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Abstract

We present a novel approach to the characterization of complex sen-
sory neurons. One of the main goals of characterizing sensory neurons
is to characterize dimensions in stimulus space to which the neurons
are highly sensitive (causing large gradients in the neural responses)
or alternatively dimensions in stimulus space to which the neuronal
response are invariant (defining iso-response manifolds). The domi-
nant approach attempts to predict the response from a stimulus by
learning a linear filter that imposes it. We propose a new problem
definition as that of learning a geometry on stimulus space that is
compatible with the neural responses: the distance between stimuli
should be large when the responses they evoke are very different, and
small when the responses they evoke are similar. Here we show how to
successfully train such distance functions using rather limited amount

of information.

The data consisted of the responses of neurons in the IC of anes-
thetized guinea pigs and in primary auditory cortex (A1) of anes-
thetized cats to 32-40 stimuli derived from natural sounds. A distance
function was trained and tested using a cross-validation scheme. The
resulting distance functions generalized to predict the distances be-
tween the responses of a test stimulus and the trained stimuli. Sur-
prising differences in stimuli predictability were found between IC and
A1 neurons: while IC neurons generalization was similar for all stim-
uli, A1 neurons showed better generalization for wide-band stimuli

than for narrow-band stimuli.
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Chapter 1

Introduction

A major challenge in auditory neuroscience is to understand how cortical neu-
rons represent the acoustic environment. Cortical neural responses to complex
sounds are idiosyncratic, and small perturbations in the stimuli may give rise to
large changes in the responses. Furthermore, different neurons, even with similar
frequency response areas, may respond very differently to the same set of stimuli.
The dominant approach to the functional characterization of sensory neurons at-
tempts to estimate a linear model, the spectrotemporal receptive field (STRF),
using the responses to a set of test stimuli. The STRF is then used to predict
neuronal responses to new stimuli. However, STRFs have been recently shown
to have low predictive power for cortical neurons (18; 27).

Here we take a novel approach to the characterization of auditory neurons.
Our approach attempts to learn the non-linear warping of stimulus space that is
induced by the neuronal responses. This approach is motivated by the observation
of Chechik et. al. (5) that different neurons impose different partitions of the
stimulus space, which are not necessarily simply related to the spectro-temporal
structure of the stimuli. More specifically, we characterize a neuron by learning a
pairwise distance function over the stimulus domain that will be consistent with
the similarities between the responses to different stimuli (see Chapter 4).

We consider a semi-supervised learning scenario, in which data is augmented
by some sparse side-information in the form of equivalence constraints. Equiva-
lence constraints are the natural way to define labels over pairs of data points:

a pair of data points will have a positive constraint between them if they come



from the same class and a negative constraint between them if they come from
different classes. Such constraints carry less information than explicit labels on
the original data points, since equivalence constraints can be obtained from ex-
plicit labels but not vice versa. Distance learning algorithm will accept as an
input a stimuli data set and a subset of equivalence constraints based on the cell’s
responses and computed off-line. It will compute a hypothesis that complies with
the constraints and provides distance (or similarity) measure for any 2 stimuli.
Intuitively a good distance function would assign small values to pairs of stimuli
that elicit a similar neuronal response, and large values to pairs of stimuli that
elicit different neuronal responses.

In recent years there has been a growing interest in employing constraints to
learn an informative distance function. Most of the work in this area has focused
on the learning of Mahalanobis distance functions of the form (z—y)* A(z—y) (30;
33). In these papers the parametric Mahalanobis metric was used in combination
with some suitable parametric clustering algorithm, such as K-means or EM of a
mixture of Gaussians. Several algorithms which incorporate unlabeled data into
the boosting process have been suggested in (6; 13). In these algorithms, the
incorporation of unlabeled points is achieved by extending the 'margin’ concept
to the unlabeled points. Several margin extensions were previously suggested,
relating the margin of a hypothesis over an unlabeled point to the certainty of
the hypothesis regarding the point’s classification. The extended margins are
then used in a ’MarginBoost’ algorithm (19).

In this work we propose to use the DistBoost algorithm (14) to learn a
cell-specific distance function over the stimuli space. This algorithm learns a
non-parametric distance function and has shown its dominance over other algo-
rithms’ performance in different distance-learning problems (14; 34). However,
the novel problem formulation is the main contribution of this work and clearly
any distance-learning algorithm can be incorporated in the proposed scheme.

This approach has a number of potential advantages over the STRF approach.
First, unlike most functional characterizations that are limited to linear or weakly
non-linear models, distance learning can approximate functions that are highly
non-linear. Second, it allows to aggregate information from a number of neurons,

in order to learn a good distance function even when the number of stimuli in



the test set is rather small. Finally, given some distance function on stimulus
space, it may be possible to determine the stimulus features that most strongly
influence the responses of a cortical neuron by examining the properties of such
a function.

In this thesis I focus on two questions:

e Can one learn distance functions over the stimulus domain for single cells
using information extracted from responses collected during standard elec-

trophysiological experiments?

e What is the predictive power of these cell specific distance functions when

presented with novel stimuli?

In order to address these questions we used extracellular recordings from 28
cells in the Inferior Colliculus (IC) of guinea pigs and from 22 cells in the primary
auditory cortex (A1) of cats in response to natural bird chirps and modified
versions of these chirps (1). To estimate the distance between responses, we used
a normalized distance measure between the peri-stimulus time histograms of the
responses to the different stimuli. Distances between responses were used for two
purposes: (1) obtain equivalence constraints for the distance learning algorithm,
and (2) evaluate the performance of the algorithm by computing the correlation
between response distances and learnt stimuli distances.

Our results show that it is possible to learn compatible distance functions on
the stimulus domain with relatively low training errors. This result is interesting
by itself as a possible characterization of cortical auditory neurons, a goal which
eluded many previous studies (1; 5). Using cross validation, we measure the
test error (or predictive power) of our method, and report generalization power
which is significantly higher than previously reported for natural stimuli (18; 27).
We then show that performance can be further improved by learning a distance
function using information from pairs of related neurons. Finally, for cortical
neurons, we show better generalization performance for wide-band stimuli as
compared to narrow-band stimuli, while for IC neurons a less profound difference

is found. These latter two contributions may have some interesting biological



implications regarding the nature of the computations done by auditory cortical
neurons.

The thesis is organized as follows: Chapter 2 presents a general overview of
the auditory system and a brief summary of recent work in the area. Chapter 3
provides an overview of computational methods and ideas used in this work. The
biological subject of sensory neuron examination as a computational distance
learning problem is formalized in Chapter 4. Experimental results are described
in Chapter 5. A discussion of methods, results and future goals is presented in
Chapter 6.



