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ABSTRACT

The generation of synthetic images is currently being dominated by Generative

Adversarial Networks (GANs). Despite their outstanding success in generating

realistic looking images, they still suffer from major drawbacks, including an

unstable and highly sensitive training procedure, mode-collapse and mode-mixture, and

dependency on large training sets. In this work we present a novel non-adversarial

generative method - Clustered Optimization of LAtent space (COLA), which overcomes

some of the limitations of GANs, and outperforms GANs when training data is scarce. In

the full data regime, our method is capable of generating diverse multi-class images with

no supervision, surpassing previous non-adversarial methods in terms of image quality

and diversity. In the small-data regime, where only a small sample of labeled images is

available for training with no access to additional unlabeled data, our results surpass

state-of-the-art GAN models trained on the same amount of data. Finally, when utilizing

our model to augment small datasets, we surpass the state-of-the-art performance in

small-sample classification tasks on challenging datasets, including CIFAR-10, CIFAR-

100, STL-10 and Tiny-ImageNet. A theoretical analysis supporting the essence of the

method is presented.

no need for keywords
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1
INTRODUCTION

Generative image modeling is a long-standing challenge in computer vision. Un-

conditional generative models aim at learning the underlying distribution of

the data using a finite training set, and synthesizing new samples from the

learned distribution. Recently, deep generative models have shown remarkable results

in synthesizing high-fidelity and diverse images. Most notably, Generative Adversarial

Networks (GANs) [25] have been extensively used in classical computer vision tasks such

as image generation, image restoration and domain translation, alongside traditional

learning tasks such as data augmentation [22] and clustering [6, 56].

Since their inception, the unsupervised training of GANs achieved effective models

able to produce natural-looking images, while relying on a simple and easily modified

framework. Nevertheless, and despite numerous efforts for improvement, GANs still

exhibit some critical drawbacks that arise from the adversarial nature of the optimization.

These include: (i) an unstable training procedure, that is highly sensitive to the choice

of initialization, architecture and hyper-parameters; (ii) often the learned distribution

suffers from mode-collapse, in which only a subset of the real distribution is covered by

the model, or mode-mixture, where different modes are mixed with each other. These

problems are amplified when training data is scarce [78].

These drawbacks have motivated research into non-adversarial alternatives such

as Variational Auto Encoders (VAE) [38] and Generative Latent Optimization (GLO)

[10]. VAEs learn generative deep models that include a representation layer defining

the model’s latent space, where both the prior and posterior distributions over the

1



CHAPTER 1. INTRODUCTION

latent space are approximated by parametric Gaussian distributions. GLO learns a non

parametric prior over the latent space in unison with the generative model. Although the

VAE framework stands on solid theoretical foundations, VAEs generally do not generate

sharp images, partially due to the restrictive parametric assumptions that are enforced.

GLO, on the other hand, imposes hardly any limitation on the learned distribution over

the latent space, which is guided only by the reconstruction performance of the model.

Alas, as a result the structure of the latent space holds no semantic information, and

cannot be effectively sampled from. These limitations are aggravated when dealing with

multi-modal distributed data, as is typically the case with multi-class data.

Broadly speaking, most contemporary generative models rely on common and of-

ten implicit assumptions: (i) the Manifold Hypothesis, which assumes that real-world

high-dimensional data lie on low-dimensional manifolds embedded within the high-

dimensional space; (ii) that there exists a mapping from a low dimension latent space

onto the real data manifold; (iii) that this latent space can be approximated by a single

Gaussian distribution (such is the latent prior distribution in most variants of GANs,

VAEs, and GLO); and (iv) that the generative model is capable of learning the assumed

mapping. While these assumptions may hold true when trying to learn from data that

resides on a single manifold, it is impossible for a continuous mapping (CNN genera-

tor) to effectively map a connected latent space onto a disconnected data manifold of a

multi-class distribution [35].

In this work, we seek to overcome both the inherent drawbacks of the GAN framework

and the deficiency of the uni-modal Gaussian prior in modeling the latent space. Thus, in

Chapter 3 we propose an unsupervised non-adversarial generative model, that optimizes

the latent space by fitting a multi-modal data distribution. Unlike GLO, our latent space

preserves semantical information about the data, while the multi-modal distribution

allows for the efficient and direct sampling of new data. As will be shown in Chapter 4,

the distribution over the latent space that is learnt by our model captures semantic

properties of the data. As a result, our model is capable of generating better images in

terms of image quality, diversity and discriminability. In Chapter 6 we provide some

theoretical justification for our method.

Expanding to domains where GANs do not excel, our model is designed to be appli-

cable for downstream tasks where training data is scarce. The task of learning from

small sample is usually tackled with the aid of external data or prior knowledge. While

transfer-based techniques work well when the source and target domains share dis-

tributional similarities, it is not at all the case when the target data comes from a

2



1.1. CONTRIBUTIONS AND OUTLINE

considerably different domain (such as medical imaging) [51, 60]. Furthermore, gaining

access to large labeled datasets may not always be possible due to legal and ethical

considerations. In contrast, here we tackle the small-sample classification task where no
prior knowledge or external data is present. In this setting, the training algorithm

may get as few as 5 images per class, having access to no additional labeled or unlabeled

data. This constitutes a very challenging task. In Chapter 5 we show that, when using

our model to augment the real data, we are able to advance the state-of-the-art and

achieve top performance in small sample classification tasks.

1.1 Contributions and Outline

Our main contributions in this study are as follows:

I) Introduce a novel unsupervised non-adversarial generative model capable of syn-

thesizing diverse discriminable images from multi-class distributions (Chapter 3).

II) Demonstrate superior image synthesis capabilities when training data is scarce,

as compared to state-of-the-art GAN models (Chapter 4).

III) Apply our model to small-sample classification tasks, surpassing all previous work

in this domain (Chapter 5).

IV) Provide sufficient conditions and a simplified theoretical framework, under which

our method can be beneficial in approximating under-sampled distributions (Chap-

ter 6).

3
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2
BACKGROUND & REALTED WORK

In this chapter we offer some background on the core subjects and methods that are

related to this work. Additionally, we survey prior work that faced the challenges of

modeling a multi modal distribution, learning a low dimensional data embedding,

and learning from a small sample.

2.1 Background - Generative Models

In this section we will briefly introduce some of the core generative models that exist

to date. While not covering all the methods of the field of generative models, our aim is

to provide a clear and simple overview of the approaches that are most relevant to this

work.

2.1.1 Auto-Encoder

An autoencoder (AE) is a neural network that consists of an encoder E that maps data

inputs to a low-dimensional latent space, and a decoder D that maps the latent code back

to the data space. The parameters of the encoder and decoder are optimized simultane-

ously to minimize a reconstruction loss between a real image x and the reconstructed

image D
(
E(x)

)
. Thus, for a standard AE, a "good" embedding is merely one that for

each data point x, E(x) preserves the information that is essential for reconstructing

the image. This usually leads to a latent space with no semantic structure, which does

5



CHAPTER 2. BACKGROUND & REALTED WORK

not permit generating novel high-quality images. Nevertheless, while auto encoders

exists for more than two decades [46], recent advances have attempted to regularize

the training procedure to obtain representations with useful properties. These include

sparsity of the representation [61] and robustness to noise or to missing inputs [72],

which lead to models that can better learn the data distribution, and in some cases may

also permit the sampling of new samples [7].

