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Abstract

In this work I investigate spatio-temporal information in avideo sequence. The advantage of consid-

ering a video sequence as a 3D spatio-temporal function withtemporal continuity (rather than merely

a discrete collection of 2D images) is demonstrated by two computer vision techniques which I have

developed.

View Synthesis: Each frame of the video sequence is an intersection of the spatio-temporal

video volume with a spatial plane. When a video sequence conforms to certain geometrical constraints,

intersecting the video volume with other planes or surfacescan be used to easily produce new views

of the scene. This powerful view synthesis technique is based solely on captured data and does not

require scene reconstruction, as the constraint on the input camera motion make it invariant to the

scene structure in some respects. This technique is demonstrated with real sequences, giving visually

appealing results.

The technique gives rise to a novel projection model, theCrossed-Slits projection, that can be seen

as a generalization of the perspective projection and several other models. A Crossed-Slits camera

is defined by two lines which all rays must intersect. Here I study this new projection model and its

epipolar geometry, which are shown to be quadratic equivalents of the perspective model.

Crossed-Slits images are not perspective, and thus they appear distorted. These distortions are

studied, and two frameworks are developed for handling them: First, assuming that a coarse approx-

imation of the scene structure is known (which is used to create a realtime omnidirectional virtual

environment); Second, without any knowledge about the scene, based only on the set of rays. In both

cases distortion is reduced by approximating the perspective projection.
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The work on view synthesis and the Crossed-Slits projection, presented in Chapter 3 and 4, is based

on work published in [1–6].

Motion Segmentation: Analysis of anunconstrainedvideo sequence in general motion reveals

a highly regular spatio-temporal structure, where moving objects appear as continuous structures in the

temporal domain, broken by occlusion. Based on this observation, I developed a novel motion segmen-

tation algorithm from a video sequence in general motion, which is based on differential properties in

the spatio-temporal domain.

I present a differential occlusion detector, which detectscorner-like features that are indicative of

motion boundaries. Segmentation is achieved by integrating the response of this detector in scale space.

The algorithm is shown to give good results on real sequencestaken in general motion. Experiments

with synthetic data show robustness to high levels of noise and illumination changes; the experiments

also include cases where no intensity edge exists at the location of the motion boundary, or when no

parametric motion model can describe the data

Next I describe two algorithms to determine depth ordering from two- and three-frame sequences

based on observations about the scale space characteristics of the motion boundary. An interesting

property of this method is its ability compute depth ordering from only two frames, even when no edge

can be detected in a single frame.

Finally, experiments show that people, like my algorithm, can compute depth ordering from only

two frames, even when the boundary between the layers is not visible in a single frame.

The work on motion segmentation and depth ordering, presented in Chapter 5, is based on [7,8].
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Chapter 1

Introduction

This introduction reviews previous work on multi-perspective mosaicing leading to results on the

Crossed-Slits projection, and also provides introductionto motion segmentation.

The rest of this thesis is organized as follows: Chapter 2 summarizes the mathematical tools used in

the inference of this work, including projection models, multiple view geometry and scale space. Next,

my work on view synthesis and the Crossed-Slits projection is presented – in Chapter 3 I elaborate

on the geometry and algebra of the Crossed-Slits projection, and in Chapter 4 I describe different

approaches to Crossed-Slits view synthesis. Finally, in Chapter 5 my work on motion segmentation

and depth ordering is presented.

1.1 View Synthesis and the Crossed-Slits Projection

Perspective projection forms the foundation of imaging. Since our eyes, as well as most of our cameras,

observe the world through a pinhole (via a lens whose effectsI shall ignore), we are used to viewing

images that are generated by perspective projection. Therefore, techniques for the generation of new

views are designed to achieve the effects of perspective projection. What happens if this requirement

is relaxed? Can we do better computationally when not limited by the perspective projection, but are

free to use other projection models?

In Chapter 3 I introduce and study an alternative projectionmodel, defined by two slits - the
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Crossed-Slits (X-Slits) projection. In the X-Slits model,the projection ray of every 3D point is de-

fined by the line that passes through the point and intersectsboth slits. The image of a point will be the

intersection of the projection ray with the image surface.

Curiously, a physical X-Slits camera was designed in the 19th century by one of the pioneers of

color photography, Ducos du Hauron [33], under the title “transformisme en photographie”. Ducos du

Hauron thought that X-Slits images would be used in the following (20th) century to “create visions

of another world” [46]. A century later, Rudolf Kingslake reviewed this device in his book [33]; in his

analysis Kingslake concludes that “the pair of slits working together thus constitutes a pinhole camera

in which the image is stretched or compressed in one direction more than in the other”. This should

make this exotic device rather useful for the new emerging technology of wide-screen cinematography.

However, as I show below, the X-Slits projection does much more to images than horizontal stretching.

Independent of the physical device, I argue that the X-Slitsprojection model is useful and worthy

of our attention. This is because new X-Slits images can be easily generated by mosaicing a sequence

of images captured by a translating pinhole camera, and because those images look compelling and

realistic.

1.1.1 Mosaicing and Multi-Perspective Images

Mosaicing is a technique by which strips are taken from frames of a video sequence and pasted together,

creating a new image, or “mosaic”. Mosaics are usually used as a visual summary of the video [11,28]

or for 3D visualization [57]. In the simplest form, a mosaic is composed of vertical strips taken from

the center of the frame where the input camera rotates about an axis that is perpendicular to its optical

axis and passes through the optical center. Such mosaics constitute a perspective projection of the

scene onto a cylinder, and are used for creating panoramic images.

Usually mosaics do not represent a perspective projection,i.e., they cannot be modelled as a pro-

jection through a single point, as different strips may be acquired from different camera locations.

Such mosaics are known asmulti-perspectiveimages. A simple example of such mosaicing technique

is the linear pushbroomwhich samples the central strip of each frame where the inputcamera trans-
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lates sideways, thus “scanning” the scene with a line camera. This method is used to create highly

detailed images of a large scene, typically in satellite andaerial imagery, where the camera motion is

approximated as linear.

Another multi-perspective technique uses an input camera rotatingoff-axisso that its optical axis is

perpendicular to the (circular) camera path. In [64], such mosaics based on concentric circular camera

paths are used to construct a 3D plenoptic function for the purpose of image-based rendering (IBR).

Sampling a certain strip from each frame for one mosaic and a different strip for another can be used to

produce a panoramicstereo pair[29,54]. Stereo mosaicing models are further investigatedin [51,61].

In [76], the input camera motion is unconstrained, and the mosaic is used to summarize a video

captured by a moving robot. In [55], the strips are projectedonto a manifold that is adapted to the

motion trajectory.

The present work uses a similar mosaicing technique with oneimportant difference: the mosaiced

strips are sampled from varying positions in the input images. Thus it is called “non-stationary” mo-

saicing. Mosaic images obtained in this way are more similarto perspective images than traditional

mosaic images. As I show in Chapter 4, using non-stationary mosaicing can be used to generate X-

Slits images, where different strip-sampling functions correspond to different slit locations. Altering

the parameters of the sampling function makes the generation of virtual walkthroughs possible.

In many image-based rendering techniques rays from a set of input images are collected and a

new image is rendered by resampling the stored rays [22, 37, 41]. In order to create new perspective

images of reasonable quality, the requirements become prohibitive: the number of stored rays becomes

larger than available memory, and those rays are derived from a very large collection of carefully taken

pictures. There are attempts to make IBR more efficient and more general [10, 17, 66], or to use such

approximations as moving the camera in a lower dimensional space [64,68].

The present work is mostly related to [17, 64, 66, 68] with several differences: First, rather than

trying to approximate the perspective projection, I accurately define the projection geometry of the

resulting images, and analyze the model limitations. Second, the rendering tool I present is very simple

- slicing of the space-time volume obtained by a simple motion of a perspective camera. Consequently
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the most important feature of my technique is the fact that ray-sampling for the generation of new

views does not require detailed accounting of the parameters of the generating images. As I show

below, if the camera’s motion is sideways and constant, every vertical planar slice of the space-time

volume givessomevalid X-Slits image.

The study of X-Slits mosaicing presented in this work is based on work published in [1–3].

1.1.2 Crossed-Slits Geometry

While, as I show, the pinhole camera can be seen as a special case of the X-Slits projection, the

geometry underlying the X-Slits projection in the general case is different from the geometry of the

pinhole camera. I show that the pushbroom projection is alsoa special case of the X-Slits projection

model, and in some sense it is the most distorted limiting case, i.e., the deviation from perspective

projection in X-Slits images is maximal in the pushbroom limiting case.

In Section 3.2 I present an analysis and characterization ofthe epipolar geometry of the X-Slits

projection. The motivation for doing this is twofold: First, for the purpose of visualization, it may give

a theoretical foundation to X-Slits stereo pair generation. Second, understanding the epipolar geometry

can aid image correspondence; in particular we would like tobe able to match images of different kinds

to each other, including X-Slits images, pushbroom images,perspective images with barrel distortion,

and ideal perspective images. This can be used for such applications as 3D reconstruction, image

warping, or animation.

Previously, the epipolar geometry of the pushbroom camera has been analyzed in [23]. A calibrated

linear pushbroom camera was modeled as an orthographic projection in one axis (the input camera

motion direction) and as a perspective projection in the other axis. It was encoded in a3 × 4 non-

homogeneous matrix with 11 degrees of freedom, allowing rotation, translation, scaling and rotation of

the scanning plane. A study of camera retrieval, epipolar geometry and scene reconstruction manifests

the quadratic nature of this projection, which I show to be a characteristic of the (more general) X-Slits

model.

The epipolar geometry of X-Slits cameras resembles the pinhole epipolar geometry in some ways,
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but has its own unique properties. In analogy with the pinhole case, there exists a6 × 6 matrix which

I call the fundamental matrixand denoteF. F gives a second order relation between corresponding

image points, i.e., a correspondence between points image and second order epipolar curves (conics).

Moreover, I show that the rank ofF is 4; this result can be used to derive constraints onF to be used

during the computation of its components.

The main novel feature of the X-Slits epipolar geometry is the fact that the epipolar conics do not

usually match. In the pinhole case, all the image points on one epipolar line correspond to points on

a singleepipolar line in the second image. In the X-Slits case this isnot generally the case; typically,

each point on a certain epipolar conic in one image will induce adifferentepipolar conic in the second

image. There are only two special cases where epipolar conics match each other uniquely in the X-

Slits projection: (i) when the two cameras have a common slit, in which case the epipolar geometry is

identical to the pinhole case, i.e., all epipolar curves arelines and all epipolar surfaces are planes; (ii)

when the slits of the two cameras intersect each other in 4 distinct points, in which case the epipolar

surfaces are quadratic but unique.

The study of X-Slits geometry presented in this work is basedon work published in [4].

1.1.3 Omnidirectional Image-Based Rendering

New view generation is an emerging application which can benefit from both image-based techniques

and graphics. The traditional approach to new view generation is to render a 3D model of the scene

from different viewpoints. Unless the model is known a priori, this approach requires the recovery of

the scene structure, which is a hard task. Moreover, the realistic synthesis of optical effects such as

specularity, reflections and transparency is an involved problem.

The alternative approach, image-based rendering, advocates the use of raw images instead of 3D

models. New views of the scene are generated based on a sequence of images, without a model of

the scene, by sampling light rays. If the set of input images is dense, then the rays necessary for the

synthesized image can be sampled from the input images, without knowledge about the scene and

without attention to optical effects. However, the input images must be very precisely calibrated, and
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together should contain all possible rays of the scene.

The set of all rays, as the plenoptic function [9], can be reasonably represented as a four-dimensional

function. Using the full plenoptic function would require avery large amount of input data to produce

synthetic views with good quality. The amount of data can be reduced using information about the

scene or with some restrictions on the viewer’s movement [17,22,30,37,41]. However, a more signif-

icant reduction (from 4D to 3D) can be obtained by using X-Slits mosaicing.

If, rather than generating perspective new views of the scene, we can settle for X-Slits views, we

can do IBR with a much smaller plenoptic function. The input is taken from a perspective camera

moving along a 1D path, and thus only a 3D subset of the 4D plenoptic function is sampled – all rays

that intersect the camera path. X-Slits views of the scene can be rendered, with the horizontal slit at

the input camera path, and the vertical “virtual” slit moving with the viewer. Although the images are

not perspective, the sense of depth and occlusions is realistic and appealing.

In order to create a complete virtual environment, it is necessary to have rays in all directions,

which leads to the choice of a circular camera path and panoramic perspective cameras [45]. I describe

a setup in which a calibrated panoramic camera rotates off-axis in a circular path, so the set of rays

thus collected is sufficient for generating X-Slits views with the vertical slit atany location inside the

circle [13,61,64,65,68]. This is described in Section 4.2.

Since X-Slits images are not perspective, they may appear distorted. The main difference between

X-Slits images and perspective images is that in the former the aspect ratio of fronto-parallel surfaces

is not preserved, but rather it depends on depth. Thus scene objects may appear elongated or condensed

depending on their depth and the virtual slit’s location. This effect can be reduced by normalization –

the image is transformed so as to cancel these distortions for all objects on a chosen surface; as long as

this surface crudely approximates the scene structure, theamount of distortions decreases. Essentially,

normalization provides a compromise between model-based and image-based rendering: we render

based on a partial set of input rays, but approximate a perspective view using a coarse model of the

scene.

Using an approximation surface was proposed in [67], which defines distortion in non-central im-
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ages as the disparity between an image point and the corresponding point in an optimal perspective

reprojection of an approximation surface. Given a non-central image, distortion is minimized by opti-

mization.

It is often desirable to add virtual objects to the scene (e.g., for interaction or animation). When

doing so, the objects must be rendered according to the same projection model as the image-based

background, in order for them to blend into the scene geometrically. I show how to modify the geom-

etry of the augmented objects to follow the distortions of the X-Slits projection. This allows us to use

perspective rendering tools to augment the images, and still obtain consistent and compelling scenes.

The study of omnidirectional X-Slits rendering presented in this work is based on work published

in [6].

1.1.4 Optimal Mosaicing

Mosaicing provides a method for imaging large scenes which may be impossible to capture in a sin-

gle perspective image. However, multi-perspective imagesare inherently distorted (i.e., they are not

perspective), and eliminating these distortions in the general case is only possible by perspective repro-

jection, which requires scene structure information. Retrieval of such information is computationally

demanding and ill-posed (due to occlusion, reflections, transparency, etc.), therefore an alternative ap-

proach would be to try to minimize distortion without knowledge about the scene, based solely on the

geometry of the multi-perspective mosaicing.

The liberty to choose any strip sampling scheme for mosaicing raises the following question: Given

a sequence taken by a calibrated camera moving on a known trajectory, and anunknown scene, what is

the best multi-perspective image that can be generated fromit? In other words, which strips should be

copied from the images and how should they be pasted into the mosaic, such that the result image will

contain the maximal amount of visual information and minimal geometrical distortions? This subject

is discussed in Section 4.3.

I define the necessary conditions for a good multi-perspective mosaic and a criterion quantifying

the geometric distortions, and derive the least distorted mosaic under this criterion. The criterion is
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justified theoretically as well as empirically. It turns outthat the mosaic with the minimal distortion

also has the maximal field-of-view. By minimizing the distortions of multi-perspective images, it is

possible to generate a visually satisfying image with minorgeometric distortions. These distortions

may in many cases be practically negligible, especially in comparison with artifacts in perspective

panoramas due to errors in depth estimation.

The study of optimal mosaicing presented in this work is based on work published in [5].

1.2 Motion Segmentation and Depth Ordering

The goal in motion-based segmentation is to partition images in a video sequence into segments of

coherent motion. This problem, which is a fundamental layerin many vision tasks, has been studied

extensively and several approaches to accomplish it have been suggested.

One popular approach is to assume that video motion is constrained by some global parametric

motion model and the segmentation is according to values of the model parameters. In [49, 73], the

image is partitioned into 2D layers assuming affine motion using MRF-based methods, while [32] takes

advantage of the low dimensionality of the linear subspace of homographies representing planar motion

and extracts layers by clustering. Other works, such as [50], model the video using 3D perspective

geometry. Note that these two approaches represent different understandings of the term “segment”,

as multi-layer rigid objects would be considered a single segment by the latter while subdivided by the

former.

An alternative approach assumes motion is piecewise smooth, so that motion within a segment

is smooth and motion discontinuity occurs only at boundaries between segments. [72] uses a prior

distribution on flow fields to obtain smooth dense flow fields for all segments. The MRF-based tech-

nique of [16, 34] finds an optimal flow assignment which penalizes for unsmooth motion between

neighboring pixels with similar color. The tensor voting technique [47] extracts smooth structures in

space-time-velocity domain, yielding a piecewise-smoothflow field.

Assuming only piecewise smoothness is a potentially more general approach, compared with ex-

plicit geometrical constraints, and it lies at the base of the method proposed here. Note that piecewise
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smoothness represents a different understanding of “segments” – a non-rigid moving object would be

subdivided by a geometry-based algorithm while outlined asa single segment by a piecewise smooth-

ness algorithm; on the other hand, a self-occluding object would be subdivided by a piecewise smooth-

ness algorithm while outlined as a single segment by a geometry-based algorithm.

Motion discontinuities can be identified by clustering a previously computed motion field (e.g., [50,

73]). The problem is that such discontinuities are found at exactly those locations where the compu-

tation of the motion field is least reliable: since all optical flow algorithms rely on the analysis of a

region around a point (even if only to compute first-order derivatives), the optical flow must be contin-

uous within the region to support reliable computation. This chicken-and-egg problem makes motion

segmentation particularly challenging. On the other hand,the successful computation of motion dis-

continuities can be useful for a number of applications, including motion computation (by highlighting

those areas where the computation should be considered unreliable) and object segmentation from

multiple cues. Here I propose a motion segmentation method that does not require a reliable optical

flow to begin with.

Having segmented the image, we next want to determine the occlusion order of objects in the

image, as the first step in 3D scene understanding and object recognition. In principle, any depth-

retrieval algorithm (e.g., [34]) would also provide depth ordering. However, full 3D reconstruction is

usually only practical in static scenes, and it relies on accurate geometric calibration which remains

a hard task. In this work I present a method to compute depth ordering from occlusion cues without

explicit scene reconstruction. The most surprising characteristic of this method is its ability compute

depth ordering from only two frames.

The problem of depth ordering is similar to figure/ground segregation, an issue which has been

studied extensively in the context of Gestalt psychology. Many possible spatial cues may contribute to

figure perception from a single image, includingconvexity[52], junctions[59], andfamiliar configura-

tions [58]). However, depth ordering from a single image may be subjective and prone to ambiguities,

whereas motion gives a very powerful and usually unambiguous cue.

Given an image sequence, the accretion and deletion of texture elements [31], as well as thecom-
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mon fateof texture and edge [19,75], have long been recognized as cues for depth ordering. There are

several methods for depth ordering from three frames or more, e.g., by tracking disappearing texture

elements [44], optical flow filling [50], detecting T-junctions in space-time [12,48], matching the mo-

tion of surface and boundary [18,20,70] and localization oferrors in flow computation w.r.t. monocular

segmentation [15].

However, when given only two frames, it is impossible to determine depth ordering from motion

alone, without additional assumptions or prior knowledge.This is because the motion of pixels that

become occluded cannot be determined, and thus they may belong to either side of the motion edge,

leading to more than one valid order assignment. One solution would be to assume that the occluded

pixels belong to the layer that is more similar in appearance; i.e., determine depth ordering by matching

the motion of color and motion edges [71]. However, color edges are often unreliable as edges between

layers, since the figure and ground may have similar colors.

1.2.1 Motion Segmentation

My work is based on the extraction of motion boundaries, which are definedlocally as boundaries

between different motions (since many real video sequencesdo not obey any global motion model).

While some methods are based on color or texture boundaries between the moving object and the

background (e.g., [21, 34, 69]), I restrict myself to solutions which do not rely on such boundaries.

This is motivated by humans’ ability to segment objects frommotion alone (e.g., in random dot kine-

matograms), and by the need to avoid over-segmentation of objects whose appearance includes varying

color and textures. Finally, I only consider local properties of the temporal profile of motion, in order

to be able to deal with pairs of frames or stereo pairs (but see, for example, [63]).

In my approach I start by considering the video sequence as a spatio-temporal intensity function,

where the goal is to extract information from this spatio-temporal structure. Video sequences have

highly regular temporal structure, with regions of coherent motion forming continuous tube-like struc-

tures. These structures break where there is occlusion, creating spatio-temporal corner-like features.

Using a differential operator that detects such features, Idevelop an algorithm that extracts motion
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boundaries.

Specifically, my algorithm is based on the occlusion detector described in Section 5.1, which is

used to extract a motion boundary at any given scale. Since different scales may be appropriate for

different parts of the image, a cross-scale optimal boundary is computed, based on the response of the

detector. At the end, a closed contour is built along the mostsalient boundary fragments to provide

the final segmentation. The algorithm was evaluated on threechallenging real sequences, as well

as several synthetic examples which are particularly difficult for some commonly used algorithms,

in order to demonstrate the robustness of this method. Some results from other algorithms, whose

implementation was made available by the authors, are provided for comparison. In Section 5.3 I

analyze the behavior and mathematical properties of the algorithm.

The motion segmentation algorithm presented in this work isbased on [7,8].

1.2.2 Depth Ordering

My computational approach to the problem of ordinal depth from two frames utilizes the principle of

common fate of texture and boundary, though without attempting to extract the boundary explicitly.

The spatio-temporal partial derivatives in each frame are affected by both the motion of the layers (i.e.,

their texture), and the motion of the motion boundary. When using my occlusion detector, which relies

on these derivatives, a bias towards the occluded side appears. The bias depends on the density gap

between the two layers (this bias disappears when the layershave the same local density). Moreover,

when measuring this bias in scale space, it can be seen to increase as the scale is increased.

