
Non-Uniform Mini Batch Sampling for

Relaxed Curriculum-based Learning

By

GREGORY PASTERNAK

Faculty of Computer Science and Engineering
THE HEBREW UNIVERSITY OF JERUSALEM

A dissertation submitted to the Hebrew University of
Jerusalem as a partial fulfillment of the requirements
of the degree of MASTER OF SCIENCE in the Faculty of
Computer Science and Engineering.

JULY 2020

ABSTRACT

Curriculum-based training of deep neural networks showed that sampling mini-

batches from a distribution other than plain uniform on the data sorted by

sample difficulty improves both the learning speed and the final classifier

accuracy. Previous works propose different approaches to order the data by difficulty, as

well as to define a proper pacing function that is used to restrict the training process

to relevant parts of data in each epoch. In this work we explore a family of normal

pacing functions, which, instead of explicitly limiting the epochs to a part of data and

drawing mini-batches uniformly from that part, defines a sampling probability over the

full dataset according to a discrete Gaussian-like distribution, and draws mini-batches

from it. However, we show that despite this, the networks trained with this approach

perform comparably well, while reducing number of curriculum hyper-parameters to

tune in the learning process, and allows the model to occasionally see out-of-curriculum

examples, essentially guiding the focus of the model in each epoch, instead of restricting

it. This approach introduces a previously irrelevant challenge: differently from classical

training epoch definition, where the network is trained on each sample exactly once at

every epoch, in our setup some of the training examples might be shown to the network

much less than others, or even not be shown at all.

i

TABLE OF CONTENTS

Page

List of Tables v

List of Figures vii

1 Introduction 1

2 Related Work 5

3 Generalized Curriculum Framework 11

3.1 Data Scoring . 11

3.1.1 Teacher and Separate Classifier . 12

3.1.2 Teacher Prediction . 12

3.1.3 Offline Self-Taught Scoring . 12

3.1.4 Online Self-Pacing . 12

3.2 Pacing Schedule . 13

3.2.1 Normal Distribution as Pacing Schedule 14

3.2.2 Moving and Extending the Gaussian 14

3.2.3 Catastrophic Forgetting . 15

3.2.4 Asymmetrical Gaussian . 15

3.3 Hardness estimation . 16

4 Experimental Evaluation 19

4.1 Experimental Settings . 19

iii

TABLE OF CONTENTS

4.1.1 Datasets . 19

4.1.2 Teacher Networks . 21

4.1.3 Student Networks Architecture and Training Parameters 21

4.1.4 Optimisation hyper-parameters . 22

4.1.5 Projection of continuous distributions onto a dataset 25

4.2 Hyper-parameters tuning . 25

4.2.1 Cross-validation . 25

4.2.2 Balanced per-class sampling . 26

4.3 Results . 26

5 Summary and Conclusions 29

A Methodology, additional details 31

Bibliography 33

iv

LIST OF TABLES

TABLE Page

4.1 Student network performance on test set. Standard CL uses pacing func-

tion from [16]. Static pacing schedule as defined in 4.1.4.4, PacedMean in

4.1.4.5, PacedMean+B in 4.1.4.7, Hardness in 4.1.4.9. * Baseline results are

as reported in [16]. ** Based on relative improvement as reported in [16]. . . 28

v

LIST OF FIGURES

FIGURE Page

4.1 Transfer learning scoring function output for each superclass of CIFAR100,

ordered by descending scores. Each subplot represents one of 20 superclasses.

Hardness score is specified in parentheses. 21

4.2 Non-uniform sampling distributions. X axes denote training example index, or-

dered according to the curriculum. Whenever the distribution differs between

training steps, the corresponding step is annotated. 27

4.3 Comparison of student networks performance on test set for all setups. 28

A.1 Transfer learning scoring function output for CIFAR10, ordered by descending

scores. Each color represents single class. 32

vii

C
H

A
P

T
E

R

1
INTRODUCTION

C lassical supervised training of deep convolutional neural networks on a given

dataset is usually done by repeatedly presenting mini-batches of labeled exam-

ples randomly drawn from uniform distribution, with no assumptions of any

structured relation between different samples in the dataset, besides coming from the

same domain. In practice, often this is done by randomly shuffling the dataset before each

training epoch, and splitting the shuffled sequence to equal-sized chunks. In contrast,

curriculum learning [5] proposes a way to imitate human learning of complex tasks,

which usually imposes the teacher to define a certain curriculum - a partitioning of the

learning material to conceptual sections - and follow it by teaching gradually section after

section. Often such curriculum is ordered by increasing level of complexity as perceived

by the teacher, based on their experience, common practices, expected performance of the

students being taught, and more. This allows using previously taught material as a basis

for the following material, in part to use simple, concrete, or intuitive concepts to help

explain more complex, ambiguous, or abstract ones. Previous works show that applying

curriculum learning to the training of neural models improves both their convergence

speed, and the final performance they achieve [5, 43]. Clearly, this introduces a hard

challenge: obtaining a high-quality curriculum (data scoring challenge).

1

CHAPTER 1. INTRODUCTION

In the context of deep learning, we define the curriculum as an ordering of training

examples according to some scoring. In this work we focus on the scores which highly

correlate with the complexity of the examples, as perceived by the composer of the

curriculum. Different learning approaches define such composers very differently, for

example: the teacher network in case of transfer learning [19, 43]; the network in

training in case of self-paced learning [25]; additional network trained jointly with

student network with the purpose of samples scoring (self-paced curriculum) [23]; another

instance of same network fully trained with sole purpose of generating curriculum for

itself (self-generated curriculum); or any other arbitrary external oracle. Such scoring

can either be static (student-independent, pre-computed before the training process),

or dynamic (computed during the training process, often utilizing current state of the

student being trained).

In addition to obtaining a scoring for training data, another challenge introduced by

curriculum learning is the data pacing function, which defines what part of the scored

data should be shown to the student at each training step. In its simplest form, a pacing

function splits the examples to distinct chunks, starts the training with a subset of

the chunks (a learning set), and extends it from time to time, based on the number of

training steps passed, current model performance, or other factors.

Previous works in deep curriculum learning, while presenting different approaches

to solve both the scoring and the pacing challenges, still sample the mini-batches from a

given part of data using uniform sampling distribution over that part. This approach

however requires careful tuning of the pacing function and the training hyperparameters

in order to prevent overfitting in the very beginning of the training, when current

learning set is small, and to fully utilize the granularity of individual examples’ scores.

