly important:

0F = πF ((0,0, . . . ,0)) and 1F = πF ((1,1, . . . ,1)).

Note that since non-faulty nodes do not know the set F , they cannot uniquely determine the actual configuration from any 
observed configuration.
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1. If more than (n + f )/2 entries in u are 0:
• Switch to state 1.

2. Otherwise, if more than (n + f )/2 entries in u are 1:
• Switch to state 0.

3. Otherwise:
• Flip the coin to get a random bit b ∈ {0, 1}.
• Switch to state b.

Fig. 4. A randomised 2-counting algorithm. All nodes follow the same algorithm.

Executions Let x, y ∈ V F . We say that configuration y is reachable from x if for each non-faulty node i /∈ F there exists 
some observed configuration ui ∈ [s]n satisfying πF (ui) = x and Ai(ui) = yi . Intuitively, the faulty nodes can feed such 
misinformation to node i that it chooses to switch to state yi . We emphasise that ui may be different for each i; the 
misinformation need not be consistent.

An execution of an algorithm A for given set of faulty nodes F is an infinite sequence of actual configurations X =
(x0, x1, x2, . . .) such that xr+1 is reachable from xr for all r.

Stabilisation For an execution X = (x0, x1, x2, . . .), define its t-tail

X[t] = (xt,xt+1,xt+2, . . .).

We say that X stabilises in time t if one of the following holds:

X[t] = (0F ,1F ,0F , . . .) or X[t] = (1F ,0F ,1F , . . .).

Synchronous counters We say that an algorithm A stabilises in time t if for any set of faulty nodes F with |F | ≤ f , all 
executions of A stabilise in time t . An algorithm A solves synchronous 2-counting if A stabilises in time t for some finite t; 
we refer to such algorithms as 2-counting algorithms.

The synthesis problem Now that we have formally defined what a 2-counting algorithm is, we can give the definition for 
the synthesis problem of counting algorithms. First, the decision version of the problem is the realisability problem. Given an 
instance (n, f , s, t), the task is to decide whether there exists a 2-counting algorithm for a network with n nodes satisfying 
the following properties:

1. the algorithm tolerates f failures,
2. each node uses at most s states,
3. the algorithm stabilises in at most t steps.

If such an algorithm exists, we say that the instance (n, f , s, t) is realisable. The synthesis problem is to output an algorithm 
A if the instance is realisable or state that no algorithm exists.

5. Human-designed algorithms

Before moving on to computer-designed algorithms using SAT-based techniques, in this section we illustrate a few 
human-designed algorithms. First, we show that randomisation helps when it comes to designing small-state (but slow) 
algorithms. This is followed by a deterministic algorithm that solves the counting problem in the general case with a large 
number of internal states.

Randomised algorithms We extend our model to randomised algorithms by equipping each node with a private coin. Now 
in a single synchronous round, every node can flip its coin to access one random bit. Thus, node i can decide on its new 
state using the random bit b ∈ {0, 1} and the observed configuration u ∈ [s]n . Here we call bit 1 heads. In contrast to the 
randomised algorithm by Dolev and Welch [23], the following algorithm only uses two states.

Let n ≥ 4, f < n/3, and s = 2. We can solve the 2-counting problem with the algorithm of Fig. 4.

Lemma 2. Let p be the probability that out of n − f − 1 fair coin flips, more than (n + f )/2 − 1 flips have the same value. Then the 
randomised algorithm solves synchronous 2-counting in 1/p + 1 rounds in expectation.

Proof. Observe that no two distinct non-faulty nodes apply rules 1 and 2 during the same round: if a node i sees the value 
0 more than (n + f )/2 times, then any node j must see value 0 at least (n − f )/2 times, and thus, j sees the value 1 
fewer than (n + f )/2 times. Moreover, if more than (n + f )/2 non-faulty nodes have the same output, then the system will 
stabilise in the next round as all non-faulty nodes switch to the same state.
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Next we argue that with probability at least p, more than (n + f )/2 non-faulty nodes have the same state. We have three 
cases. In the first case, at least one non-faulty node applies rule 1. Then in the worst case all other nodes flip their coins, 
so the system stabilises with probability at least p. The second case, where at least one non-faulty node applies rule 2, is 
symmetrical. Finally, the third case consists of all nodes flipping their coins simultaneously. In this case, fix the output of a 
single non-faulty node and repeat the analysis of the previous two cases.

The number of rounds before we stabilise follows a geometric distribution, so in expectation, we get a successful streak 
of coin flips in 1/p rounds and stabilise during the next round. �
Theorem 1. For all n ≥ 4 and f ≤ n/3, the expected stabilisation time of the randomised algorithm is bounded by

min{22 f +2 + 1,2O ( f 2/n)}.

Proof. We bound the probability p in Lemma 2 from which the expected stabilisation time follows.
For the first bound, it suffices to analyse the event where the first 2 f + 1 non-faulty nodes and at least half of the 

remaining non-faulty nodes all flip heads at the same round, as 2 f + 1 − (n − f − 2 f − 1)/2 > (n + f )/2. Now observe that 
the probability of 2 f + 1 coin flips all being heads is 2−2 f −1 and the probability that at least half of out of N coin flips 
are heads is at least 1/2. Combining these observations gives us the first bound: the probability of the analysed event is at 
least 2−2 f −2 and the number of trials for the first success follows a geometric distribution, and thus, the expected number 
of trials is at most 22 f +2.

For the second bound, if f = �(n) then the second bound trivially follows from the first. Suppose f = o(n). We use the 
fact [28,46] that for any t ∈ [N/8]

Pr[X ≥ N/2 + t] ≥ 1

15
exp(−16t2/N),

where X is the number of heads in N coin flips. Setting N = n − f − 1 and t = �(n + f )/2	 + 1 − N/2 gives us the desired 
bound. �
Deterministic algorithms We can leverage existing deterministic algorithms for binary consensus to come up with syn-
chronous counting algorithms. However, this leads to a large number of states per node.

For example, this theorem follows from the results by Dolev and Hoch [20]:

Theorem 2. Let A be a deterministic algorithm that solves binary consensus in R rounds for n nodes and f faults. Then there exists a 
deterministic algorithm B that solves synchronous C-counting in time t ∈ O (R + C) for n nodes and f faults.

