
JID:YJCSS AID:2921 /FLA [m3G; v1.161; Prn:27/10/2015; 14:49] P.1 (1-23)

Journal of Computer and System Sciences ••• (••••) •••–•••
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Synchronous counting and computational algorithm design

Danny Dolev a, Keijo Heljanko b, Matti Järvisalo c, Janne H. Korhonen c,
Christoph Lenzen d, Joel Rybicki b,∗, Jukka Suomela b, Siert Wieringa b

a The Rachel and Selim Benin School of Engineering and Computer Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Israel
b Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto University, Finland
c Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, Finland
d Department of Algorithms and Complexity, MPI for Informatics, Saarbrücken, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 January 2015
Received in revised form 1 September 2015
Accepted 11 September 2015
Available online xxxx

Keywords:
Distributed computing
Self-stabilisation
Byzantine fault tolerance
Synthesis
Formal methods
SAT

Consider a complete communication network on n nodes. In synchronous 2-counting, the
nodes receive a common clock pulse and they have to agree on which pulses are “odd” and
which are “even”. Furthermore, the solution needs to be self-stabilising (reaching correct
operation from any initial state) and tolerate f Byzantine failures (nodes that send arbitrary
misinformation). Prior algorithms either require a source of random bits or a large number
of states per node. In this work, we give fast state-optimal deterministic algorithms for
the first non-trivial case f = 1. To obtain these algorithms, we develop and evaluate
two different techniques for algorithm synthesis. Both are based on casting the synthesis
problem as a propositional satisfiability (SAT) problem; a direct encoding is efficient for
synthesising time-optimal algorithms, while an approach based on counter-example guided
abstraction refinement discovers non-optimal algorithms quickly.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Synchronous counting In the synchronous C-counting problem, n nodes have to count clock pulses modulo C . Starting from
any initial configuration, the system has to stabilise so that all nodes agree on the counter value. Put otherwise, eventually
all nodes have to consistently label each clock pulse with values incrementing modulo C .

In this work, we consider a fully-connected synchronous communication network of n nodes with identifiers from the set
{0, 1, . . . , n − 1}. Each node is a finite state machine with s states, and after every state transition, each node broadcasts its
current state to all other nodes—effectively, each node can see the current states of all other nodes. An algorithm specifies
(1) the new state for each observed state, and (2) how to map the internal state of a node to its output.

* Corresponding author.
E-mail address: joel.rybicki@aalto.fi (J. Rybicki).
http://dx.doi.org/10.1016/j.jcss.2015.09.002
0022-0000/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcss.2015.09.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:joel.rybicki@aalto.fi
http://dx.doi.org/10.1016/j.jcss.2015.09.002

JID:YJCSS AID:2921 /FLA [m3G; v1.161; Prn:27/10/2015; 14:49] P.2 (1-23)

2 D. Dolev et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Byzantine fault tolerance In a fault-free system, the C-counting problem is trivial to solve. For example, we can designate
node 0 as a leader, and then all nodes (including the leader itself) can follow the leader: if the current state of the leader
is c, the new state is c + 1 mod C . This algorithm will stabilise in time t = 1, and we only need s = C different states.

However, we are interested in algorithms that tolerate Byzantine failures. Some number f of the nodes may be faulty.
A faulty node may send arbitrary misinformation to non-faulty nodes, including different information to different nodes
within the same round. For example, if we have nodes 0, 1, 2, 3 and node 2 is faulty, node 0 might observe the state vector
(0, 1, 1, 1), while node 1 might observe the state vector (0, 1, 0, 1).

Our goal is to design an algorithm with the following guarantee: even if we have up to f faulty nodes, no matter
what the faulty nodes do, the system will stabilise so that after t rounds all non-faulty nodes start to count clock pulses
consistently modulo C . We will give a formal problem definition in Section 4.

Synchronous counting can be used as a fault-tolerant co-ordination primitive in systems where a synchronous clock
signal is available, but the clock pulses have not been labelled in any manner, for example, there is no distinction between
even and odd clock pulses. In general, a C-counter can be used as a fault-tolerant round counter that assigns explicit round
numbers for each clock pulse.

State of the art Both randomised and deterministic algorithms for synchronous counting (often also referred to as digital
clock synchronisation) have been presented in the literature (see Section 2). However, prior algorithms tend to be expensive
to implement in hardware: they require a source of random bits or complicated circuitry.

In this work, we use a single parameter s, the number of states per node, to capture the complexity of an algorithm. If
one resorts to randomness, it is possible to solve 2-counting with the trivially optimal number of s = 2 states—at the cost
of a slow stabilisation time (see Sections 2 and 5). However, it is not at all clear whether a small number of states suffices
for deterministic algorithms.

Contributions We employ computational techniques to design deterministic 2-counting algorithms that have the smallest
possible number of states. Our contributions are two-fold:

1. we present new algorithms for the synchronous counting problem,
2. we develop new computational techniques for constructing self-stabilising Byzantine fault-tolerant algorithms.

Our focus is on the first non-trivial case of f = 1. The case of n = 1 is trivial, and by prior work it is known that there is
no algorithm for 1 < n < 4. We give a detailed analysis of 2-counting for n ≥ 4:

• there is no deterministic algorithm for f = 1 and n = 4 with s = 2 states,
• there is a deterministic algorithm for f = 1 and n ≥ 4 with s = 3 states,
• there is a deterministic algorithm for f = 1 and n ≥ 6 with s = 2 states.

Overall, we develop more than a dozen different algorithms with different characteristics, each of which can be also gen-
eralised to a larger number of nodes. See Fig. 1 for an overview of the time–space tradeoffs that we achieve with our
algorithms.

With very few states per node, our algorithms are easy to implement in hardware. For example, a straightforward
implementation of our algorithm for f = 1, n = 4, and s = 3 requires just 2 bits of storage per node, and a lookup table
with 34 = 81 entries. All of our computer-designed algorithms are freely available online [1] in a machine-readable format.
While our algorithms are synchronous 2-counters, they can be easily composed to construct synchronous 2b-counters for
any positive integer b (see Section 3 for details).

This work can be seen as a case study of applying synthesis techniques in the area of distributed algorithms. We demon-
strate that the synthesis of non-trivial self-stabilising Byzantine fault-tolerant algorithms is indeed possible with the help
of modern propositional satisfiability (SAT) solvers [6,26]. We describe two complementary approaches for the synthesis of
synchronous 2-counting algorithms and give an empirical comparison of their relative performance:

1. a direct encoding as SAT,
2. a SAT-based counter-example guided abstraction refinement (CEGAR) [13,14] approach.

JID:YJCSS AID:2921 /FLA [m3G; v1.161; Prn:27/10/2015; 14:49] P.3 (1-23)

D. Dolev et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 3
Fig. 1. Time–space tradeoffs in our computer-designed algorithms. The figure shows s (the number of states) for each combination of n (the number of
node) and t (the stabilisation time).

Both approaches make it possible to use modern SAT solvers and to benefit from the steady progress in SAT solver tech-
nology. As we will see, the former approach is typically more efficient for tightly-specified problems (e.g., synthesising both
space-optimal and time-optimal algorithms), while the latter is more promising for more relaxed problems (e.g., synthesis-
ing space-optimal algorithm regardless of the stabilisation time).

Structure Section 2 covers related work and Section 3 discusses applications of synchronous 2-counters. Section 4 gives
a formal definition of the problem, and Section 5 gives two examples of human-designed algorithms. Section 6 gives a
graph-theoretic interpretation that is helpful in the analysis of counting algorithms. In Section 7 we show that (1) we can
increase n for free, without affecting the parameters f , s, or t; this enables us to focus on small values of n, and (2) we can
generalise the algorithms to a larger class of network topologies with a slight cost in stabilisation time. Section 8 presents
an overview of the use of computers in algorithm design and highlights the new results for synchronous counting. Section 9
describes a direct formulation of the synthesis problem for synchronous counting algorithms as propositional satisfiability.
Section 10 describes the SAT-based counter-example guided abstraction refinement synthesis technique. Finally, Section 11
overviews the results of the empirical evaluation of the two different synthesis techniques, suggesting a tradeoff between
establishing the existence of any algorithm and finding optimal algorithms.

2. Related work

Randomised algorithms for synchronous counting Randomised algorithms for synchronous 2-counting are known, with differ-
ent time–space tradeoffs.

The algorithm by Dolev and Welch [23] requires only s = 3 states, but the expected stabilisation time is 2O (n− f) . On the
other hand, it is possible to attain short stabilisation times using randomisation. For example, the algorithm by Ben-Or et
al. [3] stabilises in expected constant time. However, it requires �(2 f) states and private channels (i.e., the adversary has
limited information on the system’s state).

Deterministic algorithms for synchronous counting The fastest known deterministic algorithm is due to Dolev and Hoch [20],
with a stabilisation time of O (f). However, the algorithm is not well suited for a hardware implementation. It uses as a
building block several instances of algorithms that solve the Byzantine consensus problem—a non-trivial task in itself. The
number of states is also large, as some storage is needed for each Byzantine consensus instance.

Consensus lower bounds for synchronous counting Binary consensus is a classical problem that has been studied in the context
of Byzantine fault tolerance; see, e.g., the textbook by Lynch [44] for more information. In brief, the problem is defined as
follows. Each node has a binary input, and all non-faulty nodes have to produce the same binary output, 0 or 1. If all inputs
are equal to 0, the common output has to be 0, and if all inputs are equal to 1, the common output has to be 1; otherwise
the common output can be either 0 or 1. It is easy to show that synchronous 2-counting is at least as difficult to solve as
binary consensus.

Lemma 1. If we have a 2-counting algorithm A that stabilises in time t, we can design an algorithm that solves binary consensus in
time t, for the same parameters n and f .

Proof. Let x(0) and x(1) be some configurations that may occur during the correct operation of A after it has stabilised, so
that in configuration x(a) all nodes output a. More specifically:

• For any a = 0, 1 and j = 0, 1, 2, . . ., if we initialise the system with configuration x(a) and run A for j rounds, all
non-faulty nodes output (a + j) mod 2.

JID:YJCSS AID:2921 /FLA [m3G; v1.161; Prn:27/10/2015; 14:49] P.4 (1-23)

4 D. Dolev et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Fig. 2. A 2-counter for n = 2, viewed as an electronic circuit.

First assume that t is even. Each node i receives its input a for the binary consensus problem. We use the element i of
x(a) to initialise the state of node i. Then we run A for t rounds. Finally, the output of algorithm A forms the output of
the binary consensus instance. To see that the algorithm is correct, we make the following observations: (1) All non-faulty
nodes produce the same output at time t , regardless of the input. (2) If all inputs had the same value a, we used x(a) to
initialise all nodes, and hence the final output is a.

For an odd t , we can use the same approach if we complement the inputs. In summary, A can be used to solve binary
consensus in time t . �

Now we can invoke the familiar lower bounds related to the consensus problem:

• no algorithm can tolerate f ≥ n/3 failures [51],
• no deterministic algorithm can solve the problem in t < f + 1 rounds [32].

Pulse synchronisation Both 2-counting and pulse synchronisation [3,16,19,23] have a superficially similar goal: produce well-
separated, (approximately) synchronised clock pulses in a distributed system in a fault-tolerant manner. However, there are
also many differences: in pulse synchronisation the task is to construct a clock pulse without any external reference, while
in 2-counting we are given a reference clock and we only need to label each clock pulse as “even” or “odd”, or put oth-
erwise, construct a clock that ticks at a slower rate. In general, once pulse synchronisation has been solved, a C-counting
algorithm can be used to generate explicit round numbers in a fault-tolerant manner. Also the models of computation for
the two problems differ—for pulse synchronisation, a relevant model is an asynchronous network with some bounds on
propagation delays and clock drifts. For further discussion on this topic, see a recent survey by Dolev et al. [19].