2.1.2 Generative Adversarial Networks - GAN

Generative Adversarial Networks [25] are a framework for training generative models

using two sub-models: a generator model G that is trained to generate new samples from

the domain distribution, and a discriminator model D that tries to classify samples as

either real (from the domain) or fake (generated). This procedure can be framed, in a

game-theoretical sense, as a zero-sum game between the generator and discriminator,

where each component has a contradictory goal, giving rise to an optimization process

which is ’adversarial’ in nature.

More formally, GANs assume a latent variable model, where P(x)= ∫
z P(z)P(x|z) and

where P(z) has a Gaussain distribution. The optimization process aims at minimizing

the cross-entropy classification loss of the discriminator:

−1
2
Ex∼pdata logD(x)− 1

2
Ez log(1−D(G(z))

Since their inception, many formulations and improvements for the classic GAN

framework have been proposed, resulting in high-capacity models, capable of generating

high-fidelity natural looking images. Nevertheless, as will be shown later on, GANs still

exhibit some major drawbacks including an unstable training procedure, mode-collapse

and a reliance on large datasets.

Most noteworthy, mode-collapse is the term referring to the state where the generator

can only cover a small subset of the data distribution, and is usually attributed to the

fact that for any fixed discriminator, the dominating strategy for the generator would be

to produce few samples that are most probable in the eyes of the discriminator [54]. This

phenomena is exhibited in our experiments, and is amplified when GANs are trained

with insufficient data.

6



2.1. BACKGROUND - GENERATIVE MODELS

2.1.3 Variational Auto Encoder - VAE

A Variational Auto Encoder [39] is a latent variable model whose posterior is approx-

imated by a neural network with parameters θ. The optimization process aims at

maximizing the liklihood of the data under the model:

(2.1) P(X )=
∫

P(X |z;θ)P(z)dz

This is done by solving the following equation:

(2.2) logP(X )−DKL
[
Q(z|X )‖P(z|X )

]= Ez∼Q[logP(X |z)]−DKL
[
Q(z|X )‖P(z)

]
Where DKL is the Kullback-Leibler divergence measure:

DKL
[
P ‖Q

]= Ex∼P log
( P(x)
Q(x)

)
The right Hand side of Eq. 2.2 is termed the Evidence Lower Bound (ELBO) of the

log-likelihood, and is optimized using SGD.

In this framework, both the prior P(z) and the posterior Q(z|x) take the form of

Gaussian distributions, and P(x|z) and Q(z|x) are approximated using deep neural

networks.

2.1.4 Generative Latent Optimization - GLO

GLO [10] is a recently proposed method for generative modeling that optimizes the

latent space directly, instead of relying on an encoder. Thus, it can be seen as an encoder-

less auto-encoder, where the posterior P(z|x) is approximated by means of optimizing z
according to some similarity measure between G(z) and x.

Specifically, given a dataset X = {x1, x2, ..., xN }, N random noise vectors Z = {z1, z2, ..., zN }

are uniformly sampled from the unit sphere in Rb, and matched randomly to the data

points, yieldng a matching {(x1, z1), (x2, z2), ..., (xN , zN)}.

The parameters of a generator function Gθ : Z −→X are optimized in conjunction

with the learnable noise vectors Z to obtain:

min
θ,Z

1
N

N∑
i=1

L
(
Gθ(zi), xi

)
s.t. ||zi||2 = 1

where L is the similarity measure, originally implemented using the Laplacian Pyramid

Loss [50] (see Eq. 3.5). Unlike standard Auto-Encoders, it has been shown that this train-

ing protocol yields a latent space that exhibits compelling attributes such as meaningful

interpolations between samples and linear arithmetic with noise vectors.
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CHAPTER 2. BACKGROUND & REALTED WORK

2.2 Background - Deep Image Clustering

The ultimate objective of data clustering is to partition the data into distinct groups such

that similar data points would be grouped together, while dissimilar points would be

separated. This task is very much dependent on the choice of the similarity measure,

since different measures may lead to profoundly different clusterings. Classical clustering

methods usually use heuristics based on the structure of the data to find the optimal

partitioning. These can be roughly divided into density-based methods [41], which cluster

the data based on regions of high density; partition-based methods [3], which are based

on iterative relocation of data points between clusters, and hierarchical methods [77],

which seek to find an hierarchical structure of the clusters.

The unsupervised clustering of images poses additional challenges. Firstly, the high

dimension of images preclude the usage of some classical methods due to computational

considerations. Secondly, and more importantly, finding a meaningful similarity measure

between images is a non-trivial task, since any norm-induced distance (such as L2)

in the pixel-space is usually uninformative. For this reason, the task of clustering

images is intertwined with the task of learning a meaningful representation of the

data. Consequently, recent image clustering methods have attempted to learn both tasks

simultaneously. A representative collection of methods that cluster images according to

their respective features extracted from a DNN can be found in Sec. 2.4.2

2.3 Background - Learning from Insufficient Data

The issue of learning from insufficient data relates both to cases where there is insuf-

ficient data samples (e.g. learning from small-sample in cases where obtaining data

points is hard) or insufficient supervision (e.g. semi-supervised learning [71] where we

might have a large body of unlabeled data points and a small amount of labeled ones).

Both cases pose critical difficulties to many machine learning methods in general, and

deep neural networks in particular. This is generally attributed to the fact that when

confronted with insufficient data, deep NNs tend to over-fit the small sample, and avoid

generalizing the true data distribution. There exists many techniques to combat situ-

ations where there is shortage of data, with the main ideas presented in Section 2.4.3.

One of the most prominent aspects in this context includes augmenting the dataset into

a larger and richer one, which is also one of the directions taken in our proposed method.

8



2.3. BACKGROUND - LEARNING FROM INSUFFICIENT DATA

2.3.1 Data Augmentations

Data augmentation is a widely used method for generating additional data to improve

many machine learning systems, which will otherwise fail to generalize when trained

with insufficient data. Many computer vision tasks rely heavily on hand-crafted image

transformation policies that are based on prior knowledge of the domain distribution.

This knowledge is then used to compose identity-preserving transformations such as

flipping, cropping, translations, rotations and color jitters [68]. Other more advanced

methods attempt to find an optimal policy of combinations of augmentations that will

best fit the task at hand [8, 17, 48].

Another data augmentation strategy revolves around exploiting generative models

for generating new samples that will enhance the training set. While these methods are

harder to train and facilitate, they avoid the need for prior knowledge regarding the

invariances that are present in the data. A representative collection of such methods

is further discussed in Sec. 2.4.3. It should be noted that most of these techniques

are beneficial only when external data is available, and that in general, theses models

necessitate large training data.