Now we can use any consensus algorithm, such as the phase king algorithm [4], to get a synchronous counter. The 
phase king achieves optimal resilience and has O ( f ) stabilisation time and uses O (log f ) state bits (for keeping track of the 
current round number) per node. However, the resulting synchronous counter relies on executing O ( f ) consensus instances 
in parallel, which yields a very large state space. We get the following corollary:

Corollary 1. For all n ≥ 4, f < n/3 and C ≥ 2, there is a deterministic C-counting algorithm that stabilises in t ∈ O (C + f ) rounds 
and uses s ∈ 2O (log C+ f log f ) states.

This approach is not very attractive, for example, from the perspective of hardware implementations. For further dis-
cussion on human-designed algorithms, see a recent survey [19] on the topic. We will now turn our attention to efficient, 
deterministic, computer-designed algorithms.

6. Projection graphs

Before discussing how to find an algorithm (or prove that an algorithm does not exist), let us first explain how we can 
verify that a given algorithm is correct. Here the concept of a projection graph is helpful—see Fig. 10 in the appendix for an 
example.

Fix the parameters s, n, and f , and consider a candidate algorithm A that is supposed to solve the 2-counting problem. 
For each set F ⊆ [n] of faulty nodes, construct the directed graph G F (A) = (V F , R F (A)) as follows.

1. The set of nodes V F is the set of actual configurations.
2. There is an edge (u, v) ∈ R F (A) if configuration v ∈ V F is reachable from configuration u ∈ V F . In general, this may 

produce self-loops.

Note that the outdegree of each node in G F (A) is at least 1. Directed walks in G F (A) correspond to possible executions of 
algorithm A, for this set F of faulty nodes. To verify the correctness of algorithm A, it is sufficient to analyse the projection 
graphs G F . The following lemmas are straightforward consequences of the definitions.
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Lemma 3. Algorithm A stabilises in some time t iff for every F , graph G F (A) contains exactly one directed cycle, 0F 
→ 1F 
→ 0F .

Lemma 4. Algorithm A stabilises in time t iff the following holds for all F :

1. In G F (A), the only successor of 0F is 1F and vice versa.
2. In G F (A), every directed walk of length t reaches node 0F or 1F .

Lemma 5. Let A be an algorithm. Consider any four configurations x, u, v, w ∈ V F with the following properties: (x, u) ∈ R F (A), 
(x, v) ∈ R F (A), and wi ∈ {ui, vi} for each i /∈ F . Then (x, w) ∈ R F (A).

7. Increasing the number of nodes

It is not obvious how to use computational techniques to design an algorithm that solves the 2-counting problem for a 
fixed f = 1 but arbitrary n ≥ 4. However, as we will show next, we can generalise any algorithm so that it solves the same 
problem for a larger number of nodes, without any penalty in time or space complexity. Therefore it is sufficient to design 
an algorithm for the special case of f = 1 and n = 4. From the perspective of parametrised verification and synthesis, the 
following lemma can be regarded as a cut-off result [27,37].

Lemma 6. Fix n ≥ 4, f < n/2, s ≥ 2, and t ≥ 1. Assume that A is an algorithm that solves the 2-counting problem for n nodes, out 
of which at most f are faulty, with stabilisation time t and with s states per node. Then we can design an algorithm B that solves the 
2-counting problem for n + 1 nodes, out of which at most f are faulty, with stabilisation time t and with s states per node.

Proof. The claim would be straightforward if we permitted the stabilisation time of t + 1. However, some care is needed to 
avoid the loss of one round.

We take the following approach. Let p be a projection that removes the last element from a vector, for example, 
p((a, b, c)) = (a, b). In algorithm B, nodes i ∈ [n] simply follow algorithm A, ignoring node n:

Bi(ui) = Ai(p(ui)).

Node n tries to predict the majority of nodes 0, 1, . . . , n − 1, i.e., what most of them are going to output after this round:

• Assume that node n observes a configuration un . For each i ∈ [n], define hi = Ai(p(un)). If a majority of the values hi
is 1, then the new state of node n is also 1; otherwise it is 0.

To prove that the algorithm is correct, fix a set F ⊆ [n + 1] of faulty nodes, with |F | ≤ f . Clearly, all nodes in [n] \ F will 
start counting correctly at the latest in round t . Hence any execution of B with n ∈ F trivially stabilises within t rounds; so 
we focus on the case of F ⊆ [n], and merely need to show that also node n counts correctly.

Fix an execution X = (x0, x1, . . .) of A, and a time step r ≥ t . Consider the state vector xr−1. By assumption, A stabilises 
in time t . Hence the successors of xr−1 in the projection graph must be in {0F , 1F }.

The key observation is that only one of the configurations 0F and 1F can be the successor of xr−1. Otherwise Lemma 5
would allow us to construct another state that is a successor of xr−1, contradicting the assumption that A stabilises.

We conclude that for all rounds r ≥ t and all nodes i ∈ [n] \ F , the value hi is independent of the states communicated by 
nodes in F . Since the values hi are identical and n − f > f , node n attains the same state as other correct nodes in rounds 
r ≥ t . �
Other network topologies Recall that our basic definitions only consider algorithms that operate in fully-connected networks, 
that is, the topology of the communication network is a complete graph. Next we show that it is relatively straightforward 
to generalise our small-state algorithms to other network topologies as well—albeit with a slight increase in the stabilisation 
time. The idea is to have a small core of nodes to initially solve synchronous counting, and from thereon, propagate the 
solution throughout the network. This approach was originally introduced by Braud-Santoni et al. [9]. We now show how 
this idea can be applied in a large class of graphs.

Consider the following families of graphs G(k, m, d) for integers k, m, d > 0. Let G = (V , E) be a graph. We say G ∈
G(k, m, d) if there exists a partition V 0, . . . , Vd of the nodes V such that

1. V 0 is a k-clique.
2. Each node i ∈ Va has at least m neighbours in V 0 ∪ · · · ∪ Va−1.

Put otherwise, we can characterise G(k, m, d) using the following game (which is reminiscent of threshold models in the 
context of influence spreading in social networks). Initially, colour all vertices of graph G white. We pick a clique of k nodes 
and colour all the nodes black. Now any node with at least m black neighbours switches its own colour black. If after d
iterations all nodes are coloured black, then G ∈ G(k,m,d). See Fig. 5 for examples.
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Fig. 5. Examples of generalised network topologies. Nodes encompassed within a rectangle form a clique from which the stabilisation propagates throughout 
the network. Here, G1 ∈ G(4, 3, 1) and G2 ∈ G(5, 3, 1). The partially illustrated graph G3 ∈ G(4, 3, k) is a cycle where there are additional edges to all 
neighbours within distance 3.