From this observation I derive an algorithm in Section 5.4, which computes the ordinal depth of

two layers based on the trend of the bias in scale space. With some minor modifications, I show that the

same algorithm can be applied to three-frame sequences, without relying on local differences of density

between the layers. The algorithms are shown to perform wellon real sequences. The performance of

the algorithms is compared with the performance of human subjects on two- and three-frame sequences

of random-dot textures of varying density and to an ideal observer model in Section 5.5.

The depth ordering algorithm presented in this work is basedon [8].
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Chapter 2

Methodology

This chapter summarizes the mathematical tools used in the inference of this work. In Section 2.1 I

give an introduction to the geometry and algebra of projection models, and in Section 2.2 I introduce

epipolar geometry and the fundamental matrix. Section 2.3 gives a brief introduction to scale space.

2.1 Projection Models

For simplicity, I describe a camera as a device that projectsa 3D scene onto an image surface. Each

scene point has one ray that passes through it, and the image of the scene point is the intersection of

this ray with the image surface. Thus, all points on a ray are projected onto the same image point,

which also implies that every image point is the projection of somescene point. A well-defined camera

has exactly one ray passing through every image point (although in this work I tolerate cameras that

have a few singular image points that do not fulfil this requirement).

2.1.1 Pinhole Camera

The most commonly-used cameras, as well as our eyes, can be modeled by thepinhole (or perspective)

cameramodel. For such a camera, all rays intersect a single point (the “pinhole”) and the image

surface is usually a plane (although panorama photography often uses cylinders or spheres). For this

presentation I ignore the issues of occlusion and camera direction and the effect of the lens and aperture.
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A simple algebraic representation of the pinhole camera is as follows: a 3D scene point(X,Y,Z)

is projected onto the 2D image point(x, y) given by

(x, y) = (X/Z, Y/Z) (2.1)

In homogeneouscoordinates, this is expressed as

p ∝









1 0 0 0
0 1 0 0
0 0 1 0









p (2.2)

wherep ∈ P2 is the image of the scene pointp ∈ P3. In this representation, referred to as the

calibratedpinhole camera, theZ axis is referred to as theoptical axisof the camera, and the origin is

the optical center. The most general representation of a pinhole camera, or theuncalibratedpinhole

camera, is given by

p ∝









fx s cx

0 fy cy

0 0 1

















1 0 0 0
0 1 0 0
0 0 1 0













RT −RT t
0 1



p = K
[

RT ;−RT t
]

p = M3×4p (2.3)

whereK3×3 is the internal calibration matrix, andR3×3 and t ∈ R3 represent, respectively, the

rotation of the camera and the translation from the origin.

The internal calibration consists of five parameters that represent characteristics of the camera:

• fx (resp.fy) is the ratio between thefocal lengthand the horizontal (resp. vertical) pixel size.

The ratiofx/fy is theaspect ratio, and is usually1.

• s = tan α, whereα is theskew angle, which is usually0.

• (cx, cy) is theprincipal point, which is usually(0, 0).

Theexternal calibrationconsists ofR andt, which determine the camera location and orientation

in the scene coordinate system.R is a rotation matrix, i.e.,RRT = I. Thus, the uncalibrated pinhole

camera is determined by 11 independent parameters. Any non-degenerate matrixM represents some

pinhole camera (note thatM is a homogeneous entity).
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Given two scene pointsp1,p2 ∈ P3, the set of all points on the line joiningp1,p2 is given by

{α1p1+α2p2|α1, α2 ∈ R}. Thus the projection of this line is given by{α1Mp1+α2Mp2|α1, α2 ∈ R},

which is the line that joinsMp1,Mp2 in the image. Therefore, the pinhole camera projects scene lines

onto image lines.

2.1.2 Affine Camera

The affine (or orthographic) camerais a camera where all rays are parallel. The calibrated affine

camera can be represented simply by

(x, y) = (X,Y ) (2.4)

and in the general (uncalibrated) case by

p ∝




A2×3 b
0 1



p (2.5)

It is determined by 8 parameters. It is often used as an approximation of the pinhole camera, especially

for large focal lengths. Algebraically, it can be seen as a special case of the pinhole camera (where the

bottom row ofM is (0, 0, 0, 1)).

2.2 Multiple View Geometry

2.2.1 Homographies

If scene pointp ∝ (pT
π ; 1)T lies on a planeΠ ∝ (πT ; 1)T , thenΠTp = 0. Thus, the scene point can

be expressed in homogeneous coordinates as

p ∝




I3×3

−πT



 pπ (2.6)

and it is projected by the camera[A3×3; a] onto

p ∝ (A − aπT )pπ = Hpπ (2.7)
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whereH is a homography, i.e., it describes a mapping from one plane to another (in this case, fromΠ

to the image plane).

Denoting the homography that maps points from planeΠ to camerai asHi, one can map image

points from camerai to cameraj through the reference plane with the homography

Hij = HjH
−1
i (2.8)

It is easy to see that when the cameras have the same optical center, this homography is independent

of Π; in other words, when there is no translation between two given cameras, there is a mapping that

transforms one image to the other.

2.2.2 Epipolar Geometry

Next I shall derive the relation between corresponding image points in two uncalibrated cameras based

on concepts introduced in [25]. By definition, every ray of camerai passes through its optical center.

Denotingei
j to be the projection of the optical center of camerai in cameraj, it follows that every ray

of camerai is projected by cameraj onto a line that passes throughei
j . Given a pointpi in camerai,

the line that joins it with the epipoleej
i is given byli = ej

i × pi. It can be shown that the plane given

by Π ∝ MT
i li passes through the optical center of camerai and the projection of every point onΠ lies

on li. If p is a scene point whose image ini is pi, then

0 = (Mip)T li = pTMT
i li = pT Π (2.9)

i.e.,p lies onΠ. In the same way, it can be shown that the optical center of cameraj also lies onΠ.

Thus,Π, which is called anepipolar plane, joins the optical centers of both cameras and the scene

point. It is easy to see thatΠ ∝ MT
j (ei

j × pj) = MT
j lj , wherepj corresponds topi in cameraj (i.e.,

they are both projections of the same scene pointp). This means that corresponding points in two

different cameras have a single epipolar plane.

The linesli, lj are called epipolar lines. From the discussion above it follows that every point on

the lineli in camerai corresponds to a point that lies onlj in cameraj. Denoting the pseudoinverse of
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M asM+, it can be shown that

lj ∝
(

MT
j

)+
MT

i li =
(

MT
j

)+
MT

i [ej
i ]×pi ≡ Fpi (2.10)

where [ej
i ]× denotes the skew-symmetric matrix representing the cross product. It follows that for

every pair of corresponding pointspT
j Fpi = 0. The matrixF is called thefundamental matrix. It

maps every point in one camera to a line in the other camera, which any corresponding point must lie

on, and vice versa. The fundamental matrix is a homogeneous3 × 3 matrix, and sinceFej
i = 0, and

thusdetF = 0, it follows thatF has 7 degrees of freedom.

2.3 Scale Space

Scale space theory deals with representation and analysis of signals at different detail levels. The

notion of scaledetermines the level of details, so that fine structures are progressively suppressed at

coarser scales.

A canonical scale space representation that is commonly used in signal processing and computer

vision is thelinear scale space, presented and discussed extensively in [39]. The linear scale space

representation of ad-dimensional signalI(x1, . . . , xd) is defined as

L(x1, . . . , xd; s) = I ∗ gs (2.11)

wheres ∈ [0,∞) denotes scale and∗gs denotes the convolution with thed-dimensional Gaussian

function with variances (or “smoothing”). Thus, the scale space representation is(d+1)-dimensional

– it has an additional scale dimension. Linear scale space isthe solution of the diffusion equation

∂L

∂s
=

1

2
∇2L L(x1, . . . , xd; 0) = I(x1, . . . , xd) (2.12)

The intuition behind this choice is easily observed in 1D signals – as we progress towards higher

(coarser) scales, concave regions are decreased and convexregions are increased. In fact, in 1D signals

it can be shown that local extrema are not created as scale is increased.

This stems from the notion ofcausality, which requires that features in a coarse scale originate from

features in a finer scales, or in other words, features are notcreated in coarser scales. In signals of higher
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dimension it is not necessarily the case that local extrema are not created; instead, causality requires

that local extrema are not enhanced. Other features of linear scale space include shift invariance,

rotational invariance, scale invariance and of course linearity. Throughout this work by “scale space” I

will refer to linear scale space.

2.3.1 Feature Detection

Since differentiation commutes with convolution, differentiatingL can be done simply by applying

∂nL(·; s)
∂xn

i

=
∂n(I ∗ gs)

∂xn
i

=

(

∂ngs

∂xn
i

)

∗ I (2.13)

Using derivatives of the image signal, there are several feature types that can be detected, such as

edges and corners. Applying the same differential operators to the image representation at different

scales would give different results – fine scales tend to be more detailed and accurate, and perhaps

more noisy; while coarser scales tend to represent only dominant features, albeit with a less accurate

localization.

Consider edges in an image. As suggested in [38], one way to define an edge is points where

the gradient magnitude is maximal in the gradient direction. This can be expressed as a differential

operator as










I2
xIxx + 2IxIyIxy + I2

y Iyy = 0

I3
xIxxx + 3I2

xIyIxxy + 3IxI2
yIxyy + I3

yIyyy < 0
(2.14)

This operator can be applied toL(·; s) for any scales. Since there are advantages and disadvantages

to both fine and coarse scales, it is desirable to develop an adaptive scale-selection mechanism, which

would determine the optimal scale for edge extraction in every region of the image. An image may

contain sharp edges as well as diffuse edges, and their appearence changes considerably with scale –

sharp edges may become smooth or even disappear at coarse scales, while diffuse edges may bifurcate

at fine scales.

The first problem is how to compare operator values between different scales. Since the amplitude

of then derivatives at decreases with scale by a factor ofsn/2, a common heuristic principle is to use
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scale-normalized derivatives, given by

∂n

∂xn
i

(s)

≡ snγ/2 · ∂n

∂xn
i

(2.15)

for some positive normalization parameterγ. In the case of edge detection, a good choice for this

parameter isγ = 1/2. To see this, suppose we have a synthetic image with a step edge, diffused by a

Gaussian with variances0, given by

I(x, y) = hs0(x) ≡
∫ x

−∞
gs0(x

′)dx′ (2.16)

It is easy to see that the operator (2.14) will detect the edgecorrectly atx = 0 at all scales for anyγ. If

we consider the magnitude of the gradient as a measure of edgeintensity, then it can be shown that this

measure assumes maximum at scales = γ
1−γ s0. If γ = 1/2, then the edge is detected ats = s0 – the

“scale” of the edge. In other words, this mechanism enables us to automatically select the scale where

the edge “resides” – sharp edges would be detected at fine scales and diffuse edges would be detected

at coarse scales.

To summarize, edge detection in scale space is done by intersecting the set of points detected

by (2.14) over all scales, with the set of points where the edge strength measure assumes maximum

over scale, given by










∂
∂s(I

2(s)
x + I

2(s)
y ) = 0

∂2

∂s2 (I
2(s)
x + I

2(s)
y ) < 0

(2.17)

Other edge strength measures have given similar results. Note that the introduction of the scale

normalization does not affect the outcome of the edge operator (2.14). This property of the edge

operator is present in a large class of operators that are used for detecting various image and video

features such as corners, blobs and ridges.
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Chapter 3

The Crossed-Slits Projection

In this chapter I present the Crossed-Slits (X-Slits) projection and study its properties. The X-Slits

projection is defined by two non-intersecting lines which all rays intersect. This projection is generally

non-perspective, as there is no single point which lies on all rays, though the perspective projection can

be seen as a special case of the X-Slits model. A concise algebraic formulation is given, from which

various properties of this projection model can be inferred. This representation is then used to derive

the epipolar geometry.

3.1 Projection Model

Fig. 3.1a shows the basic design of the X-Slits camera as built by Ducos du Hauron in 1888 [33]. A

more general design is shown in Fig. 3.1b. A X-Slits camera has two slitsl1, l2 which should be two

different lines in 3D space, and an image planeΠ that does not contain any of the slits. For every

3D point not lying on either of the slits there is a single ray which connects the point with both slits

simultaneously. The intersection of this ray with the imageplane defines the projected image of the 3D

point. The camera in Fig. 3.1a is a special case of the X-Slitscamera, where the two slits are orthogonal

to each other and parallel to the image plane. I call this special arrangement the Orthogonal X-Slits

camera.

The X-Slits model is a valid 3D to 2D projection, defining a many-to-one mapping from the 3D
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vertical
slit

horizontal
slit

image plane

Z1

Z2

p = (x, y)

p = (X,Y,Z)

image plane

p = (x, y)

p = (X,Y,Z)

l1

l2

(a) (b)

Figure 3.1: (a) A design of a X-Slits camera where the slits are orthogonal to each other and parallel to the image plane

(Orthogonal X-Slits camera). The projection ray of a 3D point p = (X, Y, Z) is shown, with circles showing its intersection

points with the 2 slits. (b) A general X-Slits design, with two arbitrary slitsl1, l2. Note that the camera is defined by the

specific configuration of the two slits and the image plane; any of these three factors can change independently, giving rise

to a different X-Slits camera.

world to the 2D image plane. Below I develop the specific equations of the camera mapping as a

function of the slitsl1, l2 and the image planeΠ and discuss this model’s properties.

3.1.1 Definition

Consider the camera configuration as shown in Fig. 3.1b. Theprojection rayof a pointp ∈ P3 (repre-

sented by homogeneous coordinates) intersects the two camera slitsl1, l2. It is thus the intersection of

two planes, defined by joining the pointp with each of the slits. The image ofp is the intersection of

this projection ray with the image plane. Furthermore, all points on a projection ray will project to the

same image point (unless the ray lies on the image plane).

More formally, letui,vi denote two planes inP3 which contain slitli, for i ∈ {1, 2} respectively.

For anyα, 1 the plane given byui + αvi also contains the slitli; and vice versa, every plane that

contains the slit can be described byui + αvi for someα. Thus, for each scene pointp ∈ P3 and

i ∈ {1, 2}, there existsα ∈ R such that(ui + αvi)p = 0. Eliminating α, we get the following

1α denotes a projective parameter as in [62] page 43.
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expression for the plane:

ui −
(uT

i p)

(vT
i p)

vi ∝ (vT
i p)ui − (uT

i p)vi = (uiv
T
i − viu

T
i )p (3.1)

Let us define the skew-symmetric matrix

S∗
i = uiv

T
i − viu

T
i (3.2)

Matrix S∗
i is actually the dual Plücker matrix representation of the line li [26]. It can be shown to

be independent of the choice ofui,vi. The elements of such matrices must satisfy one non-linear

constraint (since a line has only 4 degrees of freedom up to scale).

From (3.1) and (3.2) it follows that the plane which containspoint p and slit li is S∗
i p. The

projection ray of the scene pointp is therefore defined by the intersection of the two planesS∗
1p, and

S∗
2p defined in (3.2).

Next, observe that the image of scene pointp is the intersection of the projection ray with the image

planeΠ. Letm ∈ P3 denote a point on planeΠ, and letj,k ∈ P3 denote two distinct points at infinity

which also lie on planeΠ. Every point onΠ can be expressed asxj+ yk+ wm. The projection ray of

p intersects planeΠ at a certain pointq ∝ xj + yk + wm such that(S∗
1p)Tq = 0 and(S∗

2p)T q = 0.

This gives us a set of linear equations inx, y andw (the homogeneous image coordinates of pointq),

namely:







pTS∗
1j pTS∗

1k pTS∗
1m

pTS∗
2j pTS∗

2k pTS∗
2m





















x

y

w















= 0 (3.3)

Define the following skew-symmetric matrices

Q1 = kmT − mkT Q2 = mjT − jmT Q3 = jkT − kjT (3.4)

the solution of the linear system (3.3) is2















x

y

w















∝















pTS∗
1Q1S

∗
2p

pTS∗
1Q2S

∗
2p

pTS∗
1Q3S

∗
2p















(3.5)

2The solution is a unique point unlessp resides on the line joining the intersections of the two slits with the image plane.
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andp is projected to( x
w , y

w ). Note thatS∗
i depends only on the slitli, while Q1,Q2,Q3 depend only

on the plane of projectionΠ. Q1, Q2, Q3 are the Plücker matrix representations of the imageX axis,

the imageY axis and the image line at infinity, respectively (all in 3D).Finally, note that the choice of

j andk to be points at infinity limits the internal calibration to anaffine transformation of the image.

The camera projection model in (3.5) is a quadratic mapping from P3 to P2, and therefore a X-

Slits camera cannot be described by a3 × 4 projection matrix overP. Let ν : P3 → P9 denote the

Veronese map given forp = (p1, p2, p3, p4)
T by

ν(p) = (p2
1, p1p2, p1p3, p1p4, p

2
2, p2p3, p2p4, p

2
3, p3p4, p

2
4)

T (3.6)

Using this notation, the transformation in (3.5) can be concisely written as

p ∝ Aν(p) (3.7)

whereA is a3 × 10 matrix determined by the two slits and the image plane (or, equivalently, the five

camera matricesS∗
1, S∗

2, Q1, Q2, Q3).

3.1.2 Orthogonal X-Slits camera

A configuration of special interest is when the slits are orthogonal to each other and parallel to the

image plane. I will refer to this configuration asOrthogonal X-Slits(see Fig. 3.1a).

Without loss of generality I fix the slits by assigningu1 = (1, 0, 0, 0)T , v1 = (0, 0, 1,−Z1)
T ,

u2 = (0, 1, 0, 0)T , andv2 = (0, 0, 1,−Z2)
T . This defines a vertical slit atX = 0, Z = Z1 and a

horizontal slit atY = 0, Z = Z2. I also denote∆ = Z2 − Z1. PlaneΠ is theX − Y plane atZ = 0,

and therefore I assignm = (0, 0, 0, 1)T , j = (1, 0, 0, 0)T , k = (0, 1, 0, 0)T . From (3.5) it follows that







x

y






=







−Z1
X

Z−Z1

−Z2
Y

Z−Z2






(3.8)

This projection equation is identical to the model first analyzed in [1], where it was called bi-centric

projection.
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(a) (b)

(c) (d)

Figure 3.2: Simulated X-Slits images of an artificial scene. (a) A regular pinhole image. (b) Orthogonal X-Slits image using

the projection equation from (3.8). (c) Same as (a), but withthe vertical slit rotated about theZ axis. (d) Same as (a), but

with the vertical slit rotated about theX axis.

3.1.3 Properties

It follows from (3.5) that the X-Slits projection is defined by three4× 4 matrices or a3× 4× 4 tensor.

It is a homogeneous object, so it is defined up to a scale. For any matrix A and any anti-symmetric

matrixB

pT (A + B)p = pTAp (3.9)

and therefore the anti-symmetric part of the matrices of (3.5) has no effect on the projection. This

means that the projection is defined only up to its symmetric part - by 29 variables . However, the

number of degrees of freedom is much smaller - each slit has 4 degrees of freedom up to a scalar, the

plane has 3 degrees of freedom, and there are additional 6 degrees of freedom3 for the choice of the

origin and the axes in the image plane, yielding a total of 17 degrees of freedom.

To get some intuition for X-Slits images, Fig. 3.2 shows examples of X-Slits images as compared

with pinhole images of the same scene. I also show the effectsof varying the relative geometry of the

3The three pointsj,k,m ∈ P3 are confined to a plane, leaving 2 degrees of freedom for each,up to scaling.
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slits and image plane. Next I demonstrate algebraically a few interesting properties of X-Slits images.

Projection of Lines

In X-Slits images, the image of a 3D line is a conic. Given a line represented by the Plücker matrixL

that does not coincide with either of the slits, consider thequadric surfaceS∗
1LS∗

2. The projection ray

of a pointp ∈ P3 not on either of the slits is the intersection of the planesπi = S∗
i p for i = 1, 2, and

the lineL intersectsπi atLπi. Therefore,p lies on the quadricS∗
1LS∗

2 if and only if its projection ray

intersectsL.

In other words, this quadric is the surface of all projectionrays of points onL. Since the intersection

of a quadric with a plane is a conic, the X-Slits image of a linel is always a conic.

If L intersects the slitl2 at some pointq, then it can be shown thatLS∗
2p = q for anyp ∈ P3.

Therefore, the quadric degenerates to the planeS∗
1q. Equivalently, ifL intersects the slitl1 atq, then

the quadric degenerates to the planeS∗
2q. Hence, the projection of a line that intersects one of the slits

is a line.

In the special case of the Orthogonal X-Slits camera, if the 3D line is perpendicular to theZ axis,

i.e., it is of the form(a + cλ, b + dλ, e), then its image is the curve(x, y) =
(

−Z1
a+cλ
e−Z1

,−Z2
b+dλ
e−Z2

)

,

which is a line; if the 3D line isnotperpendicular to theZ axis, i.e., it is of the form(a+cλ, b+dλ, λ),

then its image is the curve

(x, y) =

(

−Z1
a + cλ

λ − Z1
,−Z2

b + dλ

λ − Z2

)

(3.10)

Solving forλ, we find that the line is projected to the hyperbola given by

(Z1 − Z2)xy + Z2(b + Z1d)x − Z1(a + Z2c)y + Z1Z2(bc − ad) = 0 (3.11)

ForZ1 6= Z2, this hyperbola degenerates to a line if and only ifa + Z1c = 0 or b + Z2d = 0, that is,

only if the line intersects one of the slits.

The distortion of straight lines is illustrated in Fig. 3.2b. In practice this distortion is not very dis-

turbing, as can be seen in the examples in Section 4.1.4. In the various scenes I have experimented
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with, this distortion was rather minor. Many scenes, particularly natural scenes, do not have very dom-

inant straight lines, in which case this distortion is hardly noticed. Furthermore, people are accustomed

to similar effects caused by lens distortions.