In summary, a 2-counting algorithm does not solve the pulse synchronisation problem, and a pulse synchronisation
algorithm does not solve the 2-counting problem. However, if one is designing a distributed system that needs to produce
synchronised clock ticks in a fault-tolerant manner, either of the approaches may be applicable.

Computational algorithm design The computational element of our work can be interpreted as a form of algorithm synthesis.
In synthesis, the task is to algorithmically find an algorithm or a protocol that satisfies a given specification. The idea of
synthesising circuits was proposed by e.g. Church [11] already in the 1960s and there exists a vast body of work related to
synthesis.

Classic work on model checking [12,45] consider algorithms for synthesis of both shared-memory and message-passing
protocols by solving the satisfiability of certain temporal logic formulas. Unfortunately, synthesis of distributed systems
is often intractable both in theory and practice—distributed synthesis problems are often either of high complexity or
undecidable [30,50,52]. However, despite the hardness of synthesis—or because of it—several techniques have been proposed
to make synthesis tractable [29,31,37].

In contrast to applying general synthesis techniques, that is, algorithms for synthesising a general class of problems, com-
binatorial search algorithms have also been applied to solve specific synthesis problems. For example, SAT solvers have been
used for, e.g., circuit synthesis [7,34,35,41,42], synthesis from safety specifications [8], controller synthesis [47], program
sketching [54], synthesising sorting networks [10,15,48], and synthesising local graph algorithms [36,53].

3. Applications

Counters as frequency dividers We can visualise a C-counter as an electronic circuit that consists of n components (nodes);
see Fig. 2. Each node i has a register xi that stores its current state—one of the values 0, 1, . . . , s −1. There is a logical circuit
g that maps the current state to the output, and another logical circuit Ai that maps the current states of all nodes to the
new state of node i. At each rising edge of the clock pulse, register xi is updated.

If the clock pulses are synchronised, regardless of the initial states of the registers, after t clock pulses the system has
stabilised so that the outputs are synchronised and they are incremented (modulo C) at each clock pulse.

In particular, if we have an algorithm for 2-counting, it can be used as a frequency divider: given synchronous clock pulses
at rate 1, it produces synchronous clock pulses at rate 1/2.

JID:YJCSS AID:2921 /FLA [m3G; v1.161; Prn:27/10/2015; 14:49] P.5 (1-23)

D. Dolev et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 5
Fig. 3. Composition of 2-counters.

From 2-counters to C-counters Given a 2-counting algorithm, it is also possible to devise C-counters for larger values of
C > 2. For example, we can compose b layers of 2-counters to build a clock that counts modulo 2b ; see Fig. 3. In a syn-
chronous system, a composition of self-stabilising algorithms is self-stabilising [22]. For the purposes of the analysis, we can
wait until layer i − 1 stabilises, use this as the initial state of layer i, and then argue that the nodes on layer i receive a syn-
chronous clock pulse and hence they will eventually stabilise. In a similar fashion, it is possible to compose two 2b -counters
to attain 22b-counters, and so on [3].

Moreover, recent work [43] shows how to devise a C-counter for any C > 1 by first constructing a suitable O (f)-counter.
The O (f)-counter is used to provide round numbers for a modified consensus protocol. Using the consensus protocol, it is
possible to attain a C-counter for any C > 1. For the case f = 1, the required O (f)-counter can be constructed by composing
only constantly many 2-counters. Thus, starting from just 2-counters, it is possible to construct C-counters for any C > 1.

Counters in mutual exclusion With a C-counter we can implement mutual exclusion and time division multiple access in a fairly
straightforward manner. If we have C = n nodes and one shared resource (e.g., a transmission medium), we can let node
i to access the resource when its own counter has value i. Care is needed with the actions of faulty nodes, though—for
further information on achieving fault-tolerant mutual exclusion, see, e.g., Moscibroda and Oshman [49]. Again 2-counting is
of particular interest, as it may be leveraged by more complex mutual exclusion algorithms.

4. Problem formulation

We will now formalise the C-counting problem and the synthesis problem, and introduce the definitions that we will
use in this work. Throughout this work, we will follow the convention that nodes, states, and time steps are indexed from 0.
We use the notation [k] = {0, 1, . . . , k − 1}.

Intuitively, the model of computing is as follows. The system consists of a fully-connected message-passing network of n
nodes where all nodes have unique identifiers from the set [n]. All nodes first broadcast their state to all other nodes in the
network along the communication links. Moreover, the communication links are labelled so that nodes know from which
node a message originated. Thus, after broadcasting, each node receives a vector of messages which the node uses to decide
on a new state.

Simplifications As our focus is primarily on 2-counters, we will now fix C = 2; the definitions are straightforward to gener-
alise.

In prior work, algorithms have made use of a function that maps the internal state xi of a node to its output g(xi).
However, in this work we synthesise algorithms that do not need any such mapping: for our positive results, an identity
mapping is sufficient, and for the negative result, we study the case of s = 2 which never benefits from a mapping. Hence
we will now give a formalisation that omits the output mapping.

Algorithms Fix the following parameters:

• n = the number of nodes,
• f = the maximum number of faulty nodes,
• s = the number of internal states.

An algorithm A specifies a state transition function Ai : [s]n → [s] for each node i ∈ [n]. Here [s]n is the set of observed
configurations of the system.

Projections Let F ⊆ [n], |F | ≤ f be the set of faulty nodes. We define the projection πF as follows: for any observed config-
uration u ∈ [s]n , let πF (u) be a vector x such that xi = ∗ if i ∈ F and xi = ui otherwise. For example,

π{2,4}((0,1,0,1,1)) = (0,1,∗,1,∗).

This gives us the set V F = πF ([s]n) of actual configurations. Two actual configurations are particularly important:

0F = πF ((0,0, . . . ,0)) and 1F = πF ((1,1, . . . ,1)).

Note that since non-faulty nodes do not know the set F , they cannot uniquely determine the actual configuration from any
observed configuration.

JID:YJCSS AID:2921 /FLA [m3G; v1.161; Prn:27/10/2015; 14:49] P.6 (1-23)

6 D. Dolev et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
1. If more than (n + f)/2 entries in u are 0:
• Switch to state 1.

2. Otherwise, if more than (n + f)/2 entries in u are 1:
• Switch to state 0.

3. Otherwise:
• Flip the coin to get a random bit b ∈ {0, 1}.
• Switch to state b.

Fig. 4. A randomised 2-counting algorithm. All nodes follow the same algorithm.

Executions Let x, y ∈ V F . We say that configuration y is reachable from x if for each non-faulty node i /∈ F there exists
some observed configuration ui ∈ [s]n satisfying πF (ui) = x and Ai(ui) = yi . Intuitively, the faulty nodes can feed such
misinformation to node i that it chooses to switch to state yi . We emphasise that ui may be different for each i; the
misinformation need not be consistent.

An execution of an algorithm A for given set of faulty nodes F is an infinite sequence of actual configurations X =
(x0, x1, x2, . . .) such that xr+1 is reachable from xr for all r.

Stabilisation For an execution X = (x0, x1, x2, . . .), define its t-tail

X[t] = (xt,xt+1,xt+2, . . .).

We say that X stabilises in time t if one of the following holds:

X[t] = (0F ,1F ,0F , . . .) or X[t] = (1F ,0F ,1F , . . .).

Synchronous counters We say that an algorithm A stabilises in time t if for any set of faulty nodes F with |F | ≤ f , all
executions of A stabilise in time t . An algorithm A solves synchronous 2-counting if A stabilises in time t for some finite t;
we refer to such algorithms as 2-counting algorithms.

The synthesis problem Now that we have formally defined what a 2-counting algorithm is, we can give the definition for
the synthesis problem of counting algorithms. First, the decision version of the problem is the realisability problem. Given an
instance (n, f , s, t), the task is to decide whether there exists a 2-counting algorithm for a network with n nodes satisfying
the following properties:

1. the algorithm tolerates f failures,
2. each node uses at most s states,
3. the algorithm stabilises in at most t steps.

If such an algorithm exists, we say that the instance (n, f , s, t) is realisable. The synthesis problem is to output an algorithm
A if the instance is realisable or state that no algorithm exists.

5. Human-designed algorithms

Before moving on to computer-designed algorithms using SAT-based techniques, in this section we illustrate a few
human-designed algorithms. First, we show that randomisation helps when it comes to designing small-state (but slow)
algorithms. This is followed by a deterministic algorithm that solves the counting problem in the general case with a large
number of internal states.

Randomised algorithms We extend our model to randomised algorithms by equipping each node with a private coin. Now
in a single synchronous round, every node can flip its coin to access one random bit. Thus, node i can decide on its new
state using the random bit b ∈ {0, 1} and the observed configuration u ∈ [s]n . Here we call bit 1 heads. In contrast to the
randomised algorithm by Dolev and Welch [23], the following algorithm only uses two states.

Let n ≥ 4, f < n/3, and s = 2. We can solve the 2-counting problem with the algorithm of Fig. 4.

Lemma 2. Let p be the probability that out of n − f − 1 fair coin flips, more than (n + f)/2 − 1 flips have the same value. Then the
randomised algorithm solves synchronous 2-counting in 1/p + 1 rounds in expectation.

Proof. Observe that no two distinct non-faulty nodes apply rules 1 and 2 during the same round: if a node i sees the value
0 more than (n + f)/2 times, then any node j must see value 0 at least (n − f)/2 times, and thus, j sees the value 1
fewer than (n + f)/2 times. Moreover, if more than (n + f)/2 non-faulty nodes have the same output, then the system will
stabilise in the next round as all non-faulty nodes switch to the same state.

JID:YJCSS AID:2921 /FLA [m3G; v1.161; Prn:27/10/2015; 14:49] P.7 (1-23)

D. Dolev et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 7
Next we argue that with probability at least p, more than (n + f)/2 non-faulty nodes have the same state. We have three
cases. In the first case, at least one non-faulty node applies rule 1. Then in the worst case all other nodes flip their coins,
so the system stabilises with probability at least p. The second case, where at least one non-faulty node applies rule 2, is
symmetrical. Finally, the third case consists of all nodes flipping their coins simultaneously. In this case, fix the output of a
single non-faulty node and repeat the analysis of the previous two cases.

The number of rounds before we stabilise follows a geometric distribution, so in expectation, we get a successful streak
of coin flips in 1/p rounds and stabilise during the next round. �
Theorem 1. For all n ≥ 4 and f ≤ n/3, the expected stabilisation time of the randomised algorithm is bounded by

min{22 f +2 + 1,2O (f 2/n)}.

Proof. We bound the probability p in Lemma 2 from which the expected stabilisation time follows.
For the first bound, it suffices to analyse the event where the first 2 f + 1 non-faulty nodes and at least half of the

remaining non-faulty nodes all flip heads at the same round, as 2 f + 1 − (n − f − 2 f − 1)/2 > (n + f)/2. Now observe that
the probability of 2 f + 1 coin flips all being heads is 2−2 f −1 and the probability that at least half of out of N coin flips
are heads is at least 1/2. Combining these observations gives us the first bound: the probability of the analysed event is at
least 2−2 f −2 and the number of trials for the first success follows a geometric distribution, and thus, the expected number
of trials is at most 22 f +2.