In a broader view, combining a classification model with an image generation model

may be seen as multi-task learner that is able to "imagine" new datapoints. In this con-

text, a learner that can successfully generate datapoints from the true distribution can

hold an advantage in classifying the data. This slightly resembles the "self-explanation

effect" [9] evident in human knowledge acquisition. This effect, which has been consis-

tently demonstrated in real world scenarios, maintains that learners who can explain

the underlying relationships and connections of the problem at hand, perform better on

the learning task. Similarly, a learning model that can generate a unique image of some

object class indicates that the model has learnt to "explain" in some internal way the

underlying structure that gives rise to that class.

In this work, we propose a generative method that performs relatively well even

when trained on an extremely small-sample, without using external data. As such, it is

highly valuable in generating new samples and augmenting small training sets, even

when no prior knowledge is present on which transformations are identity-preserving in

the dataset.

9



CHAPTER 2. BACKGROUND & REALTED WORK

2.4 Related Work

2.4.1 Modeling disconnected data manifolds.

The issue with mapping a connected latent space onto a disconnected data manifold was

mainly addressed in the context of overcoming mode-collapse in GANs. [14, 20, 44, 70]

use an encoder to match the latent code with the data distribution. While the latent

representation of these methods is optimized via a reconstruction loss of the decoder, our

method learns a representation that holds semantical information.

Another line of work [2, 23, 29, 36] uses multiple generators in order to cover all the

modes in the data, while An et al. [1], Hoshen et al. [30] learn a mapping from a normally

distributed noise to an optimized latent structure in a non-adversarial framework. Other

works use a GMM prior over the latent space in VAEs [18, 67] and GANs [6]. Finally,

Chen et al. [15] combines discrete and continuous latent factors to learn a disentangled

representation of the data.

2.4.2 Data Embedding and Feature Learning.

Learning a meaningful low-dimensional embedding for high-dimensional data has been

significantly improved by advances in deep neural networks and self-supervised learning.

Thus, [13, 26, 32] all harness the large capacity of deep neural networks to learn efficient

clustered representations of natural images. In a related line of work, self-supervised
learning involves the learning of meaningful visual features from a pretext task using

labels that are produced from the data itself with no direct supervision. These include

jigsaw puzzle solving [58], predicting positions of patches in an image [19], and predicting

image rotations (’RotNet’) [24]. In this work, we learn a clustered embedding of the data

and a self-supervised pretext task en masse, which greatly improves the quality of the

learned representation.

2.4.3 Learning from small sample.

Classification from small sample, with no prior knowledge or access to external data, has

been chiefly approached by attempting to augment the sample into a sufficiently large

training set. Thus DADA [81] adapts a GAN model for this purpose, TANDA [62] uses

GANs to learn generic data augmentations composed of pre-defined transformations

using large unlabeled data, DHN [59] uses a hybrid network that incorporates learn-

able weights with a scattering network of predefined wavelets, and CFVAE-DHN [49]

10



2.4. RELATED WORK

augments the latent variables of a VAE, which in turn generates additional data that is

classified using a DHN. Likewise, (author?) [5] promotes the use of the cosine-loss, and

(author?) [11] promotes low-complexity networks.

Other methods usually incorporate some form of transfer learning [83], where para-

meters that are learned in a source domain are transferred and utilized in a different

target domain.

The most prominent research paradigm in this context is few-shot learning [75],

where there exists a dataset D consisting of sufficiently large labeled classes and a

smaller dataset N made of a few small novel classes such that D∩N =;. A classifier

is then trained on D ∪N and evaluated on unseen samples from N. We consider this

paradigm to be an instance of transfer (or meta) learning and not strict classification

from small sample, as it requires access to an external labeled dataset.

Similar small-sample challenges are usually tackled with the aid of external data or

prior knowledge. These can be roughly divided into methods that attempt at adjusting

the model training procedures and algorithms such as multi-task learning [12, 82],

Embedding Learning [33], and methods that inject prior knowledge into the training

dataset using data augmentations.

Transfer learning from large datasets to smaller ones has also been investigated in

generative models [57, 73, 74, 76].

11
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3
OUR METHOD

Our method, Clustered Optimization of LAtent space (COLA), is an unsupervised

method which learns a generative model for the synthesis of images. The method

is designed to cope with a small training set of natural images, portraying

distinct object categories. It involves three steps, the first two of which are illustrated in

Fig. 3.1.

3.1 Step I: Clustering the latent space

The goal here is to deliver a mapping from the data space to a latent space, while

clustering the mapped points into compact K clusters, see illustration in Fig. 3.1. To

this end, we seek a clustering algorithm capable of semantically grouping the images,

such that images from the same class will reside in proximity in the latent space, and

dissimilar images will be locatd further apart. One such algorithm is the Multi-Modal

Deep Clustering (MMDC) algorithm [65]. In this algorithm, a deep convolutional network

Eθ, is trained to map each data point to a fixed low-dimensional target point in the latent

space - the unit sphere in RK . The target is sampled from a pre-defined distribution over

the latent space.

Specifically, given an unlabeled dataset X = {xi}N
i=1, the model is initialized with some

random assignment {(xi, ti)}N
i=1 , where each ti ∈RK is sampled from a GMM distribution

with K-components, and normalized to length 1. Training involves the minimization of

(3.1) ‖Eθ(xi)− tπ(i)‖2
2

13
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Figure 3.1: Illustration of our model: In step I images are mapped to fixed low-dimensional targets
T. In step II these targets form a latent space Z that is trained in conjunction with the generator
parameters to reconstruct the original image.

over the assignment {(xi, tπ(i))}N
i=1 and parameters θ.

This optimization problem is solved with SGD, and involves two steps per mini-batch.

First, the sample {xi}i∈b is mapped onto the latent space. The assignment problem for

{(xi, tπ(i)) |i ∈ b} is solved using the Hungarian Algorithm [43] applied to the following

problem:

(3.2) π∗ = argmin
π:b↔b

∑
i∈b

‖Eθ(xi)− tπ(i)‖2
2

Subsequently π∗ is inserted into Eq. 3.1, which is then optimized w.r.t θ. This method is

enhanced with self-supervision based on the auxiliary ’RotNet’ task [24], and consistency

regularization where augmented images are mapped to the same cluster.

The output of this model constitutes a latent space, where the representations of

semantically similar images reside in proximity, and images from distinct classes are

located further apart. This representation is used to initialize the latent space of the

generative model in step II (Sec. 3.2). To simplify the presentation, henceforth we let

ti = tπ∗(i) denote the final target associated with xi.

14
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3.2 Step II: Image generation

Given a matching between data points X and targets T - {(xi, ti)}N
i=1, a latent code

Z = {zi}N
i=1 is constructed such that

zi = (
ti

‖ti‖2
,

vi

‖vi‖2
) ∈RK+d

Above vi ∼N (~0,σId×d) denotes an additional source of variation, and ti denotes the

class-component of the code.

