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ABSTRACT

The goal of the artificial intelligence field is to develop machines that mimic

human-like intelligence abilities to solve problems using computational models.

In this research, we focus on one ability, known as divergent thinking ability,

which is the ability to think in different directions and produce a large amount of new

and diverse solutions for a given problem. Our goal is to create a model that uses this

ability to solve affordance problems, which are problems that relate to use. Legitimate

solutions for these affordance problems are instances of images that allow a given use.

During this research, we examined several approaches to create the divergent thinking

ability in computational models and adjusted state-of-art models for this purpose. Across

several divergent thinking tasks, and several evaluation paradigms, we show that the

adjusted Ballpark model surpasses all the other models we examine. Furthermore, we

demonstrate the model supremacy when learning from training datasets with a lot of

misclassified instances.
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1
INTRODUCTION

Over the last few decades, an immense amount of research has been devoted to

mimicking human intelligence in machines to solve computational problems.

One common problem that is solved using this approach is the problem of

producing new information. In the 1950s a famous study was made by the American

psychologist, Guildford, in the area of human intelligence [5]. The study analyzed the

intellectual abilities required to perform intellectual tasks and proposed two kinds of

thinking abilities that are keys for generating new information from already known

information. The first ability is the Divergent-Thinking Ability that is the ability to think

in different directions and to produce a variety of responses that are not completely

determined by the given information. The second is the Convergent-Thinking Ability
that is the ability to produce one right answer that is the best for given information, and

in some way opposed to the previously mentioned ability.

In this research, we focus on the divergent thinking ability, which is demonstrated

in The Alternative Uses Test proposed by Guildford in 1967 in the paper [6]. In this

test, participants were asked to think of as many uses as possible for a given object, and

their answers were analyzed according to two essential divergent thinking properties -

fluency and flexibility. Participants who replied with a lot of ideas in a short time were

considered to have fluent thinking and if their answers also included a variety of ideas

from different classes, they were also considered to have flexible thinking.For example,

given the object ’Knife’, participants whose responses are cut tomato, cut meat, cut onion,

1



CHAPTER 1. INTRODUCTION

cut cheese, cut ginger, etc. would get a high fluency score and low flexibility scores since

all the proposed suggestions fall into the same class. On the other hand, participants

whose answers are cut vegetables, open a letter, stab a person, engrave a tree, and so on,

will also get high flexibility scores. It is noteworthy that the convergent thinking ability

may perform poorly in achieving flexible solutions, and the divergent thinking ability is

essential for this purpose. Nowadays, there is a lot of research in the field of artificial

intelligence that achieves some sort of creative behavior such as artificial art, design,

and game solving. Nevertheless, those methods do not require having the flexible ability,

but only the ability to generate new solutions.

In our work, we propose a new challenge for artificial intelligence machines: Create

a model that solves problems that require divergent thinking ability using images. We

evaluated our model on several affordance tasks, which are tasks that relate to a specific

use, and are solved by generating solutions that allow this use. For example, the Stab task

is a task that is solved by suggesting objects that can be used for stabbing. Legitimate

solutions for this task can be a knife or a needle. We are particularly interested in finding

innovative and creative solutions. For instance, in the Stab task, innovative solutions

can be an umbrella with a sharp tip or a horn of a unicorn.

The affordance term was coined by Gibson in 1986 in [4] and defined as what the

environment provides or furnishes the subject, meaning the uses that a subject affords

according to its visual properties. For example, the knife object affords stabbing, en-

graving, and cutting uses. In our work, we use the affordance term in the opposite

direction. Instead of providing uses that are afforded by a given subject, the task is to

find subjects that afford a given use. In his book, Gibson addresses numerous affordance

types, nevertheless, we focus on the place affordance type that relates to places that

afford a required use, and the objects affordance type that relates to objects that afford

the use.

Our main assumption for solving an affordance task is that the exact visual features

that are needed for a given utilization are unknown. Therefore, it is a difficult task to

label examples as negative, since these examples can be innovative solutions and as we

mentioned, we are especially interested in providing these novel solutions. Therefore, in

our research, we explore approaches that avoid providing negative examples. Further-

more, since the available examples are static images, we can’t be certain that all the

required features for the affordance task appear in a given image, even if it includes

an object that affords the desired use since we don’t know what the required features

are. For example, given an image of a knife with a concealed blade, we can’t be sure

2



1.1. PROBLEM FORMULATION

that it allows stabbing because the blade is an essential condition for stabbing. Those

providing positive examples can also mislead the model. In the results section, we show

that the model which achieved the best results on our affordance tasks, allows us to

avoid providing positive examples as well. This model is the Ballpark model suggested in

[8] and [9] for problems that are not based on visual data. During our work, we adjusted

the model to learn from visual data and utilize its ability to learn from coarse-grained

labels on groups of images to avoid providing labels for the instances. In chapter 4, we

show that this approach achieves the best performance on affordance tasks and seems to

be very effective when the training data contains a lot of misclassified data.

1.1 Problem Formulation

In this work, we are interested in the task of determining if a given image describes a

place or an object that complies with an affordance task. More formally, given an image

x that can be converted into a set of representative visual features, we aim to predict

a binary label y ∈ 0,1, where a positive label indicates that the given image affords the

required use and the negative label indicates that it doesn’t. We use a features extraction

function ϕ(X ) to convert a given image to its representative features.

We assume that we have a set of available examples X = {x1, ..., xn}, Where xi has a

corresponding binary label yi.

One reasonable approach to avoid negative examples is to learn only by using posi-

tive data. As we explained previously, these positive data may include instances with

missing features that are essential for determining if the instance is positive. Those we

are assuming that the positive examples include an unknown amount of misclassified

examples. The learning approach that allows learning only from positive examples is the

one-class classification approach. To solve our problem using this approach, we use the

examples labeled as positive from the dataset. In this setting, our available examples

are D = {(x1,1), ..., (xn,1), where there is an unknown amount of instances in D that are

negative. In our research, we assumed that the amount of misclassified instances in

the training data is negligible and we implemented the one-class classification model

proposed in [12] to analyze the approach on our task. While achieving fair results on

standard one-class classification tasks, such as anomaly detection tasks, the model does

not yield good results when testing on our affordance tasks as we show in chapter 4.

Another possible approach to avoid negative examples during the training is the

Positive Unlabeled [PU] learning approach that uses positive and unlabeled data to learn

3



CHAPTER 1. INTRODUCTION

to distinguish between positive and negative instances. In this setting, our available

examples are D = {(x1,1), ..., (xn,1), xn+1, ..., xn+k, where there is an unknown amount of

positive instances in D that are negative, and xn+1, ..., xn+k are all the instances which

their classification is uncertain and therefore their labels are unknown. To learn from

these unlabeled data the PU learning methods require making assumptions on the

distribution of the data or on the probability to select positive examples to be labeled

from all the positive examples in the training dataset. In our work, we avoided making

assumptions on the data distributions, since it may restrict the creative space of our

model. Hence, we did not investigate PU-learning methods on our problem.

The last approach we examine is a weakly supervised learning approach. The ap-

proach allows us to avoid labeling negative examples as well as overcome the problem of

providing misclassified positive examples to our model. Instead, it provides only some

coarse-grained labels on groups of instances. The motivation of using this knowledge to

train a model derives from the fact that we have some intuition about the compliance of

objects or places with an affordance task, and we can use it to determine coarse-grained

labels on classes instead of labeling the individuals. For example, given a random image

from a set of knives images, we can assume in a high probability that the image describes

an item that allows the stabbing use. On the opposite side, a random image from a set of

pillows images will probably not allow stabbing. Furthermore, we can also assume that

images from the knife set are probably more suitable for stabbing than the images from

the pillows set.

In this setting, the labels of the examples are unknown D = {(x1, y∗1 ), ..., (xn, y∗n). To

use this approach for our settings, we assume that we are given a division of the

instances into bags according to the content of the images and a set of constraints on

the positive labeling proportion in each bag. Formally, we are given the set of bags

B = {B1,B2, ...,BK }, Bi ⊆ X that defines a division on the instances in D according to

the content of the images. Let p : B −→R the positive labeling proportion function, where

p(Bi) is the positive labeling proportion in bag Bi. In our problem, we don’t know p and

instead, we are given a set of constraints on the values that p outputs for each bag. Our

goal is to use the set of constraints S on the instances in D to train a model to predict the

individual labels that relate to the compliance of the individuals with an affordance task.

4



1.2. CONTRIBUTIONS AND OUTLINE

1.2 Contributions and Outline

Our Contribution in this study is as follows:

I) We defined a new problem in computer vision and constructed datasets to evaluate it.

II) We proposed two reasonable approaches to handle this new problem and analyzed

the performance of each approach by adjusting existing methods, one for each approach.

III) We adapted the Ballpark framework to visual object recognition from images, where

bags are defined by auxiliary class labels. Beneficially, bag constraints are obtained

from common perceptions about objects, replacing the laborious annotation of individual

images.

IV) Adapted two evaluation paradigms to evaluate divergent thinking. V) Investigated

and demonstrated the good performance of the Ballpark model as compared to the SVM

method when learning from misclassified data.
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2
REALTED WORK & BACKGROUND

In this chapter, we give a solid background of the topics discussed throughout our

work. We survey extensively the different approaches we examined for solving

divergent thinking problems. For each approach, we present a related work we

adjusted to solve our problem.