Lemma 7. Assume A is an algorithm that solves synchronous 2-counting in a complete network of n nodes, out of which at most f are 
faulty, with stabilisation time t and with s states per node. Then for any G ∈ G(n, 2 f + 1, d), we can design an algorithm B that solves 
the synchronous 2-counting in G using s states per node. Moreover, B tolerates f failures and stabilises in time t + d − 1.

Proof. Let G ∈ G(n, 2 f + 1, d) be our network topology. Fix a partition V 0, . . . , Vd where V 0 = {1, . . . , n} is a n-clique. We 
construct an algorithm B using the following rules:

1. If i ∈ V 0 = K , then i outputs Ai(x1, . . . , xn).
2. If i ∈ Va for some a > 0, then node i follows the majority of neighbours in V 0 ∪ · · · ∪ Va−1. If the majority has output 

y, then output 1 − y. Otherwise output the current state.

We argue that at time step t + r, all nodes in V 0 ∪ · · · ∪ Vr+1 have stabilised. The case of r = 0 follows from Lemma 6. 
Suppose the claim holds for some r′ and consider node i ∈ Vr′+2. By the induction assumption and definition of G , i has a 
set P ⊆ V 0 ∪ · · · ∪ Vr′+1 of at least 2 f + 1 neighbours.

Now node i sees a majority of more than f + 1 nodes in P having the same output y. Thus node i outputs 1 − y and is 
in agreement with non-faulty nodes in P in the next round. Since there are d + 1 sets in the partition of V , the algorithm 
stabilises in t + d − 1 steps. �

It is known that consensus cannot be solved in networks with vertex-connectivity less than 2 f +1 [18], and by Lemma 1, 
this result carries over to synchronous 2-counting.

Beyond synchronous counting We note that the previous lemmas hold for a larger class of problems as well: if it suffices 
that a node v simply follows a majority of its neighbours, the generalisation techniques can be applied. These problems 
include, for example, binary consensus and set agreement [9].

8. Computer-designed algorithms

In principle, we could now attempt to use a computer to tackle our original problem. By the discussion of Section 7, 
it suffices to discover an algorithm with the smallest possible s for the special case of n = 4 and f = 1. We could try 
increasing values of s = 2, 3, . . . . Once we have fixed n, f , and s, the problem becomes finite: an algorithm is a lookup table 
with � = nsn entries, and hence there are s� candidate algorithms to explore. For each candidate algorithm, we could use 
the projection graph approach of Section 6 to quickly reject any invalid algorithm.

Unfortunately, the search space grows very rapidly and super-exponentially in the parameters n, s, and f . As we will 
see, there is no algorithm with n = 4 and s = 2. For n = 4 and s = 3, we have approximately 10154 candidates. We use three 
complementary approaches to tackle the task.

1. Reduce (encode) the problem directly to propositional satisfiability and apply SAT solvers.
2. Instead of directly encoding the problem as SAT, apply a SAT-based iterative counter-example guided abstraction refine-

ment approach, in hope of better coping with the inherent combinatorial explosion.
3. Narrow down the search space by also considering restricted classes of algorithms.

The first approach is discussed in Section 9 and the second approach in Section 10. We will now describe the third approach, 
restricting the class of algorithms.
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Table 1
Summary of computer-designed algorithms. The number of nodes n is the smallest network on 
which the algorithm works and t is the worst-case stabilisation time.

class nodes (n) states (s) stabilisation time (t)

cyclic 4 3 7
5 3 6
6 3 3
7 2 8
8 2 4

general 4 4 5
5 3 4
6 2 6

Cyclic algorithms We will consider two classes of algorithms—general algorithms (without any restrictions) and cyclic algo-
rithms. We say that algorithm A is cyclic if

Ai((xi, xi+1, . . . , xn−1, x0, x1, . . . , xi−1)) = A0((x0, x1, . . . , xn−1))

for all i and all x. That is, a cyclic algorithm is invariant under cyclic renaming of the nodes.
There is no a priori reason to expect that the most efficient algorithms are cyclic. However, cyclic algorithms have many 

attractive features: for example, in a hardware implementation of a cyclic algorithm we only need to take n copies of 
identical modules. Furthermore, the search space is considerably smaller: we only need to define transition function A0. For 
n = 4 and s = 3, we have approximately 1038 candidate algorithms.

Cyclic algorithms are also much easier to verify. The projection graphs G F (A) are isomorphic for all |F | = 1 and hence it 
is sufficient to check one of them.

Results We now present our main results on the new computer-generated algorithms and refer the discussion on how the 
results were obtained to Sections 9 and 10.

The positive results are reported in Table 1. The key findings are a cyclic algorithm for s = 3, n = 4, and f = 1, and a 
non-cyclic algorithm for s = 2, n = 6, and f = 1. The table also gives examples of space-time tradeoffs: we can often obtain 
faster stabilisation if we use a larger number of states.

For the sake of comparison, we note that the fastest deterministic algorithm from prior work [20] stabilises in time t = 13
for f = 1 and it requires a large state space. Our algorithms achieve the stabilisation time of t = 5 for s = 4 and t = 7 for 
s = 3.

Machine-readable versions of all positive results, together with a Python script that can be used to verify the correctness 
of the algorithms, are freely available online [1]. Selected examples of the algorithms are also given in Appendix A. We also 
provide a compact, computer-checkable proof that shows that there is no algorithm for s = 2, n = 4, and f = 1, together 
with a verification program [1].

9. Synthesis via directly encoding to SAT

In this section, we describe how to directly encode the synthesis problem into SAT. At a high level, we take the following 
approach:

1. Fix the parameters s, n, f , t , and the algorithm family (cyclic or general).
2. Construct a propositional formula ϕ that is satisfiable iff an algorithm A for the given parameters exists.
3. Use SAT solvers to find a satisfying assignment a of ϕ .
4. Translate a to an algorithm A.

In essence, the formula ϕ encodes the conditions given in Lemma 4 and the SAT solver (implicitly) searches through all 
algorithms A:

1. Guess an algorithm A and construct the projection graph G F (A).
2. Verify that there are no self-loops in G F .
3. Verify that the only successor of 0F is 1F and vice versa.
4. For each d = 1, 2, . . . , t , find the subset B F (d) ⊆ V F of configurations with the following property: for each x ∈ B F (d)

there is a directed walk of length d in G F that starts from x and does not traverse 0F or 1F . We say that x ∈ B F (d) is a 
d-bad configuration.