The parameters of a CNN generator function Gθ : Z −→ X are optimized in con-

junction with the learnable representation vectors Z , as illustrated in Fig. 3.1. The

optimization problem is defined as:

(3.3) min
θ,Z

1
N

N∑
i=1

Lrec
(
Gθ(zi), xi

)
s.t. ‖zi‖2 = 1

where Lrec denotes the reconstruction loss between the original image xi and the image

generated by the model Gθ(zi).

As shown in [30], the best image quality for this kind of models may be obtained

when Lrec is realized with the perceptual loss [34]:

(3.4) Lvgg(x, x′)= |x− x′| +
k∑

layers: i
|l i(x)− l i(x′)|

In (3.4) l i denotes the perceptual layer in a pre-trained VGG network [69]. Nevertheless,

since external data cannot be used in the small sample scenario adopted here, Lrec is

realized in our method with the Laplacian Pyramid loss:

(3.5) Llap(x, x′)= |x− x′| +γ
k∑
i

2−2i|L i(x)−L i(x′)|

In (3.5) L i(x) denotes the i-th level of the Laplacian pyramid representation of x [50].

The sum of differences is weighted to preserve the high-frequencies of the original image.

The components of the representation vectors are normalized after each epoch to length

1, projecting them back to the unit spheres in RK ,Rd respectively.

This step is summarized below in Alg. 1. Full implementation details are presented

in Appendix C.2.
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Algorithm 1 : Training the Generative Model

INPUT:
matched pairs {(xi, ti)}N

i=1 ⊂ X × [0,1]K from step I
Gθ - CNN Generator with parameters θ
λθe ,λz

e - learning rate at epoch e of θ, Z
σ - pre-defined latent std

for i=1...N do . initialize latent space
sample vi ∼N (~0,σId×d)
zi ← ( ti

‖ti‖2
, vi
‖vi‖2

) ∈RK+d

end for
for e=1...epochs do

for i=1...iters do
sample batch {(xi, zi)|i ∈ B}

LB = 1
|B|

∑
i∈B

Lrec(xi,Gθ(zi))

θ← θ−λθe(∇θLB)
z ← z−λz

e(∇zLB)
end for

t ← z[1:K], v ← z[K+1:K+d]
∀i zi ← ( ti

‖ti‖2
, vi
‖vi‖2

) . Normalize inputs

end for

3.3 Step III: posterior distribution over the latent
space

After training, a posterior distribution over the latent space is obtained by fitting a

unique multivariate Gaussian to each cluster in the latent space. Sampling is then

performed from the uniform mixture of these Gaussian distributions.

3.4 sCOLA: Supervised Algorithm

In the supervised framework, we have a labeled dataset with K classes

X = {(x1, y1), (x2, y2), · · · , (xN , yN)}, where yi ∈ [K] denotes the class label of xi, and ei
y

denotes the one-hot representation of the labels. The supervised version of our method,

sCOLA includes steps II and III of COLA. The clustering in step I is replaced by the

supervision labels from the training data, where each ti is replaced by the corresponding

16



3.4. SCOLA: SUPERVISED ALGORITHM

ei
y. Fig. 3.2 shows images generated by our model with only 5 training examples per

class.

Figure 3.2: Synthetic images generated by our model when trained on STL-10 with 5 images per
class and no external data. Real images are shown on the left, synthetic images are shown on the
right.
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4
IMAGE GENERATION, LARGE AND SMALL SAMPLE

In this chapter we will demonstrate the capability of our model to produce diverse

and discriminable images, employing evaluation metrics that quantify these at-

tributes. Firstly, we compare our model with competitive conditional GAN models

that use large and computationally heavy architectures. While these models maintain su-

periority on large datasets, this dominance diminishes as the sample size drops. Secondly,

we show that our unsupervised variant surpasses other unsupervised generative adver-

sarial models using the same architecture. Lastly, we show that our model consistently

outperforms other non-adversarial methods in terms of image quality and diversity,

regardless of sample size.

4.1 Methodology
Evaluation scores. Designing meaningful quantitative evaluation measures for gen-

erative models is a challenging ongoing research area. Presently, two scores seem to

dominate the field: the Inception Score [64], and the Fréchet Inception Distance (FID)

[28].

The Inception Score measures the average KL divergence between the conditional

label distribution p(y|x) (estimated by the Inception model trained on ’ImageNet’) and

the marginal distribution p(y) obtained from all the samples.

(4.1) IS(X ,Y)= exp
(
Ex

[
DKL

[
p(y|x)‖ p(y)

]])= exp
(
H(y)−Ex[H(y|x)]

)
19



CHAPTER 4. IMAGE GENERATION, LARGE AND SMALL SAMPLE

Where p(y) is the empirical marginal distribution

p(y)≈ 1
N

N∑
i=1

p(y|xi =G(zi))

and H(X) is the entropy of X:

H(X )=−Ex log(x)

FID compares the statistics of activations in the penultimate layer of the Inception

network (trained on ’ImageNet’) between real and generated images. First, the mean

and co-variance for both the generated data (µg,Σg) and the real data (µr,Σr) are esti-

mated, and then the Fréchet distance between these two Gaussians (a.k.a Wasserstein-2

distance) is then used as a quality measure of the generated images.

(4.2) FID(Xr, X g)= ‖µr −µg‖2
2 +Tr

(
Σr +Σg −2(ΣrΣg)2)

Despite their popularity, there are some major drawbacks with using these methods:

1. Both scores try to capture image quality and diversity on a single scale, and

therefore cannot distinguish between the two factors.

2. Both scores are based on the Inception network that was trained on 1,000 classes

of ImageNet, and may not be suitable for significantly different datasets [4].

In addition, the IS score does not take into account the real data distribution, and

merely measures the diversity of the generated images. It also cannot capture Intra-class

diversity. For this reason, we will not be using this metric in this work.

The FID score solves some of the problems associated with IS, by being more con-

sistent with human judgment, being more robust to noise, and being able to detect

mode-dropping. Nevertheless, FID still suffers from the two problems outlined above. In

addition, it has been shown to be biased and sensitive to the sample size, and in some

cases it may not capture mode-mixture. In Appendix A we show that the FID score also

fails to reveal intra-class diversity, making it less useful for multi-class datasets (see also

[52]). Implementation details for the FID score used in our experiments can be found in

Appendix C.4.

Given the problems discussed above, we seek an additional score that can reliably

measure how well the generated images fit the true distribution of the data. More

importantly, considering that generative models are commonly used in down-stream

tasks, we seek a score that can measure the usefulness of the model generations in

such tasks. To this end we adopt the scores proposed in [66] (’GAN-Train’) and [63]
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(’CAS’), which are based on training a classification network on the generated images,

and evaluating it on real images. The classification accuracy of this network forms an

implicit measure of the recall and precision of the generated dataset, since it can only

achieve a high score if the synthetic data is sufficiently diverse and discriminable. In our

experiments, we follow the protocol defined in [63].

