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ABSTRACT

We revisit the long-standing problem of learning from small sample. In recent

years major efforts have been invested into the generation of new samples

from a small set of training data points. Some use classical transformations,

others synthesize new examples. Our approach belongs to the second one. We propose

a new model based on conditional Generative Latent Optimization (cGLO). Our model

learns to synthesize completely new samples for every class just by interpolating between

samples in the latent space. The proposed method samples the learned latent space using

spherical interpolations (slerp) and generates a new sample using the trained generator.

Our empirical results show that the new sampled set is diverse enough, leading to

improvement in image classification in comparison to the state of the art, when trained

on small samples of CIFAR-100, CUB-200 and a novel agricultural data ’Hazera’.
Keywords. Small data, generative models, latent optimization, classification, aug-

mentation
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1
INTRODUCTION

Modern deep Convolutional Neural Networks (CNNs) define the state of the art

in image classification, as well as many other problems in a wide range of

applications. Typically enormous amounts of labeled data are used to train the

networks. It is not obvious whether this success can be replicated in domains where the

resource of labeled data is not widely available. While hardly unexplored, the question

of learning from a small sample remains a very important and challenging problem,

not least so in the context of deep learning and image classification. The differences

(sometimes subtle) between the general problem of learning from a small sample, and

the related problems of few-shot learning and learning from imbalanced datasets, are

briefly discussed in the next section.

Different approaches have been explored to address this problem, as reviewed in the

next section. The problem can be alleviated by imposing a strong prior on the model,

which is less relevant in the context of deep learning, and by employing regularization.

Data augmentation may help, reflecting the availability of some prior knowledge about

the data. Methods employing semi-supervised [44] and transductive learning [56] make

use of unlabeled data, when available. Self-training approaches can also boost perfor-

mance when labels are scarce. Finally, one may compute a generative model from the

training data, and use it to generate new samples. This is the approach we explore in

this study. The different approaches are not mutually exclusive and can be used jointly

to further boost performance.

Using generative models to augment the training sample is very appealing, especially
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CHAPTER 1. INTRODUCTION

at present when very powerful deep generative models are becoming available. The

problem is that in general, these models require a very large (possibly unlabeled) sample

to achieve effective training, and therefore can only be used to augment the training set

in the semi-supervised scenario. To avoid this difficulty, our method leverages a recent

generative model - GLO [10], which can be trained effectively from a small sample. This

generative method is as effective as adversarial models for image reconstruction, though

it is not as effective for the generation of realistic-looking new images.

More specifically, the architecture we propose is based on the GLO model described

in Section 3.1.2. GLO learns a latent space code for each data point separately. To

improve the properties of the latent space, pushing examples from the same class to lie

close to each other and as much as possible separated from the remaining points, we

add a classifier to the basic architecture, which is trained using the known multi-class

labels of the data. We note that training is not adversarial, and therefore this classifier

is not equivalent to the discriminator in the GAN (Generative Adversarial Network)

architecture. Additional modifications include the concatenation of noise to the latent

space vector. The full model is described in Section 3.1.

The modified architecture allows us to effectively sample specific areas in the la-

tent space and synthesize novel images as explained in Section 3.1.2. In this way, our

method bears some similarity to [12], a method designed to deal with the problem of

imbalanced datasets by creating synthetic minority class examples. The empirical evalu-

ation described in Section 4.2 shows the success of our model in improving classification

performance while training with a small sample, especially in the extreme conditions

where the sample size is very small indeed.

The rest of the study is organized as follows. In Section 3.1 we describe cGLO, a

new method for data synthesis which can be effectively trained from a small number of

labeled points from each class. Our method can make use of unlabeled data when avail-

able, further benefiting from additional data in the semi-supervised and transductive

learning scenarios. In Section 4.2 we describe how synthetic images are used to boost the

training of a discriminative deep classifier. In Section 4.4 we demonstrate the superior

performance of our method when compared to alternative methods under extremely low

sample conditions. We provide an ablation study and further investigate alternative

design choices and their effect on classification performance. The empirical evaluation

of our method is described in Section 4.2, using a few datasets and different network

architectures that have been used in previous work when using these specific datasets.

Our method achieves significant improvement in the task of small data classification.

2



1.1. CONTRIBUTIONS AND OUTLINE

1.1 Contributions and Outline

Our Contribution in this study is as follows:

I) In Chapter 3 we propose a novel data agnostic method for data generation in the low

data regime.

II) In Chapter 4 we show an empirical comparison of our model and other related

methods on three datasets. Including two experiments with a real-world novel dataset of

agricultural data.

III) Next, we analyze the latent space of the proposed model cGLO and we discuss

how different design choices of our model affect the classification performance. Then,

we examine the effectiveness of adding a classifier to the latent optimization training

process as a regularization method.

IV) Section 4.4.1 describes how the latent space of a generative model is influenced by

transductive learning.

V) Finally, section 4.6, investigates the borders of small data learning and semi-super-

vised learning. We provide a quantitative evaluation using various challenging setups.
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2
REALTED WORK & BACKGROUND

In the first part of this chapter, we survey the different approaches and methods for

learning from small data. Next, we give a solid background of the topics discussed

through our work.

2.1 Related Work

Two decades ago, the problem of learning from a small sample received considerable at-

tention mainly in the context of Bayesian inference, see for example [6, 18, 55]. Bayesian

methods rely on the existence of a large dataset which is correlated with the test set.