For the second bound, if f = �(n) then the second bound trivially follows from the first. Suppose f = o(n). We use the
fact [28,46] that for any t ∈ [N/8]

Pr[X ≥ N/2 + t] ≥ 1

15
exp(−16t2/N),

where X is the number of heads in N coin flips. Setting N = n − f − 1 and t = �(n + f)/2	 + 1 − N/2 gives us the desired
bound. �
Deterministic algorithms We can leverage existing deterministic algorithms for binary consensus to come up with syn-
chronous counting algorithms. However, this leads to a large number of states per node.

For example, this theorem follows from the results by Dolev and Hoch [20]:

Theorem 2. Let A be a deterministic algorithm that solves binary consensus in R rounds for n nodes and f faults. Then there exists a
deterministic algorithm B that solves synchronous C-counting in time t ∈ O (R + C) for n nodes and f faults.

Now we can use any consensus algorithm, such as the phase king algorithm [4], to get a synchronous counter. The
phase king achieves optimal resilience and has O (f) stabilisation time and uses O (log f) state bits (for keeping track of the
current round number) per node. However, the resulting synchronous counter relies on executing O (f) consensus instances
in parallel, which yields a very large state space. We get the following corollary:

Corollary 1. For all n ≥ 4, f < n/3 and C ≥ 2, there is a deterministic C-counting algorithm that stabilises in t ∈ O (C + f) rounds
and uses s ∈ 2O (log C+ f log f) states.

This approach is not very attractive, for example, from the perspective of hardware implementations. For further dis-
cussion on human-designed algorithms, see a recent survey [19] on the topic. We will now turn our attention to efficient,
deterministic, computer-designed algorithms.

6. Projection graphs

Before discussing how to find an algorithm (or prove that an algorithm does not exist), let us first explain how we can
verify that a given algorithm is correct. Here the concept of a projection graph is helpful—see Fig. 10 in the appendix for an
example.

Fix the parameters s, n, and f , and consider a candidate algorithm A that is supposed to solve the 2-counting problem.
For each set F ⊆ [n] of faulty nodes, construct the directed graph G F (A) = (V F , R F (A)) as follows.

1. The set of nodes V F is the set of actual configurations.
2. There is an edge (u, v) ∈ R F (A) if configuration v ∈ V F is reachable from configuration u ∈ V F . In general, this may

produce self-loops.

Note that the outdegree of each node in G F (A) is at least 1. Directed walks in G F (A) correspond to possible executions of
algorithm A, for this set F of faulty nodes. To verify the correctness of algorithm A, it is sufficient to analyse the projection
graphs G F . The following lemmas are straightforward consequences of the definitions.

JID:YJCSS AID:2921 /FLA [m3G; v1.161; Prn:27/10/2015; 14:49] P.8 (1-23)

8 D. Dolev et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Lemma 3. Algorithm A stabilises in some time t iff for every F , graph G F (A) contains exactly one directed cycle, 0F
→ 1F
→ 0F .

Lemma 4. Algorithm A stabilises in time t iff the following holds for all F :

1. In G F (A), the only successor of 0F is 1F and vice versa.
2. In G F (A), every directed walk of length t reaches node 0F or 1F .

Lemma 5. Let A be an algorithm. Consider any four configurations x, u, v, w ∈ V F with the following properties: (x, u) ∈ R F (A),
(x, v) ∈ R F (A), and wi ∈ {ui, vi} for each i /∈ F . Then (x, w) ∈ R F (A).

7. Increasing the number of nodes

It is not obvious how to use computational techniques to design an algorithm that solves the 2-counting problem for a
fixed f = 1 but arbitrary n ≥ 4. However, as we will show next, we can generalise any algorithm so that it solves the same
problem for a larger number of nodes, without any penalty in time or space complexity. Therefore it is sufficient to design
an algorithm for the special case of f = 1 and n = 4. From the perspective of parametrised verification and synthesis, the
following lemma can be regarded as a cut-off result [27,37].

Lemma 6. Fix n ≥ 4, f < n/2, s ≥ 2, and t ≥ 1. Assume that A is an algorithm that solves the 2-counting problem for n nodes, out
of which at most f are faulty, with stabilisation time t and with s states per node. Then we can design an algorithm B that solves the
2-counting problem for n + 1 nodes, out of which at most f are faulty, with stabilisation time t and with s states per node.

Proof. The claim would be straightforward if we permitted the stabilisation time of t + 1. However, some care is needed to
avoid the loss of one round.

We take the following approach. Let p be a projection that removes the last element from a vector, for example,
p((a, b, c)) = (a, b). In algorithm B, nodes i ∈ [n] simply follow algorithm A, ignoring node n:

Bi(ui) = Ai(p(ui)).

Node n tries to predict the majority of nodes 0, 1, . . . , n − 1, i.e., what most of them are going to output after this round:

• Assume that node n observes a configuration un . For each i ∈ [n], define hi = Ai(p(un)). If a majority of the values hi
is 1, then the new state of node n is also 1; otherwise it is 0.

To prove that the algorithm is correct, fix a set F ⊆ [n + 1] of faulty nodes, with |F | ≤ f . Clearly, all nodes in [n] \ F will
start counting correctly at the latest in round t . Hence any execution of B with n ∈ F trivially stabilises within t rounds; so
we focus on the case of F ⊆ [n], and merely need to show that also node n counts correctly.

Fix an execution X = (x0, x1, . . .) of A, and a time step r ≥ t . Consider the state vector xr−1. By assumption, A stabilises
in time t . Hence the successors of xr−1 in the projection graph must be in {0F , 1F }.

The key observation is that only one of the configurations 0F and 1F can be the successor of xr−1. Otherwise Lemma 5
would allow us to construct another state that is a successor of xr−1, contradicting the assumption that A stabilises.

We conclude that for all rounds r ≥ t and all nodes i ∈ [n] \ F , the value hi is independent of the states communicated by
nodes in F . Since the values hi are identical and n − f > f , node n attains the same state as other correct nodes in rounds
r ≥ t . �
Other network topologies Recall that our basic definitions only consider algorithms that operate in fully-connected networks,
that is, the topology of the communication network is a complete graph. Next we show that it is relatively straightforward
to generalise our small-state algorithms to other network topologies as well—albeit with a slight increase in the stabilisation
time. The idea is to have a small core of nodes to initially solve synchronous counting, and from thereon, propagate the
solution throughout the network. This approach was originally introduced by Braud-Santoni et al. [9]. We now show how
this idea can be applied in a large class of graphs.

Consider the following families of graphs G(k, m, d) for integers k, m, d > 0. Let G = (V , E) be a graph. We say G ∈
G(k, m, d) if there exists a partition V 0, . . . , Vd of the nodes V such that

1. V 0 is a k-clique.
2. Each node i ∈ Va has at least m neighbours in V 0 ∪ · · · ∪ Va−1.

Put otherwise, we can characterise G(k, m, d) using the following game (which is reminiscent of threshold models in the
context of influence spreading in social networks). Initially, colour all vertices of graph G white. We pick a clique of k nodes
and colour all the nodes black. Now any node with at least m black neighbours switches its own colour black. If after d
iterations all nodes are coloured black, then G ∈ G(k,m,d). See Fig. 5 for examples.

JID:YJCSS AID:2921 /FLA [m3G; v1.161; Prn:27/10/2015; 14:49] P.9 (1-23)

D. Dolev et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 9
Fig. 5. Examples of generalised network topologies. Nodes encompassed within a rectangle form a clique from which the stabilisation propagates throughout
the network. Here, G1 ∈ G(4, 3, 1) and G2 ∈ G(5, 3, 1). The partially illustrated graph G3 ∈ G(4, 3, k) is a cycle where there are additional edges to all
neighbours within distance 3.

Lemma 7. Assume A is an algorithm that solves synchronous 2-counting in a complete network of n nodes, out of which at most f are
faulty, with stabilisation time t and with s states per node. Then for any G ∈ G(n, 2 f + 1, d), we can design an algorithm B that solves
the synchronous 2-counting in G using s states per node. Moreover, B tolerates f failures and stabilises in time t + d − 1.

Proof. Let G ∈ G(n, 2 f + 1, d) be our network topology. Fix a partition V 0, . . . , Vd where V 0 = {1, . . . , n} is a n-clique. We
construct an algorithm B using the following rules:

1. If i ∈ V 0 = K , then i outputs Ai(x1, . . . , xn).
2. If i ∈ Va for some a > 0, then node i follows the majority of neighbours in V 0 ∪ · · · ∪ Va−1. If the majority has output

y, then output 1 − y. Otherwise output the current state.

We argue that at time step t + r, all nodes in V 0 ∪ · · · ∪ Vr+1 have stabilised. The case of r = 0 follows from Lemma 6.
Suppose the claim holds for some r′ and consider node i ∈ Vr′+2. By the induction assumption and definition of G , i has a
set P ⊆ V 0 ∪ · · · ∪ Vr′+1 of at least 2 f + 1 neighbours.

Now node i sees a majority of more than f + 1 nodes in P having the same output y. Thus node i outputs 1 − y and is
in agreement with non-faulty nodes in P in the next round. Since there are d + 1 sets in the partition of V , the algorithm
stabilises in t + d − 1 steps. �

It is known that consensus cannot be solved in networks with vertex-connectivity less than 2 f +1 [18], and by Lemma 1,
this result carries over to synchronous 2-counting.

Beyond synchronous counting We note that the previous lemmas hold for a larger class of problems as well: if it suffices
that a node v simply follows a majority of its neighbours, the generalisation techniques can be applied. These problems
include, for example, binary consensus and set agreement [9].

8. Computer-designed algorithms

In principle, we could now attempt to use a computer to tackle our original problem. By the discussion of Section 7,
it suffices to discover an algorithm with the smallest possible s for the special case of n = 4 and f = 1. We could try
increasing values of s = 2, 3, Once we have fixed n, f , and s, the problem becomes finite: an algorithm is a lookup table
with � = nsn entries, and hence there are s� candidate algorithms to explore. For each candidate algorithm, we could use
the projection graph approach of Section 6 to quickly reject any invalid algorithm.

Unfortunately, the search space grows very rapidly and super-exponentially in the parameters n, s, and f . As we will
see, there is no algorithm with n = 4 and s = 2. For n = 4 and s = 3, we have approximately 10154 candidates. We use three
complementary approaches to tackle the task.

1. Reduce (encode) the problem directly to propositional satisfiability and apply SAT solvers.
2. Instead of directly encoding the problem as SAT, apply a SAT-based iterative counter-example guided abstraction refine-

ment approach, in hope of better coping with the inherent combinatorial explosion.
3. Narrow down the search space by also considering restricted classes of algorithms.

The first approach is discussed in Section 9 and the second approach in Section 10. We will now describe the third approach,
restricting the class of algorithms.

JID:YJCSS AID:2921 /FLA [m3G; v1.161; Prn:27/10/2015; 14:49] P.10 (1-23)

10 D. Dolev et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Table 1
Summary of computer-designed algorithms. The number of nodes n is the smallest network on
which the algorithm works and t is the worst-case stabilisation time.

class nodes (n) states (s) stabilisation time (t)

cyclic 4 3 7
5 3 6
6 3 3
7 2 8
8 2 4

general 4 4 5
5 3 4
6 2 6

Cyclic algorithms We will consider two classes of algorithms—general algorithms (without any restrictions) and cyclic algo-
rithms. We say that algorithm A is cyclic if

Ai((xi, xi+1, . . . , xn−1, x0, x1, . . . , xi−1)) = A0((x0, x1, . . . , xn−1))

for all i and all x. That is, a cyclic algorithm is invariant under cyclic renaming of the nodes.
There is no a priori reason to expect that the most efficient algorithms are cyclic. However, cyclic algorithms have many

attractive features: for example, in a hardware implementation of a cyclic algorithm we only need to take n copies of
identical modules. Furthermore, the search space is considerably smaller: we only need to define transition function A0. For
n = 4 and s = 3, we have approximately 1038 candidate algorithms.