2.1 Background - Transfer Learning

Transfer learning is a machine learning problem that utilizes knowledge learned while

solving one task in learning a new different but related task. This approach is motivated

by the fact that humans can intelligently apply previously-learned knowledge to solve

new problems. This methodology is significantly useful when there is no sufficient

training data or the training is time-consuming. The survey in [11] presents three

types of transfer learning categories transductive, inductive, and unsupervised transfer
learning. All these categories transfer knowledge from a source task to a target task and

differ by the label-setting of the source and the target datasets. In this work, we focus

on inductive transfer learning that assumes that both the labels of the source and the

target domains are available. The formal definition of inductive transfer learning is:

Given a source domain DS and a source learning task TS, a target domain DT and a

target learning task TT , inductive transfer learning aims to improve the learning of the

target predictive function fT (·) in DT using the knowledge in DS and TS, where TS 6=TT .

In this type of learning, we assume that a lot of labeled data from the source domain

7



CHAPTER 2. REALTED WORK & BACKGROUND

is available, thus we can train a model for solving a source task and then transfer the

learned knowledge to learn the target task. The survey also presents four transferred

knowledge types. In this work, only the feature representation type is relevant. The idea

of transferring this type of knowledge is to learn a good feature representation for the

source task, and then transfer this knowledge to the target task. In neural networks, the

learned features are transferred by copying the learned weights of some of the layers in

the source neural network into the matching layers in the target neural network, that

learn the target task.

There are two common approaches to use the transferred features in the target task.

The first is to fine-tuned the learned features according to the target task, meaning

backpropagate the errors from the target task into the transferred features. The second

is to leave the transferred feature layers frozen, meaning that they do not change during

the training of the target task. When the target dataset is very small and the number of

parameters in the target network is large, fine-tuning may result in overfitting. Therefore,

in this case, it is better to leave the transferred features frozen. On the other hand, if

the target dataset is large enough, the model will not overfit and we can fine-tune the

transferred features as well.

In the field of image classification it is common to use pre-trained CNN models

as source networks, such as VGG16 [14] or ResNet50 [7] that are already trained on

the ImageNet [3] dataset, that is a large annotated dataset of images. These models

were built from scratch and trained by using supercomputers over millions of images

consisting of many image categories. Hence, they possess a good feature representation

in their deep layers. This representation can be repurposed and utilized for different

computer vision problems with different images and new classes.

2.2 Background - Support Vector Machine (SVM)

The Support Vector Machine model, proposed by Vapnik et al. in 1995 [2], is a supervised

machine learning algorithm that aims to learn linear predictors in high dimensional

features space. The method’s objective is to find a hyperplane with a maximal margin

that separates the training data points into two classes.

Formally, a hyperplane defined by the set L = {v : 〈w,v〉 + b = 0} where the two

parameters (w,b) are the hyperplane parameters. Given a point x, the distance of x from

L is defined by d(x,L)= min{‖x−v‖ : v ∈ L}, and if ‖w‖ = 1 it sustains d(x,L)= |〈w, x〉+b|.
Let S = (x1, y1), ..., (xm, ym) be a training set of examples, where xi ∈Rd and yi ∈ {±1}.

8
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A separating hyperplane that separates the data into two classes, is defined by (w,b)

s.t ∀i, yi(〈w, xi〉+b)> 0 and the margin of this hyperplane defined to be the distance to

the closest point, meaning mini|〈w, xi〉+b|. We can formulate the problem using the

optimization problem formalism that is also called the Hard-SVM rule:

argmax(w,b):‖w‖=1mini∈[m]|〈w, xi〉+b| s.t ∀i, yi(〈w, xi〉+b)> 0

Whenever there is a solution to the preceding problem, an equivalent formulation is to

solve:

(w0,b0)= argmin(w,b)‖w‖2 s.t ∀i, yi(〈w, xi〉+b)> 1

ŵ = w0
‖w0‖ , b̂ = b0

‖w0‖ are the parameters of a separating hyperplane with the largest margin

according to the Hard-SVM rule. As developed in the book [13], if the training set is

not linearly separable, we can relax the constraints of the Hard-SVM rule and yield the

following optimization problem:

argminw,b,ξ(λ‖w‖2 + 1
m

m∑
i=1

ξi) s.t ∀i, yi(〈w, xi〉+b)> 1−ξi and ξi ≥ 0

This relaxed version is called Soft-SVM and can be written as the following regularized

loss minimization problem:

minw,b(λ‖w‖2 +Lhinge
S ((w,b))

where Lhinge
S ((w,b)(x, y))= max{0,1− yi(〈w, xi〉+b)}.

As explained in [13], one of the major advantages of the SVM models is the low sample

complexity, meaning these models can achieve a fair result using a small training dataset.

Generally, the sample complexity of algorithms that learn separating hyperplanes in

Rd grows with the value of d, that is the VC-dimension of these algorithms. From the

fundamental theorem of learning it follows that if the size of the training dataset is

significantly smaller than d/ε, no algorithm can learn an ε-accurate halfspace. In contrast,

as proved in [13], if the data is separable, the sample complexity of both Hard SVM and

Soft SVM algorithms depends on ρ2B2, where ρ is the norm of the examples, and B is

the norm of the halfspace. In the non-separable case, the sample complexity of these

models also depends on the minimum hinge loss of all halfspaces with a norm greater or

equal to B. This becomes significantly helpful when we learn in high dimensional feature

spaces, namely d >> ρ2B2, since it allows the model to learn from smaller datasets. The

second advantage is that the problem formulations for both SVM versions are convex

and therefore have an optimal solution. We recall that using hinge loss in soft SVM

comes with a penalty of high sensitivity to outliers.
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2.3 Background - One Class Classification

One class classification is a classical machine learning problem that tries to recognize

instances of the specific concept among all instances by primarily learning from training

data that only contains instances of the same concept. During inference, the classifier’s

goal is to distinguish among instances that belong to the known concept and those

that are not. It is notable that one class classification problem is different from binary

classification problems due to the absence of negative instances, namely instances that

are not from the known concept. There are many real-world one-class classification

applications, for example, outlier detection, anomaly detection, and novelty detection.

Several different approaches have been proposed to solve this problem in the literature.

One popular approach estimates parametric generative models by assuming distribution

such as Gaussian distribution [10]. This approach, for example, was used in the work

of Kemmler [10] which estimates the conditional density of the distribution of the

concept class using Gaussian priors. The methods that use this approach work best

when many samples are present. Since in the divergent thinking problems we usually

have a relatively small amount of positive examples, this approach is less preferable.

Another approach is to separate the one-class data from the out-of-class data using

boundary methods. One of the methods that uses this approach is the Support Vector

Data Description (SVDD) algorithm that separates one-class data from the rest of the

data using a spherical separation plane [15]. Another method that uses this approach is

a deep-learning-based method [12] and is described in more detail in section 2.3.

Related Work - Deep One Class Classification

The goal of the Deep One Class classification algorithm presented in paper [12], is to

create a model that produces feature representations to the data points with the intention

that these features vectors will be separable in the feature space. In other words, the

desired feature space should sustain the property that the distance between data points

that belong to the one-class data will be closer than their distance to out-of-class data

points in the feature space. To be able to do that, the method maintains two properties,

which are the descriptiveness, and the compactness properties. The descriptiveness

property allows the model to distinguish between classes and is gained by initially

training the model to classify some reference dataset. In the second stage, the model will

learn the compactness property, which learns to produces similar features for instances

from the one-class, while continuing the maintenance of the descriptiveness property.
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2.3. BACKGROUND - ONE CLASS CLASSIFICATION

In this work, instead of initially training the model on the classification task, they used

a pre-trained model on the ImageNet dataset and used the ImageNet dataset as the

reference dataset. For example, this network can be VGG16 network that is commonly

used for transferring features representations in computer vision. To guarantee these

descriptiveness and compactness abilities, the method maintains two losses during the

training - The descriptiveness loss that is the cross-entropy loss with respect to the

reference dataset, and the compactness loss that is the averaged similarity between the

samples in a batch of the one-class data, which is called in the paper target data. More

formally, let X = {x1, ..., xn} ∈Rn×k be a batch of target data. The distance between a given

sample and the rest of the samples in a batch can be defined as:

zi = xi −mi

where, mi = 1
n−1

∑
j 6=i x j is the mean of the rest of the samples. The compact loss term is:

lC = 1
nk

n∑
i=1

zT
i zi

In the training phase, the model consists of two similar CNNs. The first network is the

Reference network which is a pre-trained network on the reference dataset. The second

network is the Secondary network which is identical to the reference network except of

the last fully connected layer that doesn’t exist in this network. The weights of these two

networks are tied across each corresponding counterpart forcing them to be identical.