Under this assumption, a prior can be established and used to identify test examples

from unseen classes. These methods have been revisited in recent years and largely

investigated in the context of few-shot learning or k-shot learning. In a commonly used

setup of few-shot learning, at train time there are many classes with many labeled

examples from each class. At test time, some novel classes (usually 5) with only a few

examples per class are given, alongside query images from the same novel classes, we

elaborate on this topic in section 2.2.2. In contrast, our method is not based on transfer

learning, but when additional transfer data is available, it may benefit from working in

conjunction with a method that does.

5



CHAPTER 2. REALTED WORK & BACKGROUND

2.1.1 Data Augmentation

A very useful and common technique to overcome the small sample problem is data
augmentation, as discussed by [54]. This include augmentation in the image domain for

image classification [e.g., 3, 14, 34], time-series transformations for natural language

processing tasks [e.g., 32, 64], speech recognition [e.g. 45], and machine translation [e.g.,

17, 59].

For many learning tasks, acquiring a sufficient amount of training data for training a

deep neural network can be difficult. As an example, in medical imaging, the acquisition

of labeled training data is very time-consuming and costly, since a trained expert needs

to manually annotate every image in the training set. An insufficient amount of training

data can lead to overfitting, as the neural network is more likely to just memorize certain

aspects of the training set.

Data augmentation is a very common technique to mitigate the overfitting issue.

Data augmentation describes the process of generating additional training data by

transforming the given input training data. Usually, data augmentation in computer

vision tasks is done online, therefore the input image is transformed directly before being

fed into the network.

Data augmentation is an effective technique to increase both the amount and di-

versity of data by randomly augmenting it in the image domain [4, 35, 52]. Common

augmentations include translating the image by a few pixels, adding Gaussian noise,

flipping the image horizontally/vertically and more.

Intuitively, data augmentation is used to teach a model about invariances in the data

domain: classifying an object is often insensitive to horizontal flips or translation. Even

for large datasets such as ImageNet [36], it has been shown that data augmentation can

be beneficial as an additional regularizer for very deep architectures [48]. Additionally,

data augmentation allows for an easy way to incorporate prior knowledge about possible

unseen data. For example, if test images are taken with a varying amount of brightness,

it might make sense to augment with random intensity shifts to accommodate for the

variation in brightness in test data. Possible data augmentation schemes range from

simple additive or multiplicative image modifications such as intensity shifts to geo-

metric transformations such as rotation, scaling, elastic deformation to synthetic data

generation.

In the following literature review, we divide the prior work into two complementary

directions: augmentation based on assumed invariance in the data, and the generation of

6



2.1. RELATED WORK

a new sample using generative models. Metric learning can also be used for this purpose

[e.g., 24, 39], where recently [5] showed that using the cosine distance may improve

learning from a small sample.

2.1.2 Invariance-Based Augmentation

As we describe above, common augmentation techniques for image classifications include

translating the image by a few pixels, adding Gaussian noise, and flipping the image

horizontally or vertically. These techniques require prior knowledge of the data. For

instance, vertical flip augmentation of the digit 6 will change its semantic meaning

to 9. Methods such as AutoAugment [14] as well as Fast Augment [22, 40] and Smart

Augmentations [38], achieve further improvement by searching for the optimal set of

augmentations in a predefined set of classical transformations, including random crop,

flip, rotation, scale, and translation.

AutoAugment selects the best policies using reinforcement learning directly on the

given dataset. The authors defined policy as a combination of several augmentations and

they apply the best policy on the dataset. The major drawback of this method lays in

the enormous search space. There are around six-teen classic augmentations that have

infinite permutations considering their parameters. Therefore, it is needed to limit the

search space of the policies into only two operations with a specific set of parameters;

despite these limitations, it takes weeks to search for the optimal policy. In contrary, the

training time for our proposed model is very short (two hours for 60k samples in low

resolution) and the augmentations are not limited in the search space to a predefined set

of basic image manipulations The major drawback of such methods lies in the enormous

space that needs to be searched, and the huge resources that are needed to perform an

effective search.

Additional augmentation methods in image classification include Cutout [16], which

randomly masks a square region in an image at every training step and thus affects the

nature of the learned features, and Random Erasing [65], where similarly to dropout

randomly chosen rectangular regions in the image have their pixels erased or replaced

by random values. MixUp [62] uses Alpha-blending of two images to form a new image

while regularizing the CNN to favor a simple linear behavior in between training images.

MixMatch [9] augments MixUp by self training, generating "guessed labels" for each

unlabeled example. We note that these methods are not always effective on very small

datasets, and may even degrade classification performance as shown in Table 4.1.

7



CHAPTER 2. REALTED WORK & BACKGROUND

2.1.3 Data Augmentation with Generative Models

As alluded to above, generative models can be a powerful tool for data augmentation

by making it possible under ideal conditions to sample new examples. Most of the

methods which rely on generative models target the few-shot learning scenario. Among

these methods, Delta-Encoder [50] investigates the use of a modified AutoEncoder:

the model gets two examples from a known class and then learns the ’delta’ between

the two examples to generate new examples for novel classes. DAGAN [1] employs a

GAN composed of a U-net generator and a DenseNet discriminator. [63] modified the

discriminator of a semi-supervised GAN to return 2N outputs, where the first N elements

denote class probability, and the remaining N outputs denote the probability that the

example is fake. Methods such as [15, 41] also make use of Auto-Encoders. When using

an Adversarial AutoEncoder (AAE), one can populate "dead zones" in the latent space

by initializing it uniformly and then applying MixUp [62]. This method requires a large

amount of (labeled or unlabeled) data to be effective.