Aspect Ratio Distortions

The most apparent aspect of the distortion in Orthogonal X-Slits images is the variation of aspect ratio

(especially in pushbroom images [23]). The apparent aspectratio of objects in the image depends on

their depth. This is unlike the perspective model, in which the distortion in aspect ratio is constant for

all objects.

From (3.8) it follows that an object at depthZ with aspect ratio of1 would appear on the image

plane to have an aspect ratio of

∆y

∆x
=

Z2

Z1
· Z − Z1

Z − Z2
(3.12)

In practice, I found this distortion to be typically rather insignificant. If the range of depth values of

scene objects is not too large, we can normalize the image to compensate for this distortion by scaling.

Specifically, if we cancel the aspect ratio distortion for some intermediate depth valueZ0, the distortion

at depthZ would be

Z − Z1

Z − Z2
· Z0 − Z2

Z0 − Z1
(3.13)

To demonstrate the magnitude of the distortion, consider the following example: Suppose the

depth range of objects in the scene is3 − 5 meters (measured from the horizontal slit atZ1, i.e.,

3m < Z − Z1 < 5m), and assume that the images are normalized so that objectsat the depth of

3.84m appear undistorted (i.e.,Z0 − Z1 = 3.84m). If the vertical slit is behind the horizontal slit at

∆ = −2.5m, the aspect ratio distortion would not exceed10%.

Tilted Slit

Departing from the Orthogonal X-Slits camera, suppose we tilt the vertical slit sideways. Assigning

all substitutions as with the Orthogonal X-Slits configuration, except thatu1 = (1, a, 0, 0)T for some
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a ∈ R, we obtain






x

y






=







−Z1
X+aY
Z−Z1

+ a
(

Z2
Y

Z−Z2

)

−Z2
Y

Z−Z2






(3.14)

By substitutingx′ = x + ay, y′ = y andX ′ = X + aY , Y ′ = Y , Z ′ = Z, we get the simple

model of (3.8) for the projection of(X ′, Y ′, Z ′) to (x′, y′). In other words, we get a skewed image of

a skewed scene. Such a projection is demonstrated in Fig. 3.2c (note that the skew is 3-dimensional).

Relation to Other Projection Models

The pinhole camera model is a special case of the X-Slits model, obtained when the two slits intersect.

Let there be three planesu,v1,v2 defining the slits so thatS∗
i = uvT

1 − vT
1 u (i.e., both planes lie on

planeu). SinceQi (3.4) are anti-symmetric,uTQiu = 0 and therefore

pTS∗
1QiS

∗
2p = pT (uvT

1 QiuvT
2 − uvT

1 Qiv2u
T + v1u

TQiv2u
T )p =

= (pT u) · (vT
1 QiuvT

2 − vT
1 Qiv2u

T + uTQiv2v
T
1 )p (3.15)

and thus (3.5) becomes














x

y

w















∝















vT
1 Q1uvT

2 − vT
1 Q1v2u

T + uTQ1v2v
T
1

vT
1 Q2uvT

2 − vT
1 Q2v2u

T + uTQ2v2v
T
1

vT
1 Q3uvT

2 − vT
1 Q3v2u

T + uTQ3v2v
T
1















p (3.16)

which is a projective transformation, and the pinhole is theintersection of the slits. Note that this is

true only whenpT u 6= 0, i.e., whenp does not lie on planeu. If p does lie onu, then its projection

is (0, 0, 0)T , which is not a point. Geometrically, the projection ofp is the line where the image plane

intersects planeu.

The linear pushbroom projection is also a special cases of the (Orthogonal) X-Slits projection,

obtained when the vertical slit resides on the plane at infinity. Indeed, settingZ1 = ∞, (3.8) becomes






x

y






=







X

−Z2
Y

Z−Z2






(3.17)

It was shown in [23] that a 3D line is projected by the linear pushbroom projection model to a hyperbola

in the image. This is a special case of the result shown in Section 3.1.3.
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3.2 Multiple View Geometry

Next I study the relation between two X-Slits images, taken by two X-Slits camerasT andT′.

3.2.1 Image Plane Transformation

Let us consider two X-Slits images which were obtained by thesame slit configuration but with differ-

ent projection planesΠ andΠ′. Note that the set of rays intersecting the image plane are determined

by the two slits. Thus, there exists a mapping between the twoimage planes which is invariant to the

3D structure of the viewed scene, similarly to the case of rotation in pinhole cameras.

Specifically, I derive the relation between a point(x′, y′, w′) on Π′ and a point(x, y,w) on Π,

both of which are the projection of the same scene pointp. Recall that the 3D point which cor-

responds to(x, y,w) on Π is q ∝ xj + yk + wm. Similarly, (x′, y′, w′) on Π′ corresponds to

q′ ∝ x′j′ + y′k′ + w′m′. By definition q lies on the planesS∗
1p andS∗

2p, and thereforeq is also

projected to(x′, y′, w′) onΠ′. Denoting

M =

[

j k m

]

p = (x, y,w)T (3.18)

it follows thatq = Mp. We now projectMp onΠ′ to obtain















x′

y′

w′















∝















pTMT S∗
1Q

′
1S

∗
2Mp

pTMT S∗
1Q

′
2S

∗
2Mp

pTMT S∗
1Q

′
3S

∗
2Mp















(3.19)

Note thatM depends only on planeΠ, S∗
1 andS∗

2 depend only on slitsl1 and l2 respectively, and

Q′
1,Q

′
2,Q

′
3 depend only on planeΠ′.

Now, similarly to the notation used in (3.7), we can write this transformation as

p′ ∝ Hν(p) (3.20)

whereν denotes the Veronese mapν : P2 → P5 andH is a3 × 6 matrix.
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L

l1

l2

p1

p2

image
plane

S∗
1p1

Figure 3.3: Illustration for the derivation of the fundamental matrix for two X-Slits cameras.

3.2.2 Fundamental Matrix

I now study the relation between two X-Slits images, taken bytwo arbitrary X-Slits camerasT and

T′. Given a pointp ∈ P2 on the image of cameraT, the 3D point on the image plane corresponding

to p is given byp1 = Mp, whereM is the4 × 3 matrix defined in (3.18). The plane that joinsp1 to

slit l1 is given byS∗
1p1, see Fig. 3.3. This plane intersectsl2 at the pointp2 = S2S

∗
1p1 (note thatS2

is the Plücker matrix representingl2 andS∗
1 is thedual Plücker matrix representingl1). The pointp2,

which is not seen byT since it lies onl2, lies on the rayL that projectsp1 to p. This ray is given by

the Plücker matrix

L = p1p
T
2 − p2p

T
1 = p1p

T
1 S∗

1S2 − S2S
∗
1p1p

T
1 (3.21)

As explained in Section 3.1.3, the projection of a line represented by the Plücker matrixL onT′ is

a conic given by the intersection of the image plane with the quadricS′∗
1LS′∗

2. Therefore the projection

of the ray throughp on the image of cameraT′ is given by

0 = p′TM′TS′∗
1LS′∗

2M
′p′

= p′TM′TS′∗
1(MppTMTS∗

1S2 − S2S
∗
1MppTMT )S′∗

2M
′p′ (3.22)

This equation defines a bi-quadratic relation between corresponding pointsp andp′ in camerasT and

T′ respectively.

Using the Veronese mapν : P2 → P5, (3.22) can be rewritten as

ν(p′)TFν(p) = 0 (3.23)
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whereF is a6 × 6 matrix whose components depend on the values of the camera matricesM,S∗
1,S

∗
2

andM′,S′∗
1,S

′∗
2. For each image pointp in T, F defines the conic on which the image pointp′ in T′

must lie, and vice versa. I shall refer to such conics asvisibility curves.

Definition 3.1 The two conics on which two corresponding image pointsp, p′ must lie, as determined

by Eq. (3.23), are calledvisibility curves.

As will be shown below, these curves play a role similar to theepipolar lines in the perspective model.

In analogy with the pinhole camera, I define thefundamental matrixof a pair of X-Slits cameras:

Definition 3.2 Matrix F in Eq. (3.23) is called thefundamental matrix of a pair of X-Slits cameras

T andT′.

Clearly, F always exists. It is similar to the conventional fundamental matrix in the sense that it

captures the relative position of two X-Slits cameras, and that it makes it possible to get the visibility

curves in one image from points in the other image.

SinceF depends on camerasT and T′, it is determined by 34 free parameters at most. The

real number of free parameters is, however, much smaller. Tosee this, supposeA is a4 × 4 matrix

representing a projective transformationp 7→ Ap. It can easily be verified that this transformation,

when applied to a Plücker and a dual Plücker matrix, is given byS 7→ ASAT andS∗ 7→ A−TS∗A−1,

respectively. By substituting these mappings into (3.22) one obtains the same equation, and therefore

(3.22) is invariant to a projective transformation of all its elements. Note, however, that due to the

construction of matrixM with 2 points on the plane at infinity, we are only free to choose a 3D affine

transformation to change the coordinate system; this removes 12 degrees of freedom, leading us to the

conclusion thatF is fully determined by 22 free parameters at most.

We can deriveF directly from the camera parameters as follows. Letp andp′ denote the corre-

sponding projections of 3D pointp in the two images. As discussed above, the projection ray ofp in

cameraT is defined by the intersection of the two planesS∗
1Mp andS∗

2Mp. It follows thatp must lie

on the two planes, namely,pTS∗
1Mp = 0 andpTS∗

2Mp = 0. A similar argument regarding camera

T′ allows us to conclude thatpTS′∗
1M

′p′ = 0 andpTS′∗
2M

′p′ = 0.
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Let us define the4 × 4 matrix B whose columns are the vector representations of the 4 planes,

namely

B =

[

S∗
1Mp S∗

2Mp S′∗
1M

′p′ S′∗
2M

′p′
]

(3.24)

Clearly pT · B = 0. This implies that the null space ofB is not empty, and thus the determinant

of B must be 0. The equationdet(B) = 0 gives us another expression for the bi-quadratic relation

between the image points described by the fundamental matrix F. With some algebraic manipulations

of det(B) = 0, we can arrive at the following form

0 = det(B) = ν(p)T ·H · G · ν(p′) (3.25)

whereH andG are two6× 6 matrices which depend eachonlyon the camerasT andT′ respectively.

Let us take a closer look atν(p)T ·H. For any matrixX∗, I use the notationXk to denote thek-th

column ofX∗. By construction we have

ν(p)TH1 = pTMT [(S1
1)(S

2
2)

T − (S1
2)(S

2
1)

T ]Mp

ν(p)TH2 = pTMT [(S1
1)(S

3
2)

T − (S1
2)(S

3
1)

T ]Mp

ν(p)TH3 = pTMT [(S1
1)(S

4
2)

T − (S1
2)(S

4
1)

T ]Mp

ν(p)TH4 = pTMT [(S2
1)(S

3
2)

T − (S2
2)(S

3
1)

T ]Mp

ν(p)TH5 = pTMT [(S2
1)(S

4
2)

T − (S2
2)(S

4
1)

T ]Mp

ν(p)TH6 = pTMT [(S3
1)(S

4
2)

T − (S3
2)(S

4
1)

T ]Mp

(3.26)

This defined matrixH; moreover, it can be shown that the rank ofH is at most 4 given that the4 × 4

matricesS∗
1 andS∗

2 are anti-symmetric and of rank 2.G is defined in a similar way for cameraT′, and

its rank is therefore also 4. Since the fundamental matrixF = H ·G, we can conclude the following:

Proposition 3.1 The rank of the fundamental matrix of the X-Slits projectionis 4 at most.

This proposition immediately gives us 4 independent constraints on the elements ofF. For example,

we can choose four different5×5 sub-matrices ofF, and require that the determinant of each equals 0.
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Q(p′) Q′(p)

l1

l2

l′1

l′2

p

p p′

L L′

Q(p′) Q′(p)
l2 l′2

p

p p′L L′

l1 = l′1

(a) (b)

Figure 3.4: Visibility quadrics: (a)Q′(p) is the collection of projection rays ofT′ passing through lineL, while Q(p′) is

the collection of projection rays ofT passing throughL′. (b) When the cameras have a shared slit (l1 = l′1), the visibility

quadrics intersect in a plane.

3.2.3 Visibility Quadrics

Let L denote the projection ray of cameraT passing through image pointp. Let Q′(p) denote the

quadricS′∗
1LS′∗

2 whereL is defined in (3.21); thusQ′(p) is the projection ofL in cameraT’. This

quadric is a double-ruled surface that is ruled by the familyof all rays of cameraT′ passing through

the lineL (see Fig. 3.4a). Similarly, letL′ denote the projection ray of cameraT′ passing through

image pointp′, and let the quadricQ(p′) = S∗
1L

′S
∗
2 denote the projection ofL′ in cameraT.

Definition 3.3 The quadricQ′(p) (resp.Q(p′)) for any image pointsp (resp.p′) is called avisibility

quadric.

Visibility quadricsplay a role similar to epipolar planes in the pinhole camera.However, unlike the

perspective model, these quadrics are not necessarily symmetric with respect to the two cameras. For

a given scene pointp that is projected top andp′ in T andT′ respectively, the corresponding surfaces

of rays ofT andT′ areQ′(p) andQ(p′) respectively. These quadrics do not usually coincide.

WhenQ′(p) andQ(p′) do coincide, I refer to this quadric as anepipolar quadric. The property

of an epipolar quadric is that all points on it are projected to a single conic in each camera, and the

corresponding conics can be used for matching in the same wayas epipolar lines are used in perspective

images. I shall describe next the camera configurations in which this occurs for all scene points; in these

cases thevisibility curvesin both cameras can be matched with each other, similarly to epipolar lines

in the perspective camera. This notion will be made more precise next.
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Figure 3.5: Illustrations for the proof of Lemma 3.2.

Epipolar Quadrics

In this section I assume thatslits are not visible by their camera, because otherwise epipolar quadrics

are not well defined for points on the slits To make the discussion precise, let us start with a few

definitions: We say that twolines intersectif they have a common point. We say that lines aredisjoint

if they do not intersect. LetL be a set of lines. Denote byT (L) the set of lines that intersect every line

in L and callT (L) the transversalof lines inL. Adopt that a setR of lines is calledregulusif there

are three pairwise disjoint linesl1, l2, l3 such thatR = T ({l1, l2, l3}).

Let T denote a X-Slits camera with slitsl1, l2. We say that linel is a projector of a pointp in

cameraT if l is transversal to slitsl1, l2, andp is in l \ (l1 ∪ l2). A nonempty quadricQ is said to be

anepipolar quadricof two X-Slits camerasT,T′ if for every pointq ∈ Q all projectors ofq in T and

T′ are contained inQ.

Lemma 3.2 Let l1, l2, l3 be three distinct lines, out of which at least two are disjoint. Then transversal

R = T ({l1, l2, l3}) is either the union of two planar pencils of lines that have one line in common, or

a regulus.

Proof: Let w.l.o.g. l1, l2 be disjoint. Then one of the following 3 possibilities holds: (1) l3 intersects

both l1, l2 (see Fig. 3.5a); (2)l3 intersects eitherl1 or l2, be it l1 w.l.o.g. (see Fig. 3.5b); (3)l1, l2, l3

are pairwise disjoint (see Fig. 3.5c).

case 1:Denotel1 ∩ l3 by p1 andl2 ∩ l3 by p2. The set of lines transversal tol1, l3 is the union

of the setL1 of all lines passing throughp1 and the setL2 of all lines in the plane spanned byl1, l3.
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The lines inL1 that intersectl2 form the pencil of lines with centerp1 in the plane spanned byl2, l3.

The lines inL2 that intersectl2 form the pencil of lines with centerp2 in the plane spanned byl1, l3.

Clearly linel3 lies in both pencils.

case 2:Denotel1 ∩ l3 by p1. Line l2 intersects the plane spanned byl1, l3 in a pointp2. Now,

the set of lines transversal tol1, l2, l3 is the union of two planar pencils of lines that have one line in

common by the same argument as in the previous case.

case 3:In this caseR is a regulus, see [56, p. 42] for the proof.

Theorem 3.3 LetT (resp.T′) be a X-Slits camera with disjoint slitsl1, l2 (resp. disjoint slitsl′1, l
′
2).

Then, every point in the setV of all points that have a projector in both cameras is contained in an

epipolar quadric ⇐⇒ the cameras either share a slit, or slitsl1, l2 intersect with slitsl′1, l
′
2 in four

pairwise distinct points.

Proof: (=⇒) One of the following must be true: (1) all projectors ofT intersect at least one of the

slits l′1 or l′2; (2) there is a projectorl of T so thatl, l′1, l
′
2 are pairwise disjoint.

case 1:The set of projectors ofT is the union of two sets of lines

A = {m is a projector ofT|m ∩ l′1 6= ∅} = T ({l1, l2, l′1})

B = {m is a projector ofT|m ∩ l′2 6= ∅} = T ({l1, l2, l′2}) (3.27)

It follows from Lemma 3.2 that transversalT ({l1, l2, l}) for a linel 6= l1, l2 is either a planar pencil of

lines or a regulus. Therefore, from

T ({l1, l2}) = A ∪ B = T ({l1, l2, l′1}) ∪ T ({l1, l2, l′2}) (3.28)

it follows that l′1 ∈ {l1, l2} or l′2 ∈ {l1, l2}. This is becauseT ({l1, l2}) is not a surface (but rather a

volume), since for every pointp there is a line inT ({l1, l2}) passing throughp.

case 2:Takep ∈ l ∩ V. There is an epipolar quadricQ containingp. Thusl is in Q and also the

regulusR = T ({l′1, l′2, l}) is in Q by whichQ is a regular double ruled quadric. Either (2.1) there is a

line s ∈ R which doesnot intersect bothl1, l2, or (2.2)l1, l2 intersect all lines inR.
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• case 2.1: RegulusT ({l1, l2, s}) is in Q and therefore linesl1, l2 are inQ. Linesl1, l2 are disjoint

and consequently are in the same regulus. The same holds forl′1, l
′
2. Line s intersectsl′1, l

′
2 but

does not intersectl1, l2, and thusl1, l2 are in the opposite regulus to the regulus containingl′1, l
′
2

(in other words, they are in different rulings on the surface). Consequently, slitsl1, l2 intersect

with slits l′1, l
′
2 in four pairwise distinct points.

• case 2.2: Linesl1, l2 are in regulusT (R). Sincel′1, l
′
2 ∈ T (R), all four l1, l2, l

′
1, l

′
2 are in the

same regulus and are pairwise distinct becausel intersectsl1, l2 but does not intersectl′1, l
′
2.

Then, however, no pointq ∈ V \ Q is contained in an epipolar quadric due to the following

argument. Denote byn (resp. n′) the line fromT (resp. T′) that passes through a pointq ∈

V. Assume that there is an epipolar quadricQ′ containingq. Then bothT ({l1, l2,n′}) and

T ({l′1, l′2,n}) are inQ′, and thus alll1, l2, l′1, l
′
2 are inQ′. However, nowQ = Q′ since every

four distinct lines from a regulus are exactly in one regulus. Therefore,q ∈ Q.

(⇐=) By the assumption one of the following holds: (1) the camerasshare exactly one slit; (2)

the cameras share both slits; (3) the cameras intersect in four distinct points.

case 1:Let w.l.o.g. l1 = l′1. A point q ∈ V is not contained inl1 and therefore there is exactly

one planeπ throughl1 andq. Every projector fromT or T′, which containsq, intersectsl1 and is

therefore inπ; thusπ is an epipolar quadric.

case 2:Let w.l.o.g.l1 = l′1 andl2 = l′2. Then every pointq ∈ V is projected in bothT andT′ by

the same projector. Everyq ∈ V and its projectorl are contained in, e.g., the regular epipolar quadric

that contains regulusT ({l1, l2, l′}) for some linel′ that containsq and does not intersectl1, l2.

case 3:Every pointq ∈ V is contained in exactly one projectorl from T and in exactly one pro-

jector l′ from T′. We assumed thatl1, l2 are transversal tol′1, l
′
2. Line l (resp.l′) is transversal tol1, l2

(resp.l′1, l
′
2). Line l is transversal tol′ since both containq. Linesl1, l2, l

′ (resp.l′1, l
′
2, l) are pairwise

disjoint. Therefore,q is contained in a regular epipolar quadric that contains regulusT ({l1, l2, l′}).

We can now conclude the following:

Corollary 3.4 If two X-Slits cameras share a slit, then every point is contained in an epipolar plane,

see Fig. 3.6b. Moreover, the epipolar planes form a pencil ofplanes.
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(a) (b)

l1

l2

l2 l′1

l′2

l′2
l1 = l′1

Figure 3.6: Epipolar quadrics of a pair of X-Slits cameras with nonintersecting slits. (a) The slits intersect in four

pairwise disjoint points. (b) The cameras share a slit.

Vice versa, when the epipolar quadrics are planes in general, the cameras must have one common

slit.

Corollary 3.5 If the slits intersect in four pairwise distinct points, then every point is contained in a

regular epipolar quadric, see Fig. 3.6a. Moreover, the epipolar quadrics form a pencil of quadrics.

3.2.4 Visibility Curves

One property of visibility curves is that they must all intersect two specific points, which are the points

where the slits intersect the image plane.

Proposition 3.6 In cameraT, denote the image points where slitsl1 and l2 intersect with the image

plane asc1 andc2 respectively; then all scene lines are projected into conics that pass throughc1 and

c2.

Proof: The lineL is projected into the conic given by

pTMTS∗
1LS∗

2Mp = 0 (3.29)

For i = 1, 2, the 3D point corresponding toci is Mci, and since this point lies on slitli, it follows that

S∗
i Mci = 0. Therefore, (3.29) holds forp = ci, which meansc1, c2 both lie on the conic which is the

projection of the lineL.