We propose to draw mini-batches from a discrete non-uniform sampling distribution

defined over all the samples in training set, ordered by a given static or dynamic cur-

riculum. This approach does not limit the student to a specific part of training data at

any time, and allows to include both easier and harder examples from the beginning of

training, while still focusing the overall training process according to the curriculum.

2

Effectively, this approach eliminates a need in explicit pacing function over the data or

the curriculum, and instead introduces a pacing schedule for the parameters of sampling

distribution in use, thus proposing a more general solution for the pacing challenge.

We show in empirical studies that for particular family of Gaussian distributions this

preserves the learning speedup, while further improving final student performance.

In uniform random mini-batch sampling, the randomization is defined such that each

sample from the learning set is shown to the student exactly once per epoch (in essence,

the data is shuffled and then split to batches), thus assuring that the learning process

utilizes all of the training set evenly. In classical curriculum learning, this assumption

isn’t true any more, as mini-batches are now drawn from a subset of data. However, as the

distribution is still uniform over the learning set, one can account for the ratio between

learning set size and full training set size, and adjust the training process accordingly,

for example by decreasing the learning rate or decreasing number of batches.

Our method, however, implies that mini-batches are drawn from all of the training

set non-uniformly, hence we cannot be assured that each sample is seen equal amount

of times by the network, and in the extreme case there might be samples that are not

seen at all. However, when choosing the right distribution (e.g. in means of ratio between

the most improbable sample to the most probable), and/or performing enough training

steps, this is unlikely to happen, and, as shown in our experiments, does not affect the

overall performance. Nevertheless, as the regular definition of epoch (single cycle over

all of training data) becomes irrelevant, we measure the length of training procedure

with the number of training steps, each of which utilizes single (not necessarily distinct)

sampling distribution, used throughout the training process, where number of batches

sampled with each distribution is constant and is usually close to that of regular epoch

over the same training set, given other training parameters stay the same (batch size,

architecture, etc).

3

C
H

A
P

T
E

R

2
RELATED WORK

C lassification of curriculum learning methods [38] proposes to differentiate them

by one or more of the main machine learning components the curriculum is

applied to - the data, the model, the task, and the performance measure.

Data-level and task-level curriculum are the most extensively studied methods, as

they seem a natural part of learning process from the human point of perspective, as

described in Chapter 1. Data-level curriculum is described by applying partial selection,

ordering, or other mutation of the dataset prior or while training, often utilizing feedback

from the model being trained. Task-level curriculum refers to training a model on a

sequence of tasks of increasing difficulty, for example by first learning to distinguish

between the most dissimilar classes of images, then adding classes somewhat similar to

already learned ones, and so on. This may seem very similar to data-level curriculum,

however it differs fundamentally by altering the learning objective rather then the

dataset. Important to note that these types of curriculum often require external measure

of difficulty, which may not always be available for a given dataset or class of tasks. For

instance, manual scoring of the dataset, besides being extremely time consuming to

perform, also requires understanding, or even guessing, what will be easy or hard for an

artificial model to grasp, as it was shown previously that it may or may not learn from

5

CHAPTER 2. RELATED WORK

the same clues scientists think it will [13, 14]. On the other hand, some intuitive rules

do apply, for example, [5] used the complexity of geometry shapes to order them prior

training a classification model; in object recognition task [18] describes multiple image

parameters as indicative of image hardness, e.g. background-foreground ratio, number

of distinct objects, presence of occlusion; while in text tasks the length of input sequence

may be strong indicator of its hardness [39].

The model-level curriculum proposes to mutate the model while training, for exam-

ple by starting with lower-capacity model in early training steps, and increasing its

capacity/expressive power progressively. An example for this approach is Curriculum

Dropout [29], where the probability parameter of dropout [40] starts low, and increases

monotonically as the training progresses. [21] proposes to grow the capacity of genera-

tive adversarial network progressively by adding more layers throughout the training.

[37] gradually deblurs convolutional activation maps of the network, which implies

reduced learning capacity at the beginning of training, and getting more expressive as

the training goes on.

The performance-measure-level curriculum is described by direct utilization of learn-

ing metrics used in the training process to dynamically alter the order of samples. Most

notable example might be Self-Paced Learning (SPL), for instance in [25] the authors

propose to use prediction likelihood as such a metric, while in [26] image objectness is

used (probability that an object of a given class exists in an image window).

As the methods presented in this work fall under data-level and task-level curriculum,

the rest of this chapter provides more extensive overview of previous research in these

types of curriculum application.

As presented in Chapter 1, the data scoring challenge may be addressed in two

fundamental ways from the model’s point of view - statically and dynamically.

Static model-agnostic curriculum is computed and applied onto the dataset before the

training, does not require model feedback and hence does not introduce computational

overhead at training time. However, as pointed out earlier, it does require an external

hardness metric. Some examples of such metrics for image classification task include:

6

number of objects of the same class in an image, number of different objects presented

in the image, mean area covered by objects, number of truncated or occluded objects; a

regression model specifically trained to estimate image difficulty scores [18]; probability

scores of an SVM classification model trained on high-quality features transferred from

another deep model [43]; a teacher network prediction depth of the training set, which

was shown to highly correlate with learning difficulty (number of training steps after

which the model’s prediction for an input example has converged) [4].

Curriculum learning by transfer learning introduced in [43] proposes to use a large,

expressive network, pre-trained on large-scale in-domain dataset (here and below:

"teacher network"), estimate its confidence score on each of the training samples, and

sort the samples in accordance before presenting to the smaller network in training

(here and below: "student network"), with the idea that a good teacher which learned on

similar tasks would be very confident on easy examples, and might be less so on more

confusing ones. This approach was shown to improve both the convergence rate and the

final performance of convolutional neural networks on image classification tasks.

The pacing schedule in this case does not depend on specific dataset, and may or

may not utilize student feedback while training to adapt itself; examples of purely

independent schedules include the family of ladder-like functions (when the learning

set is fixed for a number of training steps, and whole chunks are added to it in next

training parts in constant or varied, relatively slow, pace) [16]; linear and logarithmic

functions [15], square and higher-order roots [31] (when single or a few examples are

frequently added to the learning set). These schedules usually don’t assume or compute

any structured relation between examples in the dataset besides their order in the

curriculum, however they might hint on some insights (for example, the logarithmic

function implies that the student network should be able to rapidly pass over easy

examples and focus more on the hard ones).

In the dynamic setting, the curriculum is not built explicitly for a given dataset

regardless of the student model, but instead is queried iteratively using the model itself

at each step of training.