Chapter 2

Auditory System

2.1 Physiology overview

Processing of auditory information provides us one of the basic sensations of the
world. Mammals have the ability to solve hard problems of auditory perception:
using sounds for within- and across-species communication, extracting informa-

tion in noisy background, and sound localization (23).

The accepted view of sensory systems considers neurons as feature detectors
arranged in an anatomical and functional hierarchy. For example, in the visual
system, information from simple feature detectors in the retina converges at the
level of the primary visual cortex (V1) to extract more complex oriented features.
The neurons that process these features send them in turn to higher cortical areas
to give rise to even more complicate neuronal detectors. The auditory system is
only partially consistent with such a view. Whereas visual information flows
almost unchanged through the thalamus to the primary visual cortex, auditory
information is intensely processed in the brainstem and the midbrain (see fig. 2.1)
(21). Starting from the cochlear nucleus, multiple information streams can be
identified by their anatomical sources and targets, by the cellular morphology
of the participating neurons, or by their physiological properties (31). Even in
the cochlear nucleus there are neurons with highly complex response functions

(25). This extensive subcortical processing and the complexity of auditory stimuli
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Figure 2.1: The primary auditory pathway from the cochlear nucleus to the auditory cortex.
In our research we examined neurons from 2 stations in the auditory pathway: Inferior Colliculus

(IC) and Primary Auditory Cortex (Al) (15)
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2.2 Transformation of stimulus representations in the ascending
auditory system

are probably responsible for the difficulty of assigning a function to neurons in

auditory cortex.

2.2 Transformation of stimulus representations

in the ascending auditory system

The question of transformation of stimulus representations in the ascending au-
ditory system is fundamental. While certain basic features, such as frequency
sensitivity, are shared by auditory neurons of all stations, several studies suggest
that dramatic changes in stimulus representation occur as information flows from
IC through Medial Geniculate Nucleus (MGB) to Al. Perhaps the first difference
between IC and higher stations appears at the basic characterization of an au-
ditory neuron - its frequency response area (FRA). The FRA maps the neurons
response properties on a two dimensional frequency-level space. Two fundamen-
tal characteristics of neurons in IC, MGB and Al are their best frequency (BF;
the frequency at which they have their lowest threshold) and their bandwidth. IC
neurons exhibit narrow FRAs, while the FRAs characteristically become wider as
we advance to the thalamus and the cortex. Another difference is the temporal
resolution of the neurons: IC neurons typically follow repetitive stimuli up to
about 100 Hz while typical A1 neurons follow this type of stimuli up to about
10 Hz and MGB neurons are intermediate. Such characterization suggest that
neurons in Al (and in MGB) are less sensitive to low-level features of auditory

stimuli than neurons in the preceding station, the IC.

To a large extent, neurons in the IC behave roughly as linear filters, i.e. neu-
rons with the BF essentially process the same signal and therefore are highly
redundant (5). In contrast, neurons in Al are highly non-linear; It has been
shown that they are extremely sensitive to weak acoustic components, even in
the presence of much stronger acoustic components (1; 17). In addition, this sen-
sitivity is idiosyncratic: different neurons with overlapping frequency areas show
very different response profiles to the same set of sounds. As a result, A1 neurons

are much less redundant than IC neurons (5). MGB seems closer to Al than to



2.2 Transformation of stimulus representations in the ascending
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Figure 2.2: (a),(b): PSTHs of two A1 neurons with overlapping FRAs, when presented with
Natural stimulus (higher row), Main chirp (middle row) and Noise (lower row). It can be easily
seen that both neurons are highly non-linear to the stimuli (response to natural stimulus is
more like the response to noise than the response to the main chirp for both neurons). The
neurons are non-redundant between themselves: while the neuron in (a) fires extensively when
presented with natural stimulus or noise and is almost silent when presented with the main
chirp, the neuron in (b) behaves in the opposite way. (c),(d): Two IC neurons with overlapping
FRAs. IC neurons’ behavior is a linear filter of the stimuli (main and natural invoke almost the
same response for both neurons, which is different from the response to noise) and redundant
between themselves - firing patterns are similar for both neurons (23).

IC in these respects.

Changes in the neuronal encoding along the auditory pathway are illustrated
in Nelken et. al. (24), where neuronal responses to a partial set of stimuli
used in this work were collected at the three different stations: 1C, MGB and
Al. The attention was given to 3 variations of the stimuli: the natural stimulus
(bird vocalization), the main dominant tonal component and the background
weak noise component. Most of the acoustic energy of the natural stimulus is
preserved in the main component, and only the remainder is in the background
noise. Therefore the natural and the main variations could be considered more
acoustically alike than the natural and the noise. Two pairs of simultaneously-
recorded neuronal responses, one from the IC (right) and the second from Al
(left), are shown in fig. 2.2. Although both pairs had largely overlapping frequency
response areas, which included the frequency range of the chirps, it is clear that

while the two IC neurons had very similar response patterns, the two A1l neurons
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2.3 Related work

responses were almost opposite. Moreover, the responses of the IC neurons appear
to be a linear function of the stimuli: similar stimuli (the natural stimulus and the
main tonal component) elicited similar responses that differ from the response to
the weak noise component. In contrast, A1 neurons responses not only differ one
from another, both neurons process a non-linear function of the input stimulus:
responses to the natural stimulus resemble responses to the weak component more

than responses to the strong tonal component.

2.3 Related work

Recently, considerable attention has been focused on spectrotemporal receptive
fields (STRFs) as characterizations of the function of auditory cortical neurons
(3; 7; 16; 20; 32). The STRF model is appealing in several respects: it is a concep-
tually simple model that provides a linear description of the neuron’s behavior.
It can be interpreted both as providing the neuron’s most efficient stimulus (in
the time-frequency domain), and also as the spectro-temporal impulse response
of the neuron (18; 22). Finally, STRFs can be efficiently estimated using simple

algebraic techniques.

However, while there were initial hopes that STRFs would uncover relatively
complex response properties of cortical neurons, several recent reports of large sets
of STRFs of cortical neurons concluded that most STRF's are relatively simple (9),
and that STRFs are typically rather sluggish in time, therefore missing the highly
precise synchronization of some cortical neurons (20). Furthermore, STRFs often
fail to predict the responses to natural stimuli (11; 18). For example, in Machens
et al. only 11% of the response power could be predicted by STRFs on average
(18). Similar results were also reported in (27), who found that STRF models
account for only 18 — 40% of the stimulus-related power in auditory cortical
neural responses to random chord stimuli. Various other studies have shown that
there are significant and relevant non-linearities in auditory cortical responses to
natural stimuli (1; 17; 18; 26).

The analysis of our dataset of natural sounds started with the work of Bar-

Yosef et. al. (1), who have shown that cortical auditory neurons are extremely



2.3 Related work

sensitive to small perturbations in the (natural) acoustic context. Chechik et. al.
(5), who worked on the same stimuli and response set for cortical neurons, have
shown that different neurons impose different partitions of the stimulus space,
which are not necessarily simply related to the spectro-temporal structure of the
stimuli. It appears that these non-linearities cannot be sufficiently explained

using linear models such as the STRF.