Corollary 3.7 c1 andc2 lie on all visibility curves.
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The projection of a ray is the intersection of the image planewith a subset of a quadric double-ruled

surface containing the slits of the camera and the ray of the other camera through the scene point, as

discussed above and in Section 3.2.3. When this set is a plane, the visibility curve degenerates into a

line. This gives us the following result:

Proposition 3.8 When two X-Slits cameras share a slit, visibility curves arelines and can be matched,

i.e., points on a visibility line of one camera can be matchedto points on the corresponding visibility

line of the other camera.

This proposition shows that in the case of a shared slit, there is great similarity to the epipolar geometry

of the perspective projection. The following lemma characterizes this similarity:

Lemma 3.9 For two camerasT, T′, if the cameras have a common slit, then each visibility curve

is composed of a pair of lines, one of which is the projection of a singular point; excluding singular

points, the remaining family of lines is the family of lines induced by the perspective fundamental

matrix.

Proof: Since a slit is shared, let us assume w.l.o.g. thatS∗
1 = S′∗

1. It can easily be shown thatS∗
1S2S

∗
1 =

µS∗
1, for someµ ∈ R. From (3.22) it follows that for each scene point projected to p, p′ in T, T′

respectively,

0 = p′TM′TS′∗
1(MppTMTS∗

1S2 − S2S
∗
1MppTMT )S′∗

2M
′p′

= p′TM′TS∗
1(MppTMT S∗

1S2 − µMppTMT )S′∗
2M

′p′

= p′TM′TS′∗
1MppTMT (S∗

1S2 − µI)S′∗
2M

′p′

≡ p′TAp · pTBp′ (3.30)

SinceMp andM′p′ are 3D points on the image planes ofT andT′ corresponding top andp′ respec-

tively, p′TAp = 0 if and only if p andp′ are coplanar with the common slit.

Imagine that instead of the two X-Slits camerasT andT′ we have two perspective cameras with

focal centers onl1; clearly the same relationship would exist between corresponding image points.
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This means that the first constraint, denoted asp′TAp is equivalent to the constraint on matching

points between two perspective cameras that lie onl1.

On the other hand,(S∗
1S2−µI)S∗

1 = (µS∗
1−µS∗

1) = 0. ThereforepTMT (S∗
1S2−αI)S∗

1 = 0,

which means thatpTMT (S∗
1S2−αI) is a point on slitl1, and therefore the visibility lineBT p is a

projection of a point on a slit. This projection is singular (a point is projected to a line), and therefore

we exclude it from the set of points feasible for matching.

3.3 Summary

I presented a new non-perspective projection model, which is defined by two slits and a projection sur-

face. This model can be physically realized, and has been built in the late 19th century. Algebraically,

I showed that this model corresponds to a second-order transformation from three-dimensional space

to two-dimensional space (while perspective projection isa linear, or first order, transformation).

The second-order nature of the X-Slits projection is further observed in its epipolar geometry. I

studied the multiple view geometry and described the relation between two X-Slits images with the

same slit configuration and different image planes, which isthe equivalent of homographies in the

perspective, as well as the relation between two arbitrary X-Slits cameras, which is the equivalent of

the fundamental matrix. In both instances, corresponding image points have the same relation as in the

perspective model, except that here the constraints are quadratic rather than linear.

Consequently, epipolar planes and epipolar lines become curved in the X-Slits projection. I defined

visibility surfaces, which were shown to be double-ruled quadrics, and visibility curves, which were

shown to be conics. Interestingly, unlike the perspective model, here visibility surfaces and curves need

not correspond, except for certain special cases. In one of these cases, when the cameras share a slit,

the epipolar geometry exhibits some similarity with the perspective epipolar geometry. This particular

configuration turns out to be useful for image-based rendering applications, as presented next.
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Chapter 4

Non-Perspective View Synthesis

In this chapter I describe how to synthesize X-Slits images from a sequence of perspective images

acquired using a sideways-moving perspective camera. As shown in Section 4.1, a simple column-

sampling method that does not require any knowledge about the scene can be used to generate X-Slits

views with one slit coinciding with the camera path and the other at arbitrary locations. This method

is also extended to non-linear slits.

In Section 4.2, this technique is used for creating an omni-directional virtual environment, where

the point-of-view is moved by moving one of the slits. Since the X-Slits projection is not perspective,

it appears distorted, and I present a method for reducing these distortions by perspective reprojection

using a coarse approximation of the scene structure.

In Section 4.3 I consider the problem of optimal mosaicing based only on the available set of rays,

without any information about the scene by approximating a perspective camera based on the set of

rays alone.

4.1 Crossed-Slits Image Generation

I now consider the issue of synthesizing new X-Slits views from “regular” perspective images. The

input sequence is assumed to be captured by a pinhole camera translating along a horizontal line in 3D

space in roughly constant speed, and without changing its orientation or internal calibration. As I show
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below, in the simplest case we can generate a new X-Slits image where the two slits of the underlying

virtual X-Slits camera are defined as follows:

1. A horizontal slit that lies on the path of the optical center of the moving pinhole camera.

2. A vertical slit that is parallel to the image’s vertical axis, and whose location is determined by

the parameters of the mosaicing process.

In practice, new view synthesis is performed by non-stationary mosaicing. Basic non-stationary

mosaicing is defined as follows:

• From each framet, sample the vertical column (strip) centered on the horizontal coordinates(t).

• Paste the strips into a mosaic image, as in [55].

In the general case we may sample slanted strips rather than vertical columns (strips), and the

orientation may also change as a function oft. In this case the “vertical” slit of the underlying virtual

camera may not be parallel to the image’s vertical axis. However, for clarity of presentation and without

loss of generality, I will continue calling one slit of the new virtual camera “horizontal” and the other

slit “vertical”. Typically the “horizontal” slit is aligned with the path of the camera, while the second

“vertical” slit is not constrained a priori and need not be orthogonal to the first slit.

The parameters of the strip sampling functions(t) determine the location of the vertical slit of the

virtual camera. A virtual walkthrough is obtained by generating a sequence of X-Slits images via non-

stationary mosaicing, while moving the vertical slit alonga planar path. Adjusting the image plane

orientation is done by warping the mosaiced image, as described in Section 3.2.1.

In Section 4.1.1 I show how to sample vertical strips from theinput images in the sequence in order

to generate a valid X-Slits image. I also discuss the relation between the sampling functions(t) and the

parameters of the virtual X-Slits camera. In Section 4.1.2 Idiscuss implementation issues, including

the treatment of deviation from constant speed and aspect ratio normalization.
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sampled column

horizontal slit

vertical slit

Figure 4.1: The non-stationary column sampling routine which is used tosynthesize new images.

4.1.1 Non-Stationary Strip Sampling

I start my analysis with the simplest case where the input image sequence is generated by a camera

moving sideways in a direction parallel to theX-axis of the image. The camera is also assumed

to be internally calibrated. In this simple case the new synthesized image is an Orthogonal X-Slits

image (see Section 3.1.2), and the non-stationary strip sampling is a linear function. I show below

the exact relation between the parameters of the linear sampling function and the parameters of the

corresponding virtual X-Slits camera. In Appendix A it is shown that even when the camera is not

internally calibrated, any linear strip sampling functionresults in a X-Slits image (but not necessarily

Orthogonal X-Slits). When the motion of the camera is not parallel to the image plane, the sampling

function is not linear anymore.

When the basic assumptions of the analysis are violated, namely, the camera changes its orientation

and internal calibration arbitrarily along the input sequence, we need to preprocess the sequence. One

solution involves registering all the images with each other using the homography of the plane at in-

finity. This computation requires, however, either (partial) internal camera calibration or some domain

knowledge (such as parallel lines in the scene) [26].
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Figure 4.2: New image formation with two possible positions of the vertical slit (see text).

Mosaicing by Linear Strip Sampling

Let our input be a sequence of images captured by a pinhole camera translating in constant speed along

theX axis from left to right. We generate a new panoramic image by pasting columns from the input

images, as illustrated in Fig. 4.1. We start by sampling the left column of the first (leftmost) image,

and conclude by sampling the right column of the last (rightmost) image. In between, intermediate

columns are sampled from successive images using a linear sampling function.

A schematic illustration of this setup is given in Fig. 4.2a,in a top-down view. A sequence of

positions of the real pinhole camera is shown, together withthe corresponding field of view. The

moving input camera, whose optical centers are located at positionsc(t) = (Xt, 0, 0), generates images

according to the following mapping:

p = (X,Y,Z) =⇒ p = (x, y) = (f
X − Xt

Z
, f

Y

Z
) (4.1)

Denote the range of columns (x) in each pinhole image as[−r, r], and the range of camera pinhole

positions (Xt) as[−l, l] (see Fig. 4.2a). The new synthesized image is constructed bypasting columns

from the input images. The range of columns in the synthesized image is[−(r + l), r + l]. For each

t ∈ [−1, 1], we assign to the(l + r)t column of the new image the image values at thert column of
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the pinhole camera positioned at(lt, 0, 0) (i.e.,Xt = lt, see Fig. 4.2a). It now follows from Eq. (4.1)

thatrt = f X−lt
Z . In addition, for each columnx ∈ [−(r + l), (r + l)] in the new image,t = x

l+r and

therefore

X =
rt

f
Z + lt = x

(

r

l + r
· Z

f
+

l

l + r

)

or

x =
l + r

r
f · X

Z + f l
r

Observe that this defines a vertical slit atZ = −f l
r (see Fig. 4.2a). The horizontal slit is atZ = 0

(all pinhole camera centers are atZ = 0). Eq. (4.1) can therefore be rewritten as

p = (X,Y,Z) =⇒ p = (x, y) = (fx
X

Z + ∆
, fy

Y

Z
) (4.2)

wherefx = l+r
r f is the horizontal focal length,fy = f is the vertical focal length, and∆ = f l

r is the

distance between the two slits.

Suppose next that instead of taking thert column from the camera at(lt, 0, 0), we choose an

arbitrary linear column sampling function. More specifically, for t = αs + β, we take thers column

of the lt camera, see Fig. 4.2b. (Recall thatr, l are fixed, whilet, s are free parameters). Let the field

of view of the original pinhole camera be2θ. It can be shown as above that such a choice of columns

defines the mapping

(x, y) = ((f +
αl

tan θ
)

X − βl

Z + αl
tan θ

, f
Y

Z
) (4.3)

This can be written simply as

(x, y) = (fx
X − X0

Z + ∆
, fy

Y

Z
) (4.4)

whereX0 = βl, ∆ = αl
tan θ , fy = f andfx = f + ∆.

The method described so far produces images which do not follow the perspective projection

model. They do, however, follow the X-Slits projection model. To see this, observe that all the rays

which participate in the generation of each new image, must intersect the following two lines:
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1. The line of camera motion; this is because each projectionray must be collected by some camera

whose optical center is on this line.

2. The vertical line located at(X0, Z0) (as in Eq. (4.4), whereZ0 = Z + ∆).

The projection model is therefore defined by a family of rays intersecting a pair of lines (“slits” ),

projecting 3D points onto a plane. Moreover, the model is Orthogonal X-Slits (compare Eq. (4.4) with

Eq. (3.8)).

In the derivation leading to (4.4) I effectively showed thatany linear sampling function yields

a valid new Orthogonal X-Slits image. Furthermore, we can set the location of the vertical slit to

(X0, Z0) by fixing α = −Z0
l tan θ andβ = X0

l . This result enables us to synthesize new views of

the scene with any vertical slit of our choice, by sampling the columns of the original input sequence

according tot = αs + β, with α andβ assigned the appropriate values.

4.1.2 Implementation Issues

In this section I address the case when the motion of the camera deviates from constant speed, and how

the aspect ratio of the resulting mosaic is determined. I also present an alternative implementation of

mosaicing, namely the slicing of space-time volume.

Variable Camera Speed

When the camera moves in a linear trajectory but varying orientation and speed, we compensate for

this variability by estimating the camera motion (see [26])and by derotating the image planes. I

found that when the changes in camera orientation are small,a simple approximation is sufficient.

Specifically, we compute the 2D rotation and translation between consecutive input frames using the

method described in [14], and warp the images to cancel 2D rotation and vertical translation. The

residual 2D translation is used as a rough approximation to the 3D velocity of the translating camera,

and determines the thickness of the vertical strip. This approach is similar to the pushbroom mosaicing

technique described in [55].
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Aspect Ratio Normalization

The most apparent aspect of the distortion in X-Slits imagesis the variation of aspect ratio, as analyzed

in Section 3.1.3. To reduce this distortion, we vertically scale the new images. This normalization is

essential for achieving compelling results.

Specifically, the distortion on theimage planeof objects at depthZ given in Eq. (3.12) can be

written as Z
Z+∆ · fy

fx
in the notation of Eq. (4.4). In order to keep the horizontal field-of-view angle con-

stant in the walk-through animation, we sample all the columns from left to right (from the appropriate

frames, according to the column sampling function). Without any scaling, this process generates an

image in which only the plane at infinity (Z = ∞) appears undistorted. Therefore, in order to cancel

the distortion at depthZ0, we scale the image vertically by the factor:

1 +
∆

Z0
(4.5)

The Space-Time Volume

In Section 4.1.1 I described how to synthesize a X-Slits image by sampling columns from the input

images using the following linear sampling formula:

t = αs + β (4.6)

wheret denotes the camera translation. Recall thatα, β are free parameters which control the location

of the vertical slit.

A useful representation for the visualization of this process is the Space-Time Volume (or the

epipolar volume), which is constructed by stacking all input images into a single volume. In case of

constant sideways camera motion, any vertical planar slicein the volume according to (4.6) is a X-Slits

image. This process is illustrated in Fig. 4.3; it assumes that the input sequence has high frame-rate and

negligible spatial aliasing, so that simple interpolation(such as bilinear or bicubic) of the volume is

sufficient. Thus rendering new X-Slits images is as simple asslicing a plane in the space-time volume.
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Figure 4.3: A schematic description of images generated as slices in thespace-time volume. (a) Changing the orientation of

the slice moves the vertical slit inside and outside the scene. (b) The central slice gives a pushbroom image (the “traditional”

mosaic). Sliding parallel slices in the space-time volume results in different viewing directions of oblique pushbroom images.

4.1.3 Non-Linear Slits

One of the slits in the synthetic X-Slits images is the trajectory of the camera. When the camera’s

trajectory is not linear, a X-Slits view can be generated forwhich one of the slits is curved. An

interesting family of such views has one circular slit and one linear slit. One way to generate such

images is to use a camera rotating off-axis on a circle, as in concentric mosaics [64]. Concentric

mosaics allow the generation of images in which the viewer can move continuously in a circular region.

Each image generated from concentric mosaics is consistentwith a circular X-Slits projection: One

slit is the horizontal circular path of the camera center, and the second slit is a vertical linear slit placed

at the location of the viewer. To generate an image from a different viewing position, the vertical slit is

placed in the new location.

While images generated from the concentric mosaics point outward, and the viewer location is

inside the circle, it is also interesting to generate inwardlooking images from locations outside the

circle. This can be realized by moving the camera in a circle around an object, or by having a stationary

camera viewing an object rotating on a turntable. Now the location of the viewer in the synthesized

images can be as far or as close to the object as we wish, insideor outside the circular slit.

The column sampling function which generates circular X-Slits images is not linear. It is easier to
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Figure 4.4: Synthesizing new views using the circular slit model

express it in angular terms, so I denote columns by their angle from the optical axis, and frames by

the angular position of the camera. Assume that the images were taken by a pinhole camera rotating

off-axis at radiusR0. In order to synthesize a X-Slits image with vertical slit atradiusR1, we take

columnβ from the pinhole camera atγ and paste it as columnα in the new image, as shown in Fig. 4.4.

It can readily be seen that the following relation should hold: β = arcsin(R1
R0

sinα) andγ = β − α.

The distortions of such images are more complicated to analyze. However, in practice, since the

field-of-view angles of cameras tend to be rather small, the circular slit in the relevant region is nearly

linear, and therefore the distortions are approximately the same as with linear slits. Using the same

aspect ratio normalization method as with linear slits, theresults we achieve are quite convincing.

4.1.4 Results

In all my experiments I used a camera moving in the horizontalplane. As discussed above, new

view generation in this case is done by sampling vertical strips from successive images and pasting

them together into individual X-Slits images. The parameters of the strip sampling function determine

the location of the vertical slit of the X-slit camera. In my experiments below, I manipulated the

parameters of the sampling function so that the location of the vertical slit moves according to the

desired egomotion. A very compelling impression of camera motion is obtained, even though the

horizontal slit of the X-slits camera, which is the trajectory of the input camera, remains fixed.

In addition, I also simulated a change of camera orientationusing the equations derived in Sec-

tion 3.2.1. Note that the slits are left as are, changing onlythe orientation of the image plane. This
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is because the full rotation of the slits would change the setof visible projection rays, and therefore

cannot be performed by a 2D transformation of the image.

Next I discuss two applications: the generation of a virtualwalkthrough from a sequence of per-

spective images, and 3D object visualization. The input video sequences used in these examples, as

well as the synthesized walkthrough movies, are currently available on the web at

http://www.cs.huji.ac.il/∼daphna/demos.html#xslits .

Virtual Walkthrough

In the first experiments (Figs. 4.5-4.8) I synthesized new sequences which correspond to a camera

motion that has forward motion component, with visible parallax and lighting effects. In addition, the

direction of the image plane was changed.

Another example used a sequence taken by a helicopter flying along a rocky coast in an unknown

path and viewing direction (Fig. 4.9). Here I synthesized a new sequence which corresponds to a

forward moving camera. This sequence was more challenging since the input sequence was taken in

free motion with random disturbances (e.g., the effect of wind), and thus motion compensation was

required (see discussion in Section 4.1.2).

New Views of Extended X-Slits Images

In this example I show how to generate new views from a sequence of a rotating object, where the

new sequence demonstrates forward motion with parallax (Fig. 4.10). The projection model of the new

images correspond to non-linear slits, as discussed in Section 4.1.3.

Object Visualization

Here I demonstrate the use of the X-Slits projection for object visualization – an object can be “flat-

tened”, revealing several of its sides simultaneously, by positioning the vertical slit behind the object

(Fig. 4.11). Since the image is a valid X-Slits image that canbe characterized and analyzed, we need

not worry about such issues as duplicate images, which usually require hand-crafted stitching.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: This scene is located in a small room where moving backward tocapture the whole room is impossible. The

scene was filmed by a sideways moving camera, total of 591 frames; one of the original frames is shown in (a). I show three

new images: one where the vertical slit is located in front ofthe original track (b), and two where the vertical slit is located

behind the original track (c-d). For comparison, I took a normal (pinhole) picture from the same location as (c), where part of

the scene is obscured by the wall; this picture is shown in (e), and it demonstrates the ability to make images from impossible

camera positions. Finally, (f) shows a simulated image where the camera was translated and rotated.
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(a) (b) (c)

Figure 4.6: This scene was filmed by a sideways moving camera in our lab, total of 567 frames. I generated a X-Slits movie

where the virtual camera rotated about an object in the scene(a-b), and then translated ahead in a diagonal (c).

(a) (b)

(c) (d)

Figure 4.7: Virtual walkthrough from a translating camera. (a), (b) Twoframes from the input sequence. (c), (d) Two images

rendered in forward motion. Note the apparently realistic changes in parallax and reflection.
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Figure 4.8: This scene was filmed by a sideways moving camera, total of 585frames. I generated a movie which included

both rotation about the person and forward motion. Three frames of this movie are shown above; note the changes in the

window reflections, which appear realistic.

(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Virtual walkthrough generated from a sequence taken by a freely flying helicopter. (a), (b) Two frames from the

input sequence. (c), (d) Two images rendered in forward motion (diagonal slices). (e), (f) Two images rendered in different

viewing angles (parallel slices).
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(a) (b)

(c) (d)

Figure 4.10: A rotating object: (a), (b) Two images from the original sequence of a rotating object. (c), (d) Two synthesized

images from a forward moving viewpoint.

(a) (b)

(c) (d)

Figure 4.11: Object representation. (a), (b) The original input images.(c), (d) Visualization with the vertical slit located

behind the object. The object is seen as if “opened” inside-out, giving a cubist effect: multiple sides are seen in a single

picture.

51



4.2 Omnidirectional Crossed-Slits Mosaicing

I adopt here the circular X-Slits camera model, in which one of the slits is a circle in theX −Z plane,

and the second is a linear slit in theY direction. In this case, each scene point defines a plane withthe

linear slit, which intersects the circular slit attwo points, and thus each scene point has two rays. Of

the two intersections with the circular slit, we choose the one that is closer to the scene point, and the

corresponding ray is defined to be the unique ray through the scene point (this is the “outgoing” ray,

emanating out of the circular slit). To complete the definition of the circular X-Slits camera model,

the image surface is chosen to be the sphere at infinity, meaning that the correspondence between a

ray and a point in the image is defined only by the azimuth and elevation angles. Such an image is

onmidirectional, as rays in all directions are imaged.

We synthesize such images from a set of images taken by an input camera rotating off-axis. The

input camerais a central camera, thus all the rays captured by the camera pass through a single point

(its center of projection). Unlike regular perspective cameras which sample these rays on a planar rect-

angle (the image plane), the input camera samples the rays ona hemisphere at its center of projection.

Generating a new omnidirectional X-Slits view of the scene consists of generating a spherical view

from a chosen slit location, i.e., an image of the rays passing through a virtual slit.

The path of the input camera is assumed to be a circle of radius1 in theX − Z plane. Thevirtual

slit is a vertical line passing through the pointe = (xe, 0, ze), which is defined to be the location of the

virtual “eye”. The new view at each slit location is sampled on theoutput sphere, centered about the

virtual eyee. With this definition, moving around the scene is a matter of moving the virtual slit and

generating the X-Slits image corresponding to each new position.