Generative methods used for comparisons. We compare our model against state-

of-the-art generative models, one adversarial model based on the GAN framework, and a

second non-adversarial method:

1. Adversarial CGAN-PD [55]: a conditional GAN with Projection-Discriminator,

trained and implemented in accordance with [47].

2. Non-adversarial GLO [10]: the original model augmented with the superior percep-

tual loss from Eq. 3.4. Similarly to step III above, after training we fit a Gaussian

Mixture Model to the learned latent space.

Implementation details can be found in Appendix C.2.

Datasets The datasets we use are included in Table 4.1.

Name Classes SPC
Train/Test Dimension

CIFAR-10 [42] 10 5000 / 1000 32×32×3

CIFAR-100 [42] 100 500 / 100 32×32×3

STL-10 1

(downsampled, labeled only)
[16] 10 500 / 800 48×48×3

Tiny ImageNet [45] 200 500 / 50 64×64×3

Table 4.1: Datasets used in our experiments.

1Unlike most generative models trained on STL-10, in this work we only use the labeled images, and
discard the 100K unlabeled images.
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4.2 Emperical Results

Unsupervised. In the unsupervised scenario, we compare our model to the baseline

GLO model, see Fig. 4.1. Clearly our model outperforms GLO on all datasets and

metrics, and produces significantly better looking images as demonstrated in Fig. 4.3.

Furthermore, we recall that different GAN models can reach similar FID scores if given a

high enough computational budget [53]. We therefore adopt the fair comparison protocol

proposed in [53], where the architectures of all the models are fixed to the one used

in ’InfoGAN’ [15], and all models possess the same computational budget for hyper-

parameter search. In this protocol, our method outperforms all GAN variants and is on

par with the state-of-the-art non-adversarial methods, see Fig. 4.2.
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Figure 4.1: Comparison between GLO and COLA using the FID (left) and CAS (right) scores. Our
model shows a clear advantage in all cases.
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Figure 4.2: FID score computed for CIFAR-10, when all models share the same architecture of
’InfoGAN’ [15]. Unlike all other models in this comparison, our method allows for the sampling of
images from different individual classes.
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COLA GLO

Figure 4.3: Training on CIFAR-10 with no labels: the images generated by our method (left),
which imposes semantic structure on the latent space, are superior to the alternative method
(right). Each row holds a random sample from a distinct object class.

Supervised. When learning from fully labeled datasets, we evaluate our model against

the state-of-the-art conditional GAN variant CGAN-PD with varying sample sizes. Re-

sults are shown in Fig. 4.5.

Although conditional GANs obtain better FID scores on large datasets, their per-

formance deteriorates rapidly when training size decreases. Furthermore, our model

outperforms GANs when consulting the CAS score on almost all configurations. A qual-

itative comparison presented in Fig. 4.4 and in Fig. 4 in the Appendix suggests that

this deterioration may be attributed to the mode-collapse manifested in CGAN when

trained with insufficient data. In contrast, in the extreme small sample regime the

images synthesized by our model can hardly be distinguished from real images by both

scores, suggesting superior generalization ability in this regime.
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Figure 4.4: qualitative comparison between sCOLA (top) and CGAN (bottom) trained on CIFAR-
10 with varying numbers of samples per class (spc). Each column corresponds to a different class
in the data. CGAN evidently suffers from mode-collapse when given insufficient data for training.
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training sample sizes. sCOLA’s generated images achieve better scores than the GAN’s images in
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4.3 Ablation Study

4.3.1 Generator Architecture

We tested many commonly used generative network architectures, and assesed their

impact on the model’s performance. The models that were evaluated are thus:

1. InfoGAN with transposed convolutions

2. DCGAN with residual blocks and upscaling convolutions

3. CGAN with residual blocks, upscaling convolutions and conditional Batch-Norm

Note that we use the GAN models name for reference only, as our method uses these

architectures in a non-adversarial approach, with no discriminator. The differences of

the above are summarized in Table 4.2, and the results are given in Table 4.3. Imple-

mentation of all of the above was conducted according to [47].

Arch # Params Residual Upscaling Batch-Norm

InfoGAN 8.6M 7
transposed
convolution none

DCGAN 4.1M 3
bilinear

upsampling global

CGAN 4.1M 3
bilinear

upsampling conditional

Table 4.2: Design differences between evaluated architectures

Architecture FID ↓ CAS ↑ CAS-Test

InfoGAN 49.38
±.32

67.65
±.26

85.14
±.66

DCGAN 85.94
±2.14

61.48
±.23

45.14
±.74

CGAN 39.49
±.20

70.66
±.91

85.61
±.46

Table 4.3: Results were obtained on sCOLA trained on the full train set of CIFAR-10. The
conditional batch norm had a notable effect on the quality of the model’s generations.
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5
CLASSIFICATION FROM SMALL SAMPLE

In this chpater we show the benefits of using our method in the small sample regime,

where only a small sample is available to train the classifier, and no external
information can be used. We will show that using our model to augment the

small training set significantly improves the performance of a deep network classifier

trained on this data.

Classification approach. sCOLA is first trained on the small training sample, and

then used to generate novel samples from each class. The synthetic images are then

combined with the real images, resulting in an extended training set (termed "Mix") that

consists of 50% real images, and 50% synthetic images generated by our model. This

extended set is then used to train a CNN classifier. For comparison, we train the same

CNN classifier with the original images, making sure that both methods see the same

subset of images with an identical training procedure.

5.1 Methodology

The datasets we use are described in Table 4.1. For each dataset we train our method

with various sample sizes, ranging from 100 samples per class (spc) to as low as 5 spc. For

each sample size we run our model on 3 random samples of the same size, and evaluate

the classifier’s accuracy on the original held-out test set of the data. In order to isolate

the contribution of our approach from other factors, we fix the classifier’s architecture to
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an off-the-shelf ResNet-20 [27] for all datasets except for Tiny ImageNet, which, due to

its larger size, resolution and number of classes, necessitates the use of a larger network.

Consequently we use the same WRN-16-8 [79] network as CFVAE-DHN (excluding DHN

initialization). Full implementation details can be found in Appendix C.3.

5.2 Empirical Results

We compare our model trained on CIFAR-10 and Tiny ImageNet with the best published

results reported in [49]. A short description of these methods can be found in Section 2.4.3.

The results are summarized in Table 5.1. Our method achieves the best results across all

sample sizes on both datasets.