7

CHAPTER 2. RELATED WORK

Self-paced learning [25, 27], for instance, selects samples for which the likelihood

of student prediction of the correct class is high at current step. Note that this is not

the same as selecting samples for which the student has high confidence, as confident

answer is not necessarily the correct one.

Importance sampling seeks to approximate true complexity for training examples. In

the domain of convex problems, it has been extensively studied and multiple adaptive

algorithms were proposed to optimize model convergence rate [6, 32]. Later works

explored gradient estimates of stochastic gradient descent and showed that the optimal

sampling distribution is proportional to the per-sample gradient norm [46], a technique

which requires extensive additional computation, and hence is very hard to apply directly

to large-scale datasets [2]. However, it is very common for deep embedding learning

to sample hard examples due to the available relational inter-sample structure in the

embedding space [34, 35].

LILAC (Learning with Incremental Labels and Adaptive Smoothing) [12] proposes

to introduce ground truth labels incrementally, starting with examples of a single class,

while all other labels are marked with a pseudo-label; later, it utilizes label smoothing to

compensate overconfidence that was possibly acquired by the student while learning on

low number of classes.

Most related to our approach, [33] and [28] utilize history of losses for previously

seen examples to create the mini-batch sampling distribution. Specifically, [33] samples

mini-batches proportionally to per-sample loss, using various smoothing techniques to

handle the loss fluctuations that are inevitable to happen while training; [28] introduces

a large number of additional hyper-parameters that control when to score the examples

based on their loss, and how to compute a sampling distribution from the obtained

scoring.

Additional sample selection methods include a distribution specifically designed to

maximize the diversity of losses in a mini-batch [44]; training additional network instead

of defining a sampling distribution to score or select samples for a student network

[10, 19, 23]; multiple approaches to stochastic variance-reduced gradient [3, 9, 20]; [22]

8

derives theoretic upper bound for the gradient norm to reduce variance of the gradient

estimates in the stochastic gradient descent step and focus the model on the samples

which more significantly change its parameters.

Our approach employs both the prior knowledge about the dataset in question (the

static curriculum), and the dynamic non-uniform sampling distribution in order to

approximate importance sampling flow without introducing severe additional computa-

tional or hyper-parameter tuning overhead.

9

C
H

A
P

T
E

R

3
GENERALIZED CURRICULUM FRAMEWORK

W e next describe the generic modular framework for curriculum learning,

and introduce the proposed family of normal pacing functions, as well as

additional data-agnostic and data-aware pacing functions.

3.1 Data Scoring

A scoring function defines a difficulty measure for each example, namely given a training

set X = {X1, ..., XT}

(3.1) s : X−→R+

A curriculum is then defined as an ordering of X by increasing value of s(X t).

Note that the scoring function is applied on all of the training set, without distinction

by data classes. This by itself may reveal a scorer-depended structure in the dataset, e.g.

some classes may consistently appear easier then other (see AppendixA for examples).

In this work, we focus primarily on scoring functions acquired by transfer learning,

as described in [16]. We employ two variants of this approach: using teacher as a

11

CHAPTER 3. GENERALIZED CURRICULUM FRAMEWORK

feature extractor in pair with another classifier, properly defined per-sample probability

estimates; and using teacher predictions right away.

3.1.1 Teacher and Separate Classifier

Given the teacher network, we first use it as a powerful feature extractor, then train

linear SVM classifier on feature vectors of the training examples obtained from the

teacher, and use its probability estimates for the correct class as the output of scoring

function, as defined in [45].

3.1.2 Teacher Prediction

In this case, we feed all the training set into the teacher network in single forward pass,

and use normalized activation values of last layer (before classification) for the correct

class as the output of the scoring function.

In additional experiments, we also use two flavours of self-taught scoring:

3.1.3 Offline Self-Taught Scoring

Here, we remove the need of pre-trained teacher network, and instead first train the

student in purely vanilla method (using uniform sampling over all of the train samples),

and then use this instance as a weak teacher and proceed as previously. This approach

may be repeated multiple times, gradually generating better weak teachers.

3.1.4 Online Self-Pacing

In this approach, similarly to SPL [25], we obtain the scoring at each training step by

querying the student for loss values of each training sample at its current state and use

them as the scores for the following step. Note however that in the very beginning of the

training process, as the student is initialized with random weights, it lacks any training,

therefore such scores essentially produce a random permutation of the dataset. In the

12

3.2. PACING SCHEDULE

few following training steps, the student begins to grasp some knowledge of the data,

and so the scores become more and more meaningful.

3.2 Pacing Schedule

In standard curriculum learning (CL), a pacing function defines a part of data from

which the mini-batches are drawn. Specifically, given a function p : e −→ [0,1] (fraction),

the mini-batches for epoch e will be drawn from [0, p(e)] part of the training set ordered

by arbitrary scoring function.

However, as described in Chapter 1, this definition is obsolete in our approach, hence

we instead define a sampling distribution pacing schedule over all the training set:

pD : e −→ De

s.t.

∀t ∈ [1, |X |] De : t −→ [0,1]

∀e :
|X |∑
t=1

De(X t)= 1.

where De is an arbitrary discrete probability distribution for training step e, and De(t) is

the probability of a specific sample t in the training set.

This approach provides smooth control on which part of the curriculum we want to

focus the student on at each stage of training, while not defining any explicit bounds and

still allowing to see samples with out-of-focus difficulty.

Note: Here we define De as a discrete probability distribution over the training

dataset. However, for simplicity of notation and implementation, we will from now on use

continuous distributions such as normal, and denote its mean and standard deviation

as a fraction of training dataset, e.g. if a mean of De equals 0.5, then the mean of

corresponding discrete distribution used to select indices of the dataset will be 0.5 · |X |.
In the next chapter we will explain how the discretization is done to transform any

continuous distribution over R to a bounded discrete distribution over [1, |X |]⊆N.

13

CHAPTER 3. GENERALIZED CURRICULUM FRAMEWORK

3.2.1 Normal Distribution as Pacing Schedule

We perform experiments with specific family of such pacing schedules, where all the

distributions are Gaussian, or are combined of different Gaussian and possibly uniform

parts. In its simplest form, such a schedule would comply De ∼ N(µ,σ2), and we tune

the values of µ and σ in addition to student network hyper-parameters, replacing the

usual CL hyper-parameters. We explore two approaches for this normal pacing schedules:

static schedule, when the sampling distribution is fixed over all training steps, emitting

∀i, j : pD(i)= pD(j); and dynamic schedule, where, inspired by CL intuition, we slowly

increase µ, moving the Gaussian over the ordered training set, essentially focusing the

student on data of different difficulty at each training step.