10



Chapter 3

Computational Methods

3.1 Statistical Framework For Modeling Data

3.1.1 Mixture Model

The problem of clustering data into meaningful groups is one of the basic problems
in machine learning. Traditionally, when the learning is performed on labeled
samples the problem is called classification, and when the learning is done on
unlabeled data samples - clustering. In order to learn something from unlabelled
data one has to make some assumptions about the data.

Suppose we have a data set of size N, i.e. X = {z1,---,2x}, drawn from an
unknown distribution p(x|®). We will assume here that the functional forms of
the probability densities are known, and we need to learn the unknown parameter
vector.

To begin with, the following assumptions will be made (10):
1. The samples come from a known number ¢ of classes.
2. The a priori probabilities P(w,) for each class are known, j =1,---, c.

3. The forms for the class-conditional probability densities p(x|w;, ©;) are

known, 7 =1,---,c.

4. All that is unknown are the values for the ¢ parameter vectors O, - -+, O,

11



3.2 Parameter Estimation

Each data sample x comes from class w; with probability P(w;), and its
probability is p(x|w;, ;). Thus, the probability density function for the sample

is given by
p(x®) = p(x|wj, ©;)P(w;) (3.1)
j=1
where ® = @4, ---, ®.. A density function of this form is called a mizture density.

The conditional densities p(x|w;, ©,) are called the component densities, and the
a priori probabilities P(w;) are called the mizing parameters. In the version used
in this work, we leave the mixing parameters unknown, and estimate them from
the data along with the other unknown parameters.

The basic goal in this setup is to estimate the unknown parameter vector
O, using the data samples from this mixture density. Once we know © (and
wi, -+, we is left unknown) we can decompose the mixture into its components
and the problem is solved: we have a sufficient decomposition of the input space

into ¢ clusters.

3.1.2 Gaussian Mixture Model

A case of special interest is a Gaussian Mixture Model (GMM). In this parametric

statistical model, the component densities are drawn from the normal distribution
p(x|w;, ©;) ~ N (11;%;) (3.2)

Gaussian Mixture Models are appealing because they provide a generative
model for the data examined. A generative model is useful, because we can pro-
vide predictions regarding previously unseen points. Each Gaussian component

is usually used to represent a different source/type of data.

3.2 Parameter Estimation

3.2.1 Maximum likelihood Estimation Problem

Suppose we have a density function p(x|®) which is governed by a set of param-

eters ® and the data set X = {z1,---,zy} which is drawn from this distribution.

12



3.2 Parameter Estimation

We assume that these data vectors are independent and i.i.d. with distribution

p. Therefore, the resulting density for the data set is

p(X[©) = Hp(:vi\@) = L(0[X) (3-3)

This function £(0O]|X) is called the likelihood of the parameters given the data,
or just the likelihood function. The likelihood is actually a function of ® while
the data set X is fixed. In the maximum likelihood problem our goal is to find ®
that maximizes £ (2). We wish to find ®* where

®" = argmaze L(O|X) (3.4)

Often we maximize logL(©|X) instead because it is analytically easier. For
some easy problems it’s possible to find a closed solution for finding parameters
©, but for many interesting problems it is not feasible to find such analytical

expressions and more elaborate techniques have to be used.

3.2.2 Expectation Minimization

The Expectation Minimization (EM) algorithm is one of the popular techniques
for finding the maximum likelihood estimate (MLE) in various problems. The
EM algorithm (8) is a general method for finding the MLE of the parameters of
an underlying distribution from a given data set when the data is incomplete or
has missing values.

There are two main applications for the EM algorithm. The first occurs when
the data has missing values due to noisy measurements or other limitations of
the observation process. The second occurs when optimizing the likelihood func-
tion is analytically intractable but when the likelihood function can be simplified
by assuming the existence of some missing (or hidden) parameters. The latter
application is the one we are going to relate to in this work.

As before, we assume that data X is observed and is generated by some dis-

tribution. We call X the incomplete data. We assume that a complete data set

13



3.2 Parameter Estimation

exists Z = X, Y and also specify a joint density function:

p(2|0) = p(z,y|©) = p(y|z, ©)p(z(O) (3-5)

One example of such hidden variables are the mixing parameters in a mixture
model.

With this new density function we can define a new likelihood function,
L(B|12) = L(OX,Y) = p(X, Y|O|), called the complete data likelihood (2). This
function is in fact a random variable since the missing information Y is unknown,
random and presumably governed by an underlying distribution.

The EM algorithm first finds the expected value of the complete data log-
likelihood log p(X, Y|©]) with respect to the unknown data Y given the observed
data X and the current parameter estimators. Thus, we can define:

Q(0,007Y) = Ellog p(X,Y|0©)|X, 061 (3.6)

where the meaning of the two arguments in the function Q(©, ©¢~1) is the follow-
ing: the first argument © corresponds to the parameters that will be optimized in
the attempt to maximize the likelihood; the second argument ©¢~1 is constant
and we use it to evaluate the expectation. The evaluation of this expectation is
called the E-step of the algorithm.

The second step (the M-step) of the EM algorithm is to maximize the expec-

tation we computed in the first step. Thus, we find:

0% = argmaze Q(O,00 1) (3.7)

These two steps are repeated as necessary. Each iteration is guaranteed to
increase the log-likelihood and the algorithm is guaranteed to converge to a local

maximum of the likelihood function (8).

14



3.2 Parameter Estimation

3.2.3 Finding Maximum Likelihood GMM Parameters via
EM

The mixture density parameter estimation is probably one of the most widely
used applications of the EM algorithm. In this case, we assume the probabilistic

model given by eq. 3.1. Let’s define a;; = P(w;), and we get:

p(x|®) = Z a;p; (x]0;) (3.8)

where the parameters vector we wish to optimize is © = (v, -+, an, ©1,- -+, Onr)
such that Zf\il a; = 1 and each p; is a density function parametrized by ©;.
For example, if we assume d-dimensional Gaussian component distributions with

mean p and covariance matrix X, i.e. ©; = (p;,%;), then

pilz|pi, ) = Weé(wm%g_n(m’”) (3.9)

Explicitly, we assume that we have M Gaussian distributions mixed together
with M missing coefficients a; (probability of each Gaussian model). The incom-
plete data log likelihood for density defined in Eq. 3.8 from the data X is given

by:

N

log(L(O]X)) = log H (x;]©) = Zlog Zajpj (%i]©;)) (3.10)

i=1

This expression is hard to estimate because it contains a log of a sum. But
if we consider X incomplete, and assume that each data point x; has an un-
observed data point y;, whose value informs us to which density component it
belongs, the likelihood expression can be significantly simplified. We assume that

lth

y; € {1,--+-, M}, and y; = [ if the i® sample was generated by the mixture

component. Then the complete data log likelihood is:

N
log(ﬁ;(@‘x,y)) = log( x 9|9 Zlog xz‘yz Z)) = Zlog(ayipyi(xi|®yi))
=1

(3.11)

15



3.2 Parameter Estimation

From this equation we can derive update equations for a;, ©;[¢ = 1,---, M, or
in the Gaussian Mixture Model case for o, (u;, ;)i = 1,---, M. The estimates
of the new optimal parameters for maximizing the log-likelihood in terms of old

parameters in this case are:

N
new __ 1 _ Old
Y=y ;Zlﬁp(yi = U]z, ©°) (3.12)
N old
new i=1 LiP\Yi = l Z;, S
pew _ Doy il = 15, 0%) o)

SN (Y = 1|z, ©%4)
SN (Y = Uwi, 0% (z; — o) (z; — ppe)”
SN p(yi = U|z;, ©°1d)

For full details according the derivation of these update equations, see Bilmes

srew — (3.14)

(2). The above equations perform both the expectation step and the maximiza-
tion step simultaneously. The algorithm proceeds by using the newly derived

parameters as the guess for the next iteration.

3.2.4 Finding Maximum Likelihood GMM Parameters via

EM using Equivalence Constraints

In previous paragraphs Gaussian Mixture Models were used for density estimation
in an unsupervised manner. But in many cases additional information for specific
data points is available. For example, we may have access to the labels of part
of the data set. In this case our problem becomes semi-supervised since the
estimation relies on both labeled and unlabeled points. Side-information relevant
to this work is equivalence constraints between pairs of data points. Two points
will have a positive constraint between them if they were generated by the same
source (they belong to the same Gaussian density distribution) and a negative
constraint if they were generated by different sources.

The additional value of incorporating equivalence constraints is in two lev-
els: First, it will result in faster convergence of the EM algorithm to a solution
of higher likelihood, Second, and more importantly, the equivalence constraints

should change the likelihood function itself. It can give rise to a different solution,

16



3.3 Boosting

Unconstrained Constrained

Figure 3.1: Tllustrative example to demonstrate the added value of equivalence constraints.
The data set consists of two vertically aligned classes. Left: given no additional information, the
EM algorithm identifies two horizontally aligned classes. Right: additional side information in
the form of equivalence constraints changes the probability function and the vertical partition
arises as the most likely solution (29).

that could be rejected based on unconstrained GMM density model. A simple
example demonstraiting this point is shown in Fig. 3.1

Shental et al (29) introduced a method to incorporate positive and negative
equivalence constraints into the EM procedure of evaluating a constrained GMM.
The main idea of the algorithm is in modifying the Expectation Step in the
following way: instead of summing over all possible assignments of data points
to sources, sum only over the assignments that comply with the given constraints.
For example, if points x; and x; are positively constrained - only assignments in
which both points are assigned to the same Gaussian source (in the notation
presented before y; =y; =1, 1 € {1,---, M}) are considered. On the other hand,
if these points are negatively constrained - only assignments in which they are
assigned to different Gaussians are considered. The full details of the algorithm

may be found in the article.

3.3 Boosting

Boosting is a general method that attempts to “boost” the accuracy of any given
learning algorithm. It is a method of finding a highly accurate hypothesis (clas-
sification rule) by combining many “weak” hypotheses, each of which is only

moderately accurate. Typically, each weak hypothesis is a simple rule which can

17
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3.3 Boosting

be used to generate a predicted classification for any instance, and the basic idea
of boosting is to use such weak learners repeatedly each time on a different sample
of the learning examples. The output is a weighted sum of the weak learners’
outputs.

A common boosting algorithm is AdaBoost presented by Freund and Shapire
(see Fig. 1) (12). The algorithm takes as input a training set (z1,41), ---, (Tn; Yn)
where each x; belongs to some instance space X and each label y; is in some label
set Y. In the algorithm presented here it is assumed that the label space is -1,
+1. The main effect of AdaBoost’s update rule (assuming «; > 0) is to decrease
the weight of correctly classified train examples and to increase the weight of
those classified incorrectly. The final hypothesis H is a weighted majority vote
of T weak hypotheses where 4 is the weight assigned to h;.

Algorithm 1 The boosting algorithm AdaBoost
Given (551;91), ey (xnayn)ﬁ T; € X , Yi € {_1>+1}
Initialize Dy (i) =1/n i=1,..,n

Fort=1,..,T

1. Train weak learner using distribution D;

2. Get weak hypothesis h; : X — [—1,+1] with error
€ = Pri «p,[he(7:) # yil

3. Choose oy = %111(1;_‘5&)

4. Update:

Dy(i) exp(—ay)  hy(z;) =y

Dy (i) = { Dy(7) exp (o) hy(2i) # i

5. Normalize: Dy 1(i) = Dyi1(3)/Zea
where ZH—I = Z?:l Dt_|_1(l')

6. Output the final hypothesis H(z) = sign(3",_, ashi(z))
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3.4 DistBoost

The ability of AdaBoost to reduce the training error was proved theoretically
by Freund and Shapire (12). Let us write the error €; of weak hypothesis h; as %—
v¢. Intuitively, since any random classifier guesses the right binary classification at
a rate of %, v; measures how much better current weak classifier h; is as compared
to random classifiers. Freund and Shapire (12) proved that the training error
(the fraction of mistakes on the training set) of the final hypothesis H is at most
exp(—2Y_,77). Thus, if each weak hypothesis is slightly better than random

(such that € < 3), then the training error drops exponentially fast.

3.4 DistBoost

The DistBoost algorithm (14) is a distance learning algorithm. It learns a distance
function which is based on boosting binary classifiers with a confidence level in
a product space, using weak learners that are trained in the original feature
space. The algorithm proposes a boosting scheme that incorporates unlabeled
data points (points that don’t participate in any of the equivalence constraints).
These unlabeled points provide a density prior and their weights rapidly decay
during the boosting process. The weak learner is based on a constrained EM
algorithm which computes a Gaussian mixture model (see 3.2.4). The GMM
provides in each boosting step a partition of the original space, from which a
weak product space hypothesis is made. The algorithm is shortly described in
Alg. 2.
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3.4 DistBoost

Algorithm 2 The DistBoost Algorithm
Input:

Data points: (z1,---,2,), xx € X
A set of equivalence constraints: (z;,,;,,y;), where y; € {—1,1}

Unlabeled pairs of points: (z;,, z;,, y; = *), implicitly defined by all uncon-
strained pairs of points

e Initialize W}, =1/(n®) 41,42 =1,...,n (weights over pairs of points)

we =1/n k=1,...,n (weights over data points)
e Fort=1,..,T

1. Fit a constrained GMM (weak learner) on weighted data points in X

using the equivalence constraints.