All of these methods try to leverage generative models by sampling new synthetic

examples from the learned distribution of the data. However, the estimation of the

latent space for a given dataset is challenging and requires many training examples. In

the low-shot case, the estimated data distribution is less reliable, and it is, therefore,

necessary to rely on the joint distribution of related classes. Thus one approach lets the

learning model share its parameters across all classes, using the same generator in a

GAN architecture, or the same encoder and decoder in an Auto-Encoder. In the small

sample case, the few labeled examples do not represent the true data distribution very

reliably, resulting in poor generalization and low-quality synthetic data.

All in all, although GAN models have achieved tremendous success in generating

realistic novel images [11, 30], GAN based models have two major drawbacks that make

them hard to use for data augmentation. The first is their sensitivity to hyperparameters

when trying to reach the Nash equilibrium in the training process, and avoiding mode

collapse. The second is the dependency on very large datasets [21].

2.2 Background

2.2.1 Generative Models

In general, a generative model is a powerful way of learning any kind of data distribution

both in a supervised and unsupervised manner and it has achieved tremendous success

8



2.2. BACKGROUND

in just a few years. All types of generative models aim at learning the true data distribu-

tion of the training set to generate new data points with some variations. Theoretically,

in this work, we use the assumption that for any given images datasets there is a low

dimensional structure where the high dimensional distribution concentrates on or near a

low dimensional manifold,[7, 47]. It implies that a set of natural images does not span a

linear subspace in the pixel space, instead, it is assumed to constitute a low dimensional

sub-manifold [8].

In this study, we explored new ideas of variations of GLO 3.1.2, however, it is

essential to understand other popular generative models (GAN, VAE) to emphasize the

reason choosing the base model in our algorithm 3.1.

Generative Adversarial Networks (GAN)

In 2014 Goodfellow et al.[20] proposed a generative model, called Generative Adversarial

Networks (GANs). The classic GANs composed of two networks, a generator denote

by G and a discriminator denotes by D. The discriminator tries to distinguish fake

images from real ones while the generator produces fake images when it tries to fool the

discriminator. Both networks are jointly trained competitively. The resulting generator

can synthesize plausible images. The objective function of a two-player minimax game

can be described by the value of the function V (G,D)as written in Eq 1:

(2.1) min
G

max
D

V (D,G)= E
x∼PData

[logD(x|y)]+ E
z∼PZ(z)

[log(1−D(G(z|y)))]

In other words the generator G maps a noise vector z in the latent space to a gener-

ated image G : G (z)) 7→R|x| where z ∈R|z| is a sample from the latent space and |·| denotes

the image dimension. The discriminator defined by D : D 7→ (0,1) when x → 0 means the

discriminator classifies the input image as fake (x ∼PZ(z)) or x → 1 if the input image

classified as real (x ∼PData) [13].

Conditional Generative Adversarial Networks (cGAN) was introduced by Mirza

and Osindero[42]. The cGAN is an extension of GAN into a conditional model where

the generator G and the discriminator D are now conditioned by extra information y.

The extra information could be class labels, text, or sketches. cGANs provide additional

controls on which kind of data are being generated, while the original GANs do not have

such controls. We can perform the conditioning by feeding y into both the discriminator

9



CHAPTER 2. REALTED WORK & BACKGROUND

and generator as the additional input layer. Note, that our model cGLO does not use the

same explicit conditioning as cGAN uses. This kind of conditioning derogates the results

on small data.

Variational Auto-Encoder

The idea of Variational Autoencoder (VAE) [31], is deeply rooted in the methods of the

variational bayesian and graphical model and less similar to a classic AutoEncoder.

Instead of mapping the input into a fixed vector, the objective is to map it into

distribution. Denote a distribution pθ, parameterized by Θ. The relationship between

the data input x and the latent encoding vector z can be fully defined by: Prior Pθ(z),

Likelihood pθ(x|z) and Posterior Pθ(z|x). In a nutshell, VAE minimizes minus the sum of

the expected log-likelihood (the reconstruction error) and a prior regularization term:

(2.2) LVAE =−Eq(x|z) =
[
log

p(x|z)p(z)
p(z|x)

]
=Lpixel likelihood +Lprior

where

(2.3) Lpixel likelihood =−Eq(x|z) [log p(x|z)]

and

(2.4) Lprior = DKL(pz|x||p(z)

DKL is the Kullback-Leibler divergence.

2.2.2 Few-Shot Learning

In the previous chapters, we mention several works of the few-shot learning methodology.

The following section elaborates on some of the most popular works of this approach.

We stress the importance of a large and diverse training set in this approach. The most

common basic concept here is transfer learning, which encouraged us to abandon this

research direction. Though, we did not use directly the few-shot technique we inspired

by these ideas in our work.

Problem Statement

The few shot paradigm was first introduce by Vinyals [57], in high level Few shot

learning is a synthetic task that aims to distinguish between K labeled samples from

10



2.2. BACKGROUND

each of the N classes when N is very small (also known as K-shot N-way classification).

Formally, given the distribution of tasks P(τ), a sample task τ from P(τ) is given by

the joint distribution Pτ
X×Y (x, y), where task is to predict y given x. In total, there is a

set of tasks {τ}N
i=1, each training task τ is a tuple τ= (Sτ,Qτ) where the support set is

denoted as Sτ = Ss
τ

⋃
Su
τ , and the query set is denoted as Qτ =Qs

τ

⋃
Qu
τ . The supervised

set Ss
τ = {(x1, y1), . . . (xN×K , yN×K )} and the query set is Su

τ = {x1, . . . xM} contains unlabeled

samples from the N classes; Qs
τ and Qu

τ are the query sets that are defined similar to Sτ.