Cyclic algorithms are also much easier to verify. The projection graphs G F (A) are isomorphic for all |F | = 1 and hence it
is sufficient to check one of them.

Results We now present our main results on the new computer-generated algorithms and refer the discussion on how the
results were obtained to Sections 9 and 10.

The positive results are reported in Table 1. The key findings are a cyclic algorithm for s = 3, n = 4, and f = 1, and a
non-cyclic algorithm for s = 2, n = 6, and f = 1. The table also gives examples of space-time tradeoffs: we can often obtain
faster stabilisation if we use a larger number of states.

For the sake of comparison, we note that the fastest deterministic algorithm from prior work [20] stabilises in time t = 13
for f = 1 and it requires a large state space. Our algorithms achieve the stabilisation time of t = 5 for s = 4 and t = 7 for
s = 3.

Machine-readable versions of all positive results, together with a Python script that can be used to verify the correctness
of the algorithms, are freely available online [1]. Selected examples of the algorithms are also given in Appendix A. We also
provide a compact, computer-checkable proof that shows that there is no algorithm for s = 2, n = 4, and f = 1, together
with a verification program [1].

9. Synthesis via directly encoding to SAT

In this section, we describe how to directly encode the synthesis problem into SAT. At a high level, we take the following
approach:

1. Fix the parameters s, n, f , t , and the algorithm family (cyclic or general).
2. Construct a propositional formula ϕ that is satisfiable iff an algorithm A for the given parameters exists.
3. Use SAT solvers to find a satisfying assignment a of ϕ .
4. Translate a to an algorithm A.

In essence, the formula ϕ encodes the conditions given in Lemma 4 and the SAT solver (implicitly) searches through all
algorithms A:

1. Guess an algorithm A and construct the projection graph G F (A).
2. Verify that there are no self-loops in G F .
3. Verify that the only successor of 0F is 1F and vice versa.
4. For each d = 1, 2, . . . , t , find the subset B F (d) ⊆ V F of configurations with the following property: for each x ∈ B F (d)

there is a directed walk of length d in G F that starts from x and does not traverse 0F or 1F . We say that x ∈ B F (d) is a
d-bad configuration.

5. Verify that the set B F (t) is empty.

For cyclic algorithms, we identify equivalent transitions and add corresponding equivalence constraints into the formula.

JID:YJCSS AID:2921 /FLA [m3G; v1.161; Prn:27/10/2015; 14:49] P.11 (1-23)

D. Dolev et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 11
In the following, we describe the encoding by giving constraints for a single set F ⊆ [n] of faulty nodes. The final formula
is then the conjunction of these constraints over every possible choice of faulty nodes F .

Variables Fix F ⊆ [n] and let u ∈ [s]n , x, y ∈ V F , i ∈ [n], d ∈ [t], and c ∈ [s]. We will use the following variables in the
encoding:

• a(u, i, c) is true if Ai(u) = c,
• h(x, i, c) is true if the adversary can force node i to switch to state c from configuration x,
• e(x,y) is true if there exists an edge (x, y) ∈ R F ,
• b(x,d) is true if the configuration x ∈ B F (d).

Transition functions The a-variables describe the algorithm, that is, the transition function Ai for each node i. Since we
want each Ai to be a well-defined function, we enforce the following constraints for all u ∈ [s]n , i ∈ [n]:∨

c∈[s]
a(u, i, c) (1)

and, for all c ∈ [s],
a(u, i, c) → (∧

c′∈[s]\c

¬a(u, i, c′)
)
. (2)

Observe that if the constraints given in (2) are omitted, then Ai may be a relation: a node may have several possible state
transitions from a given observed state. Although one could always post-process each Ai into a function, allowing transition
relations instead of function will only help the adversary.

Projections Let x, y ∈ V F be configurations. Recall from Section 4 the definition of reachability. If the actual configuration
is x, then the adversary can choose any observed configuration from the set

U (x) = {u ∈ [s]n : πF (u) = x}
for each non-faulty node. For all u ∈ U (x), we have

a(u, i, c) → h(x, i, c), (3)

declaring that the adversary can force node i to switch to state c from configuration x. Now, the h-variables imply edges in
the projection graph G F :∧

i∈[n]\F

h(x, i, yi) → e(x,y). (4)

Ensuring counting behaviour The goal of the algorithm is to eventually stabilise and start oscillating only between the two
actual configurations 0F and 1F . To enforce this, we have the clauses

e(0F ,1F) and e(1F ,0F) (5)

together with

¬e(0F ,x) and ¬e(1F ,x) (6)

for all x ∈ V F \ {0F , 1F }.

Forbidding non-stabilising walks First, we forbid self-loops in the projection graphs with the unit clause

¬e(x,x) (7)

for every x ∈ V F . To ensure that all configurations but 0F and 1F belong to the set B F (0), we have the clauses

¬b(0F ,0) and ¬b(1F ,0), (8)

and, for each x ∈ V F \ {0F , 1F }, the clause

b(x,0). (9)

If a configuration x can reach a d-bad configuration y ∈ B F (d), then x must be (d + 1)-bad. This is captured by the clause(
e(x,y) ∧ b(y,d)

) → b(x,d + 1) (10)

JID:YJCSS AID:2921 /FLA [m3G; v1.161; Prn:27/10/2015; 14:49] P.12 (1-23)

12 D. Dolev et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
for each x, y ∈ V F . Finally, in order for the algorithm to eventually stabilise in the time limit t , we require that there are no
t-bad configurations:

¬b(x, t). (11)

Extension: non-uniform stabilisation time It is straightforward to generalise the approach to non-uniform stabilisation time
as follows, for some t0 < t:

• if |F | = 0, the algorithm stabilises in time t0,
• if |F | = 1, the algorithm stabilises in time t .

This means that in executions where there are no Byzantine failures, we require the synthesised algorithm A to stabilise
faster. Put otherwise, we constrain the projection graph G∅(A) so that all directed walks of length t0 < t reach state 0 or 1.
This is done by simply adding the previously described constraints for all F ⊆ [n], but the stabilisation time bound used for
the case |F | = 0 is t0 instead of t . These additional constraints can potentially help with the synthesis, by making the search
space smaller, and it also helps with the quality of the algorithms.

Many of our algorithms are synthesised with this kind of encoding, with t0 = 2 or t0 = 3. Hence they not only work
correctly in the presence of a Byzantine failure, but they also stabilise very quickly if all nodes are non-faulty. See the
online supplement [1] for details.

10. SAT-based counter-example guided search

We now describe an alternative approach for synthesising synchronous counting algorithms: a counter-example guided
search algorithm. The structure of our algorithm is similar to counter-example guided abstraction refinement techniques
for model checking [13,14] which have previously been successfully applied in various other computationally hard problem
domains [2,17,24,29,33,38–40,55]. We repeatedly (1) try to construct an algorithm, (2) check whether the algorithm is
correct, and (3) if not, then refine the encoding.

On a high-level, the search algorithm tries to guess a synchronous counting algorithm A and then uses a SAT solver
to find a counter-example, an execution that does not stabilise, for A. If one is found, then the counter-example is used to
include additional constraints to prune the search space, that is, to rule out at least the found counter-example from the
implicit set of remaining algorithm candidates. Otherwise, A must be a correct algorithm.

10.1. Encoding

For this approach, we use a symbolic encoding reminiscent of SAT-encodings for bounded model checking [5]. As we
want the SAT solver to verify that no counter-examples exist, we use an encoding where the SAT solver finds (i) a set F of
faulty nodes and (ii) a bad execution under F for the counting algorithm.

Variables Unlike previously, here we use a bit-wise encoding for the states. Each node has B = log(s) bits that represent its
state. Here an observed configuration u is represented as a bit string of length nB; each node has B bits to encode its state
in [s]. If s is not a power of two, then we add extra constraints that only allow s states to be used.

We now list the variables used in the encoding and their semantics:

• p(i) is true if node i is faulty. In other words, p(i) = 1 implies i ∈ F .
• a(u, i,b) represents the bth bit of the next state of node i when it observes the configuration u ∈ {0, 1}nB .
• u(i, j,b,k) is the bth bit of node i as observed by node j at time step k.
• z(k) and o(k) are true if all non-faulty nodes are in state 0 or 1, respectively, at time step k.
• z(i, k) and o(i, k) are true if i is faulty or it is in state 0 or 1, respectively, at time step k.

We will also use the short-hand g(i,b,k) = u(i, i, b, k) to represent the bth bit of node i at time step k. Next we define each
part of the encoding as a separate formula.

Choosing the set of faulty nodes We now define the subformula ψfaulty. We want the solver to be able to guess a set F of
faulty nodes under which a counter-example exists. To achieve this, we add constraints that force exactly f of the p(i)
variables to be true.

In the following let k ∈ [f], i ∈ [n] and j ∈ [n] \ {0}. We will introduce the following variables:

• p=(k, i) is true if the kth faulty node is i.
• p≤(k, i) is true if the kth faulty node is at most i.

JID:YJCSS AID:2921 /FLA [m3G; v1.161; Prn:27/10/2015; 14:49] P.13 (1-23)

D. Dolev et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 13
To enforce the semantics of these variables, we use the following clauses:

p=(k, i) → p≤(k, i), (12)

p≤(k, j) → (p=(k, j) ∨ p≤(k, j − 1)), (13)

p≤(k, j − 1) → (
p≤(k, j) ∧ ¬p=(k, j)), (14)

¬p=(k,0) → ¬p≤(k,0). (15)

To ensure that exactly f faulty nodes will be chosen, we use the following clauses: we enforce that at least one node is
designated as the kth faulty node with

p≤(k,n − 1), (16)

and we enforce that there is a strict ordering among the nodes with

p=(h − 1, i) → ¬p≤(h, i) (17)

for all h ∈ [f] \ {0}. Finally, we establish the correspondence to p(i) variables by enforcing

(
p=(k, i) → p(i)

) ∧ (
p(i) →

∨
k′∈[f]

p=(k′, i)
)
. (18)

Trivial transitions Next, we give clauses that fix the trivial transitions for synchronous counting. The conjunction of these
clauses is denoted as ψtrivial .

Let 0 and 1 correspond to the observed configuration where all nodes are in state 0 or state 1, respectively. The state
0 ∈ [s] is encoded by a bit-string with all zeros, whereas 1 ∈ [s] is encoded as the 0th bit set to one and all other bits zero.
Now, for all i ∈ [n] and b ∈ [B] \ {0}, we enforce

a(0, i,0) and ¬a(0, i,b), (19)

declaring that after observing configuration 0, node i must change its state to 1 ∈ [s]. Conversely, from configuration 1 we
need to transition to state 0. Thus, for all b ∈ [B] we have

¬a(1, i,b). (20)

Representing state transitions Let k ∈ [t]. We now define the subformula ψk,state encoding the systems behaviour at time
step k.

