Analyzing the Spatio-Temporal Domain:

from View Synthesis to Motion Segmentation

THESIS SUBMITTED FOR THE DEGREE OF
DOCTOR OFPHILOSOPHY
BY

DORON FELDMAN

SUBMITTED TO THE SENATE OF THEHEBREW UNIVERSITY

SEPTEMBER 2006






This work was carried out under the supervision of

Prof. Daphna Weinshall.






Abstract

In this work | investigate spatio-temporal information ivideo sequence. The advantage of consid-
ering a video sequence as a 3D spatio-temporal functiontesitiporal continuity (rather than merely
a discrete collection of 2D images) is demonstrated by twopder vision techniques which | have

developed.

View Synthesis: Each frame of the video sequence is an intersection of thiéosganporal
video volume with a spatial plane. When a video sequenceocmsfto certain geometrical constraints,
intersecting the video volume with other planes or surfa@esbe used to easily produce new views
of the scene. This powerful view synthesis technique isdaséely on captured data and does not
require scene reconstruction, as the constraint on the tgmera motion make it invariant to the
scene structure in some respects. This technique is deratmtstvith real sequences, giving visually

appealing results.

The technique gives rise to a novel projection model Ghessed-Slits projectigrihat can be seen
as a generalization of the perspective projection and aket¢ier models. A Crossed-Slits camera
is defined by two lines which all rays must intersect. Herautlgtthis new projection model and its

epipolar geometry, which are shown to be quadratic equitslef the perspective model.

Crossed-Slits images are not perspective, and thus thesaagiistorted. These distortions are
studied, and two frameworks are developed for handling theinst, assuming that a coarse approx-
imation of the scene structure is known (which is used toter@arealtime omnidirectional virtual
environment); Second, without any knowledge about theesdesmsed only on the set of rays. In both

cases distortion is reduced by approximating the persgeptjection.



The work on view synthesis and the Crossed-Slits projectioesented in Chapter 3 and 4, is based
on work published in [1-6].

Motion Segmentation: Analysis of anunconstrainedsideo sequence in general motion reveals
a highly regular spatio-temporal structure, where movibjgcts appear as continuous structures in the
temporal domain, broken by occlusion. Based on this obend developed a novel motion segmen-
tation algorithm from a video sequence in general motiorickvis based on differential properties in
the spatio-temporal domain.

| present a differential occlusion detector, which detecser-like features that are indicative of
motion boundaries. Segmentation is achieved by integyétia response of this detector in scale space.
The algorithm is shown to give good results on real sequetates in general motion. Experiments
with synthetic data show robustness to high levels of naigkillumination changes; the experiments
also include cases where no intensity edge exists at thédoaaf the motion boundary, or when no
parametric motion model can describe the data

Next | describe two algorithms to determine depth ordernognftwo- and three-frame sequences
based on observations about the scale space characsedttise motion boundary. An interesting
property of this method is its ability compute depth ordgfirom only two frames, even when no edge
can be detected in a single frame.

Finally, experiments show that people, like my algorithmn compute depth ordering from only
two frames, even when the boundary between the layers idsibtevin a single frame.

The work on motion segmentation and depth ordering, predeéntChapter 5, is based on [7, 8].
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Chapter 1

Introduction

This introduction reviews previous work on multi-perspextmosaicing leading to results on the
Crossed-Slits projection, and also provides introduct@dmotion segmentation.

The rest of this thesis is organized as follows: Chapter 2warizes the mathematical tools used in
the inference of this work, including projection models,ltiple view geometry and scale space. Next,
my work on view synthesis and the Crossed-Slits projectioprésented — in Chapter 3 | elaborate
on the geometry and algebra of the Crossed-Slits projectiad in Chapter 4 | describe different
approaches to Crossed-Slits view synthesis. Finally, iap®r 5 my work on motion segmentation

and depth ordering is presented.

1.1 View Synthesis and the Crossed-Slits Projection

Perspective projection forms the foundation of imagingcBiour eyes, as well as most of our cameras,
observe the world through a pinhole (via a lens whose effesitisll ignore), we are used to viewing
images that are generated by perspective projection. fdrergechniques for the generation of new
views are designed to achieve the effects of perspectijeqtran. What happens if this requirement
is relaxed? Can we do better computationally when not lithiitg the perspective projection, but are
free to use other projection models?

In Chapter 3 | introduce and study an alternative projectiwodel, defined by two slits - the



Crossed-Slits (X-Slits) projection. In the X-Slits mod#ie projection ray of every 3D point is de-
fined by the line that passes through the point and intergetisslits. The image of a point will be the
intersection of the projection ray with the image surface.

Curiously, a physical X-Slits camera was designed in thé t8ntury by one of the pioneers of
color photography, Ducos du Hauron [33], under the titlarisformisme en photographie”. Ducos du
Hauron thought that X-Slits images would be used in the ¥ahg (20th) century to “create visions
of another world” [46]. A century later, Rudolf Kingslakeviewed this device in his book [33]; in his
analysis Kingslake concludes that “the pair of slits wogkingether thus constitutes a pinhole camera
in which the image is stretched or compressed in one directiore than in the other”. This should
make this exotic device rather useful for the new emergiogrielogy of wide-screen cinematography.
However, as | show below, the X-Slits projection does muchamoimages than horizontal stretching.

Independent of the physical device, | argue that the X-Bhitgection model is useful and worthy
of our attention. This is because new X-Slits images can biyagenerated by mosaicing a sequence
of images captured by a translating pinhole camera, andubedhose images look compelling and

realistic.

1.1.1 Mosaicing and Multi-Perspective Images

Mosaicing is a technique by which strips are taken from frawfe video sequence and pasted together,
creating a new image, or “mosaic”. Mosaics are usually usexhasual summary of the video [11,28]
or for 3D visualization [57]. In the simplest form, a mosaacbomposed of vertical strips taken from
the center of the frame where the input camera rotates abatia that is perpendicular to its optical
axis and passes through the optical center. Such mosaistitats a perspective projection of the
scene onto a cylinder, and are used for creating panoranaigam

Usually mosaics do not represent a perspective projedtenthey cannot be modelled as a pro-
jection through a single point, as different strips may bguéred from different camera locations.
Such mosaics are known asilti-perspectivémages. A simple example of such mosaicing technique

is thelinear pushbroonmwhich samples the central strip of each frame where the iopuotera trans-
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lates sideways, thus “scanning” the scene with a line cam&hés method is used to create highly
detailed images of a large scene, typically in satellite agwial imagery, where the camera motion is

approximated as linear.