At each training iteration, two batches of images are simultaneously fed into the

model. The first batch consists of data from the reference dataset. This batch is fed into

the reference network, and descriptiveness loss is calculated according to the output

of the model. The second batch consists of target data samples that are fed into the

secondary network, and from its output, the model calculates compactness loss. Let r be

a reference batch and t be a target batch, the loss of the network is defined as:

l(r, t)= lD(r|W)+λlC(t|W)

where λ is a constant, lD is the descriptiveness loss and lC is the compactness loss. By

minimizing the descriptiveness loss, the learned features obtain the ability to describe

different concepts concerning the reference dataset. By minimizing the compactness loss,

the learned features of the target class are getting more compact in the feature space.

The weight λ determines the mutual importance of these properties.

In inference, only the secondary network with the learned weights is used, and it

involves two phases. The first phase aims to create a set of templates that represents
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the target data. It is achieved by drawing a small set of samples from the target data

t = {t1, ..., tn}, inserting them into the secondary network, and then extracting for each

sample a feature representation vector. Those n features vectors {g(t1), ..., g(tn)} are

stored as templates and used in the second phase, which measures the distance of a

given input from the other templates in order to classify the input. The classification

algorithm used for the second phase is a simple k-nearest neighbor classifier. When a

given input image y is given, a corresponding feature vector is calculated by inserting

y into the Secondary network. Then using the k-nearest neighbor classifier and the n

template from the first phase, the algorithm calculates a matching score:

Sy = f (g(y)|g(t1), ..., g(tn))

where f is the matching function of the classification algorithm. The classification of the

image is determined according to this matching score.

2.4 Background - Positive Unlabeled Learning (PU
Learning)

Positive-Unlabeled learning is another approach to learning to distinguish between

positive and negative examples without providing negative examples. During the training

phase, the model receives only positive and unlabeled instances. The fundamental

assumption of this method is that the unlabeled data can contain both positive and

negative examples. This approach is different from the one-class classification approach

in that it explicitly incorporates unlabeled data into the learning process, instead of

considering only positive examples. The key to this approach is the labeling mechanism
described in the survey [1]. The mechanism suggests that the labeled positive examples

are selected from the complete set of positive examples according to a labeled probability

and presents the labeled distribution as a biased version of the positive distribution.

According to [1], there are two options to explain why an example is unlabeled. The

first option is that the example is truly negative and the second is that it is positive, but

simply was not selected by the labeling mechanism to have its label observed. Therefore,

PU learning methods make assumptions about either the labeling mechanism, the class

distributions in the data, or both. In our work, we would like to avoid assumptions on

the data distributions, because it may limit the creative space of our method. Therefore,

we decided to focus on the one-class classification and the weakly supervised learning

approaches.

12
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2.5 Background - Weakly Supervised Learning

Supervised learning is a machine learning task that maps input to an output based on a

large number of training examples. In many tasks, it can be difficult to achieve a strong

and large enough training dataset due to the high cost of the data-labeling procedure.

Furthermore, in some problems, such as our creative thinking problem, the labeling task

can be even more difficult since the classification of some examples can be uncertain

or ambiguous. The cases where the available correctly labeled data is not enough for

learning is known as weakly supervised learning .

The paper [18] presented three main weakly supervised types: the first type is semi-
supervised learning that uses only a (usually small) subset of labeled data for training

and the other data remain unlabeled. Formally, the task is to learn f : X −→Y from a

training data set D = {(x1, y1), ..., (xL, yL), xL+1, ..., xL+N } with L labeled examples and N

unlabeled examples. This may arise when the labeled data is not big enough, for example,

because the labeled data is collected by human annotators and thus is expensive. The

second type is learning from noisy labels that as in the case when the labeled data

includes mistakes. For example, when it is collected by human annotators that are

careless or weary, or some images are difficult to categorize. The third type is learning
from coarse-grained supervision that uses only coarse-grained labeled data in training.

This situation can occur for example when labeling each instance is a difficult task,

but we have some intuition about groups of instances, and we can use it to create a

course-grained prior for the model training.

In this work we explore the Ballpark learning method presented in [8] and [9] for

statistical data. The method learns from coarse-grained supervision and provides a

solution to the weakly supervised problem described in section 2.5. In this work, we will

also demonstrate the method’s good performance when learning from misclassified data.

Background: The Ballpark Problem

A weakly supervised problem is presented in the papers [8] and [9] and uses prior

knowledge about groups of instances in order to train a linear classification or regression

model. Formally, consider XN = {x1, x2, ..., xN } a set of N instances with corresponding

unknown labels y∗1 , y∗2 , ..., y∗N ∈Y . Where Y is the label space that can be either discrete

or continuous. In addition, we could be given a set of L ≥ 0 labeled training instances

XN = {x1, x2, ..., xL} with a known binary labels y1, y2, ..., yL ∈Y , such that N >> L. Also,

13
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we are given a set of K subsets of X = XN ∪ XL, which we call bags:

B = {B1,B2, ...,BK }, Bi ⊆ X .

The bags in B may overlap and do not necessarily cover all the training instances in

XN . The task is to learn a function f (x) = wTϕ(x) that predicts the individual labels

by utilizing prior knowledge associated with the labels within the bags. where ϕ(·) is a

feature map that outputs a feature vector for a given instance (To simplify the notation

bias term b, we assuming that a vector 1N+L is appended to the features ϕ(x)). For

example, such prior knowledge can be coarse bounds on the positive and negative labels

proportion in a certain bag. The truth labels proportion is assumed to be unknown.

In order to solve the problem, the papers [8] and [9] formulated it as an optimization

problem. In chapter 3 we formulate our problem as a Ballpark problem and adjust the

models proposed in those papers to our needs.
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OUR METHOD

Usually, we have some intuition about whether visual classes can fulfill a certain

task. For example, given an image of a knife, we can assume with a high

probability that one can stab with that knife without even seeing the specific

image. Similarly, given an image of a pillow, we can assume that the probability of

stabbing with it is very low. This intuition motivates us to use the Ballpark learning
approach. Instead of providing to our model labeled instances, which would require

laborious labeling of individual images from each class, we can provide to the model some

coarse, intuitive constraints on all the images of objects from a certain visual class. Then,

the Ballpark model will learn the visual properties that are relevant for the desired task

by itself.

3.1 Input preparation

The Ballpark learning method is designed to solve the problem described in section 2.5

and has been analyzed on statistical data for weakly supervised tasks. In order to use

the algorithm on image data, we needed to find a way to encode the relevant features

of an image in a representation vector, as it did for the statistical data in the Ballpark

framework. In this work, we used the transfer learning approach and extracted the

feature representative of an image from a pre-trained deep neural network model.

As explained in section 1.1, the prior knowledge we used in our work is associated

with the labels of groups of instances which we called bags. In our experiments, we used
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as the training bags, the classes provided in standard benchmark datasets. We called

these classes auxiliary classes since they are determined according to the images’ content,

without considering the task. The prior knowledge is coarse and intuitive constraints

relate to the possibility that the bags’ instances comply with the task. By using these

constraints and the training dataset, our model will learn to distinguish between positive

examples that comply with the task and negative examples that do not.

3.2 Solving the Ballpark Model for Divergent
Thinking Problems

The Ballpark technique includes two methodologies. The first methodology is a binary

classification framework described in paper [8] and the second is the regression frame-

work described in paper [9]. In our work, we chose to extensively analyze the Ballpark

regression framework, since it can be formalized and solved as a convex optimization

problem and therefore has one global optimal solution. In addition, as explained in [9]

the training procedure of the Ballpark classification framework is much slower than the

Ballpark regression framework. Since the Ballpark regression model outputs for a given

input a number in R, we consider this number as the compliance score of that image

for a given task. Meaning the score indicates how much the content of the given image

complies with the given task.

In this work, we consider two types of compliance scores. The first type is the instance
compliance score that relates to the possibility that a single instance is compliant with a

task. The second is the bag compliance score that is the averaged compliance scores of

the bags’ instances and relates to the possibility that its instance will comply with a task.

A high compliance score of an instance indicates that the instance significantly complies

with the task, and a high compliance score of a bag implies that the bag’s instances are

likely to be compliant with the task. For example, in the "stabbing" affordance task, the

bag of knives should receive a high compliance score, while the bag of pillows should

possibly get a lower score.

Formally, the task is to find f : ϕ(X ) −→ Y where X is the images space, ϕ(·) is a

features map that maps the images into features vectors, and Y = [0,1] is the compliance

scores space of the instances. As previously explained, the prior knowledge we use for the

Ballpark model training in the divergent thinking problems is a set of coarse constraints

on the compliance scores of the training bags. Meaning for each training bag Bi we
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provide constraints that relate to the scores average of its instances ȳi =
∑

j∈Bi y∗j
|Bi | , where

y∗j is the unknown compliance score of the j-th instance of the bag.

We allowed two types of constraints. The first type is the Lower and upper bounds on a

bag proportion, namely l i ≤ ȳi ≤ ui and the second type is the Differences constraint that

relates to the difference between the proportions of two different bags and determines

lower and upper bound on this difference, meaning l i j ≤ ȳi − ȳj ≤ ui j.