CIFAR-10 Tiny ImageNet

100 50 20 10 5 100 50 20 10

DADA 48.32
±.23

40.48
±.57

30.44
±.37

21.67
±.58 - 17.64

±.82
14.97
±1.08

10.13
±2.04 -

Tanda 45.17
±1.84

39.16
±1.18

29.84
±1.23

20.18
±.73 - 27.07

±.94
17.95
±.59

13.92
±.59 -

CFVAE-DHN 55.58
±.12

52.06
±.36

32.65
±.38

34.11
±.67 - 35.97

±.35
28.82
±.79

21.37
±.29 -

sCOLA 58.59
±0.58

54.51
±0.22

49.63
±1.29

42.86
±2.04

29.05
±1.09

35.24
±.34

29.70
±.05

23.99
±.52

17.14
±.27

Table 5.1: Classification accuracy for CIFAR-10 (left) and Tiny ImageNet (right). Each column
corresponds to a different sample size per class. The architecture used by our method is smaller
or similar to the ones used by the other methods (see methodology).
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Figure 5.1: Classification accuracy for CIFAR-100 (left) and STL-10 (right) with varying sample
size per class.

Additionally, we expand our experiments to datasets with no published results to date

on small sample classification tasks. For these datasets, we show that when a classifier
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is trained on a mixed dataset consisting of real and synthetic images, it yields better

results compared to those obtained when being trained only on the real images or only

on the synthetic images. This suggests that our model succeeds in learning the data

distribution well enough, and can subsequently generate novel samples that do not exist

in the real data. Fig. 5.1 shows results on CIFAR-100 and STL-10.

Furthermore, it is noteworthy that in the extreme small sample scenario, where there

are only a handful of images in each class, a classifier trained on the generated dataset

performs better than one trained on the real images. This phenomena corresponds with

our findings in Section 4.2 where we demonstrated that our model’s generated images

achieve a better score than real images on the CAS and FID measures when dealing

with extremely small data. This can be attributed to te fact that our model is capable

of transferring visual features between images, resulting in a virtually richer dataset,

which is beneficial for generalizing the true distribution.
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5.3 Ablation Study

5.3.1 Image similarity measure

Many generative models are trained using some form of reconstruction loss that is based

on a similarity measure between the original image and the one reconstructed by the

model. Since using the Euclidean distance in pixel space is highly inadequate (similar

objects may differ drastically in pixel space) alternative similarity measures that capture

the perceptual relationship between images have been thoroughly investigated in recent

years. In this context, it has become a common practice to use a perceptual loss based on

a VGG network that was pre-trained on ImageNet for image synthesis tasks [21, 30, 34].

Later works [80] have evaluated numerous similarity measures that are based on deep

features of neural nets and concluded that they exhibit a strong correlation with human

judgment even when these features where obtained in an unsupervised or self-supervised

manner. Nevertheless, establishing a similarity measure without large amounts of data

remains to this date an uncharted territory. In order to make our model applicable in

the small-data regime, we seek a meaningful similarity measure that uses little to no

data. Furthermore, while most works in this area have evaluated the similarity measure

according to human judgment on image quality, we sought a measure that will also

prove useful in downstream tasks. To this end, we have investigated various methods

and evaluated them on the downstream task of image classification of the generated

images. Results on partitions of size 1% of CIFAR-10 can be found in Fig. 5.2. We found

that the Laplacian Pyramid Loss used in [10] yields the best results compared to other

unsupervised measures. The loss functions that were compared are as follows:

1. ImageNet VGG16 - The original perceptual loss described in Eq. 3.4

2. Laplacian Pyramid - The Laplacian Pyramid Loss as described in Eq. 3.5

3. k-means ResNet32 - Perceptual distance based on layers of ResNet32 initialized

with stacked k-means as described in [40]

4. Random ResNet32 - Perceptual distance based on layers of ResNet32 initialized

with random weights

5. CIFAR-10 ResNet32 - Perceptual distance based on layers of ResNet32 trained

on CIFAR-10

6. L1 - The L1 loss in pixel space
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Figure 5.2: The effect of different similarity measures in the optimization of sCOLA when trained
on on 1% of the images in CIFAR-10. Classification score is obtained using the same framework
described in Section C.3 in the appendix.

5.3.2 Small Data Classifier Architecture.

We experimented with various architectures to check whether larger networks are prefer-

able over smaller ones in the small-sample regime. Our results, depicted in Table 5.2,

suggest that there is no notable advantage in using deeper and larger nets, and that

smaller nets seem to perform just as well, with the added benefit of shorter training

time.

Architecture # Params Accuracy

ResNet-20 0.27M 59.03
±.58

ResNet-32 0.46M 58.4
±.62

WRN-28-10 36.5M 59.6
±.99

Table 5.2: Classification accuracy of different networks on a mixed dataset of images generated
by our model and real images from CIFAR-10 with 100 samples per class
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6
THEORETICAL ANALYSIS

S tripped off its technical details, the method in Chapter 3 essentially learns a noisy

surrogate distribution Z to approximate the real data distribution X and generate

new data. In this work, our ultimate goal is not to generate new high quality data,

but rather to estimate some function f : X −→Ω from a sample of X . When X denotes

data sampled from K discrete classes, a multi-class classifier is such a function whose

codomain is either [K] or RK . If the sample of X is too small, the surrogate distribution Z
can be used to generate more data and improve the estimation of f . The analysis below

identifies sufficient conditions on the respective sample sizes, such that improvement

can indeed be guaranteed.

6.1 Sample Size Analysis
Notations. Assume an i.i.d. sample of random variable pairs - {X i,Yi}N

i=1, where

X i/Yi=k
iid∼ Dk and Dk denotes the class conditional distributions of variable X . Let

Xk denote the conditional sub-sample of datapoints from class k: Xk = {X i j ,Yi j /Yi j=k}mk
j=1,

where
∑K

k=1 mk = N.

For simplicity, we will assume in our analysis that f depends only on the expected

value of the conditional distributions {Dk}K
k=1, denoted µk (section 6.2 bridges the gap

between the theoretical assumptions and the empirical findings, highlighting when this

assumption is indeed reasonable) . Let µ̃k(X ) denote an estimator of µk from an iid

sample of random variable X . Our task is to obtain a set of good estimators {µ̃k}K
k=1. In
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order to simplify the notations, we shall henceforth drop the class index k, with the

understanding that the following analysis does not depend on k.

In accordance, let Xm denote an iid sample of size m from the real conditional

distribution X of some class k, and Zn denote an iid sample of size n from the class

surrogate distribution Z. Let µx =µ denote the expected value of X , and µz denote the

expected value of Z, where |µx −µz| = d. Let X̄m and Z̄n denote the population means of

the two samples respectively. Recall that V ar[X̄m] = V ar[X ]
m and V ar[Z̄n] = V ar[Z]

n (see

Lemma 1).

As customary, we use the population mean of each sample to estimate the unknown

distribution’s mean µ. Accordingly:

µ̃(X )= X̄m

µ̃(Z)= Z̄n
(6.1)

The error of the two estimators is measured as follows:

Err(X )= (X̄m −µ)2

Err(Z)= (Z̄n −µ)2
(6.2)

Proposition 1. If V ar[X ]> md2, then

n ≥ mV ar[Z]
V ar[X ]−md2 =⇒ E[Err(Z)]≤ E[Err(X )]

Proof.