Another multi-perspective technique uses an input canwmatimgoff-axisso that its optical axis is
perpendicular to the (circular) camera path. In [64], sudsaics based on concentric circular camera
paths are used to construct a 3D plenoptic function for thpgee of image-based rendering (IBR).
Sampling a certain strip from each frame for one mosaic arnffieaeht strip for another can be used to

produce a panoramigereo pair[29, 54]. Stereo mosaicing models are further investigat¢fl, 61].

In [76], the input camera motion is unconstrained, and theaiwis used to summarize a video
captured by a moving robot. In [55], the strips are projeatatb a manifold that is adapted to the

motion trajectory.

The present work uses a similar mosaicing technique withropertant difference: the mosaiced
strips are sampled from varying positions in the input insagehus it is called “non-stationary” mo-
saicing. Mosaic images obtained in this way are more sinilgrerspective images than traditional
mosaic images. As | show in Chapter 4, using non-stationargaiging can be used to generate X-
Slits images, where different strip-sampling functionsrespond to different slit locations. Altering

the parameters of the sampling function makes the generatiairtual walkthroughs possible.

In many image-based rendering techniques rays from a seipat images are collected and a
new image is rendered by resampling the stored rays [2213.7]d order to create new perspective
images of reasonable quality, the requirements becomered: the number of stored rays becomes
larger than available memory, and those rays are derivexl droery large collection of carefully taken
pictures. There are attempts to make IBR more efficient ane meneral [10, 17, 66], or to use such

approximations as moving the camera in a lower dimensiqgades[64, 68].

The present work is mostly related to [17, 64, 66, 68] withesal/differences: First, rather than
trying to approximate the perspective projection, | ac®lyadefine the projection geometry of the
resulting images, and analyze the model limitations. Saéicive rendering tool | present is very simple

- slicing of the space-time volume obtained by a simple nmotiba perspective camera. Consequently

3



the most important feature of my technique is the fact thatseampling for the generation of new
views does not require detailed accounting of the parametethe generating images. As | show
below, if the camera’s motion is sideways and constant,yevertical planar slice of the space-time
volume givessomevalid X-Slits image.

The study of X-Slits mosaicing presented in this work is bae work published in [1-3].

1.1.2 Crossed-Slits Geometry

While, as | show, the pinhole camera can be seen as a spesw@lofdahe X-Slits projection, the
geometry underlying the X-Slits projection in the generdeis different from the geometry of the
pinhole camera. | show that the pushbroom projection is alspecial case of the X-Slits projection
model, and in some sense it is the most distorted limitingcas., the deviation from perspective
projection in X-Slits images is maximal in the pushbroomiting case.

In Section 3.2 | present an analysis and characterizatidheokpipolar geometry of the X-Slits
projection. The motivation for doing this is twofold: Firébr the purpose of visualization, it may give
a theoretical foundation to X-Slits stereo pair generat®econd, understanding the epipolar geometry
can aid image correspondence; in particular we would likeetable to match images of different kinds
to each other, including X-Slits images, pushbroom imagegspective images with barrel distortion,
and ideal perspective images. This can be used for suchcapplis as 3D reconstruction, image
warping, or animation.

Previously, the epipolar geometry of the pushbroom cam&sdoben analyzed in [23]. A calibrated
linear pushbroom camera was modeled as an orthographiecpionj in one axis (the input camera
motion direction) and as a perspective projection in theo#xis. It was encoded in&ax 4 non-
homogeneous matrix with 11 degrees of freedom, allowingtian, translation, scaling and rotation of
the scanning plane. A study of camera retrieval, epipolanggry and scene reconstruction manifests
the quadratic nature of this projection, which | show to bbaracteristic of the (more general) X-Slits
model.

The epipolar geometry of X-Slits cameras resembles theofgrépipolar geometry in some ways,
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but has its own unique properties. In analogy with the pialzaise, there existséax 6 matrix which

I call the fundamental matrixand denotdr'. F gives a second order relation between corresponding
image points, i.e., a correspondence between points imatjgecond order epipolar curves (conics).
Moreover, | show that the rank &f is 4; this result can be used to derive constraint¥dn be used
during the computation of its components.

The main novel feature of the X-Slits epipolar geometry &sfdct that the epipolar conics do not
usually match. In the pinhole case, all the image points anapipolar line correspond to points on
asingleepipolar line in the second image. In the X-Slits case thimisgenerally the case; typically,
each point on a certain epipolar conic in one image will irdadifferentepipolar conic in the second
image. There are only two special cases where epipolar €omatch each other uniquely in the X-
Slits projection: (i) when the two cameras have a commonislivhich case the epipolar geometry is
identical to the pinhole case, i.e., all epipolar curvesliaes and all epipolar surfaces are planes; (ii)
when the slits of the two cameras intersect each other intihdigoints, in which case the epipolar
surfaces are quadratic but unique.

The study of X-Slits geometry presented in this work is base@ork published in [4].

1.1.3 Omnidirectional Image-Based Rendering

New view generation is an emerging application which carefiefrom both image-based techniques
and graphics. The traditional approach to new view germrasi to render a 3D model of the scene
from different viewpoints. Unless the model is known a grititis approach requires the recovery of
the scene structure, which is a hard task. Moreover, théstieatynthesis of optical effects such as
specularity, reflections and transparency is an involvetlpm.

The alternative approach, image-based rendering, acheta use of raw images instead of 3D
models. New views of the scene are generated based on a sequiemages, without a model of
the scene, by sampling light rays. If the set of input imagedeinse, then the rays necessary for the
synthesized image can be sampled from the input imagesowtithowledge about the scene and

without attention to optical effects. However, the inputimes must be very precisely calibrated, and
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together should contain all possible rays of the scene.

The set of all rays, as the plenoptic function [9], can bearably represented as a four-dimensional
function. Using the full plenoptic function would requirevary large amount of input data to produce
synthetic views with good quality. The amount of data candziiced using information about the
scene or with some restrictions on the viewer's movementZ2,30, 37, 41]. However, a more signif-

icant reduction (from 4D to 3D) can be obtained by using Xs3tosaicing.