3.2.2 Moving and Extending the Gaussian

Following standard CL, the described movement should only progress from easier to

harder part of the data. However, we show that in some cases it may be beneficial first

to pass over all the data from easy to hard, and then go back and focus more on the

intermediate part. This complies with our intuition that, despite the curriculum ordering

and original desire to progressively introduce more and more complex concepts, it is

more efficient to practice moderately complex examples more after being introduced to

all kinds of difficulty, while allowing all kinds of difficulty to be seen. Extreme cases

of focusing on samples of specific difficulty are: trying to generalize from the very easy

examples, which can let the student overfit on specific task, domain, or dataset; or trying

to extract meaningful insights from on the very hard samples, which can only confuse

the student without proper basic knowledge and won’t contribute to overall learning.

Moreover, the examples defined as "hard" may be mislabeled, or out-of-distribution, thus

can even harm the training process by introducing noisy concepts.

Similar behaviour can also be achieved by increasing σ with static Gaussian after

it finished its pass over the different parts of data. This makes the effective sampling

distribution closer to uniform, and lets the student to refine its knowledge about all

14

3.2. PACING SCHEDULE

levels of complexity after they were gradually introduced and it already holds substantial

knowledge. This matches the behaviour shown in [16], where pacing function produced a

relatively large number of training steps with all the training samples in the learning set,

after quickly growing it in the beginning of training process. To further confirm this, we

compare the pure Gaussian pacing schedules with schedules where after progressively

moving the Gaussian mean over the dataset, we add learning steps with explicit uniform

distribution over the whole training set.

3.2.3 Catastrophic Forgetting

Following our proposed definition of dynamic pacing scheduling, we note that, in contrast

to standard CL, where the sampling distribution always includes the easiest examples

in a mini-batch with the same relative probability as the harder ones, our normal

distribution tends to rapidly reduce the easier examples’ sampling probability over

time, as the Gaussian progresses through the training process. This leads to so-called

catastrophic forgetting [11], a well-known phenomenon in deep learning, where the

model performs poorly on the examples it was shown in the distant past. This may lead

the student to de-emphasize the concepts learnt from those easier examples, tune itself

to the harder work, and perform poorly on same or other easier samples in the future. We

qualitatively test this hypothesis by explicitly cutting off the easy tail of the Gaussian

completely, or quite the opposite - replacing the easy tail with uniform part.

3.2.4 Asymmetrical Gaussian

We define an asymmetrical sampling distribution as follows:

PADe (xi)=


PDL

e
(xi)∑

j PDL
e

(x j)+PDR
e

(x j)
i ≤µ

PDR
e

(xi)∑
j PDL

e
(x j)+PDR

e
(x j)

i >µ

In case of asymmetrical Gaussian distribution this yields

DL
e ∼N(µ, (σL)2)

15

CHAPTER 3. GENERALIZED CURRICULUM FRAMEWORK

and

DR
e ∼N(µ, (σR)2)

At the price of one additional hyper-parameter, this allows better sampling focus

control of the training process by emphasizing or de-emphasizing easier or harder part

of the data more than the other, relative to current mean.

Note that setting left-side σL to its extremes is the relaxed variant of [non-]forgetting

setup: when it approaches zero, it is equivalent to explicit exclusion of easy examples

from all following mini-batches, while at infinity it represents uniform non-forgetting.

In contrast, setting right-side σR to its extremes is the relaxed variant of the opposite:

when σR approaches zero, it is equivalent to not seeing hard examples at all until the

Gaussian mean moves further (in par with standard CL ideas), while at infinity it will

force the student to focus much more on the hard data from the beginning (while still

being able to see some easy examples, although with less relative probability than the

hard ones), hence contradicting the CL intuition.

For simplicity of notation, given two distributions DL
e ∼N(µ, (σL)2) and DR

e ∼N(µ, (σR)2)

we denote their respective combined asymmetric distribution at combination point p as

ADe ∼N(µ, (σL)2)
p⋃

N(µ, (σR)2)

The resulting function is then normalized such that its sum over all samples equals 1

and it will be a well-defined probability density function.

3.3 Hardness estimation

Additionally we employ importance sampling ideas to try and estimate a sampling

distribution which will best reflect the complexity distribution of a dataset according

to some given scoring function. Intuitively, as the scoring function s : X −→ R+ of any

non-synthetic dataset (e.g., natural images) almost surely does not behave in any "nice"

way, (e.g. an easily fit parametric distribution such as Gaussian) we should not assume

anything about the structure of optimal sampling distribution, and instead should utilize

the scores themselves in order to build more tailored distribution:

16

3.3. HARDNESS ESTIMATION

PHDe (xi)= s(xi)∑
j s(x j)

17

C
H

A
P

T
E

R

4
EXPERIMENTAL EVALUATION

H ere we empirically evaluate the benefits of our proposed approach, comparing

the performance of different pacing schedules as described in Chapter 3 on

object recognition tasks for multiple well-known datasets.

4.1 Experimental Settings

4.1.1 Datasets

For the evaluation we used 3 datasets: CIFAR10, CIFAR100 [24], CIFAR100-Small-

Mammals (superclass 16 of CIFAR100, following the setup in [16]).

CIFAR100 superclass scores In addition to CIFAR100-Small-Mammals, we also

evaluated our methods on other CIFAR100 superclasses. In order to better understand

the differences between them, we drew intuition from their respective scores. Figure 4.1

shows the scores of each superclass obtained by transfer learning. For a given scoring

function, we denote the superclass hardness score as the area under curve of the scores of

all training examples in it, in descending order (higher is easier). We further notice that

our methods are more beneficial for student model’s final performance when trained on

19

CHAPTER 4. EXPERIMENTAL EVALUATION

superclasses with lower hardness scores. For example, superclass 16 (small mammals)

which is extensively used in this and previous works, is approximately 0.622 (average

difficulty). In addition, we note that superclasses 3 (food containers), 4 (fruit and vegeta-

bles), 5 (household electrical devices), 10 (large natural outdoor scenes), 19 (vehicles 2)

have much higher hardness score, and we confirm empirically that our method performs

on par with uniform mini-batch sampling (vanilla), while both achieve significantly

higher accuracy than e.g. superclass 16. Conversely, superclass 14 (people) has signifi-

cantly lower hardness score, and the performance gap between vanilla and our method is

higher, in favour of curriculum-based method, with overall reduction for both methods.