2. Generate a weak hypothesis by : X x X — [—1,1] and define a weak

distance function as hy(z;, ;) = £ (1 — izt(xi,xj)) € [0,1]

3. Compute r; = > I/Viibyiizt(xil,xiz), only over labeled pairs.
(J“il 3Tig 5yz:i1)
Accept the current hypothesis only if r; > 0.

1
)

4. Choose the hypothesis weight oy = %ln(
5. Update the weights of all points in X x X as follows:

W~t+1 _ { VVZ'tIiZ eXp(_atyiilt(xiumw)) Yi € {_1’ 1}

i12 t _
VVhiz eXp(_at) Y; = *
: wit
6. Normalize: Wit = — iz
1172 ) witt

311
i1,ip=1 12

7. Translate the weights from X x X to X: wi™' = 3= Wi

Output: A final distance function D(z;, z;) = Y1, ashy(wi, ;)

20



Chapter 4

Formalizing the problem as a

distance learning problem

4.1 Experimental setup

4.1.1 Acoustic stimuli

Four stimuli, each of length 60 - 100 ms, consisted of a main tonal component
with frequency and amplitude modulation and of a background noise consisting
of echoes and unrelated components. Each of these stimuli was further mod-
ified by separating the main tonal component from the noise, and by further
separating the noise into echoes and background. All possible combinations of
these components were used here, in addition to a stylized artificial version that
lacked the amplitude modulation of the natural sound. In total, 8 versions of
each stimulus were used in Al experiments and another 2 versions were used in
IC experiments. Several stimuli with different variations are shown in fig. 4.1.
Therefore each neuron in A1 had a dataset consisting of 32 datapoints and each
neuron in IC had 40 points dataset'. The sounds were taken from the Cornell

Laboratory of Ornithology.

!For more detailed methods for obtaining the different versions of the stimuli see Bar-Yosef
et al. (1).
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4.1 Experimental setup
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Figure 4.1: Each column refers to a stimulus. The bottom line presents the natural sound for
each stimulus, row named “Main” shows only the extracted main chirp for each stimulus, also
shown echo, background, noise (echo+background), MainE (main chirp + echo) and MainB
(main chirp + background). (1)(unpublished fig.)
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4.1 Experimental setup

4.1.2 1IC setup

Recordings were made in the right IC of fifteen pigmented guinea pigs weighing
335 — 507 gm. Animals were anesthetized with urethane (1.3 gm/kg, i.p., in 20%
solution in 0.9% saline) and Hypnorm (Janssen, High Wycombe, UK) (0.2 ml,
i.m., comprising fentanyl citrate 0.315 mg/ml and fluanisone 10 mg/ml). To pre-
vent bronchial secretions, atropine sulfate (0.06 mg/kg, s.c.) was administered at
the start of the experiment. Anesthesia was supplemented with further doses of
Hypnorm (0.2 ml, i.m.), on indication of pedal withdrawal reflex. A tracheotomy
was performed, and core temperature was maintained at 38°C via a heating blan-
ket and rectal probe. The animals were placed inside a sound attenuating room
in a stereotaxic frame in which hollow plastic speculas replaced the ear bars to
allow sound presentation and direct visualization of the tympanic membrane. A
craniotomy was performed over the position of the IC. The dura was reflected,
and the surface of the brain was covered by a solution of 1.5% agar in 0.9% saline.
Respiratory rate was monitored by means of a fine polythene tube inserted into
the tracheal cannula connected to a low-pressure transducer; heart rate was mon-
itored using a pair of electrodes inserted into the skin to either side of the animal‘s
thorax. Recordings were made with glass-insulated tungsten electrodes (4) ad-
vanced into the IC (optional charge) through the intact cortex, in a vertical pene-
tration, by a piezoelectric motor (Burleigh Inchworm IW-700/710). Extracellular
action potentials were amplified (Axoprobe 1A, Axon Instruments, Foster City,
CA), discriminated using a level-crossing detector (SD1, Tucker-Davies Technolo-
gies), and their time of occurrence was recorded with a resolution of 1 usec. For
further details see Shackleton et. al. (28).

4.1.3 Al setup

Extracellular recordings were made in primary auditory cortex of nine halothane-
anesthetized cats. Anesthesia was induced by ketamine and xylazine and main-
tained with halothane (0.25-1.5%) in 70% N,O using standard protocols autho-
rized by the committee for animal care and ethics of the Hebrew University -
Haddasah Medical School. Single neurons were recorded using metal microelec-

trodes and an online spike sorter (MSD, alpha-omega). All neurons were well sep-
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4.2 Computational problem formulation

arated. Penetrations were performed over the whole dorso-ventral extent of the
appropriate frequency slab (between about 2 and 8 kHz). Stimuli were presented
20 times using sealed, calibrated earphones at 60-80 dB SPL, at the preferred
aurality of the neurons as determined using broad-band noise bursts. For further
details see Bar-Yosef et. al. (1).

4.2 Computational problem formulation

Our approach is based on the idea of learning a cell-specific distance function over
the space of all possible stimuli, relying on partial information extracted from the
neuronal responses of the cell. The initial data consists of stimuli and the result-
ing neural responses. In a typical auditory experiment each neuron is presented
with several repetitions of a set of input stimuli. Usually, these pairs of stimuli
and responses are used to directly learn the neuron’s input-output function. In
our approach we use these pairs to train a distance learning algorithm, defined
over all stimuli. We use the neuronal responses to identify pairs of stimuli to
which the neuron responded similarly and pairs to which the neuron responded
very differently. These pairs can be formally described by equivalence constraints.
Equivalence constraints are relations between pairs of datapoints, which indicate
whether the points in the pair belong to the same category or not. We term a
constraint positive when the points are known to originate from the same class,
and negative if they belong to different classes. In this setting the goal of the algo-
rithm is to learn a distance function that attempts to comply with the equivalence
constraints. In order to measure the similarity between neuronal responses, we
used the normalized x? distance measure (see Section 4.4 for details).

We can therefore formally define the computational task as follows:

Input: a set of input stimuli which were presented to a set of neurons, and their

recorded responses.

1. Represent the input stimuli using some standard representation (such as its

first Cepstral coefficients).

2. Use the responses to extract positive and negative equivalence constraints.
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4.3 Data representation

3. Learn a distance function using the input stimuli and the equivalence con-
straints thus gathered.

4. Test the predictive power of the learned distance function using cross vali-

dation.