If, rather than generating perspective new views of theescam can settle for X-Slits views, we
can do IBR with a much smaller plenoptic function. The inmutdaken from a perspective camera
moving along a 1D path, and thus only a 3D subset of the 4D plméunction is sampled — all rays
that intersect the camera path. X-Slits views of the scenebearendered, with the horizontal slit at
the input camera path, and the vertical “virtual” slit mayiwith the viewer. Although the images are

not perspective, the sense of depth and occlusions istieaisd appealing.

In order to create a complete virtual environment, it is seaey to have rays in all directions,
which leads to the choice of a circular camera path and pamongerspective cameras [45]. | describe
a setup in which a calibrated panoramic camera rotatesxifia a circular path, so the set of rays
thus collected is sufficient for generating X-Slits viewghthe vertical slit ainylocation inside the

circle [13,61,64, 65, 68]. This is described in Section 4.2.

Since X-Slits images are not perspective, they may appstortéid. The main difference between
X-Slits images and perspective images is that in the forimeaspect ratio of fronto-parallel surfaces
is not preserved, but rather it depends on depth. Thus ségeei®may appear elongated or condensed
depending on their depth and the virtual slit's locationisTéffect can be reduced by normalization —
the image is transformed so as to cancel these distortiora! fubjects on a chosen surface; as long as
this surface crudely approximates the scene structurgttoeint of distortions decreases. Essentially,
normalization provides a compromise between model-basddraage-based rendering: we render
based on a partial set of input rays, but approximate a petigpeview using a coarse model of the

scene.

Using an approximation surface was proposed in [67], whifinds distortion in non-central im-
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ages as the disparity between an image point and the condisigopoint in an optimal perspective
reprojection of an approximation surface. Given a non+egminage, distortion is minimized by opti-
mization.

It is often desirable to add virtual objects to the scene. (éog interaction or animation). When
doing so, the objects must be rendered according to the sesjextion model as the image-based
background, in order for them to blend into the scene geacadyr. | show how to modify the geom-
etry of the augmented objects to follow the distortions af ¥aSlits projection. This allows us to use
perspective rendering tools to augment the images, ahdlstdin consistent and compelling scenes.

The study of omnidirectional X-Slits rendering presentethis work is based on work published

in [6].

1.1.4 Optimal Mosaicing

Mosaicing provides a method for imaging large scenes whiali be impossible to capture in a sin-
gle perspective image. However, multi-perspective imagesnherently distorted (i.e., they are not
perspective), and eliminating these distortions in theegarcase is only possible by perspective repro-
jection, which requires scene structure information. igeft of such information is computationally
demanding and ill-posed (due to occlusion, reflectionssparency, etc.), therefore an alternative ap-
proach would be to try to minimize distortion without knowtge about the scene, based solely on the
geometry of the multi-perspective mosaicing.

The liberty to choose any strip sampling scheme for mosguaises the following question: Given
a sequence taken by a calibrated camera moving on a knownottygj, and amnknown scenevhat is
the best multi-perspective image that can be generatediffom other words, which strips should be
copied from the images and how should they be pasted into dsaim such that the result image will
contain the maximal amount of visual information and mirligeeometrical distortions? This subject
is discussed in Section 4.3.

| define the necessary conditions for a good multi-perspectiosaic and a criterion quantifying

the geometric distortions, and derive the least distortedaic under this criterion. The criterion is
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justified theoretically as well as empirically. It turns dbat the mosaic with the minimal distortion
also has the maximal field-of-view. By minimizing the distons of multi-perspective images, it is
possible to generate a visually satisfying image with migeometric distortions. These distortions
may in many cases be practically negligible, especiallydmparison with artifacts in perspective
panoramas due to errors in depth estimation.

The study of optimal mosaicing presented in this work is Basework published in [5].

1.2 Motion Segmentation and Depth Ordering

The goal in motion-based segmentation is to partition irmdgea video sequence into segments of
coherent motion. This problem, which is a fundamental layenany vision tasks, has been studied
extensively and several approaches to accomplish it haxe figgested.

One popular approach is to assume that video motion is @nett by some global parametric
motion model and the segmentation is according to valuekeofriodel parameters. In [49, 73], the
image is partitioned into 2D layers assuming affine motiong/RF-based methods, while [32] takes
advantage of the low dimensionality of the linear subspdb®mographies representing planar motion
and extracts layers by clustering. Other works, such as f80pel the video using 3D perspective
geometry. Note that these two approaches represent diffarelerstandings of the term “segment”,
as multi-layer rigid objects would be considered a singtgrsent by the latter while subdivided by the
former.

An alternative approach assumes motion is piecewise smeotthat motion within a segment
is smooth and motion discontinuity occurs only at boundakietween segments. [72] uses a prior
distribution on flow fields to obtain smooth dense flow fieldsdt segments. The MRF-based tech-
nique of [16, 34] finds an optimal flow assignment which peredifor unsmooth motion between
neighboring pixels with similar color. The tensor votingheique [47] extracts smooth structures in
space-time-velocity domain, yielding a piecewise-smdiativ field.

Assuming only piecewise smoothness is a potentially moneig approach, compared with ex-

plicit geometrical constraints, and it lies at the base efrttethod proposed here. Note that piecewise
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smoothness represents a different understanding of “segine a non-rigid moving object would be
subdivided by a geometry-based algorithm while outlined amgle segment by a piecewise smooth-
ness algorithm; on the other hand, a self-occluding objectevbe subdivided by a piecewise smooth-

ness algorithm while outlined as a single segment by a gegrbased algorithm.

Motion discontinuities can be identified by clustering ajwasly computed motion field (e.g., [50,
73]). The problem is that such discontinuities are foundxat#y those locations where the compu-
tation of the motion field is least reliable: since all optitaw algorithms rely on the analysis of a
region around a point (even if only to compute first-ordemndgives), the optical flow must be contin-
uous within the region to support reliable computation.sT¢hicken-and-egg problem makes motion
segmentation particularly challenging. On the other haimel successful computation of motion dis-
continuities can be useful for a number of applicationduiting motion computation (by highlighting
those areas where the computation should be consideretiablek and object segmentation from
multiple cues. Here | propose a motion segmentation methatddoes not require a reliable optical

flow to begin with.

Having segmented the image, we next want to determine thiesion order of objects in the
image, as the first step in 3D scene understanding and olgeagmition. In principle, any depth-
retrieval algorithm (e.g., [34]) would also provide deptidering. However, full 3D reconstruction is
usually only practical in static scenes, and it relies oruegte geometric calibration which remains
a hard task. In this work | present a method to compute demtériog from occlusion cues without
explicit scene reconstruction. The most surprising chargstic of this method is its ability compute

depth ordering from only two frames.