5. Verify that the set B F (t) is empty.

For cyclic algorithms, we identify equivalent transitions and add corresponding equivalence constraints into the formula.
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In the following, we describe the encoding by giving constraints for a single set F ⊆ [n] of faulty nodes. The final formula 
is then the conjunction of these constraints over every possible choice of faulty nodes F .

Variables Fix F ⊆ [n] and let u ∈ [s]n , x, y ∈ V F , i ∈ [n], d ∈ [t], and c ∈ [s]. We will use the following variables in the 
encoding:

• a(u, i, c) is true if Ai(u) = c,
• h(x, i, c) is true if the adversary can force node i to switch to state c from configuration x,
• e(x,y) is true if there exists an edge (x, y) ∈ R F ,
• b(x,d) is true if the configuration x ∈ B F (d).

Transition functions The a-variables describe the algorithm, that is, the transition function Ai for each node i. Since we 
want each Ai to be a well-defined function, we enforce the following constraints for all u ∈ [s]n , i ∈ [n]:∨

c∈[s]
a(u, i, c) (1)

and, for all c ∈ [s],
a(u, i, c) → ( ∧

c′∈[s]\c

¬a(u, i, c′)
)
. (2)

Observe that if the constraints given in (2) are omitted, then Ai may be a relation: a node may have several possible state 
transitions from a given observed state. Although one could always post-process each Ai into a function, allowing transition 
relations instead of function will only help the adversary.

Projections Let x, y ∈ V F be configurations. Recall from Section 4 the definition of reachability. If the actual configuration 
is x, then the adversary can choose any observed configuration from the set

U (x) = {u ∈ [s]n : πF (u) = x}
for each non-faulty node. For all u ∈ U (x), we have

a(u, i, c) → h(x, i, c), (3)

declaring that the adversary can force node i to switch to state c from configuration x. Now, the h-variables imply edges in 
the projection graph G F :∧

i∈[n]\F

h(x, i, yi) → e(x,y). (4)

Ensuring counting behaviour The goal of the algorithm is to eventually stabilise and start oscillating only between the two 
actual configurations 0F and 1F . To enforce this, we have the clauses

e(0F ,1F ) and e(1F ,0F ) (5)

together with

¬e(0F ,x) and ¬e(1F ,x) (6)

for all x ∈ V F \ {0F , 1F }.

Forbidding non-stabilising walks First, we forbid self-loops in the projection graphs with the unit clause

¬e(x,x) (7)

for every x ∈ V F . To ensure that all configurations but 0F and 1F belong to the set B F (0), we have the clauses

¬b(0F ,0) and ¬b(1F ,0), (8)

and, for each x ∈ V F \ {0F , 1F }, the clause

b(x,0). (9)

If a configuration x can reach a d-bad configuration y ∈ B F (d), then x must be (d + 1)-bad. This is captured by the clause(
e(x,y) ∧ b(y,d)

) → b(x,d + 1) (10)
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for each x, y ∈ V F . Finally, in order for the algorithm to eventually stabilise in the time limit t , we require that there are no 
t-bad configurations:

¬b(x, t). (11)

Extension: non-uniform stabilisation time It is straightforward to generalise the approach to non-uniform stabilisation time 
as follows, for some t0 < t:

• if |F | = 0, the algorithm stabilises in time t0,
• if |F | = 1, the algorithm stabilises in time t .

This means that in executions where there are no Byzantine failures, we require the synthesised algorithm A to stabilise 
faster. Put otherwise, we constrain the projection graph G∅(A) so that all directed walks of length t0 < t reach state 0 or 1. 
This is done by simply adding the previously described constraints for all F ⊆ [n], but the stabilisation time bound used for 
the case |F | = 0 is t0 instead of t . These additional constraints can potentially help with the synthesis, by making the search 
space smaller, and it also helps with the quality of the algorithms.

Many of our algorithms are synthesised with this kind of encoding, with t0 = 2 or t0 = 3. Hence they not only work 
correctly in the presence of a Byzantine failure, but they also stabilise very quickly if all nodes are non-faulty. See the 
online supplement [1] for details.

10. SAT-based counter-example guided search

We now describe an alternative approach for synthesising synchronous counting algorithms: a counter-example guided 
search algorithm. The structure of our algorithm is similar to counter-example guided abstraction refinement techniques 
for model checking [13,14] which have previously been successfully applied in various other computationally hard problem 
domains [2,17,24,29,33,38–40,55]. We repeatedly (1) try to construct an algorithm, (2) check whether the algorithm is 
correct, and (3) if not, then refine the encoding.

On a high-level, the search algorithm tries to guess a synchronous counting algorithm A and then uses a SAT solver 
to find a counter-example, an execution that does not stabilise, for A. If one is found, then the counter-example is used to 
include additional constraints to prune the search space, that is, to rule out at least the found counter-example from the 
implicit set of remaining algorithm candidates. Otherwise, A must be a correct algorithm.

10.1. Encoding

For this approach, we use a symbolic encoding reminiscent of SAT-encodings for bounded model checking [5]. As we 
want the SAT solver to verify that no counter-examples exist, we use an encoding where the SAT solver finds (i) a set F of 
faulty nodes and (ii) a bad execution under F for the counting algorithm.

Variables Unlike previously, here we use a bit-wise encoding for the states. Each node has B = log(s) bits that represent its 
state. Here an observed configuration u is represented as a bit string of length nB; each node has B bits to encode its state 
in [s]. If s is not a power of two, then we add extra constraints that only allow s states to be used.

We now list the variables used in the encoding and their semantics:

• p(i) is true if node i is faulty. In other words, p(i) = 1 implies i ∈ F .
• a(u, i,b) represents the bth bit of the next state of node i when it observes the configuration u ∈ {0, 1}nB .
• u(i, j,b,k) is the bth bit of node i as observed by node j at time step k.
• z(k) and o(k) are true if all non-faulty nodes are in state 0 or 1, respectively, at time step k.
• z(i, k) and o(i, k) are true if i is faulty or it is in state 0 or 1, respectively, at time step k.

We will also use the short-hand g(i,b,k) = u(i, i, b, k) to represent the bth bit of node i at time step k. Next we define each 
part of the encoding as a separate formula.

Choosing the set of faulty nodes We now define the subformula ψfaulty. We want the solver to be able to guess a set F of 
faulty nodes under which a counter-example exists. To achieve this, we add constraints that force exactly f of the p(i)
variables to be true.