Omnidirectional X-Slits rendering is done, as in the linearcase, by means of mosaicing. Strips are

taken from each input image, and stitched together into a newimage. The strips are selected according

to the location of the virtual eye, and the result is a X-Slitsimage that looks as if it were taken from

that location.

Specifically, given a virtual slit location, we need to determine which rays should be sampled from

which input camera. Each input camera centerc defines a planeΠc with the virtual slit; all the rays on
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Figure 4.12: Omnidirectional X-Slits mosaicing. (a) Overview: the rayspassing through the virtual slit and the input camera

center form a plane of rays, which intersects the input hemisphere in a meridian. (b) Top view: determining which strip of

pixels is sampled from which input image.

this plane pass through the virtual slit and a point on the circular slit (the camera centerc). Thus this

plane includes all the rays that should be sampled from camerac, givene. The intersection ofΠc with

the input camera hemisphere is a meridian (see Fig. 4.12a). Thus, each input camera contributes a strip

of rays that lies on an input meridian.

The sampled strip is pasted as a strip on the output sphere. Since, by definition,Πc passes through

the center of the output sphere (e), its intersection with the output sphere is also a meridian. Note,

however, that the sampledraysgenerally do not pass throughe.

It follows from the discussion above that meridians from theinput cameras are pasted as meridians

in the output cameras. Hence, it would be beneficial to use an image representation that is based on

latitude and longitude (Fig. 4.13b,c). In this representation, the coordinates of a pixel are its longitude

and latitude on the sphere, so each meridian on the sphere is acolumn in the image. Generating

omnidirectional X-Slits images becomes a matter of mosaicing vertical strips, as in linear X-Slits.

How do we determine which strip to sample from each input camera? Given a vertical slit passing

throughe, let us define the polar coordinatesd =
√

x2
e + z2

e , θe = arctan xe

ze
. As can be seen from

Fig. 4.12b (and triangle geometry), for everyθr, the strip to paste at theθr meridian of the output
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(a) (b) (c)

Figure 4.13: Spherical images. (a) An image from the input sequence, as acquired with a panoramic lens. (b) The same

image in latitude-longitude representation of a hemisphere. (c) An output spherical image.

sphere should be taken from theθi meridian of the input camera atθc, where

θi = arcsin(d sin(θr − θe))

θc = θr − θi

(4.7)

4.2.1 Distortion

In this section I analyze the nature of X-Slits distortions,caused by the absence of a single center

of projection. Specifically, I compare between X-Slits images corresponding to the model described

above, and the regular perspective image corresponding to an omnidirectional camera centered around

the virtual “eye”e.

Recall that the plane of raysΠc determined by (4.7) is the same as if it were perspective projection,

but the rays within the plane do not intersect ine, but rather in the input camera centersc, which are

different for each planeΠc. As a result, a scene pointp that is seen at some elevation angleφr by

the input camera, would be seen at a different elevation angle φ∗
r by the virtual eyee (see Fig. 4.14a).

Without correcting the elevation angle of each ray,p would appear shifted vertically at a false location

(Fig. 4.14a).

In order to cancel out this distortion, we need to determine the correct elevation angle for each

input ray, estimating how the scene point would have been seen frome. This would produce the correct

perspective view of the scene, but it requires a dense and accurate knowledge of the 3D structure of the

scene.
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Figure 4.14: (a) Distortion: the object is seen at a different elevation angle from the input camera and from the virtual eye.

(b) Normalization: cancelling out distortion by correcting the elevation angle of the input ray, using a normalizationsurface.

When accurate depth information is not available or hard to obtain, we can still produce appealing

images by using a coarse estimation of depth. In general, we define anormalization surface, which

crudely approximates the scene structure, and use it to reproject the rays before pasting them into the

mosaic. This allows us to generate images that look compelling, without relying on an elusive depth

map. The normalization procedure is described next.

4.2.2 Normalization

In general, normalization is done by intersecting each sampled ray with the normalization surface,

and reprojecting this intersection through the virtual camera centere. Given an input ray of azimuth

θr and elevationφr, the input camera’s position on the circle (denotedθc) is determined by (4.7),

see Fig. 4.12. The sampled ray is defined asc + λr, wherec = (− sin θc, 0, cos θc)
T denotes the

input camera location andr = (− sin θr cos φr, sin φr, cos θr cos φr)
T denotes the ray direction (see

Fig. 4.14b). Given a normalization surface expressed implicitly as N(p) = 0, the intersection is at

min{λ|N(c + λr) = 0, λ > 0}.

To begin with, let us consider asphericalnormalization surface. Thus,N(x, y, z) = x2 + y2 +

z2 − R2, whereR is the radius of the normalization sphere. Substitutingc + λr into N gives

λ2rT r + 2λrT c + cT c − R2 = 0 (4.8)
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(a) (b) (c)

Figure 4.15: Normalization – a view of the synthesized scene without normalization (a), and with normalization using a

sphere (b) and an ellipsoid (c). Note how the aspect ratio is different for objects at different depths in the spherical case.

Solving for λ > 0 yields the intersection of the ray withN at λ = −k +
√

k2 + R2 − 1, where

k = cos φr cos θi. From Fig. 4.14b one can see that the ray should be reprojected through the virtual

camera center at an elevation angle of

φ∗
r = arctan

λ sin φr

λ cos φr + l
(4.9)

where l = cos θi + d cos(θr − θe − π) is the distance between the slit and the input camera (see

Fig. 4.12b). Note that unnormalized omnidirectional X-Slits images (φ∗
r = φr) correspond toR → ∞.

Normalization onto a sphere is appropriate for scenes that lie at a relatively constant distance from

the viewer, e.g., a room viewed from its center. If the room iselongated, however, the sphere provides

a poor approximation of the scene’s structure (Fig. 4.15b).In this case, normalizing onto an ellipsoid

may be more appropriate.

For an ellipsoid (or any quadric), let us redefinec andr as homogeneous coordinates inP3 with

the forth coordinate set to1 and0, respectively, and letN(p) = pTQp whereQ is the4 × 4 matrix

that describes the quadric. The intersection is then atλ = −k +
√

k2 − m where

k =
cTQr

rTQr
m =

cTQc

rTQr
(4.10)

and the ray is reprojected according to (4.9). Fig. 4.15c provides an illustrative example, and some

comparisons between the different normalization methods.

In general, one can use an estimated sparse depth map to construct a general normalization surface,

and use ray tracing techniques to reproject the rays.
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Figure 4.16: Distortion under normalization. (a) Overview: when the normalization surface is incorrect, reprojection makes

the object appear shifted vertically. (b) Side view: the aspect ratio distortion as it is related to the distances between the input

camera, the virtual eye, the normalization surface and the object.

4.2.3 Measuring Distortions

Since the normalization surface gives only a crude approximation of the scene structure, it is not likely

to eliminate all distortions, and in some cases it may even introduce new distortions.

I propose to measure distortions in X-Slits images by the change in aspect ratio. In perspective

projection, aspect ratio is preserved, and any rectangle inthe scene that is parallel to the image plane

would be projected into a rectangle with the same proportions between width and height. In X-Slits

projection, this is usually not the case.

Normalization corrects this problem for objects that are onthe normalization surface, since they are

projected as if they were perspective. As I show below, the farther an object is from the normalization

surface, the more distorted its aspect ratio would be.

Consider a pointp on an object in the scene. We would like to estimate the aspectratio distortion

in a neighborhood aroundp in a normalized X-Slits image, whenp is not on the normalization surface.

The pointp and its neighborhood is captured by rays passing through theinput cameras. These

rays intersect the normalization surfaceN atpN , and are reprojected during normalization (Fig. 4.16a).

This normalization is correct only for a pointp on N ; otherwise the object appears to be in a false

location.
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As we shall see, aspect ratio distortion is not necessarily constant, so we will estimate thelocal

aspect ratio distortion atp. Assume that the normalization surface aroundpN is parallel to the object

surface aroundp. Denote the plane that contains the virtual slit and the ray throughp byΠp (Fig. 4.16b

shows a view ofΠp). If the length onΠp of the patch aroundp is ∆p, and the length of the patch as it

is projected onN is ∆pN , then it follows from triangle similarity that

∆p

∆pN
=

dcp

dcN
(4.11)

wheredcp is the distance onΠp betweenc and the plane tangent to the object atp, anddcN is the

distance betweenc and the plane tangent toN atpN . For the same reason, if∆p∗ is the length of the

false object, then

ρ ≡ ∆p∗

∆p
=

dep

dcp
· dcN

deN
(4.12)

Since the X-Slits projection only introduces distortions in the vertical direction, and since normal-

ization also deals only with the vertical direction, there is no horizontal change in the way the patch

aroundp is projected. Therefore, the ratioρ is the aspect ratio distortion that pointp undergoes when

projected with a X-Slits projection normalized by surfaceN (compare to the result in Section 3.1.3).

Denoting the distance between the normalization surface and p asD (hencedeN = dep + D and

dcN = dcp + D), when the virtual eye isbehindthe camera path (i.e.,dep > dcp), the aspect ratio

grows withD: whenD is positive – the object will appear taller, and vice versa (with correct aspect

ratio whenD = 0). This is reversed when the virtual eye is in front of the camera path.

When the normalization surface is not parallel to the scene object and there is a difference in

elevation angle between them, it can be shown that the aspectratio becomes

ρ =
∆p∗

∆p
=

dep

dcp
· dcN

deN
· sin αpi

sin αpo
· sin(αpo−αpN )

sin(αpi−αpN )
(4.13)

whereαpi, αpo are the angles between the object plane and the input and reprojected rays, respectively,

andαpN is the elevation angle difference between the object plane and the normalization surface.
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4.2.4 Discussion

As the distance between the scene and the normalization surface decreases, so does the aspect ratio

distortion. Thus, in order to achieve correct aspect ratio,we need to approximate the scene as well as

possible. However, this may lead to other, often worse distortions.

Specifically, Equation (4.12) states that the aspect ratio is a function of the distances between

the normalization surface, the scene surface, the virtual eye and the input camera. Variation in these

distances across the image causes variation in aspect ratio. Strong variations in aspect ratio may be

caused by abrupt variations in the depth of the normalization surface, if these do not correspond to

real variations in scene depth. It is usually hard to obtain adepth map that fits the scene structure

accurately, especially where depth changes abruptly (e.g., at depth edges); in these areas in particular,

abrupt changes in the normalization surface may cause strong noticeable distortions.

In contrast, depth discontinuities in the scene without corresponding variations in the normalization

surface pose less of a problem, since the arising aspect ratio variation will occur over a few pixels

spanning the edge in the image. It is therefore often preferable to simply use a smooth normalization

surface, which provides only crude approximation of the depth structure of the scene.

4.2.5 Augmented Reality

Generating realistic views of a precaptured scene in realtime is useful for virtual reality. A user’s head

motion may be tracked and the appropriate views of the scene can be generated and displayed at a

reasonable rate. However, the rendered scene is static, andit may be desirable to add virtual objects to

the scene, which would be rendered and superimposed on the X-Slits image. I shall discuss only the

geometric issues of augmented reality with the X-Slits projection.

Since the rendered scene is a X-Slits image, the added objectmust also be projected according

to the same projection model in order to appear consistent. An object added in a certain place in the

scene should appear in the same position when viewed from different viewpoints, and this can only be

accomplished if the object is projected using the same projection model as the rest of the image.

Most computer graphic renderers generate perspective images. In order to use such engines for
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Figure 4.17: Augmented Reality. Scene pointp is reprojected into the virtual eye through pointpN on the normalization

surface, so if a virtual object is augmented atp, it should be shifted vertically to appear correct.

the rendering of X-Slits images, we must first transform the augmented objects in a manner similar

to the reprojection discussed above, so that when projectedusing the regular perspective projection,

they would appear correct in the X-Slits image. As shown above, the distortions and normalization

associated with the X-Slits projections are in the verticaldirection alone, so only vertical shifting

needs to be done when transforming the augmented object.

Specifically, suppose an object is augmented at pointp, and the ray throughp intersects the nor-

malization surface atpN . In order for the object to look as if it were atp, it must be on the reprojected

ray throughpN (see Fig. 4.17). Shifting the object’s location verticallyprior to imaging, so that it is

on this ray, would give this effect.

Given a point(x, y, z) where we wish to add an object, and given a slit atX = xe, Z = ze, the

azimuth of the object isθr = arctan −∆x
∆z where∆x = x − xe, ∆z = z − ze, and the elevation angle

relative to the input camera is

φr = arctan
y

L − l
(4.14)

wherel is the distance between the slit and the input camera as in (4.9), andL =
√

∆x2 + ∆z2 is

the horizontal distance between the slit and the object. It now follows that the distorted location of

the augmented object isy∗ = L · tan φ∗
r, whereφ∗

r is given in (4.9). If we shift the object’s position

vertically to this height, it can be projected normally and appear as if it were in the X-Slits image of

the scene at the desired location (Fig.4.18).

Since the distortion is variable, this transformation should be applied separately to every point on
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(a) (b) (c)

Figure 4.18: Augmented Reality. (a) The image-based views of the scene with augmented objects. (b) The same scene from

a different viewpoint. (c) Without vertical correction, the objects’ locations are not correct.

the augmented object. In practice, it is usually sufficient to move the object according to just one point,

e.g., the point where it is supposed to touch some real objectin the scene.

4.2.6 Implementation Issues

Using the latitude-longitude representation of sphericalimages, the rendering of omnidirectional X-

Slits images is just a matter of sampling columns from imagesand pasting them in the output image,

like linear X-Slits rendering. Normalization requires vertical transformation of each pixel, which may

be a costly calculation for a realtime application. However, when the input camera path is small in

relation to the normalization sphere,φ∗
r is nearly linear inφr, and a (much faster) linear transformation

is sufficient.

Specifically, the top and bottom pixels in each input column correspond to elevation anglesφr =
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±π. Substituting these values in (4.9) gives the normalized elevation angles ofφ∗
r = ± arctan λ

l , so

normalization can be done approximately by scaling each column linearly according to this formula.

Displaying the omnidirectional X-Slits images with a display device involves projecting the spheri-

cal image on a plane. Graphic engines that handle perspective projection are abundant, so this mapping

can be done efficiently by mapping the rendered image on a sphere centered about the virtual eye. Fur-

thermore, if the sphere is approximated as a mesh, the normalization can be done on each vertex of the

mesh, instead of on each pixel of the X-Slits image.

The same graphic engine can be used for augmented objects. Provided their position is corrected

according to (4.14), they can simply be rendered along with the mesh.

The scene shown in Fig. 4.15 and Fig. 4.18 is rendered from a set of 529 panoramic images (size

2500× 1024). Rendering is done in realtime at a rate of 20 frames per second (size1024× 1024) on a

Pentium IV 2.8GHz. Captures from my implementation can be viewed online at

http://www.cs.huji.ac.il/∼daphna/ibr .

4.3 Optimal Mosaicing

Consider a perspective video camera moving continuously ona curved segment with its image plane

orientation tangent to the curve. Assume w.l.o.g. that the segment length is 1, and lett ∈ [0, 1]

be a parameter describing the location of the camera in the segment. A multi-perspective mosaic is

generated by selecting a vertical line in each frameI(t) according to asampling functionφ(t), and

pasting it into the mosaic.φ(t) denotes the location of the line sampled from frameI(t). Let π(t) be

the plane joining the camera center of projection at location t to the sampled lineφ(t). The pasting

location in the mosaic is defined by the intersection ofπ(t) with the mosaic manifold. In case the

camera moves on a linear trajectory, this manifold is a plane. Otherwise, the manifold is determined by

the camera trajectory. As in [55], the distance of the manifold is set to be equal to the camera’s focal

length, in order to maintain the vertical resolution of the image.

It is assumed that the camera motion and internal calibration are known, or were estimated from

the video (for a review, see [26]), and that the horizontal field-of-view angle of the camera isθ.
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Figure 4.19: Mosaicing by (a) a constant sampling function and by (b) a linear sampling function.

I first analyze mosaics generated from linear camera trajectories, and find the optimal mosaic an-

alytically. Two useful examples of sampling functions for linear camera trajectories, depicted in Fig-

ure 4.19, are the linear sampling functionφ(t) = αt + β and a special case of it, the constant sampling

functionφ(t) = β (whereα = 0). It was shown in Section 4.1.1 that in the former case, all rays pass

through a vertical line in the plane

Z2 = Z1 +
k

α
(4.15)

whereZ1 is the the plane of the camera trajectory andk = cot(θ
2); in the latter case, this plane is at

infinity.

General smooth trajectories are analyzed in Section 4.3.6 using local linear approximations.

4.3.1 Necessary Conditions for a Good Mosaic

Let V ≡ {(X,Y,Z)|Z > 0} be the set of viewed scene points, i.e. the points in front of the camera. I

define the following necessary conditions for a good mosaic:

• Unique Projection:Every 3D pointP ∈ V is projected to a single point in the mosaic image.

• Continuous Projection:Connected sets of scene points are projected to connected sets of image

points.

• Data Utilization: Strips are taken from all images.
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(a) (b)

Figure 4.20: 3D object representation by mosaicing with a monotonic decreasing function. Mosaic (a) was generated by

a linear sampling function, so every point on the object is associated with a single point on the image. Mosaic (b) was

generated by a non-linear sampling function, and as can be seen, some scene points appear twice in the mosaic.

Unique projection is important in order to avoid duplicate images of an object in the mosaic image.

In Section 4.3.2 I show that for linear camera trajectories,this condition holds if and only if the sam-

pling function is monotonic non-decreasing.1 In Section 4.3.3 I relax the unique projection condition

by allowing a setG of points of measure 0 to violate the uniqueness condition. Ishow that in this case,

G must be a line, and in case the camera moves on a linear trajectory, this corresponds to a linear sam-

pling function. An almost-unique projection can be useful for constructing representations of convex

objects. An example is shown in Figure 4.20.

The requirement for a continuous projection is obvious – to avoid discontinuities in the mosaic

image. It follows that the sampling function must also be continuous.

The data utilization requirement is important for ensuringmaximal field of view when minimizing

the geometric distortion.

4.3.2 Projection Uniqueness

The projection is unique if every scene point is projected toa single point in the mosaic image. A

key observation is that the scene pointsV are in front of the camera. Hence the planesπ(t1), π(t2)

1Without loss of generality, it is assumed that the camera is moving from left to right.
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Figure 4.21: Illustrations for the proof of Theorem 4.1

must not intersect in front of the cameras for any0 ≤ t1 < t2 ≤ 1. For a camera moving on a linear

trajectory, this implies that the sampling must benon-decreasing monotonic.

4.3.3 Uniqueness Excluding a Set of Measure 0

Another useful criterion relaxes the requirement by allowing some points to violate the uniqueness

condition; This set of pointsG is required to be of measure 0 (e.g. a point or a curve). IfG does not

include any scene point, no scene point would appear multiple times in the mosaic. As I show below,

this criterion implies thatG is a line.

Theorem 4.1 For any continuous sampling functionφ(t), if the set of points that are not uniquely

sampled is of measure 0, then this set is a line.

Proof: The planesπ(0), π(1) intersect in a linel, and all of its points are sampled by both cameras

t = 0, 1. I show that if there are points that are sampled by two cameras that are not on this line, then

the set of all such points is of measure greater than 0: For every s, t ∈ [0, 1], the intersection of plane

π(s) with planeπ(t) can be represented by the dual Plücker matrix:

L∗(s, t) = π(s)π(t)T − π(t)π(s)T (4.16)

(the planes are represented in homogeneous coordinates, see [26, p. 52]). Sinceπ(t) is continuous, it

follows thatL∗(s, t) is continuous ins, t. If there exists a point not onl that is sampled more than
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once, then it lies on a planeπ(a) for somea ∈ (0, 1) such thatL∗(0, 1) 6∝ L∗(a, 1) (i.e., π(0) and

π(a) intersectπ(1) in different lines). Refer to Figure 4.21 for illustrations. Consider the union of all

lines of the formL∗(s, 1) for s ∈ [0, a) (which are intersections of the planesπ(s) in this range with

π(1)). SinceL∗(s, t) is continuous, it follows that this union is a set of area greater than 0 on the plane

π(1). Let A(t) denote the set of all points on the lines associated withL∗(s, t) for all s ∈ [0, a). Then

the above can be written as|A(1)| > 0. Due to the continuity ofπ(t), there exists an interval(b, 1] for

which |A(t)| > 0 holds foreveryt ∈ (b, 1]. Therefore, since all planesπ(t) are distinct, it follows that

the union∪A(t) is a set of volume greater than 0. Since it is contained in the set of all points that are

sampled more than once, this set cannot be of measure 0.

Result 4.2 In the case of linear camera motion, the sampling functions satisfying the uniqueness cri-

terion up to measure 0 are either monotonic non-decreasing or linear (see Figure 4.20).

4.3.4 Perspectivity: a Measure for Geometric Quality

I consider perspective images to be non-distorted. Hence the distortions in a mosaic image are mea-

sured with respect to the closest perspective image. In [67], a distortion was measured with respect

to the closest perspective image, with the distance defined as the sum of distances of matching image

points. Such a measure, while visually compelling, required knowledge of the scene depth. Since in

our case the scene depth is unknown, I compare the3D to 2D projectionsrather than the images. That

is, we would like the 3D to 2D projection induced by the mosaicing method to be as close as possible

to a perspective projection. In a perspective projection, all rays intersect in a point. Hence, for a multi-

perspective mosaic, the set of sampled rays should be as closely bundled as possible. We find a center

point that has a minimal distance to all sampled rays, and we measure how small this distance is.

First, I define thelocal perspectivity distortion, which implements the idea above locally, for a

neighborhood around an image point. I then define aglobal perspectivity distortionby integrating the

local perspectivity distortion on the entire image. I chosean additive measure, so that the perspectivity

of one region in the image is not influenced by other regions inthe image.