The problem of depth ordering is similar to figure/groundreggtion, an issue which has been
studied extensively in the context of Gestalt psychologgnllpossible spatial cues may contribute to
figure perception from a single image, includicgnvexity{52], junctions[59], andfamiliar configura-
tions[58]). However, depth ordering from a single image may bgeuilve and prone to ambiguities,

whereas motion gives a very powerful and usually unambigume.

Given an image sequence, the accretion and deletion ofréegtements [31], as well as tlkem-
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mon fateof texture and edge [19, 75], have long been recognized asfoudepth ordering. There are
several methods for depth ordering from three frames or p@ge, by tracking disappearing texture
elements [44], optical flow filling [50], detecting T-junctis in space-time [12, 48], matching the mo-
tion of surface and boundary [18,20,70] and localizatioarodrs in flow computation w.r.t. monocular
segmentation [15].

However, when given only two frames, it is impossible to deiae depth ordering from motion
alone, without additional assumptions or prior knowleddghis is because the motion of pixels that
become occluded cannot be determined, and thus they maygoieither side of the motion edge,
leading to more than one valid order assignment. One salwimuld be to assume that the occluded
pixels belong to the layer that is more similar in appearaineg determine depth ordering by matching
the motion of color and motion edges [71]. However, coloresdare often unreliable as edges between

layers, since the figure and ground may have similar colors.

1.2.1 Motion Segmentation

My work is based on the extraction of motion boundaries, Wlace definedocally as boundaries
between different motions (since many real video sequedoa®t obey any global motion model).
While some methods are based on color or texture boundagi@gebn the moving object and the
background (e.g., [21, 34, 69]), | restrict myself to sauas which do not rely on such boundaries.
This is motivated by humans’ ability to segment objects frmation alone (e.g., in random dot kine-
matograms), and by the need to avoid over-segmentation@ftstwhose appearance includes varying
color and textures. Finally, | only consider local propestof the temporal profile of motion, in order
to be able to deal with pairs of frames or stereo pairs (butfeeexample, [63]).

In my approach | start by considering the video sequence patigemporal intensity function,
where the goal is to extract information from this spatioyeral structure. Video sequences have
highly regular temporal structure, with regions of coh¢rantion forming continuous tube-like struc-
tures. These structures break where there is occlusioatimgespatio-temporal corner-like features.

Using a differential operator that detects such featuraeievelop an algorithm that extracts motion

10



boundaries.

Specifically, my algorithm is based on the occlusion deted&scribed in Section 5.1, which is
used to extract a motion boundary at any given scale. Sirftereatt scales may be appropriate for
different parts of the image, a cross-scale optimal boyndgaromputed, based on the response of the
detector. At the end, a closed contour is built along the mabént boundary fragments to provide
the final segmentation. The algorithm was evaluated on tone#lenging real sequences, as well
as several synthetic examples which are particularly diffitor some commonly used algorithms,
in order to demonstrate the robustness of this method. Seswdts from other algorithms, whose
implementation was made available by the authors, are gedvfor comparison. In Section 5.3 |
analyze the behavior and mathematical properties of treitign.

The motion segmentation algorithm presented in this woldaised on [7, 8].

1.2.2 Depth Ordering

My computational approach to the problem of ordinal deptimfitwo frames utilizes the principle of
common fate of texture and boundary, though without attemgpb extract the boundary explicitly.
The spatio-temporal partial derivatives in each frame Heeted by both the motion of the layers (i.e.,
their texture), and the motion of the motion boundary. Whangimy occlusion detector, which relies
on these derivatives, a bias towards the occluded side eppp€he bias depends on the density gap
between the two layers (this bias disappears when the llpgeesthe same local density). Moreover,
when measuring this bias in scale space, it can be seen @ag&as the scale is increased.

From this observation | derive an algorithm in Section 5.4jolv computes the ordinal depth of
two layers based on the trend of the bias in scale space. @ik sninor modifications, | show that the
same algorithm can be applied to three-frame sequencémuwiitelying on local differences of density
between the layers. The algorithms are shown to performameleal sequences. The performance of
the algorithms is compared with the performance of humajestson two- and three-frame sequences
of random-dot textures of varying density and to an ideakoles model in Section 5.5.

The depth ordering algorithm presented in this work is base[8].
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Chapter 2

Methodology

This chapter summarizes the mathematical tools used imfheence of this work. In Section 2.1 |
give an introduction to the geometry and algebra of prapecthodels, and in Section 2.2 | introduce

epipolar geometry and the fundamental matrix. Section &&san brief introduction to scale space.

2.1 Projection Models

For simplicity, | describe a camera as a device that projg@B scene onto an image surface. Each
scene point has one ray that passes through it, and the inidige scene point is the intersection of
this ray with the image surface. Thus, all points on a ray aogepted onto the same image point,
which also implies that every image point is the projectibsamescene point. A well-defined camera
has exactly one ray passing through every image point (ainan this work | tolerate cameras that

have a few singular image points that do not fulfil this reguient).

2.1.1 Pinhole Camera

The most commonly-used cameras, as well as our eyes, candmaddy thepinhole pr perspective)
cameramodel. For such a camera, all rays intersect a single pdiet ‘Ppinhole”) and the image
surface is usually a plane (although panorama photografibg ases cylinders or spheres). For this

presentation | ignore the issues of occlusion and camezatatin and the effect of the lens and aperture.
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A simple algebraic representation of the pinhole camera fslibows: a 3D scene poirftX, Y, Z)

is projected onto the 2D image poifit, y) given by
(z,y) = (X/2,Y/Z) (2.1)

In homogeneousoordinates, this is expressed as

px 2.2)

O O =
S = O
_= o O
o OO
T

wherep € P? is the image of the scene poipt € P3. In this representation, referred to as the
calibratedpinhole camera, th& axis is referred to as thaptical axisof the camera, and the origin is
the optical center The most general representation of a pinhole camera, arrtbalibratedpinhole

camera, is given by
fr s ¢ 1 000 T QT

px| 0 f, ¢ | |01 0 0 IE Ilit p=K|R";-R"t|p =My.up (2.3)
0 0 1 0010

where K3, 3 is theinternal calibration matrix andRs.3 andt € R3 represent, respectively, the
rotation of the camera and the translation from the origin.