If node i is non-faulty, then the state of node i is observed correctly by all other nodes. This is enforced with

¬p(i) → (
u(i, j,b,k) ↔ g(i,b,k)

)
(21)

for all i, j ∈ [n] and b ∈ [B].
For every observable configuration w ∈ [s]n , we introduce an auxiliary variable d(w, i, k) representing that node i ob-

serves w at timepoint k. Let w(i, b) denote the bth bit of the binary representation of the state of node i in the observed
configuration w.

To enforce the semantics of d(w, i, k), for every observable configuration w ∈ [s]n and every j ∈ [n] the following con-
straint is needed:

¬d(w, j,k) →
((∨

i∈[n], b∈[B] : w(i,b)=0

u(i, j,b,k)

)
∨

(∨
i∈[n], b∈[B] : w(i,b)=1

¬u(i, j,b,k)

))
. (22)

The intuition behind (22) is that, if d(w, j, k) is false, then there must be at least one bit in the bit representation of the
state observed by node j at timepoint k that is unequal to the bit representation of w.

Finally, the state transitions of the system are enforced by the clauses

d(w, i,k − 1) → (
g(i,b,k) ↔ a(w, i,b)

)
, (23)

where k > 0, w ∈ [s]n , i ∈ [n] and b ∈ [B]. Equation 23 enforces that if at the previous timepoint we observed state w, then
the state of node i equals the successor state of w as specified by the transition relation of node i.

JID:YJCSS AID:2921 /FLA [m3G; v1.161; Prn:27/10/2015; 14:49] P.14 (1-23)

14 D. Dolev et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Indicators for stabilisation Finally, we define the behaviour of the z- and o-variables; the conjunction of these clauses is the
subformula ψk,indicator. Recall that at timepoint k, the variable z(k) is true iff the actual configuration is 0F , and respectively
o(k) is true iff the actual configuration is 1F . The equivalence is given by clauses which enforce for all i ∈ [n], k ∈ [t]:

z(k) → z(i,k) and o(k) → o(i,k), (24)

together with

¬z(k) →
∨
j∈[n]

¬z(j,k) and ¬o(k) →
∨
j∈[n]

¬o(j,k). (25)

It remains to describe the clauses that force the semantics of z(i, k) and o(i, k) variables. First, if a node i is faulty then both
z(i, k) and o(i, k) are forced to true:

p(i) → (
z(i,k) ∧ o(i,k)

)
. (26)

For the z-variables, we enforce for all b ∈ [B] the clauses

z(i,k) → (
p(i) ∨ ¬g(i,b,k)

)
(27)

and the disjunction

¬z(i,k) →
∨

b∈[B]
g(i,b,k), (28)

declaring that z(i, k) is true iff i is faulty or in state 0 ∈ [s]. Similarly for the o-variables, as state 1 ∈ [s] was encoded as the
bit string 10 . . . 0, we declare the following clauses to constrain the o-variables:

o(i,k) →
(

p(i) ∨ (
g(i,0,k) ∧

∧
b∈[B]\{0}

¬g(i,b,k)
))

(29)

together with the disjunction

¬o(i,k) → (¬g(i,0,k) ∨
∨

b∈[B]\{0}
g(i,b,k)

)
. (30)

Combining the subformulas The counter-example guided search algorithm incrementally builds a propositional formula to
use for both verification and synthesis. In the algorithm description, we will refer to the following formulas:

ψbase = ψfaulty ∧ ψtrivial, (31)

which gives the basis of the encoding, and, for each k ≥ 0,

τk = ψk,state ∧ ψk,indicator, (32)

which encodes the unrolling of time.

10.2. Basic search algorithm

Our search algorithm will iteratively construct a sequence 	0, 	1, . . . of formulas until a stabilising 2-counting algorithm
is found. Given a satisfiable formula 	i , a satisfying assignment ρ defines the following:

• A(ρ): an algorithm defining the n transition functions A1, . . . , An ,
• F (ρ) ⊆ [n]: a set of f faulty nodes,
• X(ρ) = (x0, . . . , xk): an execution of A under the set F (ρ) of faulty nodes,
• U (ρ) = {ui j : i ∈ [n] \ F (ρ), j ∈ [k]}: the configurations observed by non-faulty nodes.

That is, the algorithm A(ρ) is determined by the a(·) variables assigned true in ρ , the set F (ρ) by the p(·) variables, and
so on.

If an assignment ρ exists, then either A(ρ) is a correct algorithm or X(ρ) gives an execution that violates the specifi-
cation of synchronous 2-counting. In the latter case, the search algorithm inspects X(ρ) and adds constraints that forbid
any other solutions ρ ′ such that A(ρ) = A(ρ ′). Of course, a naïve approach is to add constraints that explicitly exclude
algorithm A. However, inspecting the transition functions carefully allows for more frugal constraints that forbid several
algorithms, that is, a tighter abstraction refinement.

JID:YJCSS AID:2921 /FLA [m3G; v1.161; Prn:27/10/2015; 14:49] P.15 (1-23)

D. Dolev et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 15
1. Let 	 ← ψbase ∧ τ0 ∧ τ1.
2. While ∃ρ such that ρ |= 	 ∧ ψillegal :

• Let 	 ← 	 ∧ ψforbid(ρ, 1).
3. Let 	 ← 	 ∧ τ2 ∧ · · · ∧ τt .
4. While ∃ρ such that ρ |= 	:

(a) If ∃σ such that σ |= 	 ∧ �(ρ) ∧ ¬z(t) ∧ ¬o(t):
• Let 	 ← 	 ∧ ψforbid(σ , t).

(b) Otherwise:
• Stop and output “A(ρ) is a correct algorithm”.

5. Stop and output “no algorithm exists”.

Fig. 6. Basic search algorithm. Steps 2, 4, and 4a resort to a SAT solver to find a satisfying assignment of a given formula.

The basic search algorithm is given in Fig. 6. Step 1 defines the initial formula that acts as a basis for the incremental
search. In Step 2, the search algorithm first removes all algorithm candidates that do not correctly oscillate between the
0F and 1F states even in the special case when the system starts from either state. The formula ψillegal is defined as
(z(0) ∧ ¬o(1)) ∨ (o(0) ∧ ¬z(1)), and the formulas ψforbid(·, ·) are constraints that remove bad algorithms from the search
space—we will describe these in detail in Section 10.3.

Step 4 asks the SAT solver to guess an algorithm candidate A(σ). In Step 4a, the SAT solver is used to find a counter-
example to A(σ) to see whether it stabilises. If a counter-example is found, then we use the counter-example to add more
constraints to prune the search space. Here, the formula �(ρ) encodes A(ρ) as a conjunction of literals consisting of vari-
ables a(u, i, b). Step 4b is reached if no counter-example is found, meaning that A is a correct algorithm for synchronous
counting.

Finally, if we reach Step 5, we know that 	 is unsatisfiable, and hence, there does not exist any correct algorithms for
the given parameters.

Remark. Note that there exist several possible trade-offs between having a simple search algorithm and speeding up syn-
thesis by introducing problem-specific knowledge into the algorithm and encoding. For example, Step 2 essentially learns
Lemma 4.1 which we could also directly encode into the base formulas. In Step 4, we can introduce z(0) as a conjunct into
the formula to make the search for A(σ) intuitively easier, and so on. However for clarity of exposition, we will focus on
more general algorithmic ideas instead of problem-specific tunings.

10.3. Refinement through counter-examples

Once the SAT solver finds a counter-example, we need to forbid algorithms that exhibit the incorrect behaviour. Intu-
itively, we add constraints that force the change of some transitions that caused the bad execution.

Formally, we construct ψforbid(σ , k) as follows. Let x0, . . . , xk be the execution X(σ) and let ui j be the configuration
observed by node i /∈ F (σ) at timepoint j < k. The literals responsible for the transitions are divided into two sets, P+
and P− , as follows:

(i, j,b) ∈ P+ iff σ [a(ui j, i,b)] = 1

(i, j,b) ∈ P− iff σ [a(ui j, i,b)] = 0.

Above, σ [x] ∈ {0, 1, ⊥} denotes the value (false, true, unassigned) of variable x in assignment σ . Now the constraint is

ψforbid(σ ,k) =
∨

(i, j,b)∈P+
a(ui j, i,b) ∨

∨
(i, j,b)∈P−

¬a(ui j, i,b). (33)

Note that the case P+ = P− = ∅ must be a contradiction, and hence the formula is always non-empty.

10.4. Improvement: finding short loops

The constraint can be strengthened when X(σ) contains a loop x0, . . . , xh for some h < k, by then only considering
timepoints j ≤ h when constructing the sets P+ and P− . Then, instead of stating that some transition must be changed
in the entire length-k execution, we state that it suffices to change something for only h < k of the steps. This results in a
shorter disjunction in the constraint.

To this end, we modify Step 4 in the basic search algorithm as shown in Fig. 7. We introduce a new variable �(k) which
is true iff x0 = xk . We first find the smallest k < t for A(ρ) such that a bad execution consisting of a length-k loop exists. If
no such loop exists, we proceed as before. Otherwise, we use the counter-example consisting of a loop to refine the current
abstraction.

JID:YJCSS AID:2921 /FLA [m3G; v1.161; Prn:27/10/2015; 14:49] P.16 (1-23)

16 D. Dolev et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
4. While ∃ρ such that ρ |= 	:
(a) If ∃k ≤ t and ∃σ such that σ |= 	 ∧ �(ρ) ∧ �(k):

• Let 	 ← 	 ∧ ψforbid(σ , k∗), where k∗ is the smallest such k.
(b) Otherwise, if ∃σ such that σ |= 	 ∧ �(ρ) ∧ ¬z(t) ∧ ¬o(t):

• Let 	 ← 	 ∧ ψforbid(σ , t).
(c) Otherwise:

• Stop and output “A(ρ) is a correct algorithm”.

Fig. 7. Finding short loops: modifications to Step 4 of Fig. 6.

1. Let 	 ← ψbase ∧ τ0 ∧ τ1.
2. While ∃ρ such that ρ |= 	 ∧ ψillegal:

• Let 	 ← 	 ∧ ψforbid(ρ, 1).
3. Let k ← 1.
4. While ∃ρ such that ρ |= 	 ∧ z(0):

(a) Let i ← min
{

j ≤ k : ∃σ j such that σ j |= 	 ∧ �(ρ) ∧ �(j)
} ∪ {∞}.

(b) If i ≤ k:
• Let 	 ← 	 ∧ ψforbid(σi , i).

(c) Otherwise, if ∃π such that π |= 	 ∧ �(ρ) ∧ ¬z(k) ∧ ¬o(k):
• If k < t:

◦ Let k ← k + 1 and 	 ← 	 ∧ τk ,
◦ Resume from Step 4a.

• Otherwise:
◦ Let 	 ← 	 ∧ ψforbid(π, k).

(d) Otherwise:
• Output “A(ρ) is a correct algorithm that stabilises in k steps”,
• Let k ← k − 1 and t ← k,
• Resume from Step 4b.

5. Stop and output: “no algorithm exists that stabilises in time t”.

Fig. 8. Overshooting algorithm.

10.5. Improvement: overshooting and unrolling on demand

Usually we are interested in knowing whether there exist any stabilising counting algorithm for given parameter values s,
n, and f . For this task, we modify the search algorithm so that it can first quickly find some algorithm, possibly with a very
long stabilisation time, and then gradually further tightening the stabilisation-time requirement.

The overshooting algorithm is given in Fig. 8. It unrolls the encoding on demand. By setting t = ∞, the algorithm tries to
find any algorithm that stabilises. Of course, as the state space is finite, there is also a finite upper bound on t that can be
used here.