I first analyze the case of linear camera motion. For this case, the least distorted mosaic is derived
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Figure 4.22: The relation between the local perspectivity distortion and the error in estimation of the 3D scene. See Sec-

tion 4.3.5 for details.

analytically, and it turns out that the least distorted mosaic also has the widest field of view. Non-

linear camera trajectories are analyzed in Section 4.3.6 using local linear approximations. The global

perspectivity is minimized numerically using standard optimization techniques.

4.3.5 Perspectivity: Linear Camera Trajectory

I consider only monotonic non-decreasing sampling functions satisfying the necessary conditions de-

fined in Section 4.3.1.

Given a sampling functionφ, each image point is associated with a single ray. Let us denote the

intersection of the ray of image pointp with the planeZ = Ẑ by (X(p), Y (p), Ẑ). I define the distor-

tion of the sampling functionφ with respect to a candidate center point(X̂, Ŷ , Ẑ) in a neighborhood

ω of image pointp as -

n(φ, p, X̂, Ŷ , Ẑ) =

∫

p̂∈ω

(X(p̂)−X̂)2 + (Y (p̂)−Ŷ )2

Ẑ2
dp̂ (4.17)

and thelocal perspective distortionatp as -

nL(φ, p) = min
X̂,Ŷ ,Ẑ

n(φ, p, X̂, Ŷ , Ẑ) (4.18)

The expression given in (4.17) measures the distancee of the ray from the candidate center point

(X̂, Ŷ , Ẑ), on a plane, relative to the deptĥZ of that plane (see Figure 4.22). The underlying idea is

that an image is distorted if it is not consistent with a perspective image of a 3D scene. Consider a
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scene pointP at depthd, which is projected by a ray whose error ise. Were the image perspective, this

image point would seem to be the projection of a scene pointP ∗, and the error in the 3D scene would

beE, such thatE = e d
Ẑ

.

The global measure of distortion is obtained by integratinga local perspectivity distortion on the

image. To cancel the effect of the proportions of the neighborhoodω, I define theglobal perspectivity

distortionof a given sampling functionφ as follows:

nG(φ) =

∫

p∈I

nL(φ, p)

nL(φ̂, p)
dp (4.19)

whereφ̂(t) is a reference sampling function which can be chosen arbitrarily, and p is integrated over

the image domainI = [xmin, xmax] × [ymin, ymax]. For simplicity, I choose the reference sampling

function φ̂(t) = 0.

Theorem 4.3 The global perspective distortion of a linear sampling function φ(t) = αt + β is -

nG(φ) = S

(

k

k + αZ1

)2

(4.20)

whereS is the image area (k andZ1 are defined in (4.15)).

The proof of the theorem above is given in Appendix B. A directresult of the theorem above is the

following:

Result 4.4 The global perspectivity distortion of a linear sampling functionφ(t) = αt+β with α ≥ 0

is monotonic decreasing inα. The most distorted linear sampling is the constant sampling.

Note that the distortion of a linear sampling function depends only on the slope of the function.

Now let us study the general case of continuous non-decreasing sampling functions:

Theorem 4.5 Given a continuous non-decreasing sampling functionφ(t), let us denote the linear

sampling function which agrees withφ(t) at t = 0 andt = 1 asφ′(t). If φ 6= φ′, thennG(φ) > nG(φ′).

In order to prove the above, I first prove it for a polygonal sampling function, i.e., a functionφ(t)

for which the interval[0, 1] can be divided into segments[0, t1, t2, . . . , 1] such thatφ(t) is linear in

each segment[tk, tk+1].
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Lemma 4.6 Given a polygonal sampling functionφ(t) and a linear sampling functionφ′(t) such that

φ(0) = φ′(0) andφ(1) = φ′(1), if φ 6= φ′ thennG(φ) > nG(φ′).

Proof: The idea behind this proof is that by eliminating nodes in thepolygon, the global perspectivity

distortion does not increase. For anyi, we eliminate the nodei by defining a polygonal sampling

function φ∗(t) which agrees withφ(t) everywhere except for the segment[ti−1, ti+1], in which it is

linear. As shown in (4.20), the distortion of a linear sampling function is proportional to the area of the

image and to
(

k
αZ1+k

)2
. Denote the slopes ofφ(t) in segments[ti−1, ti] and[ti, ti+1] by α1 andα2,

respectively, and the slope ofφ∗(t) in [ti−1, ti+1] asα3. The contribution of each segment to the global

perspective distortion is proportional to its length, and therefore,nG(φ) ≥ nG(φ∗) if and only if

(ti−ti−1)

(

k

α1Z1+k

)2

+ (ti+1−ti)

(

k

α2Z1+k

)2

≥ (ti+1−ti−1)

(

k

α3Z1+k

)2

(4.21)

It can be shown that this inequality always holds, and that itbecomes an equality if and only if

α1 = α2 = α3, i.e., if φ = φ∗.

By repeatedly applying the result above toφ we obtainnG(φ) ≥ nG(φ′), andnG(φ) = nG(φ′)

only if φ = φ′.

Now we can proceed and prove the theorem:

Proof of Theorem 4.5:For anyε > 0, we divide the interval[0, 1] into segments[0, ε, 2ε, . . . , 1]

and approximateφ(t) with a polygonal sampling functionφε(t) such thatφ(kε) = φε(kε) for all k,

andφε(t) is linear in each segment[kε, (k + 1)ε]. From Lemma 4.6 it follows thatnG(φε) > nG(φ′).

Since this is true for allε > 0, and sinceφ(t) is continuous, it follows thatnG(φ) > nG(φ′).

Combining Theorem 4.5 with Result 4.4, we obtain:

Result 4.7 For a camera moving sideways on a straight line, the samplingfunction with the minimal

perspectivity distortion isφopt(t) = xmin + t(xmax −xmin). This linear sampling function starts with

the leftmost column of the first image and finishes with the rightmost column of the last image.
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4.3.6 Perspectivity: Non-Linear Trajectory

In order to handle non-linear camera trajectories, I define the local perspectivity (Equation 4.18) based

on a local linear approximation of the camera trajectory anda local planar approximation of the man-

ifold. For each frameIf , where1 ≤ f ≤ N−K+1, we compute a discrete versiondL(φ, f) of the

local perspectivity (equation 4.18) over a set ofK neighboring framesIf , . . . If+K−1 and minimize

the sum of the discrete local perspectivities:

dG(φ) =
∑

f

dL(φ, f) (4.22)

To find the minimum of (4.22), we discretize the strip locations. Note that the local perspectivity

dL(φ, f) is defined by finding an optimal center of projection for each combination of rays. Computing

these centers of projections for all possible sampling functions and for a largeK is computationally

intractable. This can be circumvented by selectingK = 2, in which case the local distortiondL(φ, f)

was derived analytically, as it corresponds to the linear perspectivity as defined in theorem 4.3. Once

dL(φ, f) is computed for all pairs of views, I use belief propagation [53] to find the optimum of

equation 4.22. The complexity of this algorithm is linear inthe number of frames, and quadratic in the

number of possible strip locations in each frame.

4.3.7 Results

Figure 4.23 shows mosaicing results, using different sampling functions, from video sequences cap-

tured by a camera moving on a linear trajectory. I compare theoptimal sampling function with the

constant sampling function (linear pushbroom mosaicing),and with a non-linear monotonic sampling

function φ̃(t) satisfying φ̃(0) = φopt(0) and φ̃(1) = φopt(1). This demonstrates two main results

of this work. First, among all linear sampling functionsφ(t) = αt + β, the least distorted results

are achieved with the maximalα (compare Figure 4.23b vs. 4.23c). Second, among all monotonic

functions aligned at the edge pointst = 0, 1, the optimal sampling function is the linear one (compare

Figure 4.23b vs. 4.23d).

Figure 4.24 compares a stereo mosaic generated by a constantsampling function (as done by [29,
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(a1) (a2)

(b)

(c)

(d)

Figure 4.23: A comparison between different strip sampling methods. (a1) and (a2) are two rectified input images. Mosaic

(b) was generated by the optimal sampling function, mosaic (c) by the constant sampling function (pushbroom mosaic) and

mosaic (d) by a non-linear sampling functionφ(t) =
√

t.

54, 61, 77]) to one generated by the optimal linear sampling function. Note that in addition to the

distortions in the image, there is a distortions in the disparity which is larger with the constant sampling.

As for non-linear camera trajectories, I computed the least-distorted mosaics for various camera

trajectories, some examples of which are shown in Figure 4.25. In all cases I tested, the least distorted

mosaic was obtained when the projection rays intersect in a line (i.e., a X-Slits image).

One practical case of a non-linear trajectory is when the camera moves on a circular arc. I examined

visually the differences between the least-distorted mosaic and mosaics generated by constant sampling

functions [54]. Various constant sampling functions were compared, each with a strip taken from a
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(a1) (a2)

(b)

(c)

Figure 4.24: A comparison between different strip sampling methods for stereo mosaics. The images should be viewed in

full color using anaglyphic 3D glasses. (a1) and (a2) are tworectified input images. Mosaic (b) was generated by the optimal

sampling function, mosaic (c) by the constant sampling function (pushbroom mosaic).
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Figure 4.25: Generating least-distorted mosaics with non-linear camera trajectories. The illustrations show a top view of

the camera trajectories and the planes of sampled rays, as computed by a numerical discrete optimization. In all cases, the

optimal sampling is obtained when the sampled rays intersect in a line.

different offset from the center. The least distorted mosaic in this case is a Crossed-Slits mosaic, as

shown in Figure 4.25a. I found that the differences in distortions with circular camera motion are not

as significant as with linear camera motion, as the rays in this case are bundled together to begin with.

Furthermore, in the case of non-linear trajectory, the distortion is also affected by the fact that the

manifold is non-planar; this kind of distortion, which (unlike perspectivity distortion) can be treated

with 2D warping, has not been discussed in this work.

4.4 Summary

I have presented techniques for efficiently rendering X-Slits images from image data acquired by a

pinhole camera. The main application I pursued is view synthesis, or image-based rendering. View

synthesis with the X-Slits camera is greatly simplified as compared with perspective view synthesis,

since it is performed by non-stationary mosaicing, or by slicing the space-time volume. The X-Slits

theory helps the user to “drive” the slicing process in orderto get the desired effect. When compared

with traditional mosaicing, X-Slits images can be shown to be closer to perspective images than linear

pushbroom images.

Using my method one can also generate new images taken from “impossible” positions, like behind

the back wall of a room or in front of a glass barrier. Movies with new egomotion can also be generated,
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such as forward-moving movies from a side-moving input sequence. Although not perspective, the

movies generated in this way appear compelling and realistic.

Given an input sequence of images taken by a panoramic camerarotating off-axis, one can generate

omnidirectional views of the scene from different viewpoints by simple mosaicing under the circular X-

Slits projection. I have shown how data should be represented in order to perform this task efficiently.

I have analyzed the distortions present in such images and described a method for reducing them by

using a coarse approximation of the scene structure. The result is a method that combines image-based

rendering by ray sampling with approximating a perspectiveview using a coarse 3D model.

Augmenting objects into the image-based rendered scene requires that the objects obey the same

geometric model as the background. I have shown how the location of the augmented objects can be

shifted, so that they would appear veridical when rendered by a perspective engine, especially when

viewed from different viewpoints.

Considering the general case of multi-perspective mosaicing of an unknown scene, I have devel-

oped a framework for quantifying distortion and a closed-form solution for the problem of generating

the least distorted mosaic. When the camera moves on a lineartrajectory, the least distorted mosaic

is generated by the linear sampling function with the maximal slope. This mosaic also has the largest

possible field of view. When the camera trajectory is not linear, the least-distorted mosaic can be de-

rived numerically. I found that the distortions are especially significant when camera trajectory is close

to linear.
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Chapter 5

Motion Segmentation and Depth

Ordering

In this chapter I present a method for motion segmentation and from a video sequence in general

motion. This method is based on a spatio-temporal differential operator that responds to occlusion,

introduced in Section 5.1. I develop a multi-scale method for extracting a motion boundary, yielding the

segmentation. The behavior of this operator is demonstrated in Section 5.2 and analyzed in Section 5.3.

Based on the scale space behavior of this detector, I devise in Section 5.4 a novel algorithm that can

determine depth ordering from just two frames. This algorithm assumes there is an average intensity

difference between the layers (though not necessarily a local difference or a visible edge), and can

be adjusted to work even without this assumption on three frames. In Section 5.5 I describe human

experiments that show that people are also capable of determining depth ordering from just two frames

under the same conditions as my algorithm.

5.1 Segmentation Algorithm

The motion segmentation algorithm I present is based on a differential operator defined in Section 5.1.1

that is applied to the video sequence and responds at motion boundaries. While this operator is shown
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to detect motion boundaries in many cases, it is often unableto detect boundaries where certain de-

generacies exist locally. This is solved by a cross-scale scheme presented in Section 5.1.2. Finally,

closed contours are extracted using a saliency measure and asimple heuristic to overcome small gaps,

presented in Section 5.1.3. See also Appendix C.2 for some implementation issues.

5.1.1 Occlusion Detector

Regarding the video sequence as a spatio-temporal intensity function, letI(x, y, t) denote the intensity

at pixel (x, y) in framet. I refer to the average of the second moment matrix over a neighborhoodω

around a pixel as theGradient Structure Tensor

G(x, y, t) ≡
∑

ω

∇I (∇I)T =
∑

ω















I2
x IxIy IxIt

IxIy I2
y IyIt

IxIt IyIt I2
t















(5.1)

This matrix has been invoked before in the analysis of local structure properties. In [35], eigen-

values ofG were used for detecting spatio-temporal interest points. In [42] it was suggested that the

eigenvalues ofG can indicate spatio-temporal properties of the video sequence and can be used for

motion segmentation. The idea behind this is reminiscent ofthe Harris corner detector [24], as it de-

tects 3D “corners” and “edges” in the spatio-temporal domain. Here I take a closer look and develop

this idea into a motion segmentation algorithm.

Specifically, if the optical flow inω is (vx, vy) and the brightness constancy assumption [27] holds,

then

G · (vx, vy, 1)
T = 0 (5.2)

Hence,0 is an eigenvalue ofG. SinceG is positive-semidefinite, we can use the smallest eigenvalue

of G as a measure of deviation from the assumptions above, which leads to the following definition:

Definition 5.1 Letλ(x, y, t) denote the smallest eigenvalue of theGradient Structure TensorG(x, y, t).

The operatorλ is theocclusion detector.1

1Note that the values ofλ at each pixel can be evaluated directly using Cardano’s formula.
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(a) (b) (c) (d)

Figure 5.1: Random dots example. A shape is moving sideways, where both the shape and the background are covered by a

random pattern of black and white dots. It is impossible to identify the moving object from each of the two frames (a) and (b)

(a stereo pair) alone. The occlusion detector (c) (higher values ofλ are darker) shows the outline of the object very clearly.

Compare with the ground truth (d).

We do not normalizeλ with respect to the other eigenvalues ofG (as in [42]), since it may amplify

noise.

In order to provide rotational symmetry and avoid aliasing due to the summation over the neigh-

borhoodω, I defineω to denote a Gaussian window, and the operation
∑

ω in (5.1) stands for the

convolution with a Gaussian. Since I do not assume temporal coherence of motion, the Gaussian

window is restricted to the spatial domain.

Figure 5.1 demonstrates the detector results on a simple synthetic example. In this example there

are no intensity or texture cues to indicate the boundaries of the moving object, and it can only be

detected using motion cues. The value ofλ, shown in Fig. 5.1c, is low in regions of smooth motion,

and high values ofλ describe the boundary of the moving object accurately.

The values of∇I, and hence ofλ, are invariant to translation transformations onI. Additionally,

for any rotation matrixR,

|λI − G| = |R(λI − G)RT | =

∣

∣

∣

∣

∣

λI −
∑

ω

(R∇I)(R∇I)T
∣

∣

∣

∣

∣

(I is the identity matrix) and therefore the values ofλ are also invariant to the rotation ofI. The issue

of scale invariance is discussed in Appendix C.1.
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Velocity-Adapted Detector

While rotational invariance is desirable in the spatial domain, non-spatial rotations in the spatio-

temporal domain have no physical meaning. It is preferable to have invariance to spatially-fixed shear

transformations, which correspond to 2D relative translational motion between the camera and the

scene. As suggested in [36] by the reference toGalilean diagonalization, one can use the velocity-

adapted matrix̃G given by

G̃ =















G11 G12 0

G21 G22 0

0 0 λT















where λT =
det(G)

det(G∗)
(5.3)

(Gij denote the entries ofG, andG∗ denotes the2 × 2 upper-left submatrix ofG containing only

spatial information).

Definition 5.2 The operatorλT is thevelocity-adapted occlusion detector.

To justify this definition, observe that̃G is also invariant to translation and spatial rotation. The

entryλT is an eigenvalue of̃G, and it has been suggested that it encodes the temporal variation, being

the “residue” unexplained by pure-spatial information.

In practice,λT gives results similar toλ, though it has certain advantages, as discussed in Sec-

tion 5.3. Throughout this chapter I useλ to denote either operator, unless stated otherwise.

Detector Effectiveness

High values ofλ indicate significant deviation from (5.2), which is often due to the existence of a

motion boundary. Other sources of large deviations includechanges in illumination (violation of the

brightness constancy assumption), or when the motion varies spatially (motion is not constant inω).

However, often these events lead to smallerλ values as compared with motion boundaries (see Fig. 5.2),

in which case the boundary response can be distinguished from a false response (e.g., by thresholding).

Low values ofλ do not necessarily indicate that the motion inω is uniform. The rank ofG is

affected by spatial structure as well as temporal structure, soλ may be low even at motion boundaries,
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(a) (b) (c) (d)

Figure 5.2: Falseλ response. The same example as in Fig. 5.1: (a) with20% white noise; (b) with illumination change of

5%; (c) with the object rotating by 20◦; (d) with both object and background patterns deformed smoothly.

linear background

uniform background

same−color background

Figure 5.3: Areas where theλ detector is likely to give low values despite the existence of a local motion boundary.

when certain spatial degeneracies exist. Specifically, this occurs when there is local ambiguity, i.e.,

when the existence of a motion boundary cannot be determinedlocally. This includes areas where the

occluding object and its background are of the same color, areas where the background is uniform in

color, and areas where the background texture is uniform in the direction of the motion (Fig. 5.3). In

the first case the rank ofG is 0, and in the other cases the rank ofG may be1 or 2, depending on

the appearance of the occluding object (recall that theλ detector is high when the rank ofG is 3). In

these cases, the background may be interpreted as part of themoving object, since no features in the

background appear to vanish due to occlusion.

5.1.2 Extraction of Motion Boundaries and Scale Space Structure

The response ofλ to occlusion occurs only where some background features become occluded. Clearly

boundary location cannot always be inferred on the basis of local information alone. However, while

there may be no cues to indicate the location of the boundary at a fine scale, there may be enough

information at a coarser scale (i.e., in a larger neighborhood) andλ may respond. Thus a multi-scale

element is incorporated in the algorithm, in order to detectmotion boundaries that are not detectable at
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(a) (b) (c) (d)

Figure 5.4: Checkerboard example: (a) A frame from the sequence; (b) and(c) show the response ofλ at fine (sxy = 1)

and coarse (sxy = 10) scales respectively. At the fine scale,λ only responds at intensity edges (which appear as discrete

“bursts”), while the entire contour is visible at the coarsescale, though with considerable distortion. (d) shows the final

contour selected by integrating over scales.

fine scales.

Defining scale

In order to define the notion of scale in my algorithm, note that the evaluation ofλ involves Gaussian

convolutions in two different stages – during the estimation of the partial derivatives, and when taking

the average over the neighborhoodω. In both cases, larger Gaussians lead to coarser structures, and

I refer to the size of the Gaussian as thescale. In this work I only consider the spatial scale. As

shown in Appendix C.1, these two scales are related, and I define a unified scale dimension, and a

scaling-invariant operatorλ(s) at any scales > 0, using scale-normalization.

The notion of scale has been studied extensively for features such as edges and blobs. As with

these features, different structures can be found at different scales. The response ofλ to noise, which

can occur in finer scales, is suppressed in coarser scales. Onthe other hand, localization is poor at

coarse scales and motion boundaries may break and merge.

Figure 5.4 illustrates this idea – at fine scale (Fig. 5.4b),λ responds only at discrete locations,

because the background consists of regions with constant color, and the occlusion can only be detected

where there are color variations in the background. In the coarser scale (Fig. 5.4c), the neighborhood of

every boundary point contains gradients in several directions and the boundary is detected continuously.

Image features, such as edges, typically shift and become distorted at coarse scales. The scale

space structure of motion boundary edges (and in particularmy occlusion detector) has its own par-
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ticular biases in coarse scales. As discussed in Section 5.3, motion boundaries at coarse scales are

shifted towards the occluded side, i.e., the occluding objects becomes “thicker”. In addition, it can be

shown that the bias is stronger when there is a large intensity difference between the object and the

background, and it increases with scale.

Estimating derivatives in the temporal domain is prone to aliasing. See Appendix C.2 for imple-

mentation details, including elimination of aliasing and estimation from only two frames.

Boundary Extraction in Scale Space

Sinceλ is computed by taking the average over a neighborhood, its response is diffuse. We want to

extract a ridge curve whereλ is strongest. This can be defined locally as points whereλ is maximal in

the direction of the maximal principal curvature, which canbe expressed as



























λxy(λ
2
x − λ2

y) − λxλy(λxx − λyy) = 0

(λxx + λyy) ·
(

(λxx − λyy)(λ
2
x − λ2

y) + 4λxλyλxy

)

< 0

λ2
xλyy − 2λxλyλxy + λ2

yλxx < 0

(5.4)

Thus, at every scales, the values ofλ and its derivatives are computed, and the ridge can be extracted.