Figure 4.1 shows ordered scores of all superclasses, as well as their respective hardness

score.

In addition, Figure 4.1 shows that some classes are inherently easier (have higher

scores) then others. For example, in superclass 17 (trees), most of the examples from

"palm" class appear with much higher scores then other classes. The same phenomenon

appears e.g. in superclass 3 (flowers), where "sunflower" class also has higher scores

then other classes; in superclass 16 (small mammals), where this is true for "hamster"

class; in superclass 14 (people), where "baby" class has significantly higher scores. This

may suggest biases in data. For example, sunflowers are much larger than other flowers,

and have more regular circular shape; palms grow in more tropical biomes and hence

usually appear in "summer" surroundings (sun, green leaves, blue sky, etc.), whereas

maples, oaks, pines and willows grow in more temperate biomes and may appear with

both "summer" and "winter" (clouds, snow, yellow leaves or branches without leaves, etc.)

surroundings).

Similar figure for CIFAR10 dataset can be found in Appendix A.

Overall hardness score for full CIFAR100 is 54.26%, whereas for CIFAR10 it is

77.89%.

20

4.1. EXPERIMENTAL SETTINGS

Figure 4.1: Transfer learning scoring function output for each superclass of CIFAR100,
ordered by descending scores. Each subplot represents one of 20 superclasses. Hardness
score is specified in parentheses.

4.1.2 Teacher Networks

We use two competitive networks as teachers - Inception-v3 [41] and ResNet-50 [17].

For the case of CIFAR10 and CIFAR100-based datasets, we use features extracted with

teacher network as an input to SVM classifier from [30] with default parameters, and

use its probability estimates as the scoring function.

4.1.3 Student Networks Architecture and Training Parameters

We now describe the neural networks used in the following experiments for the respective

datasets, including the hyper-parameters used during training. All student networks

were trained with Exponential-Linear-Unit activations (ELU) [8] for non-linear activa-

tion. The networks were augmented with an L2 regularizer with weight decay factor of

5 ·10−3.

For CIFAR10 and CIFAR100-based datasets we use a moderate-size network from

[43], as well as a larger public-domain VGG-based architecture [1, 36] (see Appendix A

for more details). For ImageNet-based datasets we only use the VGG-based architecture.

21

CHAPTER 4. EXPERIMENTAL EVALUATION

We train all the student networks using the SGD optimizer without momentum, and

use two learning rate schedules, as described in the rest of this chapter under relevant

experiments.

4.1.4 Optimisation hyper-parameters

Here we describe the hyper-parameters of baseline vanilla, standard CL, and different

non-uniform distribution setups. General (not tuned, but rather pre-selected for a given

dataset) parameters are: a desired number of training epochs E (selected a few epochs

after model convergence, and fixed between different setups for easier comparison),

batch size b; number of batches to sample using each distribution (in Vanilla: number of

batches per epoch d = d |X |
b e); minimal learning rate lrmin.

4.1.4.1 Vanilla

As usually done ([7], [8], [9]), we start with an initial learning rate and then decrease it

every fixed number of steps. We experimented with two learning rate decay methods -

naïve exponential decay and inverse time decay [7]. Both methods require three hyper-

parameters to tune: initial learning rate lr i, learning rate decay factor lr f , learning rate

decay step lrs. In case of exponential decay, the learning rate at epoch e is

lr(e)=max(
lr i

lr f b
e

lrs c
, lrmin)

Whereas for inverse time decay, the learning rate at epoch e is

lr(e)=max(
lr i

1+ lr f · e
E

, lrmin)

22

4.1. EXPERIMENTAL SETTINGS

4.1.4.2 Standard Curriculum

In addition to all the Vanilla hyper-parameters, there are pacing step b and pacing speed

s: standard pacing schedule for some epoch 1≤ e ≤ E is then defined as follows:

pCL(e;b, s)=
 start+b · e

E e ≤ ds ·Ee
1 e > ds ·Ee

Note: as shown in [16], b may be constant, may depend on e, or use other heuristics

to define pacing schedule that is better suited for a given dataset.

4.1.4.3 General Normal Distribution

The most general Gaussian sampling distribution uses all the hyper-parameters from

Vanilla, and adds µstart, µend, σL
start, σ

L
end, σR

start, σ
R
end, sµ and sσ, s.t. for each sampling

step e:

µ=
 µstart + (µend −µstart) · e

E e ≤ dsµ ·Ee
µend e > dsµ ·Ee

σL =
 σL

start + (σL
end −σL

start) · e
E e ≤ dsσ ·Ee

σL
end e > dsσ ·Ee

σR =
 σR

start + (σR
end −σR

start) · e
E e ≤ dsσ ·Ee

σR
end e > dsσ ·Ee

De ∼N(µ, (σL)2)
µ⋃

N(µ, (σR)2)

Note: in this work we only consider linear change in µ and σ.

The following distributions in 4.1.4.4 - 4.1.4.6 are defined as special cases of this notation.

4.1.4.4 Static Normal Distribution

µstart =µend, σL
start =σL

end =σR
start =σR

end

4.1.4.5 Moving Normal Distribution

µstart <µend, σL
start =σL

end =σR
start =σR

end =σ

23

CHAPTER 4. EXPERIMENTAL EVALUATION

4.1.4.6 Expanding Normal Distribution

µstart =µend, σL
start =σL

end =σR
start =σR

end

4.1.4.7 Moving with Post-Pace Backout

µstart <µbackout <µend, σL
start =σL

end =σR
start =σR

end =σ

The training is split to two phases: first, in the pacing phase, Gaussian average µ

increases from µstart to µend; then, in the post-pace phase, it decreases from µend to

µbackout, possibly in different pace. Number of backout training steps does not exceed

number of paced training steps.

4.1.4.8 Moving with Post-Pace Uniform

µstart <µend, σL
start =σL

end =σR
start =σR

end =σ

After the pacing reaches µend, additional training steps are performed with uniform

distribution over all the training set. The number of uniform training steps does not

exceed 20% of number of paced training steps.