In the following let k ∈ [ f ], i ∈ [n] and j ∈ [n] \ {0}. We will introduce the following variables:

• p=(k, i) is true if the kth faulty node is i.
• p≤(k, i) is true if the kth faulty node is at most i.
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To enforce the semantics of these variables, we use the following clauses:

p=(k, i) → p≤(k, i), (12)

p≤(k, j) → (p=(k, j) ∨ p≤(k, j − 1)), (13)

p≤(k, j − 1) → (
p≤(k, j) ∧ ¬p=(k, j)), (14)

¬p=(k,0) → ¬p≤(k,0). (15)

To ensure that exactly f faulty nodes will be chosen, we use the following clauses: we enforce that at least one node is 
designated as the kth faulty node with

p≤(k,n − 1), (16)

and we enforce that there is a strict ordering among the nodes with

p=(h − 1, i) → ¬p≤(h, i) (17)

for all h ∈ [ f ] \ {0}. Finally, we establish the correspondence to p(i) variables by enforcing

(
p=(k, i) → p(i)

) ∧ (
p(i) →

∨
k′∈[ f ]

p=(k′, i)
)
. (18)

Trivial transitions Next, we give clauses that fix the trivial transitions for synchronous counting. The conjunction of these 
clauses is denoted as ψtrivial .

Let 0 and 1 correspond to the observed configuration where all nodes are in state 0 or state 1, respectively. The state 
0 ∈ [s] is encoded by a bit-string with all zeros, whereas 1 ∈ [s] is encoded as the 0th bit set to one and all other bits zero. 
Now, for all i ∈ [n] and b ∈ [B] \ {0}, we enforce

a(0, i,0) and ¬a(0, i,b), (19)

declaring that after observing configuration 0, node i must change its state to 1 ∈ [s]. Conversely, from configuration 1 we 
need to transition to state 0. Thus, for all b ∈ [B] we have

¬a(1, i,b). (20)

Representing state transitions Let k ∈ [t]. We now define the subformula ψk,state encoding the systems behaviour at time 
step k.

If node i is non-faulty, then the state of node i is observed correctly by all other nodes. This is enforced with

¬p(i) → (
u(i, j,b,k) ↔ g(i,b,k)

)
(21)

for all i, j ∈ [n] and b ∈ [B].
For every observable configuration w ∈ [s]n , we introduce an auxiliary variable d(w, i, k) representing that node i ob-

serves w at timepoint k. Let w(i, b) denote the bth bit of the binary representation of the state of node i in the observed 
configuration w.

To enforce the semantics of d(w, i, k), for every observable configuration w ∈ [s]n and every j ∈ [n] the following con-
straint is needed:

¬d(w, j,k) →
(( ∨

i∈[n], b∈[B] : w(i,b)=0

u(i, j,b,k)

)
∨

( ∨
i∈[n], b∈[B] : w(i,b)=1

¬u(i, j,b,k)

))
. (22)

The intuition behind (22) is that, if d(w, j, k) is false, then there must be at least one bit in the bit representation of the 
state observed by node j at timepoint k that is unequal to the bit representation of w.

Finally, the state transitions of the system are enforced by the clauses

d(w, i,k − 1) → (
g(i,b,k) ↔ a(w, i,b)

)
, (23)

where k > 0, w ∈ [s]n , i ∈ [n] and b ∈ [B]. Equation 23 enforces that if at the previous timepoint we observed state w, then 
the state of node i equals the successor state of w as specified by the transition relation of node i.
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Indicators for stabilisation Finally, we define the behaviour of the z- and o-variables; the conjunction of these clauses is the 
subformula ψk,indicator. Recall that at timepoint k, the variable z(k) is true iff the actual configuration is 0F , and respectively 
o(k) is true iff the actual configuration is 1F . The equivalence is given by clauses which enforce for all i ∈ [n], k ∈ [t]:

z(k) → z(i,k) and o(k) → o(i,k), (24)

together with

¬z(k) →
∨
j∈[n]

¬z( j,k) and ¬o(k) →
∨
j∈[n]

¬o( j,k). (25)

It remains to describe the clauses that force the semantics of z(i, k) and o(i, k) variables. First, if a node i is faulty then both 
z(i, k) and o(i, k) are forced to true:

p(i) → (
z(i,k) ∧ o(i,k)

)
. (26)

For the z-variables, we enforce for all b ∈ [B] the clauses

z(i,k) → (
p(i) ∨ ¬g(i,b,k)

)
(27)

and the disjunction

¬z(i,k) →
∨

b∈[B]
g(i,b,k), (28)

declaring that z(i, k) is true iff i is faulty or in state 0 ∈ [s]. Similarly for the o-variables, as state 1 ∈ [s] was encoded as the 
bit string 10 . . . 0, we declare the following clauses to constrain the o-variables:

o(i,k) →
(

p(i) ∨ (
g(i,0,k) ∧

∧
b∈[B]\{0}

¬g(i,b,k)
))

(29)

together with the disjunction

¬o(i,k) → (¬g(i,0,k) ∨
∨

b∈[B]\{0}
g(i,b,k)

)
. (30)

Combining the subformulas The counter-example guided search algorithm incrementally builds a propositional formula to 
use for both verification and synthesis. In the algorithm description, we will refer to the following formulas:

ψbase = ψfaulty ∧ ψtrivial, (31)

which gives the basis of the encoding, and, for each k ≥ 0,

τk = ψk,state ∧ ψk,indicator, (32)

which encodes the unrolling of time.

10.2. Basic search algorithm

Our search algorithm will iteratively construct a sequence 	0, 	1, . . . of formulas until a stabilising 2-counting algorithm 
is found. Given a satisfiable formula 	i , a satisfying assignment ρ defines the following:

• A(ρ): an algorithm defining the n transition functions A1, . . . , An ,
• F (ρ) ⊆ [n]: a set of f faulty nodes,
• X(ρ) = (x0, . . . , xk): an execution of A under the set F (ρ) of faulty nodes,
• U (ρ) = {ui j : i ∈ [n] \ F (ρ), j ∈ [k]}: the configurations observed by non-faulty nodes.

That is, the algorithm A(ρ) is determined by the a(·) variables assigned true in ρ , the set F (ρ) by the p(·) variables, and 
so on.

If an assignment ρ exists, then either A(ρ) is a correct algorithm or X(ρ) gives an execution that violates the specifi-
cation of synchronous 2-counting. In the latter case, the search algorithm inspects X(ρ) and adds constraints that forbid 
any other solutions ρ ′ such that A(ρ) = A(ρ ′). Of course, a naïve approach is to add constraints that explicitly exclude 
algorithm A. However, inspecting the transition functions carefully allows for more frugal constraints that forbid several 
algorithms, that is, a tighter abstraction refinement.