For reasons of numerical stability, the derivatives ofλ(s) are computed with the same Gaussian smooth-

ing s used for computingλ(s), at each scale.

Different boundaries are extracted at different scales, asfine-scale boundaries may often split be-

cause of the absence of local information, and coarse-scaleboundaries may disappear or merge. Since

these may occur at different parts of the image at different scales, we need to construct a scale-adapted

boundary, by selecting different scales for different localities (as in [38]). Considering the multi-scale

boundary surface as the union of all ridges inλ(s) for s ∈ (0,∞), we want to find a cross-scale

boundary whereλ(s) is maximal. This can be expressed as











λs = 0

λss < 0
(5.5)

using the scale-derivatives ofλ.
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(a) (b)

Figure 5.5: Saliency measure. (a) All boundaries extracted from the random dots example with illumination changes

(Fig. 5.2b); intensity codesλ response. (b) The most salient closed contour.

Combining (5.4) and (5.5) defines the finalcross-scale motion boundary. It is a curve in the three-

dimensional spaceX−Y −S, defined by the intersection of the two surfaces defined respectively by

these 2 sets of equations.

5.1.3 Boundary Completion

As stated above,λ also has some false responses which lead to the selection of false boundary frag-

ments. It is therefore necessary to define a saliency criterion, which is used to select the most inter-

esting boundaries. Since we regardλ as a measure of local boundary strength, for each connected set

of boundary points I define thesaliency measureto be the sum of the value ofλ along the boundary,

as in [38]. This measure may be sensitive to fragmentation ofthe boundary, so in my implementation

small gaps are tolerated.

Finally, segmentation is achieved by searching for closed contours with high saliency and small

gaps. I employ a simple greedy heuristic to connect the motion boundary fragments into a continuous

boundary with maximal saliency and minimal gaps. Since the extracted boundaries are usually almost

complete, this heuristic gives good results (see Fig. 5.5).

5.2 Experimental Results

In my experiments I compared my algorithm with the most prominent motion segmentation approaches,

wherever code was available. To begin with, I establish the baseline result by segmenting the optical

flow. Such a segmentation lies at the heart of some more elaborate segmentation methods, such as [50].
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I used a robust and reliable implementation of the Lucas-Kanade algorithm [40], and segmented it using

a variety of edge operators, including Canny and various anisotropic diffusion methods and clustering

methods (e.g., [73]), presenting the best results for each example.

One influential motion segmentation approach relies on graph cuts [34] (and is therefore related to

the more traditional regularization based approaches [43]). Code for two variants of this approach is

available on the web by the respective authors [34,69], and Icould therefore use their code to establish

credible comparisons. Note, however, that in both cases thepublicly available code can only work with

rectified images. Therefore, in order to obtain fair comparisons, I compared my results with the results

of these algorithms only with rectified image pairs, when possible.

Figure 5.6 demonstrates my algorithm on a stereo pair. The most salient motion boundary is shown

in Fig. 5.6b superimposed on the first input image. Fig. 5.6c illustrates the baseline result - the edges

of the optical flow. Fig. 5.6d illustrates the best MRF-basedsegmentation using graph cuts [69]. More

results are shown in Fig. 5.7.

Figure 5.8 shows my algorithm’s performance on a video sequence with a dynamic scene, featuring

non-rigid motion and illumination changes. The octopus andthe reef below have similar color and

texture, and thus spatial coherence is unreliable (note in particular the triangle-shaped projection near

the octopus’ head, which is in fact a background feature).

In Fig. 5.9, a large amount of noise was added to the syntheticcheckerboard sequence, causing

numerous optical flow estimation errors. The magnitude of the flow estimation error is often greater

than the true flow (Fig. 5.9b), particularly around the centers of the squares, making segmentation

based directly on the optical flow impossible. Results of my algorithm and MRF-based method are

also shown.

The main weakness of many MRF-based methods is their reliance on spatial coherence, which

leads to failure when no spatial edge coincides with the motion edge. This is demonstrated on the

random dots example in Fig. 5.10a,b where such methods have no spatial support and therefore fail.

Fig. 5.10c,d demonstrates my algorithm’s advantage when noglobal motion model can be assumed.

In this example, the texture of both the moving object and thebackground undergo smooth non-linear
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(a) (b) (c) (d)

Figure 5.6: Cup example. (a) The left image of a stereo pair. (b) Most salient edge detected by my algorithm (with the

area of the segment highlighted). (c) Edges in the horizontal component of the optical flow. (d) Edges from a graph cuts

segmentation algorithm [34].

(a) (b) (c) (d)

Figure 5.7: Flower example. (a) The left image of a stereo pair. (b) Most salient closed contour detected by my algo-

rithm (with the area of the segment highlighted). (c) Edges in the optical flow. (d) Edges from a graph cuts segmentation

algorithm [34].

(a) (b) (c)

Figure 5.8: Octopus example. (a) A frame from the sequence. (b) The most salient closed contour detected by my algorithm

(with the area of the segment highlighted). (c) Edges in the optical flow.
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(a) (b) (c) (d)

Figure 5.9: Checkerboard example with25% white noise. (a) One of the frames; (b) Lucas-Kanade opticalflow magnitude;

(c) Segmentation using graph cuts; (d) The most salient contour found by my algorithm.

(a) (b) (c) (d)

Figure 5.10: Random dots example (see Fig. 5.1). With20% white noise: (a) Segmentation using graph cuts; (b) The most

salient contour found by my algorithm. With smooth non-linear deformation: (c) Segmentation assuming affine motion using

an implementation of [73]; (d) The most salient contour found by my algorithm.

deformation. The results of applying [73] show that when motion varies smoothly within an object,

global model methods fail.

Figure 5.11 demonstrates how my algorithm works with very slow motion. As long as there are

features in the background that become occluded, my algorithm can detect the motion boundary even

at sub-pixel motion. Figure 5.11a shows results for a sequence where the foreground object moves

by 1/2 pixel. All MRF-based algorithms I applied failed to detect the foreground object altogether.

Although the velocity in Fig. 5.11a is 8 times slower than in Fig. 5.11b, the values ofλ in both cases

are similar.
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(a) (b)

Figure 5.11: Results on a random dots example with small motion of1/2 pixel per frame (a), and with larger motion of4

pixels per frame (b).

5.3 Analysis

In order to analyze the performance of the proposed technique, consider a video of two moving layers

l1, l2, where w.l.o.g.l2 partially occludesl1. A frame in the video sequence can be written as

I = l1 · (1 − α) + l2 · α (5.6)

whereα is thematting map. Assume w.l.o.g. that the occlusion edge is perpendicular to theX axis

and that at framet = 0 it is atx = 0. Further assume that the occlusion edge is a Gaussian-smoothed

line, soα is of the formαs0(x) =
∫ x
−∞ gs0(u)du (I denote the Gaussian function with variances as

gs).

If the motions ofl1 andl2 are(v1
x, v1

y) and(v2
x, v2

y) respectively, then the video volume is given by

I(x, y, t) = l1(x−v1
xt, y−v1

yt) · (1−α(x−v2
xt)) + l2(x−v2

xt, y−v2
yt) · α(x−v2

xt) (5.7)

Note that the motion ofα is the same as the motion ofl2, since it is the occluding layer.

Denoting the video volume of each layer asIk(x, y, t) = lk(x − vk
xt, y − vk

y t), the gradient of the

video volume is given by

∇I = (1 − α) · ∇I1 + α · ∇I2 + (I2 − I1) · gs0 · n (5.8)

wheren = (1, 0,−v2
x)T . Note thatn is perpendicular in space-time to the occlusion edge(0, 1, 0)T

and to the motion vectorv2 = (v2
x, v2

y , 1)
T ; i.e.,n is the normal to the plane in the video space formed

by the motion of the occlusion edge.
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Therefore,∇I is composed of the matting of∇I1, ∇I2, and a component that depends onI2− I1.

Note that∇I1 is perpendicular tov1, while both∇I2 andn are perpendicular tov2. This means that

∇I is composed of two components that are related to the occluding layer and only one that is related

to the occluded layer.

For scale space analysis I use the approximation

g ∗ (f · α) ≈ (g ∗ f) · (g ∗ α) (5.9)

whereg is a Gaussian function andα is an integral of a Gaussian as defined above. Eq. (5.9) is an

equality whenf is constant, and it provides a good approximation whenf does not change rapidly

nearx = 0 (in each layer separately).

Applying (5.9), the gradient estimated at scales, denoted by∇I(s) = ∇(gs ∗ I), is

∇I(s) ≈ (1−αs0+s) · ∇I1(s) + αs0+s · ∇I2(s) + (I2(s)−I1(s)) · gs0+s · n (5.10)

5.3.1 Velocity-Adapted Occlusion DetectorλT

I assume the 2D gradients in each layer are distributed isotropically, in the sense that the mean gradient

is 0. Furthermore, I assume that they are uncorrelated. Thus, using (5.8) and (5.9), we can write the

gradient structure tensor defined in (5.1) as

G(s) ≈ gsω ∗
(

(1−αs0+s)
2∇I1(∇I1)T + α2

s0+s∇I2(∇I2)T + (I2−I1)2 · g2
s0+s · nnT

)

≈ h1 · M1 + h2 · M2 + h3 · nnT (5.11)

where

Mk ≡















1 0 −vk
x

0 1 −vk
y

−vk
x − vk

y (vk
x)2 + (vk

y )2















and

h1 = c1 · (1 − αs0+s+sω)2

h2 = c2 · α2
s0+s+sω

h3 = c · gsω+(s0+s)/2

(5.12)

The constantsck =
〈

‖∇lk‖2
〉

/2 and c =
〈

(l2 − l1)2
〉

/
√

4π(s + s0) describe the distribution of

intensities in the layers.
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Then, the velocity-adapted occlusion detector from (5.3) can be shown to be

λT =
(v1

x − v2
x)2

1/h1 + 1/(h2 + h3)
+

(v1
y − v2

y)
2

1/h1 + 1/h2
(5.13)

In the general case, the expression above is hard to analyze.Sampling shows thatλT typically has

a single local maximum. Although it may have two local maxima, this only happens whenc2 > 9 · c1

andc > 180 · c1 for s ≥ 1, and the second local maximum is usually very subtle. Therefore, for all

practical purposes, it can be assumed thatλT has a single local maximum.

Furthermore, we can draw the following conclusions:

• In the special case wherec1 = c2 (i.e., both layers have the same intensity variance) andc → 0

(i.e., both layers have similar intensities),λT is maximal atx = 0.

• In the limit c → 0, λT is maximal whenα(x) = 3
√

c1/( 3
√

c1 + 3
√

c2), which means that the

detected edge location is biased towards the layer with lower intensity variance. The magnitude

of the bias is proportional to
√

s + s0 + sω.

• If only c1 = c2 is assumed, thendλT

dx (x = 0) < 0, thereforeλT is maximal at a negativex,

which means that the detected edge location is biased towards the occluded layer.

5.3.2 Occlusion Detectorλ

Behavior analysis of the smallest eigenvalueλ is harder. Thus I make the further assumption that

l1 = l2 along the edge. Then we can omit the last term in (5.11) and get

G = c1(1 − α)2M1 + c2α
2M2 (5.14)

Calculating the eigenvalue of (5.14), the following can be shown:

• The smallest eigenvalue ofG is given by

λ =
1

2

(

a −
√

a2 − 4b
)

where
a = (1 − α)2c1‖v1‖2 + α2c2‖v2‖2

b = (1 − α)2α2c1c2‖v1 − v2‖2
(5.15)
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t1

t2

(a) (b)

Figure 5.12: Two-frame occlusion problem. Two of the pixels in framet1 do not correspond to any pixel int2 due to

occlusion, and they may belong either to the right (a) or the left (b) layer.

• λ has a single local maximum.

• If c1‖v1‖2 = c2‖v2‖2, thenλ is maximal atx = 0 – where the edge is located.

• If c1‖v1‖2 > c2‖v2‖2, thenλ is maximal at somex > 0, and vice-versa; in other words,

the detected edge location is biased towards the layer with lower intensity variance and smaller

absolute motion.

The biasing effect towards the occluded layer is not evidentdue to the particular assumptions I

have made, although it was observed in my experiments. Note thatλ is affected by absolute velocity,

unlike the velocity-adapted operatorλT .

5.4 Depth Ordering

I now present two algorithms for determining ordinal depth based on the occlusion detector defined in

Section 5.1.1, using either two frames or three frames.

When only two frames are available, it is impossible to inferthe order of depth from motion alone,

without additional assumptions or prior knowledge. Consider a pair of images of a video sequence

(or a stereo pair) that contain the motion of two layers whereone partially occludes the other. As

illustrated in Fig. 5.12, pixels that appear in one frame andbecome occluded in the other may belong

to either of the layers. Whichever layer they belong to is theoccluded layer, and since their interframe

correspondence cannot be determined, both interpretations are equally valid. The two-frame algorithm,

described in Section 5.4.1, is based on the assumption that there is a (possibly small) difference of
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intensity between the layers on average.

The situation when more than two frames are available is considerably different. While there

may be two interpretations to a two-frame sequence, additional frames can be used to rule out false

interpretations. With a slight modification, my algorithm can be applied to three frames even when the

two layers have the same intensity on average, and achieve better localization, see Section 5.4.2.

5.4.1 Two-Frame Algorithm

Given the scenario described above and generalizing (5.8),the space-time gradient ofI is given by

∇I = ∇I1 · (1 − α) + ∇I2 · α + (I2 − I1)∇α (5.16)

Observe that the expression above is a sum of three vectors – two of them proportional to the gradients

of the two layers, and a third component that stems from the edge between the layers. Since the edge

and the occluding layer have the same motion (orcommon fate), the gradient ofI is more affected by

the motion of the occluding layer than that of the occluded layer in areas of transition between layers.

This asymmetry is manifested in abias towards the occluded layer in the location of the detected

motion boundary, as derived from (5.13).

First note that this bias typically grows with scale. This isbecause the components representing

the gradients of each layer are smoothed across the motion boundary into the other layer, and the

component that is due to the difference between the layers issmoothed in both directions. Therefore,

the effect of the motion of the occluding layer expands farther into the occluded layer asI is further

smoothed.

More specifically, consider the spatial scaling of a videoI by σ, namely

J(x, y, t) = I(x/σ, y/σ, t) (5.17)

Due to scaling invariance (Eq. C.4 in Appendix C),

λ
(σ2s)
J (x, y, t) = λ

(s)
I (x/σ, y/σ, t) (5.18)

Thus, if at scales1 the maximum ofλ(s1)
I is obtained at somex < 0, then at scales2 the maximum

of λ
(s2)
J would be obtained at

√

s2/s1 · x whenJ is a scaling ofI by s2/s1. If the values ofc1, c2, c
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Figure 5.13: (a) The bias of the location of maximalλ(s) as a function ofs (scale) on a synthetic random-dot pair. Each

curve represents a different value of
〈

(I2 − I1)2
〉

ranging from0 (top) to0.2 (bottom). (b) The bias as predicted based on

(5.13).

(defined in (5.12)) do not vary between the scaless1 ands2, thenλ
(s2)
J ≈ λ

(s2)
I and the maximalλ for

I at scales2 would also be at
√

s2/s1 · x. This means that the bias in the location of maximalλ(s)

is proportional to
√

s, which means that not only is the location biased towards theoccluded side, but

this bias also grows with scale. This property ofλ is demonstrated in Fig. 5.13 on a synthetic example

of random dots. In real sequences, the assumption that the intensity distribution is similar in different

scales is usually not satisfied. Nevertheless, the effect described above is still observed qualitatively,

and can be used to determine depth ordering.

This observation can be used to design a depth-ordering algorithm. The algorithm starts by seg-

menting the two-frame sequence, to yield an estimate of the matting functionα̂. For scales, if the

location of the maximum ridge inλ(s) is indeed biased towards the occluded side, then at points along

the boundary of the segment, the direction of∇λ = (λx, λy) should be towards the outside if the

segment is the occluder, and towards the inside if it is occluded. Defining

d = ∇λ · ∇α̂ (5.19)

we should expect thatd < 0 if the segment is the occluder, andd > 0 if it is occluded. Thus, summing

the value ofd along a contour of the segment can determine which side of thecontour is the occluder.

Since the bias effect grows with scale, it is preferable not to use small scales. On the other hand,

higher scales distort the image data and other nearby image features may interfere with the value ofd.
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(a) (b) (c) (d)

Figure 5.14: Results on real sequences of three dynamic scenes: (a),(b) The two frames. (c) Response ofd (from Eq. (5.19))

coded as dark=negative, light=positive. (d) Final layers detected by the algorithm with relative depth coded as white=near,

grey=middle, and black=far.

Therefore, we sum the value ofd in several intermediate scales:

D =
s2
∑

s=s1

∑

x∈∂α̂

∇λ(s) · ∇α̂ (5.20)

The response ofd (from Eq. (5.19)) on boundary pixels in real sequences is shown in Fig. 5.14c. In

the bottom row, points on the edge between the flower and the hand have positive values with respect
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to the hand and negative values with respect to the flower. Relative depth is shown in Fig. 5.14d. The

octopus in the top row and flower in the bottom row are correctly detected as the occluders, while the

hand is detected as occluding the background and as occludedby the flower. The scene viewed through

the window of the old ruin in the middle row is correctly detected as occluded. Note that the internal

frame of this window is (correctly) not detected, since there is no depth discontinuity in this area.

5.4.2 Three-Frame Algorithm

Recall that high values ofλ occur in areas where there is no smooth motion, i.e., at motion boundaries.

At points with no correspondence (due to occlusion), the partial derivatives would have random values,

leading to a highλ value, even if these points are not strictly boundary points. These areas are adjacent

to the true motion boundary and theλ response would appear as a thick boundary region. Based on

two frames alone, it is impossible to determine which side ofthe thick boundary is the true edge, which

is equivalent to determining which side the occluded pixelsbelong to.

When three frames are available, I denote the response ofλ on frames(t, t− 1) asλ−, and frames

(t, t + 1) asλ+; t is the reference frame in both cases. I define

λmin ≡ min{λ−, λ+} and λmax ≡ max{λ−, λ+} (5.21)

Points on the true motion boundary are detected by bothλ− andλ+, thusλmin ≫ 0 at these points.

Points that are not occluded in any of the frames are not detected byλ, thusλmin ≈ 0. There exist

points that are occluded int − 1 and not int + 1 and vice versa, and in these pointsλmin ≈ 0 and

λmax ≫ 0.

Therefore, the true motion boundary can be detected as the area whereλmin ≫ 0. The regions

whereλmin ≈ 0 andλmax ≫ 0 belong to the occluded layer, and the relation between theseregions

and the boundary yields depth ordering. This is illustratedin Fig. 5.15.

This principle can be implemented by slightly modifying thetwo-frame algorithm as follows:

• Useλmin for the segmentation to obtain̂α.

• Useλmax in (5.19) to obtain the bias directiond.
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λ+ ≫ 0

λ− ≫ 0
t

t + 1

t − 1

Figure 5.15: Three frames with pixel correspondence; pixels that have correspondences betweent andt − 1 and have no

correspondence betweent andt + 1 are located to the right of motion boundary pixels, indicating that the right side is the

occluded side.

(a) (b)

Figure 5.16: Results of a real three-frame sequence (octopus example from Fig. 5.14): (a) Edges based onλmin (black)

compared with the response ofλmax (gray) – the response is stronger outside the edge, indicating that the segment is the

occluding layer; (b) Edges based onλmin (black) compared with edges based onλ+ (i.e., from two frames), showing that

three frames give better localization.

Usingλmin for the segmentation gives better localization of the segment’s edge, since it responds

only to the true edge. Sinceλmax responds also to occluded regions, its profile is biased towards the

occluded side (as is the bias due to the intensity gap), and thusd < 0 if the segment is the occluder,

andd > 0 if it is occluded.

Unlike the bias due to intensity difference, the bias that isdue to occluded pixels is not affected by

scale. Note that no intensity difference was assumed, so this bias can be detected even when there is no

intensity difference between the layers. On the other hand,when there is an intensity difference, both

effects contribute to the bias, boosting the correct assignment. An additional advantage of the three-

frame algorithm is better localization of the segment boundary, as occluded pixels are distinguished
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Figure 5.17: Two frames used in the experiment with density varying between 45% and 55%. The sequences used in the

experiment are available on the web athttp://www.cs.huji.ac.il/∼daphna/demos.html#motion .

from boundary pixels.

Figure 5.16a shows the edges based onλmin andλmax from three frames of the octopus sequence.

Theλmax edge is outside theλmin edge, indicating that the segment is the occluder. Theλmin-based

edge gives better localization of the motion boundary (compared with the two-frame result), as shown

in Fig. 5.16b.

5.5 Human Experiments

The algorithms I have presented determine depth order from two or three frames based on motion

alone. They perform well even when monocular segmentation is impossible. Below I show that human

observers can also perform these tasks, with comparable success.

In Section 5.5.1 I describe the 2-alternative forced choiceexperiment, in which I presented subjects

with random-dot sequences of two moving layers. In Section 5.5.2 and 5.5.3 I describe the results of

experiments with two- and three-frame sequences, respectively.

5.5.1 Methods

In my experiments I presented subjects with sequences in which two layers with random-dot textures,

one partially occluding the other, are moving horizontallyin opposite directions. The boundary be-

tween the layers is the middle vertical line, and the densityof the dots varies across each layer along

the motion boundary. Figure 5.17 shows an example of such a sequence. Each side was the occluder

95



0 10 20 30 40

40

50

60

70

80

90

100

density gap∆ (%)

su
cc

es
s

ra
te

(%
)

0 10 20 30 40

40

50

60

70

80

90

100

density gap∆ (%)

su
cc

es
s

ra
te

(%
)

(a) (b)

Figure 5.18: Results of experiments on human subjects: (a) Two-frame sequences. (b) Three-frame sequences.

in half of the sequences, in random order (counter-balanced).