The objective of the model is to predict the query set labels given the support set.

Figure 2.1: Few Shot learning. An example of a task τ of 4-shots 2-classes (image source:
Pinterest)

Metric Learning

The very first works in the few-shot learning approach are Matching Networks [57] and

Prototypical Networks [26, 53]. Both of these methods based on the metric in the latent

space between the give samples.

Matching Networks. The basic idea is to use a good representative latent space and

to compare the support set Sτ to the query set Qτ in the latent space using attention

kernel,

(2.5) a(x, xi)= expcos f (x), f (xi)∑k
j=1 expcos g(x), f (xi)

Where the attention kernel depends on two embedding functions, f and g, for encod-

ing the query sample and the support set samples respectively. The attention weight

11



CHAPTER 2. REALTED WORK & BACKGROUND

between two data points is the cosine similarity cos(·), between their embedding vectors,

normalized by softmax.

Prototypical Networks. Use an embedding function f to encode each input into a

d-dimensional feature vector. A prototype feature vector is defined for every class c ∈ C,

as the mean vector of the embedded support data samples in this class,

(2.6) Mc = 1
|Sc|

∑
xi∈Sc

f (xi)

Now the loss function is defined as negative log-likelihood: Lθ =− log(P(y= c|x)) when

(2.7) log(P(y= c|x))= softmax(−d( f (x), Mc)= exp(−d( f (x), Mc))∑
c′∈C exp(−d( f (x), M′

c))

d is the distance function (in the paper they used the L2 metric).

Optimization-Based

While deep learning models learn through the backpropagation of gradients, the gradient-

based optimization is neither designed to cope with a small number of training samples

nor to converge within a small number of optimization steps. The basic idea of this

family of models is to adjust the optimization algorithm so that the model can be good at

learning with a few examples [e.g., 19, 43]. The idea is to use two optimizers, when the

outer optimizer is updated by the weighted average of the inner optimizer which learns

on many small tasks τ∼ Sτ.

Model-Based

Meta-learning systems are trained by being exposed to a large number of tasks and are

then tested in their ability to learn new tasks. An example of a task might be classifying

a new image within 5 possible classes, given one example of each class, or learning to

efficiently navigate a new maze with only one traversal through the maze. This differs

from many standard machine learning techniques, which involve training on a single

task and testing on held-out examples from that task.

In [49] the authors propose a method based on memory. There is a controller (LSTM)

that remembers the previous training example to learn patterns in one-shot learning.

Also, they talked about combining curriculum learning - first to train one class and every

few thousands of iterations increase by one the number of classes that the model sample

the train set.
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3
OUR METHOD

In this chapter, we present our novel modification to Generative Latent Optimiza-

tion (GLO) which we use to synthesize new images to augment a given data set.

Moreover, we compare the performances of a GLO-based method to a standard data

augmentation in classification accuracy.

3.1 Conditional GLO for Small Data Augmentation

We propose a method for multi-class image classification from small sample, which

consists of data augmentation with a generative model. Specifically, in order to use

modern deep learning classifiers, which typically require large amounts of training data,

we augment the small training set by sampling from a generative model. Our generative

model, called cGLO, is based on the GLO architecture [10] which can be trained effectively

from a small sample. This architecture is modified so that it can benefit from both labeled

and unlabeled data. With access to only small amounts of unlabeled data or none at all,

our results surpass the state of the art. The code is available online1.

3.1.1 Model Overview

The generative model we use to sample new data includes the basic GLO architecture

with generator Gθ, and an added small classifier fφ which is trained to classify the labeled

1https://github.com/IdanAzuri/Learning-from-Small-Data
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CHAPTER 3. OUR METHOD

Figure 3.1: Schematic illustration of our method. Every zi ∈ Z, where Z denotes the unit
sphere, is mapped to a specific image xi in the image space. In this illustration, the color
of each image frame marks the class label of the image (pink:dog, green:cars, yellow:bird),
while black frames mark unlabeled images. The classifier is used to propagate error only
when a label is given.

data (see Fig. 3.1). Training is not adversarial, and therefore this classifier is nothing

like the discriminator in the GAN (Generative Adversarial Network) architecture. As

in [10], the latent space is initialized randomly {zi ∈ Z} where Z is the unit sphere in

Rd. Every vector zi is mapped to an image {xi ∈ X |xi ∈ R3×H×W } from the given (small)

training set.

The training process has two modes: With unlabeled data, the reconstruction loss

in (3.2) is used to train Gθ just like the original GLO model. With labeled data, the

reconstruction loss is augmented with the cross-entropy loss corresponding to the loss of

the added classifier fφ (see Fig. 3.1).

Here we use the perceptual loss [28] to measure the reconstruction loss. More specifi-

cally, in order to compute the perceptual loss we extract the activation vectors in layers

14



3.1. CONDITIONAL GLO FOR SMALL DATA AUGMENTATION

Algorithm 1 cGLO. The algorithm optimizes the reconstruction loss Lpercep of generator
Gθ, and the cross entropy loss Lce of discriminator fφ.