As in the Ballpark framework, we can use the prior knowledge to reveal the individual

scores by formalizing the problem as a convex optimization task. Let y∗ ∈ Y N be the

vector of the unknown scores and y ∈ Y L be the vector of the known scores. Let R be

the subset of B, to which we have lower and or upper bounds. Let D be a set of tuples

(Bi1 ,Bi2) ∈ B×B, to which we have Differences bounds. The ballpark regression method

formulates the following convex optimization problem:

argminy∗∈Y N ,w
1
2

wTw+ CN

N

N∑
i=1

‖y∗i −wTϕ(xi)‖2
2 +

CL

L

N+L∑
j=1

‖yj −wTϕ(x j)‖2
2(3.1)

subject to lk ≤ ˆ̄yk ≤ uk ∀{k : Bk ∈R},

lk12 ≤ ˆ̄yk1 − ˆ̄yk2 ≤ uk12 ∀{k1 6= k2 : (Bk1 ,Bk2) ∈D},

0≤ ˆ̄yk ≤ 1 ∀{k : Bk ∈B}.

where CN and CL are cost hyper-parameters and control the weights given to the

unknown and constrained scores and the known scores respectively. ˆ̄yk is the unknown

compliance score of bag Bk

In figure 2, we summarize the scheme for training a Ballpark model to solve divergent

thinking problems. First, the user should find a training dataset, split it into bags

logically, and set intuitive constraints on the compliance scores of the bags. In addition,

the user needs to select a good feature extraction method for the representation of the

images; then, train the model by solving the Ballpark optimization problem according

to formula 3.1. The stages are independent and can be replaced or changed separately

for the specific need. For example, suppose we would like to predict whether one can

stab with an object or not. We can select several classes with objects that we have

some intuition about the possibility they allowed stabbing. For example, let’s consider

the Knives and Pillows bags. For each of these classes, we can estimate coarsely the

possibility that it affords the Stabbing task and according to this estimation, we can

provide constraints to our model. The constraints for our task may include a low upper

bound for the bag of Pillows and a high lower bound for the bag of Knives. We may also
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Figure 3.1: Summary of the Ballpark’s training procedure. In the first three steps, we
prepare the input for training by splitting the training instances into bags, determining
constraints on these bags, and selecting a good features extraction method for the
representation of the images. Then, we solve the Ballpark optimization problem on these
training data according to the constraints. The model outputs a vector of weights that
determine which features are important for the required task.

include a difference constraint between the scores of the Knives’ bag and the Pillows’ bag

with a lower bound greater than zero.

3.3 Iterative Labeling Procedure

Determining constraints without knowing well the instances of a dataset, can be some-

times difficult, and it even becomes harder when the dataset contains a lot of classes.

In order to mitigate this difficulty, we present an iterative labeling procedure that can

be used to adjust and fix the model to the specific task. The procedure’s idea is to add

new relevant constraints on new bags according to the current mistakes of the model.

We consider as bag mistake of a model, a bag compliance score that is not suitable to the

user intuition, meaning scores that are too low or too high, or mistakes in the ranking

order of classes. For example, if the task is to find a tool that is stab-able, the Knives

class should get a compliance score that is higher than 0.5 and also is higher than the

Pillow class. If the model returns a compliance score that is not in accordance with this

intuition, the user can add new constraints that will force the model to consider this

intuition too.

The procedure includes three stages, the first stage is to train the model according

to initial coarse constraints on a small number of bags, the second stage is to run the

model on the rest of the unconstrained bags and find scores mistakes. The last stage

is to examine those mistakes in order to add new constraints to improve the model

performance. We name this procedure an iterative labeling step, and it can be repeated
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to create enough constraints for the training dataset. In the result chapter, we showed

that we successfully improve our model’s results using this mechanism.

19





C
H

A
P

T
E

R

4
EXPERIMENTS AND RESULTS

In the preceding chapters, we presented two different approaches we examined

for solving divergent thinking tasks. The first approach is the one class classifi-

cation approach that uses positive examples to train a model to classify between

images that affords an affordance task, and images that do not. The second approach

is the weakly supervised learning approach that uses labels associated with a group

of instances, instead of using the labels of the individuals. In this chapter, we exten-

sively analyze the adjusted Ballpark model, which is based on the weakly supervised

learning approach, and show its superiority on several different affordance tasks. For

our convenience, in this chapter, the name Ballpark model is related to the adjusted

Ballpark version and not the original ballpark model. In the first part of this chapter,

we evaluated our model numerically and compared its results to baselines and to the

one-class classification model we adjusted to our problem. In the second part of this

chapter, we showed the results of a user study we conducted to evaluate different aspects

of the divergent thinking ability of the Ballpark model.

4.1 Methodology

Divergent thinking tasks

As we described in the introduction chapter, in our research we focus on divergent

thinking tasks in the area of affordances and analyzed our model on two types of
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affordances problems. The first type is a places affordance problem, that deals with what

a place can afford. A place can contain different objects and describe a specific view

within some location. To solve this type of problem, the model should determine whether

one can do something in a place described a given image, for example determine if a

place affords concealment, namely if it is a hiding place. The second problem is the object

affordance problem, that is a problem that focuses on a specific object, and the model

should determine if one can use an object in a given image for a specific purpose. During

this work we examined a number of affordance tasks.

The places affordance problems we examined are:

• Dine problem - Determine whether a given scene image represents a place that one

can dine in conveniently.

• Shopping problem - Determine whether a scene image represents a place that one

can find something to buy.

• Architecture for tourism problem - Determine whether a scene image represents a

recommended urban place for tourism.

The object affordance problems we examined are:

• Stabbing problem - Determine whether one can stab with some object in an image.

• Flowerpot problem - Determine whether one can use some object in an image as a

flowerpot.

Data

In this chapter, we evaluate our model on several divergent thinking tasks that are

divided into two types of affordance problems - places and objects. In this work, we use

scene images to represent a place, an image of a centered object on a plain background to

represent an object. The dataset we use in this work are based on the following datasets,

which are all already divided into classes according to the content of the images:

• ADE20K dataset [16] [17] - Includes 20,210 scene-centric color images in the

training set and 2,000 images in the validation set. The dataset’s images are

split into 719 scene classes, and fully annotated with objects. In our experiments

we merged the training and the validation set into one dataset by merging the

instances of the same class from both datasets to one class and used the scene

labels of the images as the model’s auxiliary classes. The instances of this dataset

were split according to the scene labels. The number of images in each scene varied

from several to thousands.
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• Object-centered datasets collected from Google images - We collected different

datasets for both the Stab and the Flowerpot problems in the following way. First,

we selects a number of objects for each problem that we had some intuition on the

possibility to use them in the required task. Then, we crawled in Google images

using a keywords, in order to collect instances for each object. The instances in this

dataset split according to the object types, and each object type contains 100-200

images. In this dataset the images usually contained a centered object on a plain

background.

• ImageNet validation dataset - standard benchmarks for image classification, in-

cludes 50,000 color images, with 1,000 classes and 50 images per class.

• Caltech256 dataset [3] - standard benchmarks for image classification, includes

30,607 images that are split into 257 categories, each category includes 80−827

images.

All the training datasets that were used in this work were created in the following

procedure. First, we selected a suitable dataset according to the task type, then from

the dataset, we selected classes which we have some intuition about their compliance,

and according to this intuition, we determined training constraints. In addition, based

on the training datasets, we created a corresponding binary labeled training dataset by

manually labeling all the instances of each training bag. We used these datasets to train

some of our baselines. The training datasets we used for the places affordances tasks -

the Dine, the Shop, and the Architecture tasks, were based on the ADE20K dataset, and

the training datasets of the Stab and the Flowerpot affordance tasks were based on the

Object-centered dataset.

Some of our evaluations are based on test datasets, therefore we created for each

affordance task a different test dataset, that we labeled according to the task. To collect

the test datasets for the place affordance tasks we removed all the constraints bags from

the ADE20K dataset, and then for each remaining bag, we sampled five random images

and labeled them accordingly. For the Stab affordance task, we selected 10 classes of

objects from the Caltech256 dataset and labeled all their instances, and for the Flowerpot

affordance task, we collected instances of 15 new classes in the same way we collected the

Object-Centered datasets from Google images. It it noteworthy that We found it difficult

to label the data according to the Architecture task and therefore we didn’t evaluate the

Architecture task numerically, but only analyzed its results in the second evaluation

scheme that is based on the results of a user study.
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The full constrained classes we use to train our models are described in table A.1.

We also describe the size of each training dataset in table A.2, and the size of each test

dataset in table A.3.

As we explained previously, some of our experiments are based on the result of a

user study we conducted during our research. To collect examples for the user study, we

also selected exploration datasets for the Shop, Architecture, and Stab tasks. We wanted

to ensure that the user study’s examples will include creative examples that are also

possible to classify according to an affordance task, therefore we looked for exploration

datasets that include a lot of classes as well as a lot of images. For the Shop and the

Architecture tasks, we used the ADE20K dataset without the constrained bags, and for

the Stab task, we used the ImageNet dataset.

Constraints’ creation

In most of the experiments in our work, we used intuitive constraints of lower and upper

bounds, which we determined from general knowledge about objects and without seeing

the images inside the constrained bags, thus the bounds are very coarse. In addition, for

each set of task’s constraints, we also added Differences constraints by calculating them

automatically from the intuitive lower and upper bounds. The constraints are displayed

in the Appendix in Table A.1.