E[Err(Z)]= E[(Z̄n −µ)2] (use µ=µx)

≤ E[(Z̄n −µz)2]+d2 = V ar[Z]
n

+d2

As long as V ar[X ]> md2

n ≥ mV ar[Z]
V ar[X ]−md2 =⇒ V ar[Z]

n
+d2 ≤ V ar[X ]

m

and therefore

E[Err(Z)]≤V ar[X̄m]= E[Err(X )]

�

Corollary 1.1. For each class k, if the sample of the surrogate random variable Z is
sufficiently large

n ≥ mV ar[Z]
V ar[X ]−md2
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then the estimator of classifier f obtained from Zn is more accurate than the estimator
obtained from Xm.

Proposition 2. Assume that Pr[0 ≤ X , Z ≤ 1] = 1, which can be achieved by dataset
normalizing. Then ∀ε > d, if n ≥ m( ε

ε−d )2, then the bound obtained by the Hoeffding’s
inequality on Pr(|Err(Z)| ≥ ε) is tighter than the corresponding bound on Pr(|Err(X )| ≥
ε).

Proof. We invoke the Hoeffding’s inequality:

Pr(|X̄m −µ| > ε)≤ 2e−2mε2

and note that

|Err(Z)| ≤ |Z̄n −µz|+ |µx −µz| = |Z̄n −µz|+d

It follows that

Pr(|Err(Z)| ≥ ε)≤ Pr(|Z̄n −µz|+d ≥ ε)

= Pr(|Z̄n −µz| ≥ ε−d)

≤ 2e−2n(ε−d)2 := B(Z)

Pr(|Err(X )| ≥ ε)= Pr(|X̄m −µx| ≥ ε)

≤ 2e−2mε2
:= B(X )

Finally

n ≥ m(
ε

ε−d
)2 =⇒ B(Z)≤ B(X )

�

Corollary 2.1. For each class k, if the sample from the surrogate random variable Z is
sufficiently large

n ≥ m(
ε

ε−d
)2,

then the estimator of classifier f obtained from Zn is more confident than the estimator
obtained from Xm.
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Lemma 1.
V ar[X̄m]= V ar[X ]

m

Proof.

V ar[X̄m]= E[(X̄m −E[X̄m])2]

= E[(X̄m −µx)2]= E[(X̄m)2]−µ2
x

E[(X̄m)2]= E[(
1
m

m∑
i

xi)2]

= 1
m2E[2

m∑
i

∑
j>i

xix j +
m∑
i

x2
i ]

= 1
m2

(
m(m−1)E[xix j]+mE[x2]

)
= 1

m2

(
m(m−1)µ2

x +mE[x2]
)

=µ2
x −

µ2
x

m
+ E[x2]

m
=>V ar[X̄m]= E[(X̄m)2]−µ2

x

= E[x2]−µ2
x

m
= V ar[X ]

m
�

6.2 Bridging the Gap between Theory and Practice

In this section we show that reducing f to estimating µk is justified, and conforms

with our empirical settings. We will show that a Cross-Entropy minimizer (such are

the classifiers used in our empirical evaluation) can be viewed as Maximum Likelihood

Estimators (MLE). Thus, if indeed the target distributions are Gaussian, classification

can be reduced to estimating the first and second moments of the distributions.

Proposition 3. A Cross-Entropy minimizer is a MLE learner
Let fθ be a classifier of a classification task with K classes over dataset X .

fθ :X → [0,1]K ,
K∑

i=1
f i
θ(x)= 1 ∀x ∈X

Then if fθ minimizes the Cross-Entropy Loss :

lce(p, q)=−
K∑

i=1
pi log(qi)

then fθ acts as a Maximum Likelihood Estimator.
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Proof. Denote the real distribution of a sample x from class y(x) as the one-hot vector

e y yielding:

lce(p, q)=−py log(qy)=− log(qy)

Since q is estimated via fθ we can derive the cross entropy loss of a single observation

as:

lce(x)=− log( f y(x)
θ

(x))

and the cross entropy loss of a dataset Xm ∼ D:

lce(Xm)=−
m∑

i=1
log( f y(x)

θ
(x))

On the other hand, the MLE criterion aims at finding the best parameters θ that

maximize the log likelihood of the dataset under the probability estimated by fθ :

θ∗MLE = argmax
θ

K∑
j=1

∑
x∈ j

log( f j
θ
(x))=

m∑
i=1

log( f y(x)
θ

(x))

= argmin
θ

−
m∑

i=1
log( f y(x)

θ
(x))= argmin

θ

lce(Xm)

�

Corollary 3.1. A classifier that minimizes the cross entropy loss, is also optimizing the
MLE criterion. The optimal solution to the MLE criterion for Gaussian distributions is
obtained by by estimating the parameters of N (µ,Σ) according to the sampled dataset. i.e.

µ̂= 1
m

m∑
i=1

xi = x̄

Σ̂= 1
m

m∑
i=1

(xi − x̄)(xi − x̄)T

(This can be easily shown as these are the roots of the partial derivatives of the log
likelihood) Hence, the theoretical analysis presented in Sec. 6.1 holds even if fθ is a
Cross-Entropy classifier, as is the case in our empirical experiments.
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7
SUMMARY AND DISCUSSION

We described a novel unsupervised non-adversarial generative model that is

capable of generating diverse multi-class images. This model outperforms pre-

vious non-adversarial generative methods, and outperforms more complicated

GAN models when the training sample is small.

Unlike GAN models, our model is characterized by stable and relatively fast training,

it is relatively insensitive to the choice of hyper-parameters, and it has control over each

class variance in the synthesized dataset. Furthermore, empirical results show that our

method is robust to the risk of mode-collapse, which plagues most GAN models when

trained with insufficient data.

We further demonstrated the capability of our model to augment small data for

classification, advancing the state-of-the-art in this domain. Noteably, unlike many other

works in this domain, our method does not rely on any external data, and hardly depends

on any prior knowledge about the true distribution. This makes it a well suited candidate

for real world problems where data is hard to analyze and obtain, such as in the case of

highly specialized medical imaging.

7.1 Future Work

Since our method is only used to augment the small sample, it remains orthogonal to

future advances in algorithms devised for small training sets. This remains an under-

researched venue, where significant progress is yet to be made.
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In the unsupervised domain, further improvements may be introduced by using

better, more sophisticated clustering algorithms, alongside more capable generator

networks. Moreover, devising better similarity measures between images (such as the

perceptual distance) that do not require a large labeled dataset may also contribute to

the performance of our model.

Another interesting path to investigate involves using the classification performance

as a supervisory signal for the generation of images. Thus, a generative model can be

trained to produce images that optimize the classification score of a classifier trained

on those images. Such a model would better reflect the co-dependency between quality

generations and their usefulness in down-streaming tasks.