The algorithm works as follows. Step 4a searches for the smallest i such that a i-loop counter-example exists for A(ρ).
In Step 4b, if we have already unrolled the execution to at least i steps, then we add new constraints. Otherwise, Step 4c
attempts to find a counter-example π of length k. If k < t , then we unroll the encoding for one additional time step, as it
may be that our current time bound k is too small for a stabilising algorithm to exist. Otherwise, we prune the search space
using the counter-example π .

11. Empirical results

So far we have introduced two different approaches for constructing synchronous counting algorithms. Now the obvious
question remains: which one is better? To answer this, we empirically compared the direct encoding given in Section 9 against
the counter-example guided algorithm described in Section 10. In particular, our goal was to find out which method is more
useful in practice when one wants to synthesise new algorithms.

Solvers For solving instances via the direct propositional encoding, we used two freely available state-of-the-art complete
SAT solvers: MiniSAT [26] (version 2.2.0 with simplifications) and lingeling (version ayv) [6]. The input formula was
encoded in the standard DIMACS CNF file format. As both solvers allow a wide range of different parameters to fine-tune
the solver search routines, we settled on running both solver using their respective default parameters.

Our implementation of the counter-example guided search, dubbed as symsync, builds on top of the incremental interface
of the MiniSAT solver [25]. We used the overshooting variant of the counter-example guided search. Thus, the solver relaxes
the time bound when it does not find a correct algorithm matching the target stabilisation time, but after finding some
stabilising algorithm, the solver will then gradually tighten the time bound.

Experiment setup Recall that an instance of the synthesis problem consists of the class of algorithms (general or cyclic)
and four parameters: number of nodes n, faulty nodes f , states s, and the stabilisation time t . We chose a set of problem

JID:YJCSS AID:2921 /FLA [m3G; v1.161; Prn:27/10/2015; 14:49] P.17 (1-23)

D. Dolev et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 17
Table 2
Problem instances used in the empirical experiments. For all realisable instances, we also run the
experiments for relaxed instances with stabilisation time t + 1, 2t , and the maximum possible sta-
bilisation time. The last column gives the log10 of the number of algorithm candidates.

class n s t realisable? log10 of #candidates

cyclic 4 3 6 no 38

7 2 3 no 38

8 2 3 no 77

4 3 7 yes 38

5 3 6 yes 115

6 3 3 yes 347

7 2 8 yes 38

8 2 4 yes 77

general 4 3 7 yes 154

5 2 79 no 48

5 3 4 yes 579

6 2 6 yes 115

7 2 8 yes 269

instances consisting of both realisable (an algorithm exists) and unrealisable (no algorithm exists) instances, as listed in
Table 2. We attempted to choose instances of various difficulty, but still solvable within a four hour limit on CPU time; we
note that some of the algorithms presented in Table 1 of Section 8 required considerably longer time to synthesise.

For each problem instance, we ran N = 100 copies of each of the three solvers, initialising every process with a different
random seed. We recorded the running time, the maximum memory footprint, and other statistics for each process. When
using the direct encoding, we did not include the time required to generate the instance. The experiments were run on a
computing cluster with Intel Xeon X5650 2.67-GHz processors. Each process was single-threaded and the memory limit was
set to 8 GB.

For each realisable problem instance listed in Table 2, we also ran the same experiment setup as above for relaxed
instances by increasing the stabilisation time bound in three ways: increasing the stabilisation bound by one, doubling the
bound, and finally using the maximal bound of t = sn− f − 2 time steps. Intuitively, suboptimal algorithms with a longer
stabilisation time should be more common, and hence, perhaps easier to find. However, this also increases the size of the
search space and the size of the SAT instances.

Results The synthesis times for realisable instance are summarised in Table 3 and Fig. 9. For each solver, the table gives the
median together with first and ninth decile of synthesis times (in seconds). The time to generate the propositional formula
for direct encoding instances is not included in the running times of MiniSAT and lingeling solvers, but is for symsync

solver, as it iteratively generates its internal encoding within the CEGAR loop during execution.
The immediate observation is that neither direct encoding or the CEGAR approach consistently outperform the other.

However, it is easy to see some patterns. First, the direct encoding works well for finding optimal or nearly-optimal algo-
rithms, but finding some algorithm is much faster with symsync. On the other hand, symsync rarely manages to find optimal
algorithms within the time limit of four hours or the memory limit of eight gigabytes.

Typically, when the solvers failed to find a solution, this was due to hitting the time limit. The only notable exceptions
to this were the instances for general algorithms with n = 5 and s = 3, where each symsync instance ran out of memory in
each case, and the cyclic instances with n = 6 and s = 3, where most of the failures were caused by running out of memory.
Neither MiniSAT nor lingeling ran out of memory in these experiments.

The second pattern is that in many cases symsync gives solutions to instances with s = 2 states at least an order of
magnitude faster than the direct encoding approach. For general algorithms with n ∈ {6, 7}, the direct encoding approach
does not even produce results in the given time limit.

Indeed the observed behaviour is expected. The symsync solver refines the abstraction and relaxes the time bound if a
fast algorithm is not found steadily increasing the size of the encoding. Usually, some algorithm will be encountered, and
from thereon, the solver will simply proceed by adding new constraints until an algorithm with the desired time bound is
found. On the other hand, trying to find some algorithm using the direct encoding amounts to simply increasing the time
bound to a large enough value right from the start—this greatly increases the size of the propositional formula making the
search slower.

When comparing the two different SAT solvers used in the direct encoding approach, rather unsurprisingly, the actively
developed lingeling solver outperforms MiniSAT. We suspect that lingeling greatly benefits from its inprocessing capabili-
ties, which are not present in the other solvers.

JID:YJCSS AID:2921 /FLA [m3G; v1.161; Prn:27/10/2015; 14:49] P.18 (1-23)

18 D. Dolev et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Table 3
Summary of realisable problem instances. The solver columns indicate the first, fifth (median), and ninth decile of running times in seconds. Columns
marked with
 indicate that a solution was found by some but less than 10% of the processes. For the first decile we have highlighted the running time of
the fastest solver. Here f = 1 for all cases.

Instance Running time (seconds)

MiniSAT lingeling symsync

class n s t 10% 50% 90% 10% 50% 90% 10% 50% 90%

cyclic 4 3 7 1 1 1 1 1 1 1 2 6

8 1 1 3 1 1 1 1 1 5

14 1 1 1 1 1 1 1 1 4

25 1 1 2 1 1 1 1 1 4

5 3 6 2373 – – 803 2715 – – – –

7 1477 13305 – 44 632 711
 – –

12 25 436 3009 12 16 91 5 31 1014

79 66 672 4180 114 167 441 3 18 42

6 3 3 79 3634 – 16 22 70 – – –

4
 – – 178 272 3734 – – –

6 2053 – – 251 2451 4344
 – –

241 6930 – – 1981 2735 – 41 505 –

7 2 8 34 604 4177 65 – –
 – –

9 32 560 2356 21 26 101 5233 – –

16 16 102 661 18 72 79 2 20 84

62 41 442 1921 60 185 267 2 5 35

8 2 4 7 101 440 19 67 81 – – –

5 15 119 797 28 56 83 – – –

8 62 558 3000 50 56 216 622 7304 –

126 850 4117 – 967 3945 7993 9 21 145

general 4 3 7 10 859 – – 4246 – – – – –

8 2639 – – 497 – – – – –

14 2884 – – 3211 – – – – –

25 2600 – – 13 639 – – – – –

5 3 4
 – –
 – – – – –

5
 – –
 – – – – –

8
 – –
 – – – – –

79 – – – – – – – – –

6 2 6 – – – – – – 1167 – –

7 – – – – – – 541 – –

12
 – –
 – – 69 1782 –

30
 – –
 – – 46 382 2069

7 2 8 – – – – – – 528 – –

9 – – – – – – 354 8990 –

16 – – – – – – 111 946 –

62 – – – – – – 75 415 –

The results for unrealisable instances are listed in Table 4. For unrealisable instances, it is relatively clear that the direct
encoding outperforms the counter-example guided approach, although symsync is able to prove the non-existence of a
two-state algorithm for n = 5 nodes in time comparable to the direct encoding approach.

12. Conclusions

In this work, we have used computational techniques to study the synchronous counting problem. At first sight the prob-
lem is not well-suited for computational algorithm design—we need to reason about stabilisation from any given starting

JID:YJCSS AID:2921 /FLA [m3G; v1.161; Prn:27/10/2015; 14:49] P.19 (1-23)

D. Dolev et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 19
Fig. 9. Example of synthesis times. The x axis is the logarithm of time in seconds and the y-axis is the fraction of processes that had solved the problem
instance.

Table 4
Summary of unrealisable problem instances.

Instance Running time (seconds)

MiniSAT lingeling symsync

class n s t 10% 50% 90% 10% 50% 90% 10% 50% 90%

cyclic 4 3 6 2 3 3 4 6 6 − − −
7 2 7 − − − − − − − − −
8 2 3 9405 13 809 − 999 1364 1612 − − −

general 5 2 79 1148 1502 2016 1563 2353 2927 2482 2780 3421

JID:YJCSS AID:2921 /FLA [m3G; v1.161; Prn:27/10/2015; 14:49] P.20 (1-23)

20 D. Dolev et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Table 5
Cyclic algorithm for s = 3, n = 4, f = 1, and t = 7.

00 01 02 10 11 12 20 21 22

00 1 1 1 1 0 1 1 1 1

01 1 1 1 2 2 0 1 1 1

02 1 1 1 1 0 1 1 1 1

10 1 0 1 1 0 0 1 0 1

11 0 0 0 0 0 0 0 0 0

12 1 0 1 0 0 0 0 0 0

20 1 1 1 1 1 0 1 1 1

21 1 1 1 1 0 0 1 0 0

22 1 1 1 1 0 0 1 0 1

configuration, for any adversarial behaviour, in a system with arbitrarily many nodes. Nevertheless, we have demonstrated
that computational techniques can be used in this context to discover novel algorithms.

Our algorithms outperform the best human-designed algorithms: they are deterministic, small (2 ≤ s ≤ 3), fast
(3 ≤ t ≤ 8), and easy to implement in hardware or in software—a small lookup table suffices. In summary, our work
leaves very little room for improvement in the case of f = 1. The general case of f > 1 has been considered in subse-
quent work [43], which shows how the algorithms designed in this work can be used as subroutines to construct efficient
algorithms that tolerate a larger number of failures.

We presented two complementary approaches for algorithm synthesis: the direct SAT encoding from Section 9 and the
SAT-based CEGAR approach from Section 10. In our experiments, the direct encoding was typically the fastest method for
finding optimal algorithms, while the CEGAR approach quickly discovered some algorithms.

Even though our computer-generated algorithms are constructed with a fairly complicated toolchain, the end results are
compact, machine readable, and easy to verify with a straightforward script. All results and the verification tools are freely
available online [1].

Acknowledgments

This work is an extended and revised version of a preliminary conference report [21]. We thank Josef Widder and
Igor Konnov for helpful suggestions, and Nicolas Braud-Santoni, Aristides Gionis, Tomi Janhunen, Jussi Rintanen and Ulrich
Schmid for discussions.

DD: Danny Dolev is Incumbent of the Berthold Badler Chair in Computer Science. This research project was supported
in part by The Israeli Centers of Research Excellence (I-CORE) program, (Center No. 4/11), by grant 3/9778 of the Israeli
Ministry of Science and Technology.