Baselines

As of today, there is no other method that solves the divergent thinking problem of

images, thus we compare our results to the results of the following baseline models:

• Polar support vector machines [PSVM] - A possible way to solve our problem is

by selecting the Ballpark’s bags with upper and lower constraints and using their

instances as the positive and negative examples for training a standard SVM model.

Let pl , ph ∈ [0,1] be two hyper parameters of the polar SVM model and denote the

model by PSV Mpl ,ph . We used those two parameters to divide the task’s training

bags into positive and negative bags. The bags with lower bound that is equal

or above 1− pl were considered positive, and the bags with upper bound that is

equal or under ph will be considered negative. We ignored the remaining bags that

don’t fulfill these conditions. We considered all the instances of the positive bags as

positive examples, and all the instances of the negative bags as negative examples

and used them to train a standard SVM model.
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• Supervised support vector machines [SSVM] - We evaluated the standard SVM

model with different numbers of ground truth labels, in order to see how many

labeled examples are needed to obtain results comparable to our method. The train-

ing dataset of these models is based on the binary training dataset we described

previously.

• Deep one class classification [DOC] - This model that is based on the one-class

classification approach, was introduced extensively in the background chapter.

We compare our model performances to the performances of this model on our

affordance tasks to see which approach is better for our problem. The DOC model’s

training requires two types of datasets, the Reference dataset, and the Target

dataset. In our experiments, we used the ImageNet dataset as the Reference

dataset, and for each task, we selected all the positive examples from the corre-

sponding binary training dataset as the Target dataset. In addition, as the feature

extraction method, that the DOC model also required, we used the same feature

extraction method we used for the corresponding Ballpark model - a pre-trained

neural network on the ImageNet dataset. The specific neural network architecture

will be specified in the experiment setting. The training parameters of the models

are the same as those used in the experiments in paper [12].

It is noteworthy, that the first two of our baselines are based on the SVM algorithm,

which was explained extensively in the background chapter. Our motivation for using

this algorithm came from the fact that the SVM algorithm’s sample complexity doesn‚Äôt

depend on the dimension of the features space, as explained in the background chapter,

and therefore is preferable when learning a halfspace separator in high dimension

features space with a small training dataset.

4.2 Experimental Protocol

In the next section, we analyze the performance of our model for different affordance

tasks. In most of the experiments, if not specified otherwise, in order to train a Ballpark

model, we used the training dataset and its corresponding constraint set that are

described in the methodology section. In addition, if not specified differently, we used a

pre-trained Resnet50 architecture trained on the ImageNet dataset for extracting visual

features from images.
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We adopted two evaluation paradigms - assessment and exploration. In the assess-

ment paradigm, we evaluated our model numerically using the Area Under the ROC

Curve (AUC) score, which provides an aggregate measure of performance across all

possible classification thresholds. To evaluate the models numerically, for each task

in addition to the constraints set, we created a test dataset with binary labels. Since

the constraints and the test data were created by the same creator, we considered the

evaluation scores achieved in this paradigm as scores that relate to the success of the

model on the user’s divergent thinking, namely divergent thinking that is biased by the

creator, and not related to a general divergent thinking, that represents the opinion of

the majority. For the general divergent thinking evaluation, we used the exploration

paradigm that compares the ranking results of our model to the results of humans by

conducting a user study.

Assessment Protocol

In this evaluation scheme, we compare our model results to baselines. For training

Polar SVM models, we adept the dataset used for training the corresponding Ballpark

model to a binary form according to the procedure described in the Methodology section.

The other baselines train by a designated labeled dataset, which are described also in

the Methodology section. As explained previously, the Polar SVM uses thresholds on

the Ballpark constraints, to split the bags into positive and negative examples. The

best values of these thresholds depend on the specific problem and the specific training

bags, therefore, instead of reporting the results of one pair of thresholds, we report

the averaged results of all the pairs pl , ph ∈ {0.1t : t ∈ {1, ...,6}}. (We ignore pairs that

create training data without positive or negative examples). In addition, to overcome the

randomness of the supervised SVM, which train on random labeled examples, and the

randomness of the DOC method, which uses a random weights initialization, for each of

these models, we repeat each experimental condition five times and report the average

results as well as the standard deviation.

To compare the SVM baselines to our model, it is required that those baselines

output scores instead of binary numbers. Thus, in the inference phase, we don’t use

one threshold to classify an instance. Instead, we use the learned SVM parameters w,b,

where w is the learned weights vector, and b is the learned bias to predict the score of a

given instance by the formula wTϕ(x)+b, where ϕ(·) is a feature representation method.
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Exploration Protocol

The exploration paradigm aimed to analyze the following two divergent thinking abilities:

• Suggesting creative new classes to solve a problem - This is the ability of the model

to find relevant new classes that are likely to be suitable for a given task.

• Suggesting creative new instances to solve a problem - This is the ability of the

model to determine for a given instance if it is suitable to solve the task.

In order to analyze our model on these abilities, we conduct three surveys, one survey for

each of the Architecture, Shop, and Stab tasks. To collect data for the surveys, for each

task we use a trained Ballpark model with the default setting described at the beginning

of this section. We ran these models in their corresponding exploration dataset described

in the Methodology section and achieved compliance scores for all the instances in the

dataset as well as for all the bags in the dataset, by averaging the scores of the instances

of each bag.

Each survey is composed of two parts. The first part aimed to measure the first ability,

which is the ability to suggest creative new classes to solve a problem. We collected

examples for each survey by extracting the 20 classes with the highest compliance score

received by the Ballpark model, which trained on the corresponding task. In addition,

for each survey, we selected 10 random classes from the exploration dataset, that were

not in the former classes and used them as the survey’s distractors.

In the survey, we displayed the names of those 30 classes. Near each of these classes,

we displayed a few random images from the corresponding class and asked the participant

to determine if the class affords the task or not. In the following section, we analyzed

the results of this part by comparing the classes that our model selected to those which

selected in the corresponding survey.

The second part of the surveys aimed to measure the second ability, that is the

ability to suggest creative new instances to solve a problem. This ability is trickier

to measure since it requires a visual examination of instances from an immense size

exploration dataset. Furthermore, examining only the best-scored instances, couldn’t

measure creativity, since the instances are likely to be more similar to the bags that

the model saw in the training phase, and not necessarily creative or diverse enough.

Therefore, instead of analyzing the ability to suggest creative instances among all the

instances in the exploration dataset, we analyzed the ability to suggest creative instances

for a given specific class.
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For the second part of the surveys, we included five sections, each section represents

a different class and consists of 10 images from the class. In each section, we asked the

participants to rank the images according to the task. To ensure that those sections also

include innovative solutions, we selected classes with high variance in the scores that

their instances received by our model. To find the classes with high variance, for each

class in the exploration dataset, we sorted the scores of its instances and found the score

of the fifth instance with the lowest score and the score of the fifth instance with the

highest score. We calculated the difference between these two scores and selected the

10 classes with the highest difference. From these 10 classes, we selected randomly 5

classes for the survey.

When examining the scores that our model gave to the instances of the exploration

datasets, we noticed that when the difference between the instances’ scores is small,

it become harder to determine which instance is better. Therefore, in each section, we

selected from the corresponding class the five images with the highest scores and the

five images with the lowest scores according to our model and displayed them in random

order. We asked the participants to rank them from 1 to 5, according to their compliance

with the task, and expected that the surveys’ participants would determine that the five

best images selected by our model are preferable to the task. In figure 4.3 we demonstrate

the ranking order of 10 images for three different classes each for a different task.

4.3 Results

In the first part of the section, we analyze the Ballpark method performance on the Dine,

Shopping, Stab and Flowerpot tasks, and compare its results to the baselines described

in the methodology section. Afterward, we demonstrate the visual results of our model

that also were used in the surveys we conducted for the user study part, and in addition,

we display the results of an ablation study. In the last part of this section, we analyze

the user study’s results we conducted for the Architecture, Shop, and Stab tasks.

Comparisons to the Baselines

In this section, we evaluate our model and compare its results to the results of the

baselines and the Deep One-Class Classification model[DOC]. The models’ setting and

the experiment datasets were described in section 4.2. The results are shown in Table

28



4.3. RESULTS

4.1. As seen in that table, our model achieved the best results in all the four divergent

thinking problems we checked, without using any ground-truth labels.

PROBLEM BALLPARK PSVM SSVM 100
LABELS

SSVM 300
LABELS

DOC

DINE 0.89 0.85 [0.006] 0.84 [0.04] 0.87 [0.009] 0.71 [0.15]
SHOP 0.92 0.85 [0.011] 0.84 [0.024] 0.85 [0.007] 0.63 [0.034]
STAB 0.92 0.88 [0.013] 0.82 [0.028] 0.79 [0.036] 0.65 [0.012]
FLOWERPOT 0.87 0.84 [0.011] 0.79 [0.051] 0.84 [0.042] 0.57 [0.028]

Table 4.1: The AUC evaluations for the Dine, Shop, Stab and Flowerpot problems. The
PSVM column reports the total average and the standard deviation (in parentheses) of
the set of the Polar SVM models described in section 4.2. The supervised SVM (SSVM)
and the Deep-One-Class Classification (DOC) columns report the average and the stan-
dard deviation (in parentheses) of 5 similar experiments of the corresponding models.