JID:YJCSS AID:2921 /FLA [m3G; v1.161; Prn:27/10/2015; 14:49] P.15 (1-23)

D. Dolev et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 15
1. Let 	 ← ψbase ∧ τ0 ∧ τ1.
2. While ∃ρ such that ρ |= 	 ∧ ψillegal :

• Let 	 ← 	 ∧ ψforbid(ρ, 1).
3. Let 	 ← 	 ∧ τ2 ∧ · · · ∧ τt .
4. While ∃ρ such that ρ |= 	:

(a) If ∃σ such that σ |= 	 ∧ �(ρ) ∧ ¬z(t) ∧ ¬o(t):
• Let 	 ← 	 ∧ ψforbid(σ , t).

(b) Otherwise:
• Stop and output “A(ρ) is a correct algorithm”.

5. Stop and output “no algorithm exists”.

Fig. 6. Basic search algorithm. Steps 2, 4, and 4a resort to a SAT solver to find a satisfying assignment of a given formula.

The basic search algorithm is given in Fig. 6. Step 1 defines the initial formula that acts as a basis for the incremental 
search. In Step 2, the search algorithm first removes all algorithm candidates that do not correctly oscillate between the 
0F and 1F states even in the special case when the system starts from either state. The formula ψillegal is defined as 
(z(0) ∧ ¬o(1)) ∨ (o(0) ∧ ¬z(1)), and the formulas ψforbid(·, ·) are constraints that remove bad algorithms from the search 
space—we will describe these in detail in Section 10.3.

Step 4 asks the SAT solver to guess an algorithm candidate A(σ ). In Step 4a, the SAT solver is used to find a counter-
example to A(σ ) to see whether it stabilises. If a counter-example is found, then we use the counter-example to add more 
constraints to prune the search space. Here, the formula �(ρ) encodes A(ρ) as a conjunction of literals consisting of vari-
ables a(u, i, b). Step 4b is reached if no counter-example is found, meaning that A is a correct algorithm for synchronous 
counting.

Finally, if we reach Step 5, we know that 	 is unsatisfiable, and hence, there does not exist any correct algorithms for 
the given parameters.

Remark. Note that there exist several possible trade-offs between having a simple search algorithm and speeding up syn-
thesis by introducing problem-specific knowledge into the algorithm and encoding. For example, Step 2 essentially learns 
Lemma 4.1 which we could also directly encode into the base formulas. In Step 4, we can introduce z(0) as a conjunct into 
the formula to make the search for A(σ ) intuitively easier, and so on. However for clarity of exposition, we will focus on 
more general algorithmic ideas instead of problem-specific tunings.

10.3. Refinement through counter-examples

Once the SAT solver finds a counter-example, we need to forbid algorithms that exhibit the incorrect behaviour. Intu-
itively, we add constraints that force the change of some transitions that caused the bad execution.

Formally, we construct ψforbid(σ , k) as follows. Let x0, . . . , xk be the execution X(σ ) and let ui j be the configuration 
observed by node i /∈ F (σ ) at timepoint j < k. The literals responsible for the transitions are divided into two sets, P+
and P− , as follows:

(i, j,b) ∈ P+ iff σ [a(ui j, i,b)] = 1

(i, j,b) ∈ P− iff σ [a(ui j, i,b)] = 0.

Above, σ [x] ∈ {0, 1, ⊥} denotes the value (false, true, unassigned) of variable x in assignment σ . Now the constraint is

ψforbid(σ ,k) =
∨

(i, j,b)∈P+
a(ui j, i,b) ∨

∨
(i, j,b)∈P−

¬a(ui j, i,b). (33)

Note that the case P+ = P− = ∅ must be a contradiction, and hence the formula is always non-empty.

10.4. Improvement: finding short loops

The constraint can be strengthened when X(σ ) contains a loop x0, . . . , xh for some h < k, by then only considering 
timepoints j ≤ h when constructing the sets P+ and P− . Then, instead of stating that some transition must be changed 
in the entire length-k execution, we state that it suffices to change something for only h < k of the steps. This results in a 
shorter disjunction in the constraint.

To this end, we modify Step 4 in the basic search algorithm as shown in Fig. 7. We introduce a new variable �(k) which 
is true iff x0 = xk . We first find the smallest k < t for A(ρ) such that a bad execution consisting of a length-k loop exists. If 
no such loop exists, we proceed as before. Otherwise, we use the counter-example consisting of a loop to refine the current 
abstraction.
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4. While ∃ρ such that ρ |= 	:
(a) If ∃k ≤ t and ∃σ such that σ |= 	 ∧ �(ρ) ∧ �(k):

• Let 	 ← 	 ∧ ψforbid(σ , k∗), where k∗ is the smallest such k.
(b) Otherwise, if ∃σ such that σ |= 	 ∧ �(ρ) ∧ ¬z(t) ∧ ¬o(t):

• Let 	 ← 	 ∧ ψforbid(σ , t).
(c) Otherwise:

• Stop and output “A(ρ) is a correct algorithm”.

Fig. 7. Finding short loops: modifications to Step 4 of Fig. 6.

1. Let 	 ← ψbase ∧ τ0 ∧ τ1.
2. While ∃ρ such that ρ |= 	 ∧ ψillegal:

• Let 	 ← 	 ∧ ψforbid(ρ, 1).
3. Let k ← 1.
4. While ∃ρ such that ρ |= 	 ∧ z(0):

(a) Let i ← min
{

j ≤ k : ∃σ j such that σ j |= 	 ∧ �(ρ) ∧ �( j)
} ∪ {∞}.

(b) If i ≤ k:
• Let 	 ← 	 ∧ ψforbid(σi , i).

(c) Otherwise, if ∃π such that π |= 	 ∧ �(ρ) ∧ ¬z(k) ∧ ¬o(k):
• If k < t:

◦ Let k ← k + 1 and 	 ← 	 ∧ τk ,
◦ Resume from Step 4a.

• Otherwise:
◦ Let 	 ← 	 ∧ ψforbid(π, k).

(d) Otherwise:
• Output “A(ρ) is a correct algorithm that stabilises in k steps”,
• Let k ← k − 1 and t ← k,
• Resume from Step 4b.