4.1.4.9 Hardness Split Distribution

Note that the distribution HDe as defined in 3.3 doesn’t have any external parameters,

hence significantly simplifies the hyper-space tuning while training. However, this

results in a monotonically non-increasing distribution, which naturally emphasizes

easier examples over the harder ones throughout all of the training process. To prevent

this, we introduce the "split" hyper-parameter k ∈ [0, |Xt|]:

HSDe(xi;k)=
 1−HDe(xi) i ≤ k

HDe(xi) i > k

Note: the distribution notation used in 4.1.4.4-4.1.4.9 can also be used in the Vanilla

and Standard Curriculum setups, when in Vanilla it is simply De ∼U(0,1) for every e,

24

4.2. HYPER-PARAMETERS TUNING

and in Standard Curriculum it is:

DCL
e (start, s)∼

 U(0, start+b · e
E) e ≤ ds ·Ee

U(0,1) e > ds ·Ee

4.1.5 Projection of continuous distributions onto a dataset

In order to be able to sample examples from the dataset into the mini-batch, we need

to convert a continuous distribution De defined with its probability density function

PDFDe (x) ∀x ∈R to a discrete distribution Se, defined with its probability mass function

PMFSe (X i) ∀i ∈ [1, |X |]:
PMFSe (X i)=

PDFDe (i)∑|X |
j=1 PDFDe (j)

Note this does not depend on any specific dataset, but rather only on its size |X |.

4.2 Hyper-parameters tuning

As in all empirical studies of deep networks, the final model performance is sensitive

to the values of relevant hyper-parameters. However, as the Vanilla hyper-parameters

are seemingly unrelated to the ones of sampling distributions, we perform coarse grid

search first for the distribution parameters only, and then on the Vanilla parameters,

significantly reducing the search hyperspace.

In the Vanilla setup, only the latter search is performed. However, this results in a

grid search of lower dimension, and makes the comparison unfair for the vanilla method.

To overcome this, we expand and refine the ranges of vanilla parameters search, such

that the overall number of parameter combinations will be approximately equal in all

setups (see Appendix A for more details).

4.2.1 Cross-validation

In grid search, parameters are selected based on performance on the test set. To avoid

biased conclusions, we hence select the hyper-parameters based on average performance

25

CHAPTER 4. EXPERIMENTAL EVALUATION

on the validation sets of 5-fold cross-validation, retrain from scratch with selected

parameters and record performance on the test set.

Additionally, for each proposed method, we perform 5 repetitious training procedures

from scratch, and report average of their performance.

4.2.2 Balanced per-class sampling

In supervised learning, class imbalance (significant difference number of samples that

belong to distinct classes) in the training set may play crucial role in the model’s perfor-

mance. Usually it is solved using various data manipulations, most popular of which

are random under-sampling (removing examples from the larger classes) and random

over-sampling (duplicating examples in smaller classes) [42]. These techniques, among

others, yield a balanced dataset, where the number of examples in each class is equal.

In vanilla uniform mini-batch sampling, the balanced dataset combined with uniform

sampling distribution creates mini-batches which are balanced on average throughout a

training epoch. However, whenever the dataset becomes ordered according to the scoring

function, as described briefly in Chapter 3.1, samples that belong to different classes

are no longer uniformly distributed, and hence non-uniform sampling might produce

highly-imbalanced mini-batches.

To refute this, we employ per-class sampling distributions, which are similar to

the main sampling distribution, but are scaled according to each class separately. The

examples sampled from each class are then combined into single mini-batch, reassuring

it is balanced. Formally, for normal distribution for each class c with number of samples

|C|, De,c ∼N(µ · |C|
|X | ,σ

2 · |C|
|X |), where µ and σ2 are the parameters of De. If De is combined

of two different parts, each part is scaled separately in accordance.

4.3 Results

Figure 4.2 shows examples of baseline and proposed non-uniform sampling distributions.

Top-left: single uniform distribution used throughout the training process.

26

4.3. RESULTS

Top-right: pacing phase of standard curriculum schedule. It can be seen that the

training starts with sampling mini-batches only from about 18% of the training set for

the first epoch, then progresses to larger parts, until it reaches uniform distribution over

all the training set after 10 epochs.

Bottom-left: static Gaussian distribution. As in Vanilla, in this setting the distribution

is fixed throughout the training process.

Bottom-right: Paced Mean setting - training process starts with a Gaussian distribu-

tion centered at start hyper-parameter, and progresses towards end hyper-parameter

in the pacing stage of the training, after which it stays fixed there until training ends.

In this example the pacing phase takes all of the predefined training epochs, and there

is no post-pace phase. Note that the maximal sampling probability differs depending

on the Gaussian mean, as each distribution is normalized separately, according to its

parameters, in range [1, |X |].

Figure 4.2: Non-uniform sampling distributions. X axes denote training example index,
ordered according to the curriculum. Whenever the distribution differs between training
steps, the corresponding step is annotated.

27

CHAPTER 4. EXPERIMENTAL EVALUATION

Final performance of student networks on test set trained with proposed methods, as

well as the baseline vanilla and standard curriculum methods, can be seen in Table 4.1.

Comparison of their performance over multiple repetitions can be seen in Figure 4.3.

Error bars represent standard error (STE) over 25 repetitions for SmallMammals, and 5

repetitions for CIFAR10 and CIFAR100.

Figure 4.3: Comparison of student networks performance on test set for all setups.

Pacing CIFAR10 SmallMammals CIFAR100
Vanilla 86.3% 56.0%* 59.3%

Standard CL 86.87%** 57.0%* 60.6%*
Static 87.26% 57.7% 61.8%

PacedMean 87.12% 57.4% 60.2%
PacedMean+B 87.16% 57.36% 61.84%

Hardness - 55.96% -

Table 4.1: Student network performance on test set. Standard CL uses pacing function
from [16]. Static pacing schedule as defined in 4.1.4.4, PacedMean in 4.1.4.5, Paced-
Mean+B in 4.1.4.7, Hardness in 4.1.4.9.
* Baseline results are as reported in [16].
** Based on relative improvement as reported in [16].

28

C
H

A
P

T
E

R

5
SUMMARY AND CONCLUSIONS

In this work we explored a new approach to training deep neural networks with

curriculum-based schedule, while utilizing prior information about training data.

We combined data prior knowledge utilisation from curriculum learning methods

with non-uniform mini-batch sampling used in importance mining.

We proposed a relaxed solution to the pacing challenge present in all curriculum

learning works, essentially smoothing the training process sample-wise and reducing

number of optimization hyper-parameters.

We built up on the intuition that a family of Gaussian sampling distributions is

well-suited for curriculum-ordered data; implemented a generic learning framework

for training arbitrary models with non-uniform batch sampling. Using the framework,

we performed empirical evaluation which shows that our methods surpass the vanilla

approach, and perform comparably well or better to previous works in curriculum

learning, while introducing less hyper-parameters, and keeping previously established

convergence speedup.