Ballpark with Polar Supervision

In Table 4.1 it is also noticeable that the Polar SVM model which learns from polar

supervision has the best results among the other baselines. Therefore, we also explore

the impact of adding polar supervision to the Ballpark model as well. In the method

chapter, we described the Ballpark algorithm that in addition to the constrained bags’

data, also uses labeled data. Let PSV Mpl ,ph,t be a Polar SVM model that is trained with

polar data according to the threshold pair pl , ph for a task t. Let Ball parkpl ,ph,t be a

Polar Ballpark model that in addition to the data of the constrained bags, is trained

by all the labeled data that is used to train PSV Mpl ,ph,t. In this experiment we chose

all the threshold pairs from pl , ph ∈ {0.1t : t ∈ {1, ...,6}} (We ignored pairs that create

training data without positive or negative examples), and evaluate the models on the

Dine, Shop and Stab tasks. In Figure 4.1 we display the AUC evaluations of the Polar

Ballpark and the corresponding Polar SVM models with different polar bounds, on the

Dine, Shop, Stab, and Flowerpot tasks. We also evaluated a Ballpark model trained with

the same constraints, that are used to train the corresponding Polar Ballpark models

with different polar thresholds, but without any supervision, and displayed its results

with a dashed line. As seen in Figure 4.1, the Ballpark model with and without the polar

labeled data surpassed the Polar SVM results for all the polar thresholds and all the

four tasks. Additionally, it can be noticed that in three out of four evaluated tasks, the

Ballpark model achieved the best results when trained without any labeled data.
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Figure 4.1: Summary of the impact of using polar supervision in the Polar Ballpark
and the Polar SVM models on the Dine, Shop, Stab, and Flowerpot tasks. The labels
of the x-axis are the polar thresholds pair pl , ph, that were used to split the training
data of corresponding Polar Ballpark and Polar SVM models, into positive and negative
instances according to the task’s constraints file. The height of the bars represents the
AUC score of each model. Each pair of Polar Ballpark and Polar SVM models was trained
with the same labeled instances according to the polar threshold, and the Polar Ballpark
model was also trained by the constraints file of the task. We also displayed in a dashed
line a standard Ballpark model that was trained by the task’s constraints file without
any additional labeled data.
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Ballpark with Noise

In this experiment, we analyzed our model performance when learning on a noisy dataset.

We consider a noisy dataset as a dataset whose bags include misclassified examples.

Namely, each constrained bag in the training data, which is represented by some class,

also includes instances that don’t belong to this class. For each task, we prepared several

noisy datasets with different compositions of noise and ground truth data. Each of these

noisy datasets is represented by a parameter p, that is the ratio between the amount

of ground truth and the amount of noisy data in bag B. More specifically, let n be the

number of instances in bag B in the original dataset. The corresponding bag in a noisy

dataset with parameter p contains n×(1+p) instances, where n×p instances are random

instances from the original bag B, and n are randomly sampled instances from other

auxiliary classes. During the experiment, we kept the number of noisy examples in each

training bag constant and increased the number of ground truth examples.

In figure 4.2, We compared the results of our model to the results of the different

Polar SVM models on several noisy datasets with different p values. We evaluated the

models’ AUC performance on noisy datasets with parameters p ∈ {0.2t : t ∈ {0, ...,5}} for

the Dine, Shop, Stab, and Flowerpot tasks. In each experiment, both models were trained

by the same noisy dataset.

As shown in the plots in Figure 4.2, while the Ballpark model is significantly improved

with more additional ground truth data, the Polar SVM model’s performance barely

changed and remained very low.

Iterative Labeling

In this experiment, we demonstrated the iterative labeling procedure described in the

previous chapter on the Shop and the Stab tasks. The procedure required enough bags

for the initial training step and the fixing step afterward; therefore in this experiment

we use the Caltech 256 dataset as the training dataset of the Stab problem. For the Shop

problem, we use the ADE20K dataset as before. The constrained bags in each iterative

labeling step are displayed in Table 4.3 and the results in 4.2. It is noticeable that the

additional constraints improved the model’s AUC score significantly in both tasks.
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Figure 4.2: The impact of noisy training data on the Ballpark and the Polar SVM
models with the different threshold values are described in the methodology section. The
parameter p is the ratio of the ground truth data and the noisy data in each bag.

Demonstration of the Ballpark Model Recommendations

Demonstration of the Ballpark Model Classes Recommendations for
Divergent Thinking Tasks

In Table 4.4 we demonstrated the model classes suggestions for the Shop, Stab, and

Architecture tasks. The results displayed in that table are the 10 highest scoring classes

chosen by our model and were used in the first part of the user study. The procedure

of extracting these suggestions is described extensively in the Experimental protocol

section.
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Problem step 0 step 1

stab 0.86 0.89
shop 0.85 0.90

Table 4.2: The AUC results in each iterative labeling step, for both the Stab and the Shop
tasks.

Problem step 0 step 1

Stab syringe, sword, sushi, spoon, sneaker, joy-
stick

soda can, hourglass, harp, ak47, knife - chop-
sticks, mandolin, pez dispenser, harmonica,
knife

Shop shoe shop, restaurant, bar, pet shop, hat shop,
reception, jewelry shop, supermarket, flea
market, convenience store, street 1000a, fast-
food restaurant, mountain, forest, house, din-
ing room, access road, kitchen, diner

ball pit, movie theater, boxing ring, podium,
nightclub, discotheque, auditorium, catwalk,
conference center, martial arts gym

Table 4.3: The additional constrained bags in each iterative labeling step. When the name
of the bag is a subtraction between bags, it means that the constraint is a Difference
constraint between the two bags. The rows of the table are the tasks names, and the
columns are the procedure steps.

aA smaller bag with 1000 random instances from the original street class

The Ranking Results of the Model in a Class

In Figure 4.3 we demonstrate our model’s ranking results on the Architecture, Shop, and

Stab tasks. For each task, we selected a representative class and displayed for it the 5

best images with the highest model’s scores and the 5 images with the lowest model’s

scores. The images order is determined according to the images’ scoring. The Architecture

task’s results are demonstrated with the Balcony class’s instances, the Shop task with

the Game room’s instances, and the Stab task with the Letter opener’s instances.
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Architecture

Class Examples

donjon

ruin

gatehouse

caravan-
sary

mission

monastery

whispering
gallery

palace

pagoda

moat

Shop

Class Examples

tobacco
shop

delica-
tessen

hardware
store

tea shop

drugstore

bookstore

shopfront

liquor
store

kiosk

video
store

Stab

Class Examples

scabbard

letter
opener

corkscrew

fountain
pen

hatchet

hammer

can
opener

cleaver

revolver

ballpoint

Table 4.4: 10 best images with the highest scores according to the Ballpark model for
the Architecture, Shop and Stab tasks. The images are sorted from the highest scoring
image on the top to the lowest on the bottom. The first column displays the class label
and the second displays two images selected randomly from the corresponding class.
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Shop

Architecture

Stab

Figure 4.3: Demonstrates the results from the second part of the survey for the instances
ranking. For each task we demonstrate the models ranking by one class. For the Archi-
tecture task we use images of the Balcony class, for the Shop task we use images of the
Game room class and for the Stab task we use images of the Letter opener class. For
each class we display the five images with the highest scores and the five images with
the lowest scores sorted order according to the model’s scores. The scores received by the
model are displayed below the corresponding images.
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4.4 Ablation Study

Using Only Differences Constraints

When working on a new dataset, it can be difficult to estimate for each of its classes the

probability that it complies with a given task without knowing the dataset content and

its distribution. A much easier task is to use our intuition about the relation between the

classes and add constraints according to this intuition. For example, it is reasonable to

claim that the needle class is probably more suitable for the Stab task than the umbrella

class. Nevertheless, the umbrella class can include umbrellas with a sharp tip that allows

the stabbing use, and the needle class can describe needles with some cover. Without

knowing the classes’ content, it may be difficult to determine the possibility that each

class is compliant with the task, and the Differences constraints allow us to describe this

knowledge without constraining the classes separately.

In this experiment, we analyzed the ability of the Ballpark model to learn from Differ-

ences constraints without constraining instances or classes separately. It is noteworthy

that the Ballpark model is the only model among those we examine that allows learning

from Difference constraints, therefore we compared the results of this section to the

best results described in Table 4.1. We evaluated our model on two sets of Differences

constraints. The first set is the Differences constraints calculated automatically from the

boundary constraints in table A.1 and the second set is a new intuitive coarse Differences

constraints we built. In Table 4.5 we show that our model roughly achieved the same

results without constraining the bags separately and using only Differences constraints

and still beat the other baselines.