Input: unlabeled data PDu , labeled data PDL , γ, epochs
epoch = 0
Initialize {zi}n

i=1 where {zi ∈ Z : ||zi||2 = 1}
repeat

for (xi, yi) ∈ PDL do
Lpercep =∑

jλ j||ξ j(Gθ(zi))−ξ j(xi))||1
Lce =LCE( fφ(Gθ(zi)), yi)
L =Lpercep +γLce
Update {zi},θ,φ using the gradient of L

end for
(this part is optional for transductive learning mode)
for xi ∈ PDu do

L =∑
jλ j||ξ j(Gθ(zi))−ξ j(xi))||1

Update {zi},θ using the gradient of L

end for
epoch+= 1

until epoch > epochs

conv1_2, conv2_2, conv3_2, conv4_2 and conv5_2 of a VGG-16 network. Denoting the out-

put tensor of layer conv j_2 for input image x by ξ j(x), we compute the difference between

the original image and its reconstructed version by:

(3.1) Lpercep(xi,zi;θ)=∑
j
λ j||ξ j(Gθ(zi))−ξ j(xi))||1

Above θ denotes the parameters of the generator G, and λ j the weight of layer j (usually

the weighted average).

3.1.2 Generative Latent Optimization

Our method is described in Alg. 1. Its components are described next.

Generative model. Generative Latent Optimization (GLO) [10] is a relatively simple

method, relying on a relatively small number of parameters. GLO maps every image xi

from the dataset to a low-dimensional random vector zi in the latent space Z. It then

passes the random vector into a generator Gθ(·), which is optimized to minimize the

reconstruction loss between Gθ(zi) and xi.

Formally, let {x1, x2 . . . xn} ∈ X denote a set of images where xi ∈ R3×W×H . Choose n
d-dimensional random vectors on the unit sphere {z1,z2, . . . ,zn} ∈ Z where Z ⊆Rd. Pair ev-
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ery image xi ∈ X with a random vector zi ∈ Z, to achieve the mapping {(x1,z1), . . . , (xn,zn)}.

Finally, learn jointly the parameters θ of the generator Gθ : Z −→ X , where the optimal

set {zi} and parameters θ are obtained by minimizing the following objective:

min
θ

n∑
i=1

[
min
zi∈Z

Lpercep(xi,zi;θ)
]

s.t. ||zi||2 = 1
(3.2)

The loss Lpercep(xi,zi;θ), defined in (3.1), measures the reconstruction loss between

Gθ(zi) and xi. We note that while in the original GLO the Laplacian pyramid loss is used

instead of Lpercep, the minimization of Lpercep appears to yield more realistic results [25].

Figure 3.2: Illustration of the latent space Z in our method vs. vanilla GLO. (a) Vanilla
GLO: vectors zi ∈ Z do not have a semantic meaning in Z. (b) Our method: vectors
from the same class are grouped. (c) Our method in transductive mode. Notations: filled
colored circles represent different labeled data points, where color corresponds to class
identity. Black circles with the symbol "?" represent unlabeled data points.

Adding a Classifier. Possibly the main weakness of using GLO as a generative model

is the relatively low quality of images generated when sampling new points in the latent

space Z. The problem lies in the sparsity of the learned set {zi}n
i=1, which lacks structure

since each zi is trained independently. In order to decrease the intra-class distances

and increase the inter-class distances in the latent space representation, we propose

the conditional model cGLO. In this model, the generator Gθ is augmented by a weak

classifier fφ, which is trained to classify the labeled data. When the label of xi is known,

Lpercep in (3.2) is replaced by Lpercep+Lce, where Lce is the cross-entropy loss of classifier

fφ.

16



3.1. CONDITIONAL GLO FOR SMALL DATA AUGMENTATION

Sampling the Latent Space. Generating images based on randomly sampling the

latent space, even when restricted to the immediate vicinity of {zi}n
i=1, still produces

low quality somewhat meaningless images. Therefore, instead of randomly sampling

Z, we generate new image codes by interpolating between the known latent vectors

{zi}n
i=1. Since the latent space Z is a hyper-sphere, we employ to this end spherical linear

interpolation (slerp) [51], which is defined as follows:

(3.3) slerp(q1, q2; t)= q1
sin(1− t)ϑ

sinϑ
+ q2

sin tϑ
sinϑ

Above t ∈ [0,1], and ϑ is the angle between q1 and q2, computed as ϑ= cos−1(q1 · q2).

0.5

0.25

0.75

~v2

~v1

~v2

~v1

Figure 3.3: Slerp vs. lerp. Left side: linear interpolation between ~v1 and ~v2 with t ∈
[0.25,0.5,0.75]. Right side: spherical interpolation. Note that both the length and arc
length of the interpolated vectors are equal in slerp but unequal in lerp.

As shown in Fig. 3.3, in slerp interpolation follows the great circle path on an d-

dimensional hyper-sphere (with elevation changes) between two points zi and z j. This

technique has shown promising results in the context of both VAE and GAN generative

models and with both uniform and Gaussian priors [60].

Why slerp? Linear interpolation (lerp) is the simplest method to traverse the latent

space manifold between two known locations. Often it is used to show inartistic learned

features that capture the semantics of the dataset [e.g., 29, 35]. However, [2] noted that

linear interpolation in the latent space is often inappropriate since the latent spaces of

most generative models are embedded in high dimensional spaces (over 50 dimensions).

In such a space, linear interpolation traverses locations that are extremely unlikely

given the prior, whether Gaussian or uniform.

Noise concatenation. Training from a small sample is more susceptible than ever to

random perturbations in the data. To increase training robustness, we concatenate noise
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to the latent vector such that the input to the generator Gθ is [zi,ε] ε∼ N(0,σI), see

Fig. 3.1. In effect, this introduces randomness into the training via the batch normaliza-

tion layers [27].
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4
EXPERIMENTAL EVALUATION

In this chapter, we empirically evaluate our method cGLO and other augmentation

methods from different approaches as discussed in section 2. We showed our

investigation of the proposed method variants on different setups. We demonstrated

the superiority of the model on the small data regime (10-100 examples per class) while

keeping the training time very short compared to other methods.