Lastly, investigating the effect of using the generator to transfer content from one

class to another (as is briefly introduced in Appendix B) on the performance of a classifier

that is trained on such data, is another interesting research direction.
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APPENDIX

A The FID score is inadequate for multi-class
datasets

In this section we will show that the FID fails to reveal intra-class variance, highlighting

its inadequacy to serve as a single metric for assessing generative models on multi-class

data. To do so, we will use our model to construct two datasets that obtain similar FID

scores, but exhibits an apparent difference in terms of the intra-class variance. We notice

that generating images from latent codes that reside in proximity yields images that are

visually and semantically similar. On the other hand, sampling latent codes that come

from the same latent cluster but with a greater distance from each other, yields far more

diverse outputs under the model. An example of this effect is illustrated in Fig. 1

Consequently, we can generate two versions of synthesized datasets- one where each

class is generated from concentrated latent codes, and one where each class is generated

from sparsely sampled latent code from the same cluster. The first dataset will consist

of homogeneous classes, exhibiting a small intra-class variance whereas the second one

will hold classes with a larger variety of objects.

In this experimental setting, we use our model to generate two synthetic versions of

CIFAR-10- one which we will term ’concentrated’ which is made of generations sampled

from latent codes concentrated around the cluster means, and a second dataset, termed

’sparse’ which is based on sparsely sampled latent codes from the same cluster. We then

evaluate these synthetic datasets using the FID and CAS scores. Results are presnted in

Fig. 2.

Since the ’concentrated’ dataset has low intra-class variation, each class consists of

similar images, which makes it an inferior dataset for training a classifier (as is evident

by the low accuracy obtained by a classifier trained on this data). On the other hand, the

’sparse’ dataset is characterised by a higher intra-class variance, with diverse images

in each class, yielding an effective training set for classification. Nevertheless, the FID
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Sparse	Sampling

Concentrated	Sampling

Figure 1: The effect of the scattering of latent codes on the generated images. in the top row,
latent codes that are sampled around the cluster means result in similar images with small
intra-class variation. In the bottom row, latent codes that are sparsely sampled result in images
that exhibit a greater intra-class variance.

scores of the two datasets are barely affected by these differences, since it is based on a

single multivariate Gaussian approximation of their activations in the penultimate layer

of the Inception network, which cannot capture intra-class variance.
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Figure 2: While the CAS score is an informative measure of the intra-class variance, the FID fails
to discriminate between the two datasets.

B Class - Content Transfer

As previously stated, our model - COLA, is trained to reconstruct images from their

latent representations. In the supervised version, the generator can gain access to both

the class of each image, and to the image’s latent code. The class component of an

image can be directly inputted to the generator using conditional batch norm layers

[31]. These layers normalize the intermediate inputs of the network layers according to

running statistics of previous inputs. The conditional variant of these layers, normalizes

each input according to the statistics of its own class only. Thus, different classes are

normalized independently, and are shifted differently in the intermediate layers, leading

essentially to multi-modal distributions throughout the network activations. Since the

network is exposed to two independent forms of supervision - the latent code, and the

class label, we may attempt to fix one supervisory signal while changing the other. Hence,

if we fix the latent code of some image x from class A and input it to the model with an

erroneous label of class B the model will attempt to reconstruct x given it is an image

from class B (which it is not). An illustration of the outputs of this procedure is given

in Fig. 3. Apparently, the model learns the salient features of each class, and when

confronted with a latent code representing an object from class A with a class code of

class B the model is able to generate a new image with a similar visual appearance to the

original image, but with features that turns it into a member of class B. This phenomena

raises several of interesting questions. In the context of this present work on generative

augmentations for classification, we may ask whether such "transferred" augmentations,

where each class is augmented with additional images that were reconstructed using our
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model with a false class code, can aid in classification tasks. These investigations are left

for future research.

cat frog

cat deer

airplane car

truck ship

ship deer

horse deer

shipcar

horse bird

cat truck

Figure 3: Examples of transferring class codes in images from CIFAR-10. Real images are on the
left, images generated by our model using a different class code are on the right.
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IMPLEMENTATION DETAILS

C Implementation details

C.1 Step I - Clustering the latent space.

For all experiments we use a ResNet-18 [27] network for the encoder. The network is

trained with SGD with an initial learning rate of 0.05 and momentum of 0.9 for 200

epochs. Learning rate is decayd by a factor of 0.5 every 50 epochs. Training is done

sequentially where an epoch optimizing the target assignment problem is followed by

an epoch optimizing the rotation prediction problem. In both cases we use a batch size

of 128, where in the target assignment problem images are augmented by cropping,

flipping and color jitters, and in the rotation prediction task each image is rotated in all

orientations, yielding a batch size of 512. Weight decay regularization of 0.0005 is used

on all datasets.

C.2 Step II - Image generation.

In all our experiments we used the ADAM optimizer [37], with an initial learning rate

of 0.01 for the latent code, and 0.001 for Gθ. The generative model was trained for 500

epochs, learning rate was decayed by 0.5 every 50 epochs. The only parameters that

change throughout our experiments are the choice of architecture for the generator, the

choice of reconstruction loss and the dimensionality of the latent space as follows:

1. Small-Sample: In this section, the generative function Gθ shares the same CNN

generator architecture used in InfoGAN [15] (which is also the architecture used in

GLO [10]). The dimension of the latent space was set to Z ⊂RK+d where K is the

number of classes in the dataset, and d = 64 for all datasets. Lrec is implemented

using the unsupervised Laplacian-Pyramid loss Eq. 3.5. An ablation study of

different similarity measures is presneted in Section 5.3.1.

2. Full Data: In the supervised version (sCOLA), the generative function Gθ shares

the same CNN generator architecture used in CGAN [55], while in the unsuper-

vised framework (COLA) we use the generator of InfoGAN [15]. In both versions

d = 128, and Lrec is implemented using the perceptual loss Eq. 3.4.

C.3 Small-sample classification

For a fair comparison, we use the same training procedure on all data sizes. i.e. same

batch size, number of epochs, iterations per epoch and learning schedule.
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ResNet-20 was trained for 180 epochs, with an initial learning rate of 0.1, decayed

by 0.5 every 30 epochs. Whereas WRN-16-8 was trained for 200 epochs with an inital

learning rate of 0.1, decayed by 0.2 every 60 epochs. Both networks were trained using

SGD optimization with a batch size of 128. An ablation study showing the effect of

different architectural designs, is presented in Section 5.3.2. The classifier was trained

using standard data augmentation with such image transformations as random flip and

crop.

C.4 FID score implementation

For CIFAR-10 and CIFAR-100, FID scores were computed on a sample of 10K generated

images against the default Test-set of size 10K. Each model was trained 3 times, and the

final score was taken as the average over 10 random samples from each model.

For STL-10, FID scores were computed on a sample of 8K generated images against

the default Test-set of size 8K. Note that most generative models that had been evaluated

on this dataset used the whole dataset, including the 100K unlabeled images. Therefore

these previous results are not comparable to the experimental results reported here.
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D Qualitative comparison
Figure 4: visualization of generations of CGAN (left) and sCOLA (right) trained on CIFAR-10
with varying samples per class (spc).
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