The Impact of Using Different Feature Space

To verify that our model achieves the best results independently from the features space

selected to represent the images, we also evaluated the models on a pre-trained VGG16

model on the ImageNet dataset for the Dine, Shop, Stab, and Flowerpot tasks. We may

notice in Figure 4.4 that our model beat the Polar SVM models and the DOC models for

both the ResNet50 and VGG16 features extraction methods and all the four tasks.
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CONSTRAINTS TYPE DINE SHOP STAB FLOWERPOT

DEFAULT DIFFERENCES 0.88 0.91 0.92 0.87
INTUITIVE DIFFERENCES 0.88 0.92 0.90 0.87
BALLPARK RESULTS IN TABLE 4.1 0.89 0.92 0.92 0.87
BEST BASELINE RESULTS FROM TA-
BLE 4.1

0.87
[0.009]

0.85
[0.011]

0.88
[0.013]

0.84 [0.042]

Table 4.5: The AUC evaluations of the Ballpark model on the Dine, Shop, Stab, and
Flowerpot problems by using only Difference constraints. The first row is the results of the
ballpark model when training only by the Difference constraints calculated automatically
from the bounds constraint in Table A.1. The second row of the table displays the results
of the Ballpark model with the intuitive Difference constraints. The third row is the
Ballpark results from the Table 4.1, and the last row is the best result achieved by the
baseline in Table 4.1. The square brackets indicate that the score in that cell, achieved by
averaging the results of several models, and the number in the brackets is the standard
deviation of these results.

Figure 4.4: Comparisons between the Ballpark, the Polar SVM with the different polar
thresholds, and the DOC models using different features spaces. The plots report the
AUC results of the models on two common features extraction methods. The black lines
are the standard deviation of the Polar SVM and the DOC models. The right plot is the
results of the models when using a ResNet50 architecture, and the second is for the
VGG16 architecture.

37



CHAPTER 4. EXPERIMENTS AND RESULTS

4.5 User Study

In this section, we present the results of the user study which was described extensively

in the Experimental Protocol section. The user study aims to assess the ability of our

model to recommend creative new classes to solve a problem and to assess the ability of

our model to recommend creative new instances to solve a problem from a given class.

The user study includes three surveys, one survey for each of the Shop, the Stab, and the

Architecture tasks. In the Shop survey, we had 13 participants, in the Stab survey we

had 19 participants, and in the Architecture survey, we had 15 participants.

It is noteworthy that we didn’t analyze the correlation between the ranking results

of our model and those of the survey’s participants, since the content of the exploration

dataset not necessarily represents the real world. For example, the Donjon class in our

exploration dataset consists of images of ancient architectures, but in the real world,

this class may also be represented by images of prisons that do not necessarily look like

architecture for tourism. This fact may explain why our model gave the Donjon class the

highest score among the others in the Architecture exploration dataset but in the survey,

this class was scored lower than several classes in the same exploration dataset.

Suggest Creative New Classes to Solve a Problem

In this part, we compared our model recommendations for classes that afford an af-

fordance task to those recommended by the surveys participants. As explained in the

methodology section, for each task we conducted a separate survey and asked the partici-

pant to select all the classes that they think comply with the given task. The classes in

the survey included the 20 best-scored classes according to the model and 10 random

classes that are used as the survey’s distractors. The class’s score according to a survey

is calculated by averaging the number of participants who select the class in the survey.

We interpreted these scores as binary labels by considering a class as positive if at least

50% of the participants chose it in the survey.

In Table 4.6 we evaluated the model results according to the survey results by

considering the binary labels received from the survey as ground truth and calculating

the precision and the recall scores. As shown in that table, the model received a good

recall score meaning almost all the classes selected in the survey as classes that comply

with the tasks were also selected by our model. The only exception is the Escarpment

class selected by the survey participants as a class that complies with the Architecture

task but didn’t select by our model. It is notable that in the survey we explicitly explain
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TASK RECALL PRECISION

SHOP 1 0.85
STAB 1 0.6
ARCHITECTURE 0.95 0.7

Table 4.6: Evaluate the model results using the ground truth labels collected in the
surveys.

SHOP STAB ARCHITECTURE

FALSE NEGATIVE

CLASSES

- - ESCARPMENT

FALSE POSITIVE

CLASSES

SHOPFRONT, STORAGE

ROOM, PACKAGING

PLANT

HAMMER, CAN OPENER,
REVOLVER, RIFLE,
BASSOON, CARPENTER

PLANE, PAINTBRUSH,
SHOVEL

MISSION, MOSQUE, SAC-
RISTY, IMARET, SCRIP-
TORIUM, NUNNERY

Table 4.7: The model mistakes according to the survey. The first row consists of the
classes that were considered as positive in the surveys but were not selected by our
model. The second row displays the classes that our model considered as positive but
weren’t selected in the survey.

to the participants that architectural places don’t include natural places; therefore, this

selection contradicts our guidance.

Nevertheless, the precision scores of our model are lower and vary more between the

tasks. The Shop score received the best precision scores, meaning most of the classes

selected by our model comply with the Shop task according to the survey as well. In

Table 4.7 we display the classes that were selected by our model as positive examples

but didn’t select in the survey. As shown in that table, for the Shop and the Architecture

tasks, most of the classes that our model considered as positive but weren’t selected by

the survey are reasonable selections too. For example, all the places in the Architecture

task are architectural places as well. These results may indicate that the participant

selections involve some subjective opinions, or that the participant didn’t know the places

well.

In the Stab task, our model received the lowest precision score, and in addition, its

mistakes in Table 4.7 sustain our conclusion that our model performance on this task is

not good enough. A possible explanation for this low result is that the ImageNet dataset

doesn’t include enough suitable classes, and therefore these 20 classes suggested by our

model include classes that do not comply with the task.
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To support this assumption, we randomized 100 classes from the ImageNet dataset

and tagged them according to the possibility to stab with them. After examining this

random subset, we found out that almost 50% of its classes are classes of animals and

places and their images mostly described realistic scenes with complex backgrounds. As

explained before, most of the examples that our model trained on include centered objects

with a plain background, therefore the ImageNet examples may not be suitable for the

space that our model learned. Furthermore, in this specific subset, the only classes that

we labeled as suitable were the Bittern and the Dowitcher that are both kinds of birds,

and the Rock-crab that is a kind of a crab. These classes are very creative selections

and differt from the training dataset. In addition, it is noteworthy that the survey’s

distractors include the Ptarmigan class that is also a kind of bird and got an average

score of 0.31, which is not enough for a class to be considered as suitable. This result

may imply that in general birds do not comply with the Stab task.

We concluded that the selection of the ImageNet dataset as an exploration dataset

for the survey is problematic, and it may explain the low results we received for the Stab

task. Overall, the results of the surveys indicate that our model suggests creative new

classes for the divergent thinking tasks, and especially creates fair suggestions for the

place affordance tasks - Shop and Architecture.

It is noteworthy that we decided not to analyze the correlation between the classes’

ranking of our model and the survey’s participants. The main reason is that the datasets

classes may not correlate with reality, and therefore the ranking order according to the

model may not accord with the reality as well. For example, the images in the Donjon

class in the ADE20K dataset contain only outdoor images of old architectural buildings

that seem to be used for tourism rather than imprisonment. This result causes our model

to give the highest rank score to this class, where the survey’s participants, that also

considered donjons as places for imprisonment, ranked this class in a lower place.

Suggest New Instances to Solve a Problem

In the second part of the survey, we displayed ten images for five different classes to the

participants and asked them to score those images according to the possibility that they

comply with the survey’s task. The aim of this part is to analyze the ability of our model

to suggest creative new instances to solve a problem from a given class. To analyze the

survey results, for each image, we averaged the participants’ scores and considered the

average score as the survey score of that image.
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In Figure 4.5 we illustrate the results of three different classes, each class represents

the results of a different survey’s task. Each bar represents a different class’s image,

their position in the x-axis is the score the image received by our model and their height

indicates are the average score they received in the survey. For our convenience, we

colored the five images with the highest model’s scores in blue, and the five images with

the lowest model’s scores in orange. As shown in that plot there is agreement between the

model and participants on the suitability of the best five images. In both the Game room

class and the Balcony class, we see that the five best images selected by our model were

also selected by the participants. In the Letter opener class, there is one disagreement,

but the four best images selected by the participants were also selected by our model.

Figure 4.5: Illustration of the user study’s results for three different classes, each class
evaluate according to different affordance task. The x-axis is the scores that our model
gave to each of the class’s images. The y axis is the participants’ average score for
the corresponding image. The black line in each bar is the standard deviation of the
participants’ scores. The blue bars represent the best images according to the model
ranking, and orange bars represent the images with the lowest scores according to the
model.

Nevertheless, as previously explained in the survey, we evaluated our model on five

different classes. In Figure 4.6 we summaried the results of these five classes for each

survey task. We named the five best-scored images according to the model as positive
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images and the five lowest-scored images according to our model as negative images. For

each class, we averaged the survey’s scores of the positive and the negative examples

separately and displayed them in different bars in the plots. As seen in the figure, for all

the tasks and all the classes the average score received by the positive images are higher

than the score received by the negative images. These results sustain our conclusion that

our model can suggest reasonable instances to solve affordance tasks from a given class.

Figure 4.6: summaries the results of the user study second part. Each plot represents a
different task. For each class we display two bars one for the positive images (that are
the images that received the best model’s scores in the class) and one for the negative
images (The images that received the lowest model’s scores in the class). The height
of the bars indicates the average survey’s scores, and the black lines are the standard
deviation of these scores.
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5
SUMMARY AND CONCLUSIONS

5.1 Summary and Discussion

In this work, we presented a new problem in computer vision - divergent thinking

in visual data. We proposed two approaches to solve the problem, the one-class

classification approach, and the weakly supervised learning approach. We analyze

the performance when using these approaches, by adjusting state-of-the-art methods

to our problem, one for each approach, and analyze their results. One of the adjusted

methods is Ballpark learning that designated to solve problems in statistical data. In

this work, we adjust the Ballpark method to solve problems in images, and analyzed

its performance on divergent thinking problems. In addition, we adapt two evaluation

paradigms that aim to measure different aspects of the divergent thinking properties.