We proposed several types of sampling distribution schedules on top of Gaussian

distribution. First, we showed that a schedule as simple as a single-parameter Gaussian

already performs better than previous methods. We reasoned that the intuition for this

29

CHAPTER 5. SUMMARY AND CONCLUSIONS

is that samples of average hardness hold enough diverse information to learn from,

while not being extreme cases of their representative labels. Then, following general

curriculum learning intuition, we showed that slowly advancing average sample difficulty

throughout the training process further improves the model performance. Finally, we

confirmed that, as in previous works, curriculum paced schedule affects the training

mostly in the beginning of training, and an average-difficulty-focused distribution may

be used after such short pacing phase to further simplify the training optimization.

In additional experiments, we found that self-controlled curriculum may perform on

par with externally provided curriculum, however it requires additional computation for

the student model to reach comparable performance.

The field of deep curriculum learning still stays relatively under-explored, and we

hope that our work will inspire further research and discovery of new ideas about better

utilization of the data properties available at training time, to reduce training costs and

simplify machine learning methods integration at any scale. Such ideas may include

evaluation of individual data samples’ effect on the training process using global student-

agnostic or student-specific data properties, dynamically adjusting sampling distribution

parameters, or ever dynamically building distributions as the training progresses.

30

A
P

P
E

N
D

I
X

A
METHODOLOGY, ADDITIONAL DETAILS

Architecture details The moderate-size neural network we used for CIFAR10, CI-

FAR100 and its superclasses, is a convolutional neural network containing 8 convolu-

tional layers with 32, 32, 64, 64, 128, 128, 256, 256 filters respectively. The first 6 layers

have filters of size 3 × 3, and the last 2 layers have filters of size 2×2. Every other layer

there is a 2×2 max-pooling layer and a 0.25 dropout layer. After the convolutional layers,

the units are flattened, and there is a fully-connected layer with 512 units followed by

0.5 dropout layer. The batch size is set to 100. The output layer is a fully connected

layer with output units matching the number of classes in the dataset, followed by a

softmax layer. We trained the network using the SGD optimizer, without momentum,

using cross-entropy loss.

Grid-search hyper-parameters When using grid search, identical ranges of values

are used for the Static, PacedMean, PacedMean+Backout, and PacedMean+Uniform test

conditions. Since Vanilla and Standard CL contain fewer parameters to tune – as it has

no pacing parameters – we used a finer and broader search range, such that overall

number of parameter combinations is approximately equal between all cases. The range

of parameters was similar between different scoring functions and pacing functions and

was determined by the architecture and dataset.

31

Figure A.1: Transfer learning scoring function output for CIFAR10, ordered by descend-
ing scores. Each color represents single class.

BIBLIOGRAPHY

[1] cifar-vgg.

https://github.com/geifmany/cifar-vgg.

[2] G. ALAIN, A. LAMB, C. SANKAR, A. COURVILLE, AND Y. BENGIO, Variance reduc-

tion in sgd by distributed importance sampling, (2015).

[3] Z. ALLEN-ZHU, Katyusha: the first direct acceleration of stochastic gradient meth-

ods, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of

Computing - STOC 2017, (2017).

[4] R. J. N. BALDOCK, H. MAENNEL, AND B. NEYSHABUR, Deep learning through the

lens of example difficulty, 2021.

[5] Y. BENGIO, J. LOURADOUR, R. COLLOBERT, AND J. WESTON, Curriculum learning,

in Proceedings of the 26th Annual International Conference on Machine Learn-

ing, ICML ’09, New York, NY, USA, 2009, Association for Computing Machinery,

p. 41–48.

[6] A. BORDES, S. ERTEKIN, J. WESTON, AND L. BOTTOU, Fast kernel classifiers with

online and active learning, J. Mach. Learn. Res., 6 (2005), p. 1579–1619.

[7] F. CHOLLET ET AL., Keras.

https://keras.io/api/optimizers/learning_rate_schedules/inverse_

time_decay/, 2015.

[8] D.-A. CLEVERT, T. UNTERTHINER, AND S. HOCHREITER, Fast and accurate deep

network learning by exponential linear units (elus), (2015).

33

https://github.com/geifmany/cifar-vgg
https://keras.io/api/optimizers/learning_rate_schedules/inverse_time_decay/
https://keras.io/api/optimizers/learning_rate_schedules/inverse_time_decay/

BIBLIOGRAPHY

[9] A. DEFAZIO, F. BACH, AND S. LACOSTE-JULIEN, Saga: A fast incremental gradient

method with support for non-strongly convex composite objectives, (2014).

[10] Y. FAN, F. TIAN, T. QIN, J. BIAN, AND T.-Y. LIU, Learning what data to learn,

(2017).

[11] R. M. FRENCH, Catastrophic forgetting in connectionist networks, Trends in Cogni-

tive Sciences, 3 (1999), pp. 128–135.

[12] M. R. GANESH AND J. J. CORSO, Rethinking curriculum learning with incremental

labels and adaptive compensation, (2020).

[13] R. GEIRHOS, J.-H. JACOBSEN, C. MICHAELIS, R. ZEMEL, W. BRENDEL,

M. BETHGE, AND F. A. WICHMANN, Shortcut learning in deep neural networks,

(2020).

[14] R. GEIRHOS, P. RUBISCH, C. MICHAELIS, M. BETHGE, F. A. WICHMANN, AND

W. BRENDEL, Imagenet-trained cnns are biased towards texture; increasing

shape bias improves accuracy and robustness, (2018).

[15] J. GUO, X. TAN, L. XU, T. QIN, E. CHEN, AND T.-Y. LIU, Fine-tuning by curriculum

learning for non-autoregressive neural machine translation, (2019).

[16] G. HACOHEN AND D. WEINSHALL, On the power of curriculum learning in training

deep networks, (2019).

[17] K. HE, X. ZHANG, S. REN, AND J. SUN, Deep residual learning for image recognition,

(2015).

[18] R. T. IONESCU, B. ALEXE, M. LEORDEANU, M. POPESCU, D. P. PAPADOPOULOS,

AND V. FERRARI, How hard can it be? estimating the difficulty of visual search

in an image, 2017.

[19] L. JIANG, Z. ZHOU, T. LEUNG, L. LI, AND L. FEI-FEI, Mentornet: Regularizing

very deep neural networks on corrupted labels, CoRR, abs/1712.05055 (2017).