The internal calibration consists of five parameters thaitagent characteristics of the camera:

o f. (resp. f,) is the ratio between thcal lengthand the horizontal (resp. vertical) pixel size.

The ratiof,/ f, is theaspect ratig and is usuallyl.
e s = tan «, Wherea is theskew anglewhich is usually0.
e (csz,cy) is theprincipal point which is usually(0, 0).

Theexternal calibrationconsists ofR and¢, which determine the camera location and orientation
in the scene coordinate systeR.is a rotation matrix, i.,eRR” = I. Thus, the uncalibrated pinhole
camera is determined by 11 independent parameters. Angegenerate matri¥I represents some

pinhole camera (note th&tl is a homogeneous entity).
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Given two scene pointp;, p2 € P2, the set of all points on the line joining; , p» is given by
{a1p1+agpa|al, as € R}. Thus the projection of this line is given By Mp,+asMps|ag, e € R},
which is the line that joindIp,, Mp, in the image. Therefore, the pinhole camera projects soee® |
onto image lines.

2.1.2 Affine Camera

The affine pr orthographic) camerds a camera where all rays are parallel. The calibrated affine

camera can be represented simply by
(z,y) = (X,Y) (2.4)

and in the general (uncalibrated) case by

o
b 0 1

Agxs b ] P (2.5)

Itis determined by 8 parameters. Itis often used as an appation of the pinhole camera, especially
for large focal lengths. Algebraically, it can be seen asexigih case of the pinhole camera (where the

bottom row ofM is (0, 0,0, 1)).

2.2 Multiple View Geometry

2.2.1 Homographies

If scene pointp o (pL;1)7 lies on a plandl « (77;1)7, thenII”p = 0. Thus, the scene point can

be expressed in homogeneous coordinates as
p { Toxs ] P (2.6)
—T
and it is projected by the camelfA s, 3; a] onto

px (A — a7rT)p7r = Hp, 2.7
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whereH is a homography, i.e., it describes a mapping from one plaa@dther (in this case, froii
to the image plane).
Denoting the homography that maps points from plBn® camera asH;, one can map image

points from camerato camergj through the reference plane with the homography
H; = H;H; (2.8)

It is easy to see that when the cameras have the same opintaf,ddis homography is independent
of IT; in other words, when there is no translation between twergitameras, there is a mapping that

transforms one image to the other.

2.2.2 Epipolar Geometry

Next | shall derive the relation between corresponding ieagjnts in two uncalibrated cameras based
on concepts introduced in [25]. By definition, every ray ofnesiai passes through its optical center.
Denotinge;ﬁ to be the projection of the optical center of cameiacameraj, it follows that every ray

of camerai is projected by cameraonto a line that passes througjn Given a pointp; in camerai,

the line that joins it with the epipoleg is given byl; = e{ X p;. It can be shown that the plane given
by IT « M7; passes through the optical center of camiexad the projection of every point di lies

onl;. If p is a scene point whose imageiiis p;, then
0= M;p)"li =p"M[l; = p'Tl (2.9)

i.e.,p lies onII. In the same way, it can be shown that the optical center obcaynalso lies onll.
Thus, 11, which is called arepipolar planeg joins the optical centers of both cameras and the scene
point. It is easy to see that o« M (e} x p;) = M]l;, wherep; corresponds tg; in cameray (i.e.,
they are both projections of the same scene pp)nt This means that corresponding points in two
different cameras have a single epipolar plane.

The linesl;, [; are called epipolar lines. From the discussion above ib¥dl that every point on

the linel; in camerai corresponds to a point that lies fnn cameraj. Denoting the pseudoinverse of
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M asMT, it can be shown that
T\ anT TN T \gT1.J _
o< (M) M7l = (M]) " M [el].p; = Fpy (2.10)

where [e{]X denotes the skew-symmetric matrix representing the crosdupt. It follows that for
every pair of corresponding poinpgTFpZ- = 0. The matrixF is called thefundamental matrix It
maps every point in one camera to a line in the other camerighvemy corresponding point must lie
on, and vice versa. The fundamental matrix is a homogengou8 matrix, and sincée] = 0, and

thusdet F = 0, it follows thatF has 7 degrees of freedom.

2.3 Scale Space

Scale space theory deals with representation and analiysigrals at different detail levels. The
notion of scaledetermines the level of details, so that fine structures evgressively suppressed at
coarser scales.

A canonical scale space representation that is commonty insgignal processing and computer
vision is thelinear scale spacepresented and discussed extensively in [39]. The linesle space

representation of d-dimensional signal (x4, ..., z4) is defined as
L(zy,...,xq;8) =1 *gs (2.11)

wheres € [0,00) denotes scale aney, denotes the convolution with thédimensional Gaussian
function with variances (or “smoothing”). Thus, the scale space representati¢d-is1)-dimensional
— it has an additional scale dimension. Linear scale spabe isolution of the diffusion equation

L 1
88_3 = §V2L L(x1,...,24;0) = I(x1,...,2q) (2.12)

The intuition behind this choice is easily observed in 1Dnalg — as we progress towards higher
(coarser) scales, concave regions are decreased and cegies are increased. In fact, in 1D signals
it can be shown that local extrema are not created as scalerésaised.

This stems from the notion @fusality which requires that features in a coarse scale originaie fr

features in afiner scales, or in other words, features arereated in coarser scales. In signals of higher
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dimension it is not necessarily the case that local extremaat created; instead, causality requires
that local extrema are not enhanced. Other features ofrlisegle space include shift invariance,
rotational invariance, scale invariance and of coursatfitie Throughout this work by “scale space” |

will refer to linear scale space.

2.3.1 Feature Detection

Since differentiation commutes with convolution, diffetiating . can be done simply by applying

O"L(ss) _ 9"(Ixgs) _ (c%s) oI (2.13)

oz oz’ ozl

3 3

Using derivatives of the image signal, there are severalifedypes that can be detected, such as
edges and corners. Applying the same differential opesdtothe image representation at different
scales would give different results — fine scales tend to beerdetailed and accurate, and perhaps
more noisy; while coarser scales tend to represent only mamhifeatures, albeit with a less accurate
localization.