KH and SW: Work supported by Academy of Finland under grants 139402 and 277522.
MJ: Work supported by Academy of Finland under grants 251170 COIN Centre of Excellence in Computational Inference

Research, 276412, and 284591.
JHK, JR, JS: This work was supported in part by the Helsinki Doctoral Programme in Computer Science – Advanced

Computing and Intelligent Systems, by the Academy of Finland (grants 132380 and 252018), and by the Research Funds of
the University of Helsinki. Part of this work was done while JR and JS were affiliated with the University of Helsinki.

CL: This material is based upon work supported by the National Science Foundation under Grant Nos. CCF-AF-0937274,
CNS-1035199, 0939370-CCF and CCF-1217506, the AFOSR under Award number FA9550-13-1-0042, and the German Re-
search Foundation (DFG, reference number Le 3107/1-1).

Computer resources were provided by the Aalto University School of Science “Science-IT” project, and by the Department
of Computer Science at the University of Helsinki.

Appendix A. Algorithm listings

In this appendix, we give two examples of our algorithms—machine-readable versions of all algorithms, verification code,
and some illustrations are available online [1].

Table 5 gives a cyclic algorithm for n = 4. The rows are labelled with (x0, x1), the columns are labelled with (x2, x3), and
the values indicate A0((x0, x1, x2, x3)), that is, the new state of the first node in the observed configuration x. The projection
graph (Section 6) for this algorithm is given in Fig. 10.

Table 6 shows a non-cyclic algorithm for n = 6. Again, the rows are labelled with the first half (x0, x1, x2) of the observed
state x and the columns are labelled with the second half (x3, x4, x5) of the observed state x. The values show the new state
for each node: A0(x), A1(x), . . . , A5(x).

JID:YJCSS AID:2921 /FLA [m3G; v1.161; Prn:27/10/2015; 14:49] P.21 (1-23)

D. Dolev et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 21
Fig. 10. The projection graph G F (A) for the algorithm A given in Table 5, assuming that the faulty nodes are F = {0}. The actual configurations have been
clustered according to the length of the longest path that avoids the good states 0F and 1F . Based on the projection graph, it is straightforward to verify
that for any initial state and for any adversarial activities the algorithm will stabilise in t = 7 steps.

Table 6
Algorithm for s = 2, n = 6, f = 1, and t = 6.

000 001 010 011 100 101 110 111

000 111111 111111 111111 111111 111111 111111 111111 011000

001 111111 111111 111111 111011 111011 111011 010001 010000

010 111111 111111 111111 101001 111111 101001 011111 001000

011 111111 111011 101001 100000 100001 100000 000001 000000

100 111111 111111 111111 110110 111111 110110 011111 000000

101 111111 111111 110110 110110 110110 110110 010000 000000

110 011111 110110 011111 000000 011111 000000 011111 001000

111 010110 010110 000000 000000 000010 000000 000001 000000

References

[1] Supplementary online material, https://github.com/suomela/counting (primary), https://bitbucket.org/suomela/counting (backup).
[2] Clark W. Barrett, David L. Dill, Aaron Stump, Checking satisfiability of first-order formulas by incremental translation to SAT, in: Proc. 14th International

Conference on Computer Aided Verification, CAV 2002, in: Lecture Notes in Computer Science, vol. 2404, Springer, 2002, pp. 236–249.
[3] Michael Ben-Or, Danny Dolev, Ezra N. Hoch, Fast self-stabilizing Byzantine tolerant digital clock synchronization, in: Proc. 27th Annual ACM Symposium

on Principles of Distributed Computing, PODC 2008, ACM Press, 2008, pp. 385–394.
[4] Piotr Berman, Juan A. Garay, Kenneth J. Perry, Towards optimal distributed consensus, in: Proc. 30th Annual Symposium on Foundations of Computer

Science, FOCS 1989, IEEE, 1989, pp. 410–415.
[5] Armin Biere, Bounded model checking, in: Armin Biere, Marjin Heule, Hans van Maaren, Toby Walsh (Eds.), Handbook of Satisfiability, IOS Press,

Amsterdam, 2009, pp. 457–481, chapter 14.
[6] Armin Biere, Yet another local search solver and lingeling and friends entering the SAT competition 2014, in: Proc. SAT Competition 2014: Solver and

Benchmark Descriptions, in: Department of Computer Science Series of Publications B, vol. B-2014-2, University of Helsinki, 2014, pp. 43–44, http://hdl.
handle.net/10138/135571.

[7] Roderick Bloem, Uwe Egly, Patrick Klampfl, Robert Könighofer, Florian Lonsing, SAT-based methods for circuit synthesis, arXiv:1408.2333, August 2014.
[8] Roderick Bloem, Robert Könighofer, Martina Seidl, SAT-based synthesis methods for safety specs, in: Proc. 15h International Conference on Verification,

Model Checking, and Abstract Interpretation, VMCAI 2014, in: Lecture Notes in Computer Science, vol. 8318, Springer, 2014, pp. 1–20.
[9] Nicolas Braud-Santoni, Roderick Bloem, Swen Jacobs, Synthesising resilient distributed systems, http://forsyte.at/download/frida14/braud-santoni-

frida14.pdf, 2014.
[10] Daniel Bundala, Jakub Závodný, Optimal sorting networks, in: Proc. 8th International Conference on Language and Automata Theory and Applications,

LATA 2014, in: Lecture Notes in Computer Science, vol. 8370, Springer, 2014, pp. 236–247.
[11] Alonzo Church, Logic, arithmetic, and automata, in: Proc. of the International Congress of Mathematicians, 1962, pp. 23–35.

https://github.com/suomela/counting
https://bitbucket.org/suomela/counting
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib6261727265743032636865636B696E67s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib6261727265743032636865636B696E67s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib62656E2D6F72303866617374s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib62656E2D6F72303866617374s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib6265726D616E3839636F6E73656E737573s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib6265726D616E3839636F6E73656E737573s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib62696572653039626D63s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib62696572653039626D63s1
http://hdl.handle.net/10138/135571
http://hdl.handle.net/10138/135571
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib626C6F656D3134736174s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib626C6F656D313473796E746865736973s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib626C6F656D313473796E746865736973s1
http://forsyte.at/download/frida14/braud-santoni-frida14.pdf
http://forsyte.at/download/frida14/braud-santoni-frida14.pdf
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib62756E64616C613134736F7274696E67s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib62756E64616C613134736F7274696E67s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib63687572636836326C6F676963s1

JID:YJCSS AID:2921 /FLA [m3G; v1.161; Prn:27/10/2015; 14:49] P.22 (1-23)

22 D. Dolev et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
[12] Edmund M. Clarke, E. Allen Emerson, Design and synthesis of synchronization skeletons using branching time temporal logic, in: Proc. 3rd Workshop
on Logic of Programs, LOP 1981, in: Lecture Notes in Computer Science, vol. 131, Springer, 1982, pp. 52–71.

[13] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, Helmut Veith, Counterexample-guided abstraction refinement for symbolic model checking,
J. ACM 50 (5) (2003) 752–794, http://dx.doi.org/10.1145/876638.876643.

[14] Edmund M. Clarke, Anubhav Gupta, Ofer Strichman, SAT-based counterexample-guided abstraction refinement, IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. 23 (7) (2004) 1113–1123, http://dx.doi.org/10.1109/TCAD.2004.829807.

[15] Michael Codish, Luís Cruz-Filipe, Michael Frank, Peter Schneider-Kamp, Twenty-five comparators is optimal when sorting nine inputs (and twenty-nine
for ten), arXiv:1405.5754, May 2014.

[16] Ariel Daliot, Danny Dolev, Hanna Parnas, Self-stabilizing pulse synchronization inspired by biological pacemaker networks, in: Proc. 6th International
Symposium on Stabilization, Safety, and Security of Distributed Systems, SSS 2003, in: Lecture Notes in Computer Science, vol. 2704, Springer, 2003,
pp. 32–48.

[17] Leonardo de Moura, Harald Rueß, Maria Sorea, Lazy theorem proving for bounded model checking over infinite domains, in: Proc. 18th International
Conference on Automated Deduction, CADE-18, in: Lecture Notes in Computer Science, vol. 2392, Springer, 2002, pp. 438–455.

[18] Danny Dolev, The Byzantine generals strike again, J. Algorithms 3 (1) (1982) 14–30.
[19] Danny Dolev, Matthias Függer, Christoph Lenzen, Ulrich Schmid, Andreas Steininger, Fault-tolerant distributed systems in hardware, Bull. EATCS 116

(June 2015), http://bulletin.eatcs.org/index.php/beatcs/issue/view/18.
[20] Danny Dolev, Ezra N. Hoch, On self-stabilizing synchronous actions despite Byzantine attacks, in: Proc. 21st International Symposium on Distributed

Computing, DISC 2007, in: Lecture Notes in Computer Science, vol. 4731, Springer, 2007, pp. 193–207.
[21] Danny Dolev, Janne H. Korhonen, Christoph Lenzen, Joel Rybicki, Jukka Suomela, Synchronous counting and computational algorithm design, in: Proc.

15th International Symposium on Stabilization, Safety, and Security of Distributed Systems, SSS 2013, in: Lecture Notes in Computer Science, vol. 8255,
Springer, 2013, pp. 237–250, arXiv:1304.5719.

[22] Shlomi Dolev, Self-Stabilization, The MIT Press, Cambridge, MA, 2000.
[23] Shlomi Dolev, Jennifer L. Welch, Self-stabilizing clock synchronization in the presence of Byzantine faults, J. ACM 51 (5) (2004) 780–799, http://dx.doi.

org/10.1145/1017460.1017463.
[24] Wolfgang Dvořák, Matti Järvisalo, Johannes Peter Wallner, Stefan Woltran, Complexity-sensitive decision procedures for abstract argumentation, Artifi-

cial Intelligence 206 (2014) 53–78, http://dx.doi.org/10.1016/j.artint.2013.10.001.
[25] Niklas Eén, Niklas Sörensson, Temporal induction by incremental SAT solving, Electron. Notes Theor. Comput. Sci. 89 (4) (2003) 543–560, http://dx.doi.

org/10.1016/S1571-0661(05)82542-3.
[26] Niklas Eén, Niklas Sörensson, An extensible SAT-solver, in: Proc. 6th International Conference on Theory and Applications of Satisfiability Testing, SAT

2003, in: Lecture Notes in Computer Science, vol. 2919, Springer, 2004, pp. 502–518.
[27] E. Allen Emerson, Kedar S. Namjoshi, Reasoning about rings, in: Proc. 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL 1995, ACM, 1995, pp. 85–94.
[28] William Feller, Generalization of a probability limit theorem of Cramér, Trans. Amer. Math. Soc. 54 (3) (1943) 361–372.
[29] Bernd Finkbeiner, Swen Jacobs, Lazy synthesis, in: Proc. 13th International Conference on Verification, Model Checking, and Abstract Interpretation,

VMCAI 2012, in: Lecture Notes in Computer Science, vol. 7148, Springer, 2012, pp. 219–234.
[30] Bernd Finkbeiner, Sven Schewe, Uniform distributed synthesis, in: Proc. 20th Annual IEEE Symposium on Logic in Computer Science, LICS 2005, IEEE,

2005, pp. 321–330.
[31] Bernd Finkbeiner, Sven Schewe, Bounded synthesis, Int. J. Softw. Tools Technol. Transf. 15 (5–6) (2012) 519–539, http://dx.doi.org/10.1007/s10009-