34

BIBLIOGRAPHY

[20] R. JOHNSON AND T. ZHANG, Accelerating stochastic gradient descent using predic-

tive variance reduction, in Proceedings of the 26th International Conference on

Neural Information Processing Systems - Volume 1, NIPS’13, Red Hook, NY,

USA, 2013, Curran Associates Inc., p. 315–323.

[21] T. KARRAS, T. AILA, S. LAINE, AND J. LEHTINEN, Progressive growing of gans for

improved quality, stability, and variation, 2018.

[22] A. KATHAROPOULOS AND F. FLEURET, Not all samples are created equal: Deep

learning with importance sampling, (2018).

[23] T.-H. KIM AND J. CHOI, Screenernet: Learning self-paced curriculum for deep

neural networks, 2018.

[24] A. KRIZHEVSKY, Learning multiple layers of features from tiny images, University

of Toronto, (2012).

[25] M. P. KUMAR, B. PACKER, AND D. KOLLER, Self-paced learning for latent variable

models, in Advances in Neural Information Processing Systems 23, J. D. Lafferty,

C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, eds., Curran

Associates, Inc., 2010, pp. 1189–1197.

[26] Y. J. LEE AND K. GRAUMAN, Learning the easy things first: Self-paced visual

category discovery, in CVPR 2011, 2011, pp. 1721–1728.

[27] H. LI AND M. GONG, Self-paced convolutional neural networks, in Proceedings

of the Twenty-Sixth International Joint Conference on Artificial Intelligence,

IJCAI-17, 2017, pp. 2110–2116.

[28] I. LOSHCHILOV AND F. HUTTER, Online batch selection for faster training of neural

networks, (2015).

[29] P. MORERIO, J. CAVAZZA, R. VOLPI, R. VIDAL, AND V. MURINO, Curriculum

dropout, 2017.

35

BIBLIOGRAPHY

[30] F. PEDREGOSA, G. VAROQUAUX, A. GRAMFORT, V. MICHEL, B. THIRION,

O. GRISEL, M. BLONDEL, P. PRETTENHOFER, R. WEISS, V. DUBOURG, J. VAN-

DERPLAS, A. PASSOS, D. COURNAPEAU, M. BRUCHER, M. PERROT, AND

E. DUCHESNAY, Scikit-learn: Machine learning in Python, Journal of Machine

Learning Research, 12 (2011), pp. 2825–2830.

[31] G. PENHA AND C. HAUFF, Curriculum learning strategies for IR: an empirical study

on conversation response ranking, CoRR, abs/1912.08555 (2019).

[32] P. RICHTÁRIK AND M. TAKÁČ, On optimal probabilities in stochastic coordinate

descent methods, Optimization Letters, 10 (2015), p. 1233–1243.

[33] T. SCHAUL, J. QUAN, I. ANTONOGLOU, AND D. SILVER, Prioritized experience

replay, (2015).

[34] F. SCHROFF, D. KALENICHENKO, AND J. PHILBIN, Facenet: A unified embedding

for face recognition and clustering, 2015 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), (2015).

[35] E. SIMO-SERRA, E. TRULLS, L. FERRAZ, I. KOKKINOS, P. FUA, AND F. MORENO-

NOGUER, Discriminative learning of deep convolutional feature point descrip-

tors, in 2015 IEEE International Conference on Computer Vision (ICCV), 2015,

pp. 118–126.

[36] K. SIMONYAN AND A. ZISSERMAN, Very deep convolutional networks for large-scale

image recognition, 2015.

[37] S. SINHA, A. GARG, AND H. LAROCHELLE, Curriculum by smoothing, 2021.

[38] P. SOVIANY, R. T. IONESCU, P. ROTA, AND N. SEBE, Curriculum learning: A survey,

2021.

[39] V. I. SPITKOVSKY, H. ALSHAWI, AND D. JURAFSKY, From baby steps to leapfrog:

How “less is more” in unsupervised dependency parsing, in Human Language

36

BIBLIOGRAPHY

Technologies: The 2010 Annual Conference of the North American Chapter of

the Association for Computational Linguistics, Los Angeles, California, June

2010, Association for Computational Linguistics, pp. 751–759.

[40] N. SRIVASTAVA, G. HINTON, A. KRIZHEVSKY, I. SUTSKEVER, AND R. SALAKHUTDI-

NOV, Dropout: A simple way to prevent neural networks from overfitting, Journal

of Machine Learning Research, 15 (2014), pp. 1929–1958.

[41] C. SZEGEDY, V. VANHOUCKE, S. IOFFE, J. SHLENS, AND Z. WOJNA, Rethinking

the inception architecture for computer vision, (2015).

[42] J. VAN HULSE, T. M. KHOSHGOFTAAR, AND A. NAPOLITANO, Experimental per-

spectives on learning from imbalanced data, in Proceedings of the 24th Interna-

tional Conference on Machine Learning, ICML ’07, New York, NY, USA, 2007,

Association for Computing Machinery, p. 935–942.

[43] D. WEINSHALL, G. COHEN, AND D. AMIR, Curriculum learning by transfer learning:

Theory and experiments with deep networks, (2018).

[44] C.-Y. WU, R. MANMATHA, A. J. SMOLA, AND P. KRÄHENBÜHL, Sampling matters

in deep embedding learning, (2017).

[45] T.-F. WU, C.-J. LIN, AND R. C. WENG, Probability estimates for multi-class classifi-

cation by pairwise coupling, J. Mach. Learn. Res., 5 (2004), p. 975–1005.

[46] P. ZHAO AND T. ZHANG, Stochastic optimization with importance sampling, (2014).

37

	List of Tables
	List of Figures
	Introduction
	Related Work
	Generalized Curriculum Framework
	Data Scoring
	Teacher and Separate Classifier
	Teacher Prediction
	Offline Self-Taught Scoring
	Online Self-Pacing

	Pacing Schedule
	Normal Distribution as Pacing Schedule
	Moving and Extending the Gaussian
	Catastrophic Forgetting
	Asymmetrical Gaussian

	Hardness estimation

	Experimental Evaluation
	Experimental Settings
	Datasets
	Teacher Networks
	Student Networks Architecture and Training Parameters
	Optimisation hyper-parameters
	Projection of continuous distributions onto a dataset

	Hyper-parameters tuning
	Cross-validation
	Balanced per-class sampling

	Results

	Summary and Conclusions
	Methodology, additional details
	Bibliography