In the results chapter, we demonstrated the supremacy of the Ballpark model in

divergent thinking tasks. We evaluated the model in four different divergent thinking

tasks and compared its results to the results of the baselines, and the DOC model. Our

model’s results surpassed the other models in all four tasks, without using any labeled

data and even when it trained by only differences constraints. We analyzed the impact

of using polar supervision in the Ballpark model in addition to the original constraints,

and we found out that our model exceeded the results of the Polar SVM when both were

exposed to the same polar supervision. This result implies that there is some inherent

knowledge that exists in the constraints, and doesn’t exist or is distorted in the polar

labeled data. Furthermore, in most cases, the Ballpark results are better when no polar
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supervision is in use, which indicates that the polar supervision is redundant when using

constraints and even mislead the models. In addition, we discovered that the Ballpark

model is significantly less sensitive to noise than the Polar SVM model as demonstrated

in Figure 4.2.

We also analyzed the performance of our model with a user study, to evaluate the

model results for general divergent thinking. We showed that the Ballpark model sug-

gestions for new classes and new instances, are reasonable, and mostly represent the

opinion of the majority. When analyzing the user study results, we found that the results

of our model for the place-affordance tasks, namely the Shop and the Architecture tasks,

were better than the results that were achieved for the Stab task. One reasonable cause,

which we strengthened with an additional examination of the data in the user study

section, can be that the Stab exploration dataset is too different from the training dataset

in its visual properties; another possible cause is that the feature representation method

works better on scene images.

One interesting future work is in the field of feature representations for images. The

experimental results of the user study imply that the feature representation method

we use in our work is less effective for object affordances tasks. Therefore we suggest

analyzing the Ballpark model’s selected features to improve the results of our model.

Another interesting work would be to add additional, not visual, features to the image

representation such as encode the objects’ materials and sizes.
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APPENDIX A. APPENDIX

DINE SHOP STAB ARCHITECTURE FLOWERPOT

SHOE SHOP > 0.7
RESTAURANT > 0.7

BAR > 0.5
MOUNTAIN < 0.05

FOREST < 0.05
HOUSE < 0.2

0.1 < KITCHEN < 0.8
ACCESS ROAD < 0.1

PET SHOP < 0.2
0.3 < DINER < 0.95
0.6 < LOBBY < 0.9

BOTANICAL GAR. < 0.2
TENNIS COURT < 0.3
PARKING LOT < 0.2

LANDING < 0.2
VERANDA > 0.5

BALLROOM < 0.2
BAKERY < 0.8
OFFICE > 0.7

0.3 < HOTEL ROO. < 0.9
BEACH < 0.2

0.1 < PATIO <0.9
BOWLING ALL < 0.1

BEER HALL > 0.7
LEGISLATIVE CHA. > 0.7

LAKE <0.1
PARK < 0.3

0.2 < LIBRARY < 0.7
CAFETERIA > 0.7

BEDCHAMBER < 0.5
SACRISTY < 0.5

SHOE SHOP > 0.7
RESTAURANT > 0.2

BAR > 0.5
PET SHOP > 0.6
HAT SHOP > 0.7

RECEPTION > 0.7
JEWELRY SHOP > 0.6
SUPERMARKET > 0.6
FLEA MARKET > 0.7

CONVENIENCE ST. > 0.7
0.5 > STREET 1. > 0.05
FASTFOOD RES.T > 0.6

MOUNTAIN < 0.05
FOREST < 0.05

HOUSE < 0.2
DINING ROOM < 0.2
ACCESS ROAD < 0.4

KITCHEN < 0.2
0.7 > DINER > 0.1
BALLROOM < 0.4

SUBWAY INTER. < 0.2
NEWSSTAND > 0.6
CANDY STORE>0.7

BAKERY > 0.7
BISTRO > 0.6

MARKET > 0.6
MUSIC STORE > 0.6
DRESS SHOP > 0.6

BANK > 0.5
AUDITORIUM < 0.1

HOT TUB < 0.1
BLEACHERS < 0.4
STRIP MALL > 0.7

FOOD COURT > 0.7
POOLROOM < 0.2

MARTIAL ARTS. < 0.2
CHAPEL < 0.2

BANQUET HALL < 0.2
GAS STATION > 0.6

POT < 0.10
BOTTLE < 0.2

0.2 < PENCIL < 0.7
0.6 < SWORD

0.2 < FORK < 0.9
CUP < 0.10
0.8 < KNIFE

0.2 < TWEEZER. < 0.7
BAG < 0.10

0.05 < UMBREL. < 0.8

0.8 < ABBEY < 1.0
0.8 < APSE < 1.0
0.6 < ARCH < 1

0.0 < ATRIUM < 0.2
0.0 < ATTIC < 0.1

0.8 < BASILICA < 1.0
0.1 < BRIDGE < 0.8

0.0 < BUILDING F. < 0.4
0.8 < CASTLE < 1.00
0.8 < CATHED. < 1.0

0.8 < CHAPEL
0.8 < CHURCH < 1.0

0.0 < CITY < 0.4
0.8 < CLOISTER < 1.0
0.0 < CORRIDOR < 0.2
0.5 < COURTHO. < 0.9

0.0 < DINER < 0.1
0.8 < FORTRESS < 1.0

0.8 < GREAT HALL < 1.0
0.0 < HOUSE < 0.1
0.0 < MOTEL < 0.1

BAG < 0.2
0.1 < BARREL < 0.7

BOWL > 0.7
BOX > 0.5

BUCKET > 0.7
CHAIR < 0.2

CUP > 0.6
0.2 < JAR < 0.8

KEYBOARD < 0.1
LADDER < 0.1
PLATE < 0.2

POT > 0.6
RUG < 0.1

SCISSORS< 0.1
SHELF < 0.5
SHIRT < 0.1
SHOE > 0.7

SPOON < 0.2

Table A.1: The bags constraints used for train the models in most of the experiments in
this work. Each model received also differences constraints, calculated from these bags
bounds automatically.

DINE SHOP STAB ARCHITECTURE FLOWERPOT

2071 3721 949 1680 7055

Table A.2: The number of instances in the constraints bags in A.1.

DINE SHOP STAB FLOWERPOT

3174 3754 830 2622

Table A.3: The number of instances in the test dataset in A.1.
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SURVEY POSITIVE CLASSES SURVEY NEGATIVE CLASSES

MODEL POSITIVE CLASSES TOBACCO SHOP, DELI-
CATESSEN, HARDWARE

STORE, TEASHOP, DRUG-
STORE, BOOKSTORE, LIQUOR

STORE, KIOSK, VIDEOSTORE,
PHARMACY, TICKET WINDOW,
BUTCHERS SHOP, GREENGRO-
CERY, CHECKOUT COUNTER,
FISHMARKET, TOYSHOP,
BOOTH

SHOPFRONT, STORAGE ROOM,
PACKAGING PLANT

MODEL NEGATIVE CLASSES HILL, BALCONY, BASEMENT,
BLEACHERS, GAME ROOM,
SLUM, TOWN HOUSE, DRIVE-
WAY, MILITARY TENT, QUAD-
RANGLE

Shop survey results

SURVEY POSITIVE CLASSES SURVEY NEGATIVE CLASSES

MODEL POSITIVE CLASSES SCABBARD, LETTER OPENER,
CORKSCREW, FOUNTAIN

PEN, HATCHET, CLEAVER,
BALLPOINT, CARPENTER’S
KIT, SCREW , PROJECTILE,
SCREWDRIVER, BOW

HAMMER, CAN OPENER, RE-
VOLVER, RIFLE, BASSOON,
CARPENTER PLANE , PAINT-
BRUSH, SHOVEL

MODEL NEGATIVE CLASSES PTARMIGAN, TOY TERRIER,
MINIATURE SCHNAUZER ,
COUGAR, BASSINET, DOGSLED,
HONEYCOMB, MILITARY

UNIFORM, MOSQUE, PADLOCK

Stab survey results

SURVEY POSITIVE CLASSES SURVEY NEGATIVE CLASSES

MODEL POSITIVE CLASSES DONJON, RUIN, GATEHOUSE,
CARAVANSARY, MONASTERY,
WHISPERING GALLERY,
PALACE, PAGODA, MOAT,
TOWER, KASBAH, SYNA-
GOGUE, CATACOMB, PORTICO

MISSION, MOSQUE, SACRISTY,
IMARET, SCRIPTORIUM, NUN-
NERY

MODEL NEGATIVE CLASSES ESCARPMENT GLADE, MEZZANINE, AIR BASE,
RACEWAY, GASWORKS, MINE,
CANTEEN, AUTO RACING PAD-
DOCK, GREENHOUSE

Architecture survey results

Table A.4: The classes division according to the ranking of the model and the surveys’
first part results
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