012-0228-z.
[32] Michael J. Fischer, Nancy A. Lynch, A lower bound for the time to assure interactive consistency, Inform. Process. Lett. 14 (4) (1982) 183–186,

http://dx.doi.org/10.1016/0020-0190(82)90033-3.
[33] Cormac Flanagan, Rajeev Joshi, Xinming Ou, James B. Saxe, Theorem proving using lazy proof explication, in: Proc. 15th International Conferoence on

Computer Aided Verification, CAV 2003, in: Lecture Notes in Computer Science, vol. 2725, Springer, 2003, pp. 355–367.
[34] Carsten Fuhs, Peter Schneider-Kamp, Synthesizing shortest linear straight-line programs over GF(2) using SAT, in: Proc. 13th International Conference

on Theory and Applications of Satisfiability Testing, SAT 2010, in: Lecture Notes in Computer Science, vol. 6175, Springer, 2010, pp. 71–84.
[35] Daniel Große, Robert Wille, Gerhard W. Dueck, Rolf Drechsler, Exact multiple-control Toffoli network synthesis with SAT techniques, IEEE Trans. Com-

put.-Aided Des. Integr. Circuits Syst. 28 (5) (2009) 703–715, http://dx.doi.org/10.1109/TCAD.2009.2017215.
[36] Juho Hirvonen, Joel Rybicki, Stefan Schmid, Jukka Suomela, Large cuts with local algorithms on triangle-free graphs, arXiv:1402.2543, February 2014.
[37] Swen Jacobs, Roderick Bloem, Parameterized synthesis, in: Proc. 18th International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, TACAS 2012, in: Lecture Notes in Computer Science, vol. 7214, 2012, pp. 362–376.
[38] Mikoláš Janota, Radu Grigore, Joao Marques-Silva, Counterexample guided abstraction refinement algorithm for propositional circumscription, in: Proc.

12th European Conference on Logics in Artificial Intelligence, JELIA 2010, in: Lecture Notes in Computer Science, vol. 6341, Springer, 2010, pp. 195–207.
[39] Mikoláš Janota, William Klieber, Joao Marques-Silva, Edmund Clarke, Solving QBF with counterexample guided refinement, in: Proc. 15h International

Conference on Theory and Applications of Satisfiability Testing, SAT 2012, in: Lecture Notes in Computer Science, vol. 7317, Springer, 2012, pp. 114–128.
[40] Mikoláš Janota, Joao Marques-Silva, Abstraction-based algorithm for 2QBF, in: Proc. 14th International Conference on Theory and Applications of Satis-

fiability Testing, SAT 2011, in: Lecture Notes in Computer Science, vol. 6695, Springer, 2011, pp. 230–244.
[41] Matti Järvisalo, Petteri Kaski, Mikko Koivisto, Janne H. Korhonen, Finding efficient circuits for ensemble computation, in: Proc. 15th International

Conference on Theory and Applications of Satisfiability Testing, SAT 2012, in: Lecture Notes in Computer Science., vol. 7317, Springer, 2012.
[42] Arist Kojevnikov, Alexander S. Kulikov, Grigory Yaroslavtsev, Finding efficient circuits using SAT-solvers, in: Proc. 12th International Conference on

Theory and Applications of Satisfiability Testing, SAT 2009, in: Lecture Notes in Computer Science, vol. 5584, Springer, 2009, pp. 32–44.
[43] Christoph Lenzen, Joel Rybicki, Jukka Suomela, Towards optimal synchronous counting, in: Proc. 34th Annual ACM Symposium on Principles of Dis-

tributed Computing, PODC 2015, ACM Press, 2015, pp. 441–450.
[44] Nancy A. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers, San Francisco, 1996.
[45] Zohar Manna, Pierre Wolper, Synthesis of communicating processes from temporal logic specifications, ACM Trans. Program. Lang. Syst. 6 (1) (1984)

68–93.
[46] Jiří Matoušek, Jan Vondrák, The probabilistic method: lecture notes, http://kam.mff.cuni.cz/~matousek/prob-ln.ps.gz, March 2008.
[47] Andreas Morgenstern, Manuel Gesell, Klaus Schneider, Solving games using incremental induction, in: Proc. 10th International Conference on Integrated

Formal Methods, IFM 2013, in: Lecture Notes in Computer Science, vol. 7940, Springer, 2013, pp. 177–191.
[48] Andreas Morgenstern, Klaus Schneider, Synthesis of parallel sorting networks using SAT solvers, in: Methoden und Beschreibungssprachen zur Model-

lierung und Verifikation von Schaltungen und Systemen, MBMV 2014, OFFIS-Institut Für Informatik, 2011, pp. 71–80.
[49] Thomas Moscibroda, Rotem Oshman, Resilience of mutual exclusion algorithms to transient memory faults, in: Proc. 30th Annual ACM Symposium on

Principles of Distributed Computing, PODC 2011, ACM Press, 2011, pp. 69–78.
[50] Moni Naor, Larry Stockmeyer, What can be computed locally?, SIAM J. Comput. 24 (6) (1995) 1259–1277, http://dx.doi.org/10.1137/

S0097539793254571.

http://refhub.elsevier.com/S0022-0000(15)00100-2/bib636C61726B65383264657369676Es1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib636C61726B65383264657369676Es1
http://dx.doi.org/10.1145/876638.876643
http://dx.doi.org/10.1109/TCAD.2004.829807
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib636F646973683134636F6D70617261746F7273s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib636F646973683134636F6D70617261746F7273s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib64616C696F74303373656C662D73746162696C697A696E67s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib64616C696F74303373656C662D73746162696C697A696E67s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib64616C696F74303373656C662D73746162696C697A696E67s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib64656D6F75726130326C617A79s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib64656D6F75726130326C617A79s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib646F6C6576383262797A616E74696E65s1
http://bulletin.eatcs.org/index.php/beatcs/issue/view/18
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib646F6C65763037616374696F6E73s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib646F6C65763037616374696F6E73s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib646F6C65763133636F756E74696E67s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib646F6C65763133636F756E74696E67s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib646F6C65763133636F756E74696E67s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib646F6C6576303073656C662D73746162696C697A6174696F6Es1
http://dx.doi.org/10.1145/1017460.1017463
http://dx.doi.org/10.1016/j.artint.2013.10.001
http://dx.doi.org/10.1016/S1571-0661(05)82542-3
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib65656E30346D696E69736174s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib65656E30346D696E69736174s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib656D6572736F6E3935726561736F6E696E67s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib656D6572736F6E3935726561736F6E696E67s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib66656C6C6572343367656E6572616C697A6174696F6Es1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib66696E6B6265696E657231326C617A79s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib66696E6B6265696E657231326C617A79s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib66696E6B6265696E65723035756E69666F726Ds1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib66696E6B6265696E65723035756E69666F726Ds1
http://dx.doi.org/10.1007/s10009-012-0228-z
http://dx.doi.org/10.1016/0020-0190(82)90033-3
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib666C616E6167616E303370726F76696E67s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib666C616E6167616E303370726F76696E67s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib66756873313073796E74686573697A696E67s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib66756873313073796E74686573697A696E67s1
http://dx.doi.org/10.1109/TCAD.2009.2017215
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib686972766F6E656E31346C6F63616C2D6D6178637574s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib6A61636F62733132706172616D65746572697A6564s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib6A61636F62733132706172616D65746572697A6564s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib6A616E6F7461313063697263756D736372697074696F6Es1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib6A616E6F7461313063697263756D736372697074696F6Es1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib6A616E6F74613132716266s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib6A616E6F74613132716266s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib6A616E6F746131316162737472616374696F6Es1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib6A616E6F746131316162737472616374696F6Es1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib6A6172766973616C6F313266696E64696E67s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib6A6172766973616C6F313266696E64696E67s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib6B6F6A65766E696B6F76303966696E64696E67s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib6B6F6A65766E696B6F76303966696E64696E67s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib6C656E7A656E3135746F7761726473s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib6C656E7A656E3135746F7761726473s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib6C796E63683936626F6F6Bs1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib6D616E6E61383473796E746865736973s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib6D616E6E61383473796E746865736973s1
http://kam.mff.cuni.cz/~matousek/prob-ln.ps.gz
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib6D6F7267656E737465726E313367616D6573s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib6D6F7267656E737465726E313367616D6573s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib6D6F7267656E737465726E313173796E746865736973s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib6D6F7267656E737465726E313173796E746865736973s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib6D6F73636962726F64613131726573696C69656E6365s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib6D6F73636962726F64613131726573696C69656E6365s1
http://dx.doi.org/10.1137/S0097539793254571
http://dx.doi.org/10.1145/1017460.1017463
http://dx.doi.org/10.1016/S1571-0661(05)82542-3
http://dx.doi.org/10.1007/s10009-012-0228-z
http://dx.doi.org/10.1137/S0097539793254571

JID:YJCSS AID:2921 /FLA [m3G; v1.161; Prn:27/10/2015; 14:49] P.23 (1-23)

D. Dolev et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 23
[51] Marshall C. Pease, Robert E. Shostak, Leslie Lamport, Reaching agreement in the presence of faults, J. ACM 27 (2) (1980) 228–234, http://dx.doi.org/
10.1145/322186.322188.

[52] Amir Pnueli, Roni Rosner, Distributed reactive systems are hard to synthesize, in: Proc. 31st Annual Symposium on Foundations of Computer Science,
FOCS 1990, vol. 2, 1990, pp. 746–757.

[53] Joel Rybicki, Exact bounds for distributed graph colouring, Master’s thesis, Department of Computer Science, University of Helsinki, May 2011, http://
urn.fi/URN:NBN:fi-fe201106091715.

[54] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Vijay Saraswat, Sanjit Seshia, Combinatorial sketching for finite programs, in: Proc. 12th Interna-
tional Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS XII, ACM, 2006, pp. 404–415.

[55] Christoph M. Wintersteiger, Youssef Hamadi, Leonardo de Moura, Efficiently solving quantified bit-vector formulas, Form. Methods Syst. Des. 42 (1)
(2012) 3–23, http://dx.doi.org/10.1007/s10703-012-0156-2.

http://dx.doi.org/10.1145/322186.322188
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib706E75656C6939306469737472696275746564s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib706E75656C6939306469737472696275746564s1
http://urn.fi/URN:NBN:fi-fe201106091715
http://urn.fi/URN:NBN:fi-fe201106091715
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib736F6C61723036736B65746368696E67s1
http://refhub.elsevier.com/S0022-0000(15)00100-2/bib736F6C61723036736B65746368696E67s1
http://dx.doi.org/10.1007/s10703-012-0156-2
http://dx.doi.org/10.1145/322186.322188

	Synchronous counting and computational algorithm design
	1 Introduction
	2 Related work
	3 Applications
	4 Problem formulation
	5 Human-designed algorithms
	6 Projection graphs
	7 Increasing the number of nodes
	8 Computer-designed algorithms
	9 Synthesis via directly encoding to SAT
	10 SAT-based counter-example guided search
	10.1 Encoding
	10.2 Basic search algorithm
	10.3 Reﬁnement through counter-examples
	10.4 Improvement: ﬁnding short loops
	10.5 Improvement: overshooting and unrolling on demand

	11 Empirical results
	12 Conclusions
	Acknowledgments
	Appendix A Algorithm listings
	References