5. Stop and output: “no algorithm exists that stabilises in time t”.

Fig. 8. Overshooting algorithm.

10.5. Improvement: overshooting and unrolling on demand

Usually we are interested in knowing whether there exist any stabilising counting algorithm for given parameter values s, 
n, and f . For this task, we modify the search algorithm so that it can first quickly find some algorithm, possibly with a very 
long stabilisation time, and then gradually further tightening the stabilisation-time requirement.

The overshooting algorithm is given in Fig. 8. It unrolls the encoding on demand. By setting t = ∞, the algorithm tries to 
find any algorithm that stabilises. Of course, as the state space is finite, there is also a finite upper bound on t that can be 
used here.

The algorithm works as follows. Step 4a searches for the smallest i such that a i-loop counter-example exists for A(ρ). 
In Step 4b, if we have already unrolled the execution to at least i steps, then we add new constraints. Otherwise, Step 4c 
attempts to find a counter-example π of length k. If k < t , then we unroll the encoding for one additional time step, as it 
may be that our current time bound k is too small for a stabilising algorithm to exist. Otherwise, we prune the search space 
using the counter-example π .

11. Empirical results

So far we have introduced two different approaches for constructing synchronous counting algorithms. Now the obvious 
question remains: which one is better? To answer this, we empirically compared the direct encoding given in Section 9 against 
the counter-example guided algorithm described in Section 10. In particular, our goal was to find out which method is more 
useful in practice when one wants to synthesise new algorithms.

Solvers For solving instances via the direct propositional encoding, we used two freely available state-of-the-art complete 
SAT solvers: MiniSAT [26] (version 2.2.0 with simplifications) and lingeling (version ayv) [6]. The input formula was 
encoded in the standard DIMACS CNF file format. As both solvers allow a wide range of different parameters to fine-tune 
the solver search routines, we settled on running both solver using their respective default parameters.

Our implementation of the counter-example guided search, dubbed as symsync, builds on top of the incremental interface 
of the MiniSAT solver [25]. We used the overshooting variant of the counter-example guided search. Thus, the solver relaxes 
the time bound when it does not find a correct algorithm matching the target stabilisation time, but after finding some 
stabilising algorithm, the solver will then gradually tighten the time bound.

Experiment setup Recall that an instance of the synthesis problem consists of the class of algorithms (general or cyclic) 
and four parameters: number of nodes n, faulty nodes f , states s, and the stabilisation time t . We chose a set of problem 
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Table 2
Problem instances used in the empirical experiments. For all realisable instances, we also run the 
experiments for relaxed instances with stabilisation time t + 1, 2t , and the maximum possible sta-
bilisation time. The last column gives the log10 of the number of algorithm candidates.

class n s t realisable? log10 of #candidates

cyclic 4 3 6 no 38

7 2 3 no 38

8 2 3 no 77

4 3 7 yes 38

5 3 6 yes 115

6 3 3 yes 347

7 2 8 yes 38

8 2 4 yes 77

general 4 3 7 yes 154

5 2 79 no 48

5 3 4 yes 579

6 2 6 yes 115

7 2 8 yes 269

instances consisting of both realisable (an algorithm exists) and unrealisable (no algorithm exists) instances, as listed in 
Table 2. We attempted to choose instances of various difficulty, but still solvable within a four hour limit on CPU time; we 
note that some of the algorithms presented in Table 1 of Section 8 required considerably longer time to synthesise.

For each problem instance, we ran N = 100 copies of each of the three solvers, initialising every process with a different 
random seed. We recorded the running time, the maximum memory footprint, and other statistics for each process. When 
using the direct encoding, we did not include the time required to generate the instance. The experiments were run on a 
computing cluster with Intel Xeon X5650 2.67-GHz processors. Each process was single-threaded and the memory limit was 
set to 8 GB.

For each realisable problem instance listed in Table 2, we also ran the same experiment setup as above for relaxed 
instances by increasing the stabilisation time bound in three ways: increasing the stabilisation bound by one, doubling the 
bound, and finally using the maximal bound of t = sn− f − 2 time steps. Intuitively, suboptimal algorithms with a longer 
stabilisation time should be more common, and hence, perhaps easier to find. However, this also increases the size of the 
search space and the size of the SAT instances.

Results The synthesis times for realisable instance are summarised in Table 3 and Fig. 9. For each solver, the table gives the 
median together with first and ninth decile of synthesis times (in seconds). The time to generate the propositional formula 
for direct encoding instances is not included in the running times of MiniSAT and lingeling solvers, but is for symsync

solver, as it iteratively generates its internal encoding within the CEGAR loop during execution.
The immediate observation is that neither direct encoding or the CEGAR approach consistently outperform the other. 

However, it is easy to see some patterns. First, the direct encoding works well for finding optimal or nearly-optimal algo-
rithms, but finding some algorithm is much faster with symsync. On the other hand, symsync rarely manages to find optimal 
algorithms within the time limit of four hours or the memory limit of eight gigabytes.

Typically, when the solvers failed to find a solution, this was due to hitting the time limit. The only notable exceptions 
to this were the instances for general algorithms with n = 5 and s = 3, where each symsync instance ran out of memory in 
each case, and the cyclic instances with n = 6 and s = 3, where most of the failures were caused by running out of memory. 
Neither MiniSAT nor lingeling ran out of memory in these experiments.

The second pattern is that in many cases symsync gives solutions to instances with s = 2 states at least an order of 
magnitude faster than the direct encoding approach. For general algorithms with n ∈ {6, 7}, the direct encoding approach 
does not even produce results in the given time limit.

Indeed the observed behaviour is expected. The symsync solver refines the abstraction and relaxes the time bound if a 
fast algorithm is not found steadily increasing the size of the encoding. Usually, some algorithm will be encountered, and 
from thereon, the solver will simply proceed by adding new constraints until an algorithm with the desired time bound is 
found. On the other hand, trying to find some algorithm using the direct encoding amounts to simply increasing the time 
bound to a large enough value right from the start—this greatly increases the size of the propositional formula making the 
search slower.

When comparing the two different SAT solvers used in the direct encoding approach, rather unsurprisingly, the actively 
developed lingeling solver outperforms MiniSAT. We suspect that lingeling greatly benefits from its inprocessing capabili-
ties, which are not present in the other solvers.
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Table 3
Summary of realisable problem instances. The solver columns indicate the first, fifth (median), and ninth decile of running times in seconds. Columns 
marked with 
 indicate that a solution was found by some but less than 10% of the processes. For the first decile we have highlighted the running time of 
the fastest solver. Here f = 1 for all cases.