Consider edges in an image. As suggested in [38], one wayfioedan edge is points where
the gradient magnitude is maximal in the gradient directi@his can be expressed as a differential
operator as

21y + 211,01 + Ijlyy =0

(2.14)
I lowe + 3121 Lugy + 3L Loy + 131y, < 0

This operator can be applied fd-; s) for any scales. Since there are advantages and disadvantages
to both fine and coarse scales, it is desirable to develop a@ptiad scale-selection mechanism, which
would determine the optimal scale for edge extraction imevegion of the image. An image may
contain sharp edges as well as diffuse edges, and their r@moeachanges considerably with scale —
sharp edges may become smooth or even disappear at codese wtdle diffuse edges may bifurcate
at fine scales.

The first problem is how to compare operator values betwd@relit scales. Since the amplitude

of then derivatives at decreases with scale by a factordf, a common heuristic principle is to use

17



scale-normalized derivativegiven by

o (s) o
=/2. 2
5gr = ° B (2.15)

(2 (2
for some positive normalization parameter In the case of edge detection, a good choice for this
parameter iy = 1/2. To see this, suppose we have a synthetic image with a step diffused by a

Gaussian with variance), given by
I(z,y) = hs,(z) = / gso(2')dx’ (2.16)

It is easy to see that the operator (2.14) will detect the edgectly atr = 0 at all scales for any. If
we consider the magnitude of the gradient as a measure ofireggsity, then it can be shown that this
measure assumes maximum at sgate %30. If v = 1/2, then the edge is detectedsat sy — the
“scale” of the edge. In other words, this mechanism enaldds automatically select the scale where
the edge “resides” — sharp edges would be detected at firessmadl diffuse edges would be detected
at coarse scales.

To summarize, edge detection in scale space is done byenterg the set of points detected
by (2.14) over all scales, with the set of points where theeestgength measure assumes maximum

over scale, given by
29+ %) =0 217
2+ ) <o
Other edge strength measures have given similar resultge tRat the introduction of the scale
normalization does not affect the outcome of the edge omefat14). This property of the edge
operator is present in a large class of operators that ack foseletecting various image and video

features such as corners, blobs and ridges.
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Chapter 3

The Crossed-Slits Projection

In this chapter | present the Crossed-Slits (X-Slits) ptigm and study its properties. The X-Slits
projection is defined by two non-intersecting lines whidiras intersect. This projection is generally
non-perspective, as there is no single point which lies brags, though the perspective projection can
be seen as a special case of the X-Slits model. A conciseraigebrmulation is given, from which
various properties of this projection model can be inferrékis representation is then used to derive

the epipolar geometry.

3.1 Projection Model

Fig. 3.1a shows the basic design of the X-Slits camera aslipuiDucos du Hauron in 1888 [33]. A
more general design is shown in Fig. 3.1b. A X-Slits camematha slitsl;, 1, which should be two
different lines in 3D space, and an image pldh¢hat does not contain any of the slits. For every
3D point not lying on either of the slits there is a single ralyieth connects the point with both slits
simultaneously. The intersection of this ray with the implgme defines the projected image of the 3D
point. The camera in Fig. 3.1a is a special case of the X-&litsera, where the two slits are orthogonal
to each other and parallel to the image plane. | call thisiapacrangement the Orthogonal X-Slits
camera.

The X-Slits model is a valid 3D to 2D projection, defining a mdo-one mapping from the 3D
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Figure 3.1: (a) A design of a X-Slits camera where the slits are orthobtmaach other and parallel to the image plane

(Orthogonal X-Slits camera). The projection ray of a 3D pain= (X, Y, Z) is shown, with circles showing its intersection
points with the 2 slits. (b) A general X-Slits design, withaharbitrary slitsl;, 1.. Note that the camera is defined by the
specific configuration of the two slits and the image plang;@rthese three factors can change independently, giveey ri

to a different X-Slits camera.

world to the 2D image plane. Below | develop the specific dqnatof the camera mapping as a

function of the slitd,, 1, and the image pland and discuss this model’s properties.

3.1.1 Definition

Consider the camera configuration as shown in Fig. 3.1b.pfdjection rayof a pointp € P3 (repre-

sented by homogeneous coordinates) intersects the twaaaliisel;, 1». It is thus the intersection of
two planes, defined by joining the poiptwith each of the slits. The image gfis the intersection of
this projection ray with the image plane. Furthermore, alhfs on a projection ray will project to the

same image point (unless the ray lies on the image plane).

More formally, letu;, v; denote two planes i®® which contain slifl;, for i € {1,2} respectively.
For anya, * the plane given byn; + av; also contains the sli;; and vice versa, every plane that
contains the slit can be described ®y+ av; for somea. Thus, for each scene poipt € P3 and

i € {1,2}, there existsx € R such that(u; + av;)p = 0. Eliminating a, we get the following

1o denotes a projective parameter as in [62] page 43.
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expression for the plane:

(u} p)
(vip)

Let us define the skew-symmetric matrix

v, o (V;-Fp)ui—(u;rp)vi = (uivT—Viu;fF)p (3.1)

)

St =uv! —vu? (3.2)

Matrix S} is actually the dual Plicker matrix representation of the 1; [26]. It can be shown to
be independent of the choice af, v;. The elements of such matrices must satisfy one non-linear
constraint (since a line has only 4 degrees of freedom upetie)sc

From (3.1) and (3.2) it follows that the plane which contapmint p and slitl; is S;p. The
projection ray of the scene poiptis therefore defined by the intersection of the two pla®gs, and

5p defined in (3.2).

Next, observe that the image of scene peiig the intersection of the projection ray with the image
planell. Letm € P2 denote a point on planié, and letj, k € P2 denote two distinct points at infinity
which also lie on planél. Every point onll can be expressed a§+ yk + wm. The projection ray of
p intersects planél at a certain poing o< zj + yk + wm such tha(S;p)Tq = 0 and(Sip)T'q = 0.

This gives us a set of linear equationsriny andw (the homogeneous image coordinates of pqint

namely:
T T T o
P’ S3j p'Sik  p'Sim
1J 1 1 _0 (3.3)
p'Sij p'Sik  p’Sim
w
Define the following skew-symmetric matrices
Qi = km” — mk” Q> = mj” — jm” Qs = jk’ —kj" (3.4)
the solution of the linear system (3.3% is
x p’S{QiS5p
y | x| p'SiQ:Ssp (3.5)
w p’S{QsSip

2The solution is a unique point unlepgesides on the line joining the intersections of the twasliith the image plane.
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andp is projected tqZ, £). Note thatS; depends only on the slif, while Q;, Q2, Q3 depend only
on the plane of projectiofl. Q1, Q2, Qs are the Pliicker matrix representations of the imagaxis,
the imageY” axis and the image line at infinity, respectively (all in 3Bally, note that the choice of
j andk to be points at infinity limits the internal calibration to affine transformation of the image.
The camera projection model in (3.5) is a quadratic mappiomP3 to P2, and therefore a X-
Slits camera cannot be described by a 4 projection matrix ove. Letv : P2 — P denote the

Veronese map given fgs = (pl,pz,pg,p4)T by

v(p) = (P3,p1D2, P1D3: P1P4s D3, D2D3, P2P4s Pas P3P4, D3) (3.6)

Using this notation, the transformation in (3.5) can be txailg written as
p o< Av(p) (3.7)

whereA is a3 x 10 matrix determined by the two slits and the image plane (arivadently, the five

camera matriceS7, S5, Q1, Q2, Q3).

3.1.2 Orthogonal X-Slits camera

A configuration of special interest is when the slits are agtinal to each other and parallel to the
image plane. | will refer to this configuration @thogonal X-Slit{see Fig. 3.1a).
Without loss of generality 1 fix the slits by assigning = (1,0,0,0)”, v; = (0,0,1,—21)7,
up = (0,1,0,0)”, andvy = (0,0,1,—Z5)". This defines a vertical slitaX = 0, Z = Z; and a
horizontal slitaty” = 0, Z = Z,. | also denote\ = Z, — Z;. Planell is the X — Y plane atZ = 0,
and therefore | assigm = (0,0,0,1)7,j = (1,0,0,0)7, k = (0,1,0,0)”. From (3.5) it follows that
T /A, S
=| A (3.8)
) _Z2 Z—YZQ
This projection equation is identical to the model first gmad in [1], where it was called bi-centric

projection.
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() (d)

Figure 3.2: Simulated X-Slits images of an artificial scene. (a) A regplahole image. (b) Orthogonal X-Slits image using

the projection equation from (3.8). (c) Same as (a), but ithvertical slit rotated about thg axis. (d) Same as (a), but

with the vertical slit rotated about th¥ axis.
3.1.3 Properties

It follows from (3.5) that the X-Slits projection is defineg three4 x 4 matrices or & x 4 x 4 tensor.
It is a homogeneous object, so it is defined up to a scale. Romatrix A and any anti-symmetric

matrix B
p’ (A+B)p=p’Ap (3.9)

and therefore the anti-symmetric part of the matrices d¥)(Bas no effect on the projection. This
means that the projection is defined only up to its symmetit pby 29 variables . However, the
number of degrees of freedom is much smaller - each slit hagreds of freedom up to a scalar, the
plane has 3 degrees of freedom, and there are additionalréegegf freedorhfor the choice of the
origin and the axes in the image plane, yielding a total of dgrees of freedom.

To get some intuition for X-Slits images, Fig. 3.2 shows egbesn of X-Slits images as compared

with pinhole images of the same scene. | also show the efféetarying the relative geometry of the

3The three point§, k, m € P2 are confined to a plane, leaving 2 degrees of freedom for e@do, scaling.
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slits and image plane. Next | demonstrate algebraicallyarieeresting properties of X-Slits images.

Projection of Lines

In X-Slits images, the image of a 3D line is a conic. Given a liapresented by the Plucker matFix
that does not coincide with either of the slits, considerghadric surfac&iLS5. The projection ray
of a pointp € P3 not on either of the slits is the intersection of the plangs- Sip for i = 1,2, and
the lineL intersectsr; at Lx;. Thereforep lies on the quadriSTLS3 if and only if its projection ray
intersectd..

In other words, this quadric is the surface of all projectiays of points orl.. Since the intersection
of a quadric with a plane is a conic, the X-Slits image of a liilealways a conic.

If L intersects the slit, at some point, then it can be shown thdtSip = q for anyp € P3.
Therefore, the quadric degenerates to the plirg Equivalently, ifL intersects the slit; atq, then
the quadric degenerates to the pl&ie. Hence, the projection of a line that intersects one of tite sl
is a line.

In the special case of the Orthogonal X-Slits camera, if iddiBe is perpendicular to thg axis,

i.e., itis of the form(a + cA, b + d), e), then its image is the cunie, y) = (—21%, — 7 gjg),

which is a line; if the 3D line ismotperpendicular to th& axis, i.e., itis of the formfa + ¢\, b+dA, \),

then its image is the curve

a+cA b+ dA
=(—-Z -7 3.10
(z,y) ( 1)\_21, 2)\—Z2> ( )
Solving for A\, we find that the line is projected to the hyperbola given by
(Z1 — Zo)axy + Za(b+ Zhd)x — Z1(a + Zac)y + Z1Z2(be — ad) =0 (3.11)

For Z, # Z,, this hyperbola degenerates to a line if and only # Z1c = 0 orb + Zsd = 0, that is,
only if the line intersects one of the slits.
The distortion of straight lines is illustrated in Fig. 3.2h practice this distortion is not very dis-

turbing, as can be seen in the examples in Section 4.1.4.elmahous scenes | have experimented
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with, this distortion was rather minor. Many scenes, paléidy natural scenes, do not have very dom-
inant straight lines, in which case this distortion is hamtbticed. Furthermore, people are accustomed

to similar effects caused by lens distortions.

Aspect Ratio Distortions

The most apparent aspect of the distortion in Orthogonalits-Ehages is the variation of aspect ratio
(especially in pushbroom images [23]). The apparent aspé#otof objects in the image depends on
their depth. This is unlike the perspective model, in whiwh distortion in aspect ratio is constant for
all objects.

From (3.8) it follows that an object at dep#hwith aspect ratio ofl would appear on the image

plane to have an aspect ratio of

Ay_ZQ Z—Zl
Ax 71 Z— 7

(3.12)

In practice, | found this distortion to be typically rathasignificant. If the range of depth values of
scene objects is not too large, we can normalize the imagempensate for this distortion by scaling.
Specifically, if we cancel the aspect ratio distortion famsantermediate depth valug, the distortion

at depthZ would be

Z—7Zy Zy— 2y
Z—Zy Zoy— 2

(3.13)

To demonstrate the magnitude of the distortion, considerfoflowing example: Suppose the
depth range of objects in the scene3is- 5 meters (measured from the horizontal slitat i.e.,
3m < Z — Z; < 5m), and assume that the images are normalized so that olbjetite depth of
3.84m appear undistorted (i.eZy — Z; = 3.84m). If the vertical slit is behind the horizontal slit at

A = —2.5m, the aspect ratio distortion would not excd®&.

Tilted Slit

Departing from the Orthogonal X-Slits camera, suppose lwvéht vertical slit sideways. Assigning

all substitutions as with the Orthogonal X-Slits configioat except thati, = (1,4a,0,0)” for some
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a € R, we obtain

X+aY Y
o) o A e (Gr) (3.14)
Yy _Z2 ZE/ZQ
By substitutingz’ = z +ay, v = yandX’' = X +aY,Y’' =Y, Z' = Z, we get the simple
model of (3.8) for the projection dfX’,Y”, Z’) to («/, y). In other words, we get a skewed image of

a skewed scene. Such a projection is demonstrated in Fig(i3oke that the skew is 3-dimensional).

Relation to Other Projection Models

The pinhole camera model is a special case of the X-Slits mod&ined when the two slits intersect.
Let there be three planes v1, v, defining the slits so tha8? = uv! — v u (i.e., both planes lie on

planeu). SinceQ; (3.4) are anti-symmetriaz” Q;u = 0 and therefore
p’SiQiS5p = p’(uv] Quvi —uvi Qivou’ +viu’ Qvou’)p =
= (p"u)- (v Qiuvi — v Qivou’ +u'Qvavi)p (3.15)

and thus (3.5) becomes

T VlTQlqu — V{Q1V2uT + uTQ1V2viF
Y X vlTquvg — V{QnguT + U.TQQVQV{ P (3.16)
w V:1FQ3UV§F - V{QsVzuT + uTQsVzviF

which is a projective transformation, and the pinhole isitiiersection of the slits. Note that this is
true only whenp”u # 0, i.e., whenp does not lie on plana. If p does lie onu, then its projection
is (0,0,0)7, which is not a point. Geometrically, the projectionofs the line where the image plane
intersects plana.

The linear pushbroom projection is also a special caseseo{@nthogonal) X-Slits projection,

obtained when the vertical slit resides on the plane at igfilmdeed, setting/; = oo, (3.8) becomes

T X
= (3.17)
y ~Zy 77
It was shown in [23] that a 3D line is projected by the lineashtaroom projection model to a hyperbola

in the image. This is a special case of the result shown in@e8dtl1.3.
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3.2 Multiple View Geometry

Next | study the relation between two X-Slits images, takgmvmn X-Slits camerad” andT'.

3.2.1 Image Plane Transformation

Let us consider two X-Slits images which were obtained bystrae slit configuration but with differ-
ent projection planesl andIl’. Note that the set of rays intersecting the image plane degrdamed
by the two slits. Thus, there exists a mapping between thaérhage planes which is invariant to the
3D structure of the viewed scene, similarly to the case @ftiar in pinhole cameras.

Specifically, | derive the relation between a pojnt,y’,w’) on II" and a point(x, y,w) onII,
both of which are the projection of the same scene ppintRecall that the 3D point which cor-
responds tdz,y,w) on Il is q « zj + yk + wm. Similarly, (2/,3’,w") on II' corresponds to
q x 2'j’ + y'’k' + w'm’. By definition q lies on the plane$;p and Sip, and thereforey is also

projected toz’,y', w’) onII'. Denoting

M = [j k m} p=(z,y,w)" (3.18)

it follows thatq = Mp. We now projectMp onII’ to obtain

a! p"MTSiQ’S5Mp
y | < | p"MTS:Q,S5Mp (3.19)
w’ p"M"STQ’5S5Mp

Note thatM depends only on planH, S; and S5 depend only on slitd; andl, respectively, and
Q’1,Q’5, Q5 depend only on plang’.

Now, similarly to the notation used in (3.7), we can writesttransformation as

p' o< Hy(p) (3.20)

wherev denotes the Veronese map P? — P> andH is a3 x 6 matrix.
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Figure 3.3: lllustration for the derivation of the fundamental matror fwo X-Slits cameras.

3.2.2 Fundamental Matrix

I now study the relation between two X-Slits images, takeriviny arbitrary X-Slits camera¥ and
T’. Given a pointp € P? on the image of camer®, the 3D point on the image plane corresponding
to p is given byp; = Mp, whereM is the4 x 3 matrix defined in (3.18). The plane that joips to
slit 1; is given byS7ip:, see Fig. 3.3. This plane intersetisat the pointp, = S2S7p; (note thatS,
is the Plucker matrix representingandS; is thedual Pliicker matrix representing). The pointps,
which is not seen b{" since it lies onls, lies on the rayl that projectgp; to p. This ray is given by

the Plucker matrix
L = pip3 — p2P1 = p1p; S;S2 — S2Sipip? (3.21)

As explained in Section 3.1.3, the projection of a line repreed by the Pliicker matrixon T is
a conic given by the intersection of the image plane with theedgicS'7LS’;. Therefore the projection
of the ray throughp on the image of camer®’ is given by

0 — p/TM/TSP{LS/;M/p/
= "M (Mpp M7 S8, — S8iMpp" MT)S ;MY (3.22)

This equation defines a bi-quadratic relation between sparding pointg andp’ in camerasl and
T’ respectively.

Using the Veronese map: P? — P>, (3.22) can be rewritten as

v(p")"Fr(p) =0 (3.23)
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whereF is a6 x 6 matrix whose components depend on the values of the caméeraesd/1, S}, S5
andM’, S}, S'5. For each image pointin T, F defines the conic on which the image paginin T’

must lie, and vice versa. | shall refer to such conicsisibility curves

Definition 3.1 The two conics on which two corresponding image pginis must lie, as determined

by Eq. (3.23), are calledisibility curves.

As will be shown below, these curves play a role similar togpgoolar lines in the perspective model.

In analogy with the pinhole camera, | define thedamental matrixf a pair of X-Slits cameras:

Definition 3.2 Matrix F'in Eq. (3.23) is called théundamental matrix of a pair of X-Slits cameras

T andT".

Clearly, F always exists. It is similar to the conventional fundamemtatrix in the sense that it
captures the relative position of two X-Slits cameras, drad it makes it possible to get the visibility
curves in one image from points in the other image.

Since F depends on camerdB and T, it is determined by 34 free parameters at most. The
real number of free