This formalism allows to combine information from a number of cells to im-
prove the resulting characterization. Specifically, we combine equivalence con-
straints gathered from pairs of cells which have similar responses by taking the
intersection of two cells’ constraints, and train a single distance function for both
cells. Our results demonstrate that this approach improves prediction results of
the “weaker” cell, and almost always improves the result of the “stronger” cell
in each pair. Another interesting result of this formalism is the ability to classify
stimuli based on the responses of the total recorded cell ensemble. For some stim-
uli, the predictive performance based on the learned inter-stimuli distance was
very good, whereas for other stimuli it was rather poor. For cortical neurons these
differences were correlated with the acoustic structure of the stimuli, partitioning

them into narrowband and wideband stimuli.

4.3 Data representation

We used the first 60 ms of each stimulus. Each stimulus was represented using the
first d real Cepstral coefficients. The real Cepstrum of a signal  was calculated
by taking the natural logarithm of magnitude of the Fourier transform of x and
then computing the inverse Fourier transform of the resulting sequence. In our
experiments we used the first 21-36 coefficients. Neuronal responses were repre-
sented by creating Peri-Stimulus Time Histograms (PSTHs) using 20 repetitions

recorded for each stimuli. Response duration was 100 ms.
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4.4 Obtaining equivalence constraints over stimuli pairs

4.4 Obtaining equivalence constraints over stim-
uli pairs

The distances between responses were measured using a normalized x? distance
measure. All responses to both stimuli (40 responses in total) were superimposed
to generate a single high-resolution PSTH. Then, this PSTH was non-uniformly
binned so that each bin contained at least 10 spikes. The same bins were then
used to generate the PSTHs of the responses to the two stimuli separately. For
similar responses, we would expect that on average each bin in these histograms
would contain 5 spikes. More formally, let N denote the number of bins in each
histogram, and let 7¢ 7% denote the number of spikes in the i’th bin in each of the

two histograms respectively. The distance between pairs of histograms is given
by:

Dchi = (41)

In order to identify pairs (or small groups) of similar responses, we com-
puted the normalized x? distance matrix over all pairs of responses, and used the
complete-linkage algorithm (10) to cluster the responses into 8 — 12 clusters. All
of the points in each cluster were marked as similar to one another, thus pro-
viding positive equivalence constraints. In order to obtain negative equivalence
constraints, for each cluster ¢; we used the 2 — 3 furthest clusters from it to define
negative constraints. All pairs, composed of a point from cluster ¢; and another

point from these distant clusters, were used as negative constraints.

4.5 Evaluation of the distance learning method

In order to evaluate the quality of the learned distance function, we measured the
correlation between the distances computed by our distance learning algorithm to
those induced by the x? distance over the responses. For each stimulus that was
tested in leave-one out manner, we measured the distances to all other stimuli

using the learnt distance function. We then computed the rank-order Spearman
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4.5 Evaluation of the distance learning method
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Figure 4.2: IC: DistBoost induced distances between stimuli versus x? distances between
appropriate neuronal responses for one left-out data point.

correlation coefficient and Pearson correlation coefficient between these learnt
distances in the stimulus domain and the x? distances between the appropriate
responses. A typical result for one left out stimulus in IC cell (IC26) is presented
in Fig 4.2. The X axis of the figure is the x? distances between left-out stimulus
response and 39 remaining neural responses. The Y axis is DistBoost induced
distances between the left-out stimulus and 39 train stimuli. The correlation is
measured between these two vectors (of 39 distances each). Since these vectors
contain less than 40 values both for IC and A1 cells, in some cases the correlation
results are not highly significant. This procedure produced a single correlation
coefficient for each left-out stimulus, and the average correlation coefficient across
all stimuli was used as the overall performance measure for each cell.

In order to compare our new approach to the STRF approach we performed
the following procedure, using STRFPAK-2.0.1 package by Theunissen et. al.
(32), for all cells:

e For each left-out stimulus compute STRF based on the train stimuli (the

remaining N — 1 stimuli) with 4 different tolerance values.

e Choose one tolerance value per cell by choosing the one that gave the highest
average correlation between the predicted firing rate for the train stimuli
based on the STRF's and the actual recorded firing rate.
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4.6 Parameter selection

e For the chosen tolerance value, calculate distances between the predicted
firing rates for each left-out stimulus by simply calculating the Fuclidean
distance between the left-out stimulus prediction and all the other predic-

tions. This results in N — 1 distances per left-out stimulus.

e Compute the rank-order Spearman correlation coefficient and Pearson cor-
relation coefficient between these distances in the stimulus domain and the
x? distances between the appropriate responses, same as in our distance
learning paradigm. Produce a single correlation coefficient for each of the
left-out stimuli, and the average correlation coefficient across all stimuli is

used as the overall performance measure for each cell.

4.6 Parameter selection

The following parameters of the DistBoost algorithm can be fine-tuned:
1. The input dimensionality d = 21-36.
2. The number of Gaussian models in each weak learner M = 2-4.
3. The number of clusters used to extract equivalence constraints C' = 8-12.

4. The number of distant clusters used to define negative constraints numAnti =
2-3.

Optimal parameters were determined separately for each of the 22 Al cells
and the 28 IC cells, based solely on the training data. Specifically, in the cross-
validation testing we used the following validation paradigm: Given /N stimuli, in
the leave-one out manner the training is done on N —1 stimuli. Before performing
the training, we removed an additional datapoint and trained our algorithm on
the remaining N — 2 points. We then validated the algorithm’s performance
using the left out datapoint. The optimal cell-specific parameters for the final

LOU training (with N — 1 stimuli) were determined using this approach.
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Chapter 5

Results

5.1 Fitting power of cell-specific distance func-
tion

The fitting power of a method is measured by analyzing the fraction of the in-
formation that the model can capture on train examples. In the present con-
text, this is a measure of how well our method captures the relevant structure
of the auditory stimulus space as induced by a specific cell, while trained with
all the stimulus set. We begin our analysis with an evaluation of the fitting
power of our method, by training Al neurons with the entire set of 32 stimuli
(see Fig. 5.1). For each cell, rank order correlation coefficient between learnt
distances in the stimulus domain and the x? distances between the appropriate
responses was calculated (see Section 4.5). In general almost all of the correlation
values are positive and quite high. The average correlation over all cells is 0.62
with STandardError(ste) = 0.0096.