Instance Running time (seconds)

MiniSAT lingeling symsync

class n s t 10% 50% 90% 10% 50% 90% 10% 50% 90%

cyclic 4 3 7 1 1 1 1 1 1 1 2 6

8 1 1 3 1 1 1 1 1 5

14 1 1 1 1 1 1 1 1 4

25 1 1 2 1 1 1 1 1 4

5 3 6 2373 – – 803 2715 – – – –

7 1477 13305 – 44 632 711 
 – –

12 25 436 3009 12 16 91 5 31 1014

79 66 672 4180 114 167 441 3 18 42

6 3 3 79 3634 – 16 22 70 – – –

4 
 – – 178 272 3734 – – –

6 2053 – – 251 2451 4344 
 – –

241 6930 – – 1981 2735 – 41 505 –

7 2 8 34 604 4177 65 – – 
 – –

9 32 560 2356 21 26 101 5233 – –

16 16 102 661 18 72 79 2 20 84

62 41 442 1921 60 185 267 2 5 35

8 2 4 7 101 440 19 67 81 – – –

5 15 119 797 28 56 83 – – –

8 62 558 3000 50 56 216 622 7304 –

126 850 4117 – 967 3945 7993 9 21 145

general 4 3 7 10 859 – – 4246 – – – – –

8 2639 – – 497 – – – – –

14 2884 – – 3211 – – – – –

25 2600 – – 13 639 – – – – –

5 3 4 
 – – 
 – – – – –

5 
 – – 
 – – – – –

8 
 – – 
 – – – – –

79 – – – – – – – – –

6 2 6 – – – – – – 1167 – –

7 – – – – – – 541 – –

12 
 – – 
 – – 69 1782 –

30 
 – – 
 – – 46 382 2069

7 2 8 – – – – – – 528 – –

9 – – – – – – 354 8990 –

16 – – – – – – 111 946 –

62 – – – – – – 75 415 –

The results for unrealisable instances are listed in Table 4. For unrealisable instances, it is relatively clear that the direct 
encoding outperforms the counter-example guided approach, although symsync is able to prove the non-existence of a 
two-state algorithm for n = 5 nodes in time comparable to the direct encoding approach.

12. Conclusions

In this work, we have used computational techniques to study the synchronous counting problem. At first sight the prob-
lem is not well-suited for computational algorithm design—we need to reason about stabilisation from any given starting 
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Fig. 9. Example of synthesis times. The x axis is the logarithm of time in seconds and the y-axis is the fraction of processes that had solved the problem 
instance.

Table 4
Summary of unrealisable problem instances.

Instance Running time (seconds)

MiniSAT lingeling symsync

class n s t 10% 50% 90% 10% 50% 90% 10% 50% 90%

cyclic 4 3 6 2 3 3 4 6 6 − − −
7 2 7 − − − − − − − − −
8 2 3 9405 13 809 − 999 1364 1612 − − −

general 5 2 79 1148 1502 2016 1563 2353 2927 2482 2780 3421
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Table 5
Cyclic algorithm for s = 3, n = 4, f = 1, and t = 7.

00 01 02 10 11 12 20 21 22

00 1 1 1 1 0 1 1 1 1

01 1 1 1 2 2 0 1 1 1

02 1 1 1 1 0 1 1 1 1

10 1 0 1 1 0 0 1 0 1

11 0 0 0 0 0 0 0 0 0

12 1 0 1 0 0 0 0 0 0

20 1 1 1 1 1 0 1 1 1

21 1 1 1 1 0 0 1 0 0

22 1 1 1 1 0 0 1 0 1

configuration, for any adversarial behaviour, in a system with arbitrarily many nodes. Nevertheless, we have demonstrated 
that computational techniques can be used in this context to discover novel algorithms.

Our algorithms outperform the best human-designed algorithms: they are deterministic, small (2 ≤ s ≤ 3), fast 
(3 ≤ t ≤ 8), and easy to implement in hardware or in software—a small lookup table suffices. In summary, our work 
leaves very little room for improvement in the case of f = 1. The general case of f > 1 has been considered in subse-
quent work [43], which shows how the algorithms designed in this work can be used as subroutines to construct efficient 
algorithms that tolerate a larger number of failures.

We presented two complementary approaches for algorithm synthesis: the direct SAT encoding from Section 9 and the 
SAT-based CEGAR approach from Section 10. In our experiments, the direct encoding was typically the fastest method for 
finding optimal algorithms, while the CEGAR approach quickly discovered some algorithms.

Even though our computer-generated algorithms are constructed with a fairly complicated toolchain, the end results are 
compact, machine readable, and easy to verify with a straightforward script. All results and the verification tools are freely 
available online [1].
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Appendix A. Algorithm listings

In this appendix, we give two examples of our algorithms—machine-readable versions of all algorithms, verification code, 
and some illustrations are available online [1].

Table 5 gives a cyclic algorithm for n = 4. The rows are labelled with (x0, x1), the columns are labelled with (x2, x3), and 
the values indicate A0((x0, x1, x2, x3)), that is, the new state of the first node in the observed configuration x. The projection 
graph (Section 6) for this algorithm is given in Fig. 10.

Table 6 shows a non-cyclic algorithm for n = 6. Again, the rows are labelled with the first half (x0, x1, x2) of the observed 
state x and the columns are labelled with the second half (x3, x4, x5) of the observed state x. The values show the new state 
for each node: A0(x), A1(x), . . . , A5(x).
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Fig. 10. The projection graph G F (A) for the algorithm A given in Table 5, assuming that the faulty nodes are F = {0}. The actual configurations have been 
clustered according to the length of the longest path that avoids the good states 0F and 1F . Based on the projection graph, it is straightforward to verify 
that for any initial state and for any adversarial activities the algorithm will stabilise in t = 7 steps.

Table 6
Algorithm for s = 2, n = 6, f = 1, and t = 6.

000 001 010 011 100 101 110 111

000 111111 111111 111111 111111 111111 111111 111111 011000

001 111111 111111 111111 111011 111011 111011 010001 010000

010 111111 111111 111111 101001 111111 101001 011111 001000

011 111111 111011 101001 100000 100001 100000 000001 000000

100 111111 111111 111111 110110 111111 110110 011111 000000

101 111111 111111 110110 110110 110110 110110 010000 000000

110 011111 110110 011111 000000 011111 000000 011111 001000

111 010110 010110 000000 000000 000010 000000 000001 000000
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