In each sequence, the density was characterized by some density gap∆, so that the density varied

between(1 − ∆)/2 and(1 + ∆)/2 across each layer. Participants were instructed to click onthe side

(left or right) where they thought the occluder was in each sequence. The experiments were conducted

in sessions of 20 presentations, with 3-6 sessions per participant for each different value of density gap.

5.5.2 Two-Frame Sequences

Seven volunteers participated in this experiment. In each presentation, the two frames were displayed

alternately at a rate of 3 frames/second. The density gap between the two frames was0%, 5%, 10%,

15%, 20%, 40%.

For a density gap of40%, subjects selected correctly in nearly100% of the sequences. For a density

gap of0%, i.e., the density was uniform across the whole frame, subjects selected correctly in50% of

the sequences, i.e., no better than chance. This is consistent with the fact that both interpretations are

equally valid in this case. The results are summarized in Fig. 5.18a.

For comparison, I applied the two-frame algorithm to the same sequences. For density gaps of more

than20%, the success rate was nearly100%. As expected, when density was uniform, the success rate

was50% (in such sequences both interpretations are equally valid). The performance of the algorithm

is summarized in Fig. 5.19a.
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Figure 5.19: Performance of my algorithm on the experiment sequences: (a) Two-frame sequences. (b) Three-frame se-

quences.
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Figure 5.20: Performance of an ideal observer on two-frame experiment sequences.

5.5.3 Three-Frame Sequences

Two volunteers participated in this experiment. In each presentation, a sequence was played back and

forth at a rate of 10 frames/second. The density gap between the two frames was0%, 10%, 20%, 40%.

Results for three frames were much better than those for two frames, as expected. In particular, for

a density gap of0% (uniform density), subjects selected correctly in75% of the sequences, in con-

trast to the two-frame experiment in which subjects performed no better than chance. The results are

summarized in Fig. 5.18b.

The three-frame algorithm, applied to the same sequences, gave the correct answer in nearly100%

of the sequences, and even with uniform density, its successrate was96% (see Fig.5.19b).
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5.5.4 Two-Frame Sequences: Ideal Observer Analysis

In order to evaluate the results of the two-frame experiments and algorithm, consider an ideal observer

that “knows” the form of the distributions generating the sequences, but does not know which side is

the occluder. LetH1,H2 denote the two possible choices: “left-front” and “right-front”. For a given

two-frame sequenceI, the probability that it was generated asHi is

Pr(Hi|I) =
Pr(I|Hi) · Pr(Hi)

∑

k Pr(I|Hk) · Pr(Hk)
where Pr(I|Hi) =

∏

x,y,t

Pr(I(x, y, t)|Hi) (5.22)

Pr(I(x, y, t)|Hi) andPr(Hi) are known to the ideal observer. Thus, for any givenI, the ideal ob-

server can compute (5.22) fori = 1, 2 , and then choose the most probable hypothesis. By sampling

sequences, the probability of correct choice was estimatedat 97.7% for ∆ = 10% and 100% for

∆ = 20%. This provides a theoretical upper bound on the performanceof an observer in this task.

A less informed observer, that does not know the exact form ofthe distribution used to generate

the data, may consider all possible videos in which the density of dots in each layer remains constant

within a small region. Such an observer can compare the density in neighborhoods of occluded pixels

with nearby neighborhoods within either layer. For a neighborhood width of16 pixels, such anad

hoc scheme chose correctly in88% of the sequences for∆ = 10%, and99.7% for ∆ = 20% (see

Fig. 5.20).

5.6 Summary

The occlusion detector I have presented is useful for extracting motion boundaries. Since I do not make

any assumptions regarding the color or texture properties of objects, or about the geometric properties

of the motion, the algorithm works well on natural video sequences where such assumptions are often

violated.

The algorithm relies mainly on background features which disappear and reappear as a result of

occlusion. These features may be sparse and still indicate the location of motion boundaries, as the al-

gorithm processes the data in multiple scales. As opposed toalgorithms that rely on motion estimation,

my algorithm usually does not require any texture on the occluding object.
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Since occlusion is the main cue used by the algorithm, it works well when velocity differences

between moving objects are small, since features will stilldisappear due to occlusion. Algorithms that

rely on motion differences typically find it hard to distinguish between different objects in such cases.

I described a second algorithm, extending the occlusion detector to compute the depth ordering

between the layers across the motion boundary. The algorithm was shown to give good results on

real sequences with different occlusion settings. With only two frames, the algorithm relies on some

(possibly small) difference in texture between the moving layers. Without this assumption, we face

the well known inherent motion ambiguity, which states thatdepth ordering cannot be computed from

two-frames and motion alone.

Can humans use a similar heuristic to get around this inherent ambiguity? I asked humans to

rank the relative depth of two moving layers in two or three frames. In these experiments there was a

difference in texture between the moving layers, but the difference was set to be local and small, so that

it could not be detected in a single frame as a distinct boundary between the two layers. Nevertheless,

when presented to human subjects in motion, this differencewas sufficient for the detection of relative

depth. I showed that my algorithm can also utilize this smalldifference to detect relative depth, giving

qualitatively similar results (cf. Fig. 5.18 and Fig. 5.19).
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Chapter 6

Summary

I presented two techniques which exploit information in thespatio-temporal structure of video data. We

saw how a geometrically-constrained video sequence can be used to generate new views of the scene

without scene reconstruction. For an unconstrained video containing general motion, we saw that the

spatio-temporal structure of the video is highly regular and can be used for motion segmentation using

a differential operator that detects occlusion.

View Synthesis: I presented a new non-perspective projection model, which is defined by two

slits and a projection surface. Algebraically, this model corresponds to a second-order transformation

from 3D to 2D, and it has an epipolar geometry that is also of second order. Given a video sequence

acquired by a translating camera, we can generate new X-Slits views of the scene, making it possible

to create a virtual environment using a simple and robust technique. Although not perspective, the

movies generated in this way appear compelling and realistic.

Reducing the inherent distortions of the X-Slits projection can be done by reprojecting the image

onto a coarse approximation of the scene structure. An alternative approach, without any assumptions

about the scene structure, is to select rays so as to approximate the set of rays of a perspective camera.

Motion Segmentation: I have presented an occlusion detector that is used for extracting mo-

tion boundaries without any assumptions regarding color ortexture properties, or about the geometric

properties of the motion. The algorithm processes the detector’s response in scale space, producing
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a scale-adaptive segmentation which tolerates local ambiguities. The algorithm gives good results on

real sequences.

Using the same detector, I described a depth ordering algorithm. The algorithm was shown to give

good results on real sequences with different occlusion settings. With only two frames, the algorithm

relies on an intensity difference between the moving layers, and does not depend on the existence

of a visible intensity edge. The algorithm can be adjusted towork with three frames without this

requirement.
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Appendix A

Column Sampling Details

A.1 Linear Column Sampling: The Uncalibrated Case

Assume that the motion direction of the input camera is only parallel to the image plane, with the

internal parameters of the camera being fixed but unknown. I now show that any linear sampling of the

columns results in a valid X-Slits image.

Let J denote the inverse of the calibration matrix [26, p. 141], and assume that columnx = s(t) is

sampled from the image captured at timet. The 3D physical location of this column on the camera’s

projection plane, in standard coordinates denotedp, q, is the line defined by:

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


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
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










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


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
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

(A.1)

(J is upper triangular). Eliminating the free variabley, the line is parameterized by:

p = K1q + K2 + K3s(t) (A.2)

where

K1 =
J12

J22
, K2 = J13 −

J12

J22
J23, K3 = J11

Assume as before that the camera center at timet is c(t) = (lt, 0, 0). Assume also that columns

are sampled linearly, i.e., the column sampled from the image taken at timet is defined by(s(t), y) ∀y,
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ands(t) = αt + β for someα, β. I will show that the result of pasting these columns together into a

mosaic image is a X-Slits image.

First, from the definition it follows that the image taken at time t contributes a set of rays that lie

on a 3D plane. This plane is defined by the translating camera centerc(t) and the line on the image

plane which corresponds to columns(t) (see Fig. A.1, right inset). Denote this plane byπ(t). I first

show that all the planesπ(t) intersect in a line; this line defines the vertical slit of ourX-Slits camera.

The horizontal slit is defined by the trajectory of the camera.

second slit of virtual camera

c(t )

c(t)

s(t)

path
camera translation

s(−1) s(1)

c(1)c(−1)

column s(t) in image t plane    (t)π

Figure A.1: Illustration of the relevant geometry, including the camera’s path, the center of projectionc(t), the column

sampling functions(t), and the planeπ(t).

Specifically, the planeπ(t) is defined by the camera centerc(t) = (lt, 0, 0) and two points on the

line given in (A.2); we choose two such points by settingq = 0 andq = 1:














lt

0

0















+















K2 + K3(αt + β)

0

1















and















lt

0

0















+















K1 + K2 + K3(αt + β)

1

1















(A.3)

As can be readily verified, the plane incident with all three points is defined by

π(t) = (−1,K1,K2 + K3(αt + β), lt) =

= (−1,K1,K2 + K3β, 0) + t(0, 0,K3α, l) (A.4)

It follows from Eq. (A.4) that the family of planesπ(t) is a pencil of planes which intersect in a

line, and I define this line to be the vertical slit of the camera. The slit direction is determined by the
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cross product:

(−1,K1,K2 + K3β) × (0, 0,K3α) ∝ (K1, 1, 0) (A.5)

From the requirement that the slit coincides withπ(t) from Eq. (A.4) for everyt, we arrive at the

following slit equation:















−l
K3α(K2 + K3β)

0

−l
K3α















+ λ















K1

1

0















∀ λ ∈ R

Thus by collecting vertical strips linearly and placing them in a mosaic, the resulting image is

equivalent to a X-Slits image whose slits are parallel to theimage plane. In case of zero skew,J12 = 0

and soK1 = 0; now the two slits are orthogonal as in the Orthogonal X-Slits camera discussed in

Section 3.1.2.

A.2 Input Camera Moving on a General Straight Line

I shall now analyze the sampling function when the motion of the input camera is not parallel to the

image plane. Let the motion direction be an arbitrary line in3D. Let c(t) = c0 + ∆c · t denote the

camera position at timet (in R3) and let the pinhole camera’s projection matrix be[A;−Ac(t)], where

A = [A1, A2, A3]
T denotes the3 × 3 matrix determined by the camera’s internal calibration andits

orientation. It follows that when the camera is located atc(t), a scene pointp ∈ R3 is projected to

( x
w , y

w ) such that














x

y

w















=















AT
1 (p− c(t))

AT
2 (p− c(t))

AT
3 (p− c(t))















(A.6)

Suppose we sample strips from these images, at varying positions and varying orientations. Let

s(t) and α(t) denote the sampling functions, giving the position of the strip on the imagex-axis

and the strip’s orientation, respectively, so that we sample in imaget the points on the oriented line
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x
w = s(t) + α(t) y

w . Using (A.6) we obtain

x − α(t)y − s(t)w = AT
1 (p − c(t)) − α(t)AT

2 (p − c(t)) − s(t)AT
3 (p− c(t)) = 0 (A.7)

This defines a plane (on whichp lies) – the plane coincident with the sampled oriented line in imaget

and the center of projection of the camerac(t). Denote this plane byπ(t) (as in Fig. A.1). This plane

in homogeneous coordinates is given by

π(t) =







A1 − α(t)A2 − s(t)A3

−(AT
1 − α(t)AT

2 − s(t)AT
3 ) · c(t)






(A.8)

For our sample to give a X-Slits image, it is necessary and sufficient that all these planes∀t intersect

in a line. There are three cases to note in (A.8):

1. If s(t) = constant andα(t) = constant, thenπ(t) is linear int and therefore describes a line.

Whenα(t) = 0, we get the linear (oblique) pushbroom camera model [23,54], see Fig. 4.3.

2. If AT
3 ∆c = 0, s(t) is linear int andα(t) = constant, then once againπ(t) is linear int. This

is the case when the camera motion is parallel to the projection plane - the Orthogonal X-Slits

projection discussed in Section 3.1.2 (whenα(t) 6= 0, we get the tilted slit variant discussed in

3.1.3).

3. In the general case, ifα(t) ands(t) are of the form

α(t) = −a2 + b2t

a1 + b1t
, s(t) = −a3 + b3t

a1 + b1t
(A.9)

Substituting these expressions into (A.8) gives

π(t) ∝ π(t) · (a1 + b1t) =

=







(a1 + b1t)A1 + (a2 + b2t)A2 + (a3 + b3t)A3

−((a1 + b1t)A1 + (a2 + b2t)A2 + (a3 + b3t)A3)
T (c0 + ∆c · t)






(A.10)

which is linear int if and only if

(b1A1 + b2A2 + b3A3)
T ∆c = 0 (A.11)

It is easy to see that the first two cases are special cases of (A.9).
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There are 4 degrees of freedom (up to scale) in choosing a pair〈α(t), s(t)〉 of sampling functions

which satisfy constraint (A.11). Each pair of sampling functions of the form (A.9) for which (A.11)

holds implies that allπ(t) intersect in a single line (the virtual slit). And vice versa, it can also be

shown that every family of planesπ(t) which intersect in a single line uniquely defines such a pair of

sampling functions.

We can therefore conclude the following: using the samplingmethod described above with sam-

pling functions as in (A.9), and given a linear camera path, we can produce the image of any X-Slits

camera with one slit overlapping the camera path.
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Appendix B

The Distortion of Linear Sampling

Functions

In Section 4.1.1 it was shown that any linear sampling function φ(t) = αt + β corresponds to an

Orthogonal X-Slits projection of the form given in (3.8). This can be rewritten using (4.15) as:







X

Y






=







x(1 − Z
Z1

)

y(1 − αZ
αZ1+k )






(B.1)

(it is assumed thatZ1, α ≥ 0).

Assumingω=[x1, x2]×[y1, y2], substituting (B.1) into (4.17),n(φ, p, X̂, Ŷ , Ẑ) equals:

x2
∫

x1

y2
∫

y1

(x(1 − Ẑ
Z1

) − X0)
2 + (y(1 − αẐ

αZ1+k )) − Y0)
2

Ẑ2
dydx (B.2)

Integrating, and then differentiating with respect toX̂, Ŷ , Ẑ, the minimum is achieved in(X0, Y0, Z0):

X0 = (x1 + 1
2∆x)(1 − Z0

Z1
)

Y0 = (y1 + 1
2∆y)(1 − α Z0

αZ1+k )

Z0 = ∆x2+∆y2

∆x2

Z1
+ α∆y2

αZ1+k

(B.3)

where∆x = x2−x1,∆y = y2−y1. Substituting the above into (B.2) we obtain the local perspectivity
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distortionnL of φ(t) = αt + β

nL(φ) =
1

12

∆x3∆y3

∆x2 + ∆y2

(

1

Z1
− α

αZ1 + k

)2

(B.4)

The global perspectivity for a linear sampling functionφ(t) = αt + β is obtained by substituting

(B.4) into (4.19), and integrating over the image domain:

nG(φ) =

∫

p∈I

nL(φ, p)

nL(φ̂, p)
dp = S

(

k

αZ1 + k

)2

(B.5)

whereS = (xmax − xmin)(ymax − ymin) is the image area.
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Appendix C

Motion Segmentation Details

C.1 Scale Normalization

One problem with multi-scale analysis is that derivatives decrease with scale. Indeed, if0 ≤ I ≤ 1,

then

|Ix|, |Iy| ≤
1

√

2πsxy
(C.1)

when smoothing with a spatial Gaussian of variancesxy. This well-known problem can be handled by

scale normalization, as proposed in [38]. Scale normalization is done by defining thescale-normalized

partial derivatives

I(sxy)
x =

√
sxy ·

∂

∂x
(gsxy ∗ I) and I(sxy)

y =
√

sxy ·
∂

∂y
(gsxy ∗ I) (C.2)

wheregsxy∗ stands for convolution with a Gaussian with variancesxy. ThusI
(sxy)
x and I

(sxy)
y are

used in the evaluation ofλ instead ofIx andIy. Note that scale normalization does not violate the

assumptions leading to the definition ofλ in Section 5.1.1.

One important property of scale normalization is thatλ becomes invariant to spatial scaling ofI.

This means thatλ gives comparable values for a video sequence in different resolutions.

To see this, let us scaleI by σ, and define

J(x, y, t) = I(x/σ, y/σ, t) (C.3)
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Substituting (C.3) into (C.2) yields

∇J (σ2sxy)(σx, σy, t) = ∇I(sxy)(x, y, t) (C.4)

Let sω denote the variance of the Gaussian windowω, and letG(sxy ,sω)[I] denote the second

moment matrix defined in (5.1), with the scale of differentiation sxy and scale of averagingsω. From

(C.4) it follows that

(

G(sxy ,sω)[I]
)

(x, y, t) =
(

G(σ2sxy,σ2sω)[J ]
)

(σx, σy, t) (C.5)

That is to say, ifJ is a scaling byσ of I, then the value ofλ at (x, y, t) in I at scalessxy, sω will be

the same as at the corresponding point inJ at scalesσ2sxy, σ
2sω.

For the purpose of computing a goodocclusion detector, it follows from (C.5) that as long as the

computation scans all scales in scale space, the result doesnot depend on the image resolution. Note

that in order forλ to be scale-invariant, it follows from (C.5) thatsω must be proportional tosxy, as

in [35]. In my implementation I uses ≡ sxy = sω, which defines a single scales. I denote theλ

evaluated at scales asλ(s).

C.2 Implementation Issues

C.2.1 Temporal Aliasing

Since real video data is discrete, the partial derivatives in the definition ofλ must be estimated. This is

done by convolvingI with the partial derivatives of a 3-dimensional Gaussian. Rotational invariance

implies that the spatial variance in theX andY directions should be the same, and the kernel is there-

fore an ellipsoidal Gaussian with spatial variancesxy and temporal variancest. Due to the distortion

introduced by the convolution, it is desirable that these values be small.

Estimating the temporal partial derivative from video presents a severe aliasing problem. Since

video frames represent data accumulated during short and sparse exposure periods, and since a feature

may move several pixels between two consecutive frames, data is aliased in the temporal domain
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significantly more than in the spatial domain. I overcome this problem by taking advantage of the

spatio-temporal structure of video, as described next.

Suppose that the velocity in a certain region isv = (vx, vy), and therefore

I(x, y, t) = I(x − vxt, y − vyt, 0) (C.6)

The temporal derivative int = 0 is given by

It = −vxIx − vyIy (C.7)

In discrete video,It can be estimated by convolution in theT direction, which, due to (C.6), is the

same as convolution in thev direction of a subsample ofI(x, y, 0) at intervals of size|v|. In order

to avoid aliasing due to undersampling while estimatingIt, the Sampling Theorem requiresI to be

band-limited, so that its Fourier transform vanishes beyond ± 1
2|v| . This can be achieved by smoothing

with a spatial Gaussian. However, smoothing poses a notabledrawback, as it distorts the image data,

causing features to disappear, merge and blur.

An alternative approach, closely related to the concept of “warping” (e.g., [40]), would be to take

advantage of prior estimates of the optical flow. If a point isestimated to move at velocityu = (ux, uy),

we can use the convolution ofI in the direction of(ux, uy, 1) to estimate the directional derivativeIu

and apply

It = Iu − uxIx − uyIy (C.8)

The convolution that yieldsIu is equivalent to subsampling in the direction of(v−u), and thus the

estimate ofIt is unaliased if the Fourier transform vanishes beyond± 1
2|v−u| . This occurs when either

the estimated velocityu is close to the real velocityv, or the region is smooth. This is particularly

important, as the estimation of optical flow in smooth regions is often inaccurate. In other words, this

estimation ofIt is tolerant to inaccuracy in motion estimation exactly whenit is least reliable. The

figures in Section 5.2 demonstrate the algorithm’s tolerance to poor motion estimation.

Note that the spatial smoothness ofu is not required. Also note that temporal smoothing has no

effect on the aliasing problem, and it is desirable to have aslittle temporal smoothing as possible.
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C.2.2 Differentiation with Two Frames

Differentiation, as described earlier, is done by convolution with derivatives of a spatio-temporal Gaus-

sian, which requires several frames to achieve a good estimation. When only two frames are available,

special care should be taken to provide a consistent estimation of spatial and temporal derivatives.

Given two framesI(x, y, 0) andI(x, y, 1), let us define

I∗(x, y, t) =











I(x, y, 0) t ≤ 0

I(x, y, 1) t > 0
(C.9)

Then, for any temporal variancest, the partial derivative estimates are

I∗x =
1

2
(I(x, y, 0) + I(x, y, 1)) ∗ gx

I∗y =
1

2
(I(x, y, 0) + I(x, y, 1)) ∗ gy (C.10)

I∗t = (I(x, y, 1) − I(x, y, 0)) ∗ g

(where∗g, ∗gx and∗gy denote convolutions with the spatial Gaussian and with itsX andY derivative

respectively).

C.2.3 Application to Optical Flow

It is well known that the computation of optical flow in textureless regions and along straight lines

(aperture problem) is ill-posed. When these situations occur, the rank ofG is 0 and1, respectively.

These situations arise from spatial structure alone, and can therefore be detected by the spatial 2D

second moment matrix (used, for example, in the Lucas-Kanade algorithm [40]), in order to mark

these regions as unreliable (as done in many implementations). Optical flow is also unreliable at

motion boundaries, which may be treated by the joint estimation of motion and segmentation [60,72].

These two cases can be treated jointly using the rank ofG. Optical flow in regions whererank(G) 6=

2 can be estimated by filling from adjacent regions whererank(G) = 2. In a coarse-to-fine algorithm,

this should be done at each scale.
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