4.1 Datasets

We evaluate our method on three datasets composed of two standard benchmarks for

image classification and one real-world dataset of cucumbers collected by Hazera. The

first dataset is CIFAR-100 [33], which includes 50,000 32×32 color images, with 100

classes and 500 images per class. The relatively small size of the images allows us to

perform an exhaustive ablation study on this dataset as described in Section 4.4. The

second dataset is CUB-200 [58], which includes high-resolution fine-grained images of

200 species of birds, with only 30 images per class. This makes this dataset a more

appropriate testbed for a method that addresses the small sample problem.

Hazera (Cucumbers)

An extremely small dataset of greenhouse cucumbers in different illness severity levels

from one (sickest) to nine (healthy). In this study, we divided the data into classes by

the plant’s health condition, where labels one to three are grouped to the sick group
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and labels seven to nine are grouped to the healthy group. The training set contains

100 examples from both of the groups and the test set contains 28 examples equally

distributed. This small data is very unique and challenging to classify as it has not

been collected for classification purposes. It can be seen in Figure 4.2 the difficulty in

distinguishing between the classes even in human eyes.

4.2 Experimental Protocol

For each benchmark, we defined a small-sample task by sub-sampling the original

training set of the corresponding dataset. To allow for comparison with other methods,

the subset splits were adapted from [5]. As classification engine we used, unless otherwise

noted, the WideResNet-28 model [61] for CIFAR-100, and the Resnet50 model [23] for

CUB-200. Baseline results were obtained by training the corresponding model using the

training set with only standard data augmentation.

When using our method, we augmented the training set using cGLO. Specifically,

we start by sampling a mini-batch from the training data in each SGD optimization

step. Each example xi in the mini-batch is used for training with a probability of 0.5.

Otherwise (with probability 0.5) it is replaced by a new image obtained by sampling the

latent space G(slerp(zi,z j, t))). z j is the latent representation of some example from the

same class c as xi, sampled uniformly from the latent codes of all remaining examples in

class c. The slerp interpolation factor is sampled uniformly from the set [0.1,0.2,0.3,0.4].

We compared our results with state-of-the-art methods that are suitable for the

small sample domain, using as much as possible public-domain code. Thus we compared

sample augmentation with cGLO to image augmentation with Cutout [16], Random

Erase [65] and MixMatch [9]. In each case we repeated the same procedure as described

above, replacing the generation of a new image using cGLO by an image obtained from

the corresponding augmented set of images. We also evaluated the method described in

[5], which was explicitly designed to handle small sample, using code provided by the

authors.

4.3 Implementation Details

We used SGD optimization with learning rate 0.1 for CIFAR-100 and 0.001 for CUB-200,

with a batch size of 128 and 16 respectively. In all the experiments we used the standard

categorical cross-entropy loss function when training the weak classifier fφ. (We note
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in passing that using a strong classifier decreased the quality of the generated images

and harmed the final performance.) Images from the CUB-200 dataset were resized to

256 pixels wide in their smaller side, and then randomly cropped to 224×224 pixels.

As stated above, in all the experiments (including baseline) we adopted the standard

transformations of random horizontal flipping and random crop for data augmentation.

The settings for Hazera are the same as used for CUB-200.

In all cases, the latent space Z was the unit sphere in R128. For the generator, we

used a standard off-the-shelf DCGAN architecture [46]. More modern GAN architecture

can be readily used instead and improve the reconstruction quality. However, it is worth

noting that our method can improve the SOTA while using a relatively simple GAN

architecture. We trained the model on 2 × Tesla P100 GPUs for 200 epochs; every epoch

took around 40 seconds on CIFAR-100 and 3 minutes on CUB-200.

To achieve uniformity we over-sampled the training set in proportion to the size of

the training set. For example, with 50 samples per class in CIFAR-100, we trained the

model ×10 iterations. Standard errors (STE) were obtained from 3 runs with different

seeds in all study cases except for MixMatch, where a single result is reported since each

MixMatch run took a very long time.

4.4 Results

CIFAR-100 and CUB-200 The results of our empirical study are summarized in

Table 4.1 for CIFAR-100, Table 4.2 for CUB-200. We used small sample partitions, with

10 to 100 labeled images per class in CIFAR-100, and 5 to 30 labeled images per class in

CUB-200. We compared our model to three different methods of data augmentation and

one small sample method.

SPC BASELINE CGLO MIXMATCH CUTOUT RANDOM ERASE [5]

10 22.89±0.09 28.55±0.40 24.8 23.43±0.24 23.26±0.27 23.01 (22)
25 38.39±0.18 43.84±0.25 40.17 39.11±0.59 37.45±0.15 28.05 (35)
50 47.82±0.11 52.95±0.20 49.87 52.11±0.28 50.50±0.41 44.55 (48)

100 61.37±0.13 64.27±0.04 59.03 64.49±0.10 64.03±0.22 55.99 (58)

Table 4.1: Comparison of Top-1 Accuracy (including STE) for CIFAR-100 using
WideResnet-28, with a different number of training SPC (Samples Per Class). The
methods used for comparison are described in the text below, where caveats regarding
the results reported in the last column are also discussed. Best results are marked in
bold.
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Figure 4.1: CIFAR-100 with 10 samples per class. Each row shows six new images
generated based on smooth interpolation in the latent space between two reconstructed
images.