5.2 Generalization power of the method

In order to evaluate the generalization potential of our approach, we used a leave
one out (LOU) cross-validation paradigm. In each run, we removed a single
stimulus from the dataset of N stimuli (40 for IC and 32 for Al), trained our

algorithm on the remaining N —1 stimuli, and then tested its performance on the

29



5.2 Generalization power of the method

15 15

10 10

-1 -0.5 0 0.5 1

Figure 5.1: Left: Histogram of train rank-order correlations on the entire ensemble of Al
cells. The rank-order correlations were computed between the learnt distances and the distances
between the recorded responses for each single stimulus (N = 22%32). Center: train correlations
for a “strong” cell. Right: train correlations for a “weak” cell. The dotted lines represent the
average value of each distribution.
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Figure 5.2: IC: Histograms of cell specific test rank-order correlations for the 28 cells in the
dataset. The rank-order correlations compare the predicted distances to the distances between
the recorded responses, measured on a single stimulus which was left out during the training
stage. For visualization purposes, cells are ordered (columns) by their average test correlation
per stimulus in descending order. Negative correlations are in yellow, positive in blue.
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5.2 Generalization power of the method
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Figure 5.3: Al: Histograms of cell specific test rank-order correlations for the 22 cells in the
dataset. The rank-order correlations compare the predicted distances to the distances between
the recorded responses, measured on a single stimulus which was left out during the training
stage. For visualization purposes, cells are ordered (columns) by their average test correlation
per stimulus in descending order. Negative correlations are in yellow, positive in blue.
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5.3 Boosting the performance of weak cells

datapoint that was left out (see Fig. 5.3 and Fig. 5.2). The train result in this
paradigm is the mean correlation for output distances of the N — 1 stimuli the
algorithm trained on and the neuronal distances for the responses to these stimuli.
The test result is the correlation of the left-out stimulus output distances and its
neuronal response distances. In each histogram we plot the test correlations of a
single cell, obtained using the LOU paradigm over all of the N stimuli (/V boxes
in each cell histogram).

As can be seen, results for test performance are varied, even when cells from
the same sub-system (A1 or IC) are considered. While for some IC neurons our
algorithm obtains average rank-order correlations that are as high as 0.71, for a
minority of the cells the average correlation drops to below 0.2. This variability
in the predictive power of the method is also apparent in the results obtained
for the cortical cells. The highest test correlation achieved on Al cell is 0.41,
while for some cells the average test correlation is less then 0.1. On average,
A1 test correlations are lower than IC test correlations. The average rank-order
correlation over all IC cells is 0.34 with ste = 0.034 and the average rank-order
correlation over all A1 cells is 0.24 with ste = 0.0019.

Not surprisingly, both for IC and for A1 the train results in LOU procedure are
better than the test results (see Fig. 5.4). Interestingly, however, we found that
there was a significant correlation between the training performance and the test
performance both for IC (C' = 0.61, p < 0.001) and for A1 (C = 0.41, p < 0.05).

5.3 Boosting the performance of weak cells

In order to boost the performance of cells with low average correlations, we con-
structed the following experiment: We clustered the responses of each cell, using
the complete-linkage algorithm over the x? distances with 4 clusters. We then
used the F% score that evaluates how well two clustering partitions are in agree-
ment with one another (Fy = 25,
recall.). This measure was used to identify pairs of cells whose partition of the

where P denotes precision and R denotes
stimuli was most similar to each other. In our experiment we took the four cells

with the lowest performance (right column of Fig 5.3), and for each of them

used the F% score to retrieve the most similar cell. For each of these pairs, we
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5.3 Boosting the performance of weak cells
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Figure 5.4: Train vs. test cell specific correlations. Each point marks the average correlation
of a single cell. The distribution of train and test correlations is displayed as histograms on the
top and on the right respectively. Upper: IC data set. The correlation between train and test
is 0.61 with p = 0.0006. Lower: A1l data set. The correlation between train and test is 0.4 with
p = 0.05.
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5.4 Stimulus classification
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Figure 5.5: Test rank-order correlations when training using constraints extracted from each
cell separately, and when using the intersection of the constraints extracted from a pair of cells.
This procedure always improves the performance of the weaker cell, and usually also improves
the performance of the stronger cell.

trained our algorithm once more, using the constraints obtained by intersecting
the constraints derived from the two cells in the pair, in the LOU paradigm. The
results can be seen in Fig 5.5. On all of the four original low-performing cells,
this procedure improved LOU test results. Interestingly and counter-intuitively,
when training the better performing cell in each pair using the intersection of its
constraints with those from the poorly performing cell, results deteriorated only
for one of the four better performing cells. In general, for 11 of 22 A1 cells, one
of the four most similar cells caused an average improvement of 0.09 in test rank
order correlation, while for 5 of the remaining cells no other cell improved the

generalization performance.

5.4 Stimulus classification

After computing the test performance per cell we measured the predictability
of each stimulus by averaging the LOU test results obtained for the stimulus
across all cells separately in IC and in Al. This analysis recovers differences
in performance that can be linked to a basic attribute of auditory stimulus -

its bandwidth. In our experiment, we used both narrow-band and wide-band
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5.4 Stimulus classification
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Figure 5.6: Left: Stimuli specific correlation values averaged over the entire ensemble of
IC cells. Mean test correlation for narrow-band stimuli: 0.292, std = 0.12; mean correlation
for wide-band: 0.416, std = 0.12. Narrow-band stimuli are slightly less predictable, but the
distributions are largely overlapping. Right: Stimuli specific correlation values averaged over
the entire ensemble of A1 cells. Mean test correlation for narrow-band stimuli: 0.151, std = 0.08;
mean correlation for wide-band: 0.333, std = 0.09. The predictability of wideband stimuli in
A1 case is clearly better than that of the narrowband stimuli.
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5.5 Comparison to STRF

variations of stimuli (for example, Main component is a narrow-band stimulus
and Noise component is a wide-band stimulus, see Fig 4.1). As can be seen in
Fig. 5.6, the cross-validation results in Al induced a partition of the stimulus
space into narrow-band and wide-band stimuli. In IC the mean predictability of
wide-band stimuli is higher than the mean predictability of narrow-band stimuli,
but the two correlation distributions are largely overlapping.

Our analysis shows that for cortical auditory neurons wide-band stimuli are
more predictable than narrow-band stimuli, despite the fact that the neuronal
responses to these two groups are not different as a whole. Whereas the non-
linearity in the interactions between narrow-band and wide-band stimuli has al-
ready been noted before (17; 23; 24), here we further refine this observation by
demonstrating a significant difference between the behavior of narrow and wide-
band stimuli with respect to the predictability of the similarity between their
responses. IC neurons show less difference in predictability, a fact that com-
plies with IC cells’ description as linear filters depending solely on the Frequency

Response Area of the neuron.

5.5 Comparison to STRF

As another evaluation of our novel approach, STRF was calculated for all IC and
A1 cells using leave-one out manner (see 4.5). Rank-order Spearman correla-
tion coefficient was computed between predicted responses’ distances and true
responses distances. For 28 IC cells in the data set mean rank-order test corre-
lation coefficient achieved by STRF linear approach is 0.37, std = 0.09. For Al
neurons data set mean rank-order test correlation coefficient is 0.21, std = 0.07.
Three typical results for A1 cells are presented in Fig. 5.7. Although the average
results in both approaches are similar for IC and for Al, the correlations are
distributed uniformly and they remain small for all stimuli in STRF results, and
are very different (very high and very low correlations per stimulus in the same
cell) in DistBoost results.