Fig. 4.3 illustrates the quality of the reconstruction when using cGLO, showing a

relatively precise though somewhat blurred reconstruction. Fig. 4.4 illustrates the kind

of synthetic images we get while relying on a very small sample. Note that since the

purpose of generating new images is to boost classification from small sample, low image

quality does not preclude their usefulness for the task.

The two augmentation methods used in our comparisons, Random Erasing [65] and

Cutout [16], achieve a relatively good performance; with CIFAR-100 and a 100 samples

per class, Cutout achieves the highest accuracy (similar to cGLO) in our experiments.

Nevertheless, in all the other small sample cases we have studied cGLO significantly

outperforms these methods.

MixMatch [9] is a new technique that achieves state-of-the-art results on multiple

datasets in a semi-supervised setting. In the supervised small sample regime, this method

does not perform very well as can be seen in Tables 4.1 and 4.2, but see Section 4.4.4.
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SPC BASELINE CGLO MIXMATCH CUTOUT RANDOM ERASE [5]

5 50.79±0.19 51.52±0.21 15.01 50.63±0.31 48.90±0.45 17.80 (35)
10 64.11±0.22 65.13±0.12 36.02 64.33±0.02 63.72±0.20 34.23 (60)
20 69.11±0.55 74.16±0.17 60.57 68.47±0.20 66.14±0.23 52.00 (76)
30 75.15±0.10 77.75±0.20 70.41 74.97±0.34 73.74±0.34 62.25 (82.5)

Table 4.2: Comparison of Top-1 Accuracy (including STE) for CUB-200 using ResNet-50,
with a different number of training SPC (Samples Per Class). The methods used for
comparison are described in the text below, including some caveats. Best results are
marked in bold.

Possibly, the blending of images in pixel space, which is intended to provide some means

of regularization, is only effective when enough training data is available. Otherwise, it

feeds noisy examples to the model and makes it harder to generalize.

[5] describes a distance-based method that is designed to handle the small sample

challenge, among other things. The results, when using the code published by the

authors in our experimental design, are shown in the last column of Tables 4.1 and 4.2.

Admittedly, we were not able to reproduce their published results. We, therefore, show in

round brackets our best estimate of their original results, which were only reported in a

pictorial format1.

Real-World Small Data (Hazera). We test the effectiveness of our method on raw

agricultural data without any pre-processing. The first experiment is on the entire

dataset (200 training images) as described in section 4.1. The second experiment is an

extremely low regime of 40 training samples. We followed the experimental protocol

depict previously for CUB-200 without any further adaption. The results are surprisingly

good, even in the experiment of 20 samples per class. Our model, cGLO, outperforms

other augmentation methods. While Cutout and Random Erase have not improved

generalization of the learned model, cGLO achieved the best results in both experiments.

The experiment’s outcome is summarized in Table 4.3.

1These experiments used Resnet-110 for CIFAR-100 rather than the WideResNet-28 model used here,
and Resnet-50 for CUB-200 as in our experiments.
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Figure 4.2: Hazera dataset, cGLO interpolations. The upper figure shows sick plants, the
bottom figure shows healthy plants. Each row shows six new images generated based on
smooth interpolation in the latent space between two reconstructed images (the leftmost
column and the rightmost column). Note that cGLO trained on 40 examples only.
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Model 20 SPC 100 SPC

Baseline 52.65±0.44 53.57±0.47
Cutout 46.10±1.05 51.35±0.33
Random Erase 49.21±0.68 50.00±0.00
cGLO 53.48±0.56 62.65±0.91

Table 4.3: Comparison of Top-1 Accuracy (including STE) for Hazera dataset using
ResNet-50. SPC stands for Samples Per Class. Best results are marked in bold.

Figure 4.3: CUB-200 Reconstruction results: upper row shows the original image, second
row shows the corresponding reconstructed image. cGLO was trained only on 10 examples
per class.

4.4.1 Ablation Study

In this section, we review and evaluate different design choices used in the architecture

and the approach proposed in this work. In this ablation study, we used CIFAR-100 with

25 labeled training examples per class. The results are summarized in Table 4.4.

More specifically, we see in Table 4.4 the effect of omitting different components

of cGLO, including classifier fφ, noise concatenation, and replacing slerp by vanilla

linear interpolation. We note that when omitting classifier fφ, the reconstruction loss

achieves a better score, but the augmentation fails to generate ’good’ examples to improve

the classification. The ’Baseline’ case shows the results of training without sampling

additional images. ’Tranductive’ shows the added benefit obtained from including the
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Model Top 1 Acc. Top 5 Acc.

cGLO 43.84±0.25 70.73±0.07

Baseline 38.39±0.18 67.77±0.18
No Classifier 41.57±0.54 69.55±0.11
No Noise 43.31±0.02 70.05±0.02
Lerp 43.01±0.06 70.51±0.03
Transductive 44.39±0.12 71.28±0.09

Table 4.4: Ablation Study: Top 1 and Top 5 accuracy is calculated based on the architec-
tural variants described Section 4.4.1.

unlabeled test set in the training of generator Gθ.

4.4.2 Additional Design Choices

In this section, we describe a few alternative design choices that proved less effective, as

summarized in Table 4.5.

Latent Classifier. One can optimize the discriminative loss LCE directly in the latent

space using (zi, yi) instead of the image space (G(zi), yi). Here we used a 3 layer fully

connected network with inter-layer ReLU activation.

Model Top 1 Acc. Top 5 Acc.

Latent Classifier 43.08±0.06 70.22±0.05
Hypercube Init 44.21±0.61 70.89±0.46
ResNet Init 42.95±0.22 70.10±0.13
Additive Noise 41.02±0.43 68.10±0.11
Cosine Loss 41.01±0.27 68.45±0.31

Table 4.5: Top 1 and Top 5 accuracy of additional design choices as explained in the text.

Z Initialization. We investigated different ways to initialize the latent space map-

pings while exploiting some prior knowledge we have on the data, including: i) Hypercube

vertices: every class is initialized in the vicinity of a different vertex of the hypercube in

R128. ii) ResNet: each image is assigned the corresponding activation in the penultimate

layer of a pre-trained ResNet model.

Additive Noise. cGLO relies on the concatenation of noise to the latent space rep-

resentation. To investigate the contribution of this mechanism, and following [37], we
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Method supervised only 1000 unlabeled 35k unlabeled

Baseline 38.39±0.18 - -
MixMatch 40.17 42.39 50.34
cGLO 43.84±0.25 44.52±0.12 44.73±0.07

Table 4.6: Semi-supervised scenario: Top-1 Accuracy of MixMatch vs cGLO when shown
25 labeled examples per class and a varying number of unlabeled examples, where each
case corresponds to a different column.

explored a simpler alternative, where random noise ε ∼ N (0,σI) is sampled i.i.d and

added to zi before calculating the loss (3.2). The goal is to obtain a better representation

of the image manifold by learning the ε ball around every example both in the latent

space and the image space. However, as shown in Table 4.5, this approach leads to

performance degradation in the final classification.

Cosine Loss. It is argued in [5] that the cosine loss is a better optimization function

for the small sample regime. In our experimental setup, the cross-entropy classification

loss provided better results, see Table 4.5.

4.4.3 Relation to Classical Augmentations

Next, we investigate the relationship between new images generated by our method

and images generated by methods using classical augmentation techniques. To this end

we adopt AutoAugment [14], a method designed to find a proxy for the optimal set of

classical transformations to augment images in CIFAR-100, searching through 16 types

of color-based and geometric base transformations. The case studied here is CIFAR100

with 50 labeled examples per class, and with transductive learning (similar results are

obtained without transductive learning).

When using the two methods - AutoAugment and cGLO - in conjunction, each method

seems to provide an independent contribution as shown in Table 4.7. From this, we

conclude that the contribution of cGLO goes beyond the contribution of augmentation by

classical image transformation. Note that AutoAugment is trained on the entire training

set of CIFAR-100 so the direct comparison of our method to this policy is not applicable.
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AutoAu. cGLO Top-1 Accuracy Top-5 Accuracy

50.37±0.05 75.61±0.01
X 53.35±0.23 77.60±0.12

X 53.80±0.10 79.18±0.13
X X 56.31±0.02 80.66±0.04

Table 4.7: Top-1 and Top-5 accuracy when augmenting a small dataset by cGLO alone
(second row), AutoAugment alone (third row), or both (fourth row). Note that each method
boosts performance on its own, while when used in conjunction additional performance
boost is seen.

4.4.4 Using Unlabeled Data

While in the fully supervised scenario cGLO outperforms MixMatch as shown in Ta-

bles 4.1 and 4.2, MixMatch performs better when given access to unlabeled data, and

eventually, it outperforms cGLO as shown in Table 4.6. cGLO can also use unlabeled data

to boost the training of the generator Gθ, but as shown in Table 4.6, clearly MixMatch

benefits from unlabeled data more considerably. We note that cGLO can benefit from

using the test data during training following the transductive learning procedure, which

is another way of using unlabeled data to boost training.
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5
SUMMARY AND CONCLUSIONS

5.1 Summary and Discussion

In this work, we revisited the problem of learning from small sample. We developed

a deep generative model, conditional GLO (cGLO), which can be effectively trained

to generate examples when seeing only a small sample of data. New examples are

synthesized by interpolating between the latent vectors of known examples. When using

small sample scenarios generated from the CIFAR-100 and CUB-200 benchmarks and

also form a novel dataset ’Hazera’. We show that our method improves classification over

the baseline and several alternative methods. Thus our method defines the state of the

art in small sample image classification.

Our generative model is based on latent space optimization. Latent optimization

does not involve an encoder like some other generative methods (such as the Variational

Auto Encoder). In particular, this implies that the number of variables grows linearly

with the number of data samples. Contrary to GAN, latent optimization learns every

latent representation separately, and therefore it does not require much data in order to

achieve decent reconstruction results as demonstrated in Fig. 4.3.

In GLO, the optimization of each representation vector zi separately also implies

that the dimensions of the latent space do not correspond to the semantic features of the

data. To address this weakness and to inject some semantic structure into the latent

space representation, we added a classifier to the latent optimization training process.

Unlike GANs, the classifier is not trained in an adversarial fashion. Rather, we use
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the classification loss LCE over the reconstructed examples Gθ(zi) to induce semantic

relations into the latent space and allow for better sampling and new image generation

(see Fig. 3.2).

The unique aforementioned properties of our model allow it to improve the training

efficacy of deep classifiers in the small sample regime. In this regime, the classifier only

sees a small number of labeled examples from each class. We suggest two complementary

approaches using our proposed transductive learning option. It can be used in conjunction

with our method, and may benefit from unlabeled data in a semi-supervised manner, or

unrelated labeled datasets which can be used for transfer learning.
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