After computing STRF test performance per cell we measured the predictabil-
ity of each stimulus by averaging the LOU test results obtained for the stimulus

across all cells separately in IC and in Al. Using STRF approach we did not find
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5.5 Comparison to STRF
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Figure 5.7: Comparison of DistBoost and STRF for Al set. Typical examples of test rank
order correlations using DistBoost (left) and STRF (right). While mean test correlation per-cell
is similar for both approaches, DistBoost predicts the distances very well for part of the stimuli
and poorly for another part and STRF generally returns small correlation values for all stimuli.
Negative correlations are in yellow, positive in blue.
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5.5 Comparison to STRF
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Figure 5.8: Histograms of mean test rank-order correlations for narrow-band and wide-band
stimuli separately. (a) IC results. Left: DistBoost correlations. Right: STRF correlations. (b)
A1 results. Left: DistBoost correlations. Right: STRF correlations.

any difference in predictability for narrow-band and wide-band stimuli in a sense

of distance learning in the stimuli space in IC nor in A1l (see Fig. 5.8).
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Chapter 6

Discussion

In the standard approach to auditory modeling, a linear or weakly non-linear
model is fitted to the data, and neuronal properties are read from the resulting
model. Extensive research have been done in order to define the basic features
that cortical neurons are sensitive to, in analogy to oriented moving lines for V1
neurons. Thus the bulk of the experiments use simple and well-defined stimuli,
such as pure tones, amplitude-modulated tones, frequency-modulated tones, ran-
dom chords, etc. Unfortunately, due to the high sensitivity of A1l neurons to
small perturbations in the stimulus space, powerful predictions could be made
only on stimuli identical in nature to those in the train set. As a rule, models
based on ensembles of simple and tailored stimuli failed to capture the responses
of auditory cortical neurons to natural stimuli. Recent experiments use com-
plex stimuli in general, and natural stimuli in particular, to create models for
the neuronal responses to complex sounds. However, these studies suggest that
the predictability of these models is weak and the usefulness of linear modeling
is limited due to the highly non-linear behavior of auditory cortical neurons in
response to natural stimuli.

Motivated by the limitations of linear modeling, we propose a new formulation
of the problem. We frame the problem as a distance learning problem over the
auditory stimulus space. Neuronal data is used as a guide for training a highly
non-linear distance function on stimulus space, compatible with the neural re-
sponses. After training the model, we can predict the similarity between a cell’s

response to a test stimulus and the cell’s responses to the training stimuli. The
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main result of this thesis is to demonstrate the feasibility of this approach. As
another validation of the novel method, we present here results not only for Al
neurons, but for pre-cortical IC neurons as well.

First, we learned distance functions over the stimulus domain for single cells
using information extracted from responses collected during standard electrophys-
iological experiments. The evaluation of the fitting power of the model was done
on A1l neurons data set and the results were satisfying: thus, a desired distance
function can be learnt. Moreover, the predictive power of these cell specific dis-
tance functions was checked when presented with novel stimuli. Cross-validation
scheme was performed, and a single stimulus was removed from the data set both
for IC and for A1 experimental data. While train performance remained high, test
results were lower for both subsystems, as expected when handling a small data
set. Not surprisingly, in general, both test results and the correlation between
train and test results were higher in IC than in Al. Further research is needed to
find more compatible evaluation methods for the new approach, possibly based
on the identification of the nearest neighbor or a group of nearest neighbors.

Two further results underscore the usefulness of the new formulation. First, we
demonstrated that we can improve the test performance of a distance function by
using constraints on the similarity or dissimilarity between stimuli derived from
the responses of multiple neurons. Whereas we expected this manipulation to
improve the test performance of the algorithm on the responses of neurons that
were initially poorly predicted, we found that it actually improved the perfor-
mance of the algorithm also on neurons that were rather well predicted, although
we paired them with neurons that were poorly predicted. Thus, it is possible that
intersecting constraints derived from multiple neurons uncover regularities that
are hard to extract from individual neurons. The description of the best choice
of pairs in order to improve both (or one) cell’s performance is one of our future
research directions.

Second, it turned out that some stimuli consistently behaved better than oth-
ers across the neuronal population of the cortical neurons. This difference was
correlated with the acoustic structure of the stimuli: those stimuli that contained

the weak background component (wide-band stimuli) were generally predicted
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better. This result is surprising both because the background component is sub-
stantially weaker than the other acoustic components in the stimuli (by as much
as 35-40 dB). It may mean that the relationship between physical structure (as
characterized by the Cepstral coefficients) and the neuronal responses becomes
simpler in the presence of the background component, but is much more idiosyn-
cratic when this component is absent. This result underscores the importance of
interactions between narrow and wide-band stimuli for understanding the com-
plexity of cortical processing. In contrast, IC neurons are thought to be linear
(or almost linear) filters of the stimulus. Considering this, it is not surprising
that the generalization performance of IC neurons for both types of stimuli was
similar and no such difference was found.

In order to compare our distance learning algorithm to STRF approach we
designed a scenario in which from explicit response predictions we construct dis-
tances between stimuli, as imposed by STRFs. We use this scenario to compare
STRF results to DistBoost results. The average results both for IC and for Al
are similar to those achieved by using DistBoost. But if we take a closer look
into the per-stimulus correlations for a typical cell - we find interesting differences
between the approaches. STRF method tends to give predictions with uniformly
small correlations to responses’ distances (in a specific cell all the correlations are
similar). DistBoost “learns well” some of the stimuli, and predicts its distances
from all the other stimuli with high correlation to responses’ distances, while it
predicts poorly some of the other stimuli true position in the learnt space. Thus
it can be highly useful to identify well-predicted stimuli before running DistBoost
and computing their predictability explicitly. However, this still remains one of
our future goals. Furthermore, the difference in stimuli predictability that was
found using DistBoost for cortical neurons was not present using STRF approach.

A major experimental problem in using any learnt function based on stimuli
presented to a neuron is the “life time” of the neuron: only a limited number of
stimuli can be presented to a neuron during one recording session. Here we had 32
short stimuli (60 — 100 ms long) presented to Al neurons and 40 stimuli presented
to IC neurons. These data sets are very small for the considered stimulus space (of
spectrograms or Cepstral coefficients). Our algorithm is fast enough to be used in

near real-time and can therefore be used to guide real experiments: the distance
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functions trained here can direct the process of choosing the best set of stimuli for
characterizing the responses of a neuron. For example, learnt distance functions
can be used to find surprising stimuli: either stimuli that are very different in
terms of physical structure but that would result in responses that are similar to
those already measured, or stimuli that are very similar to already tested stimuli

but that are predicted to give rise to very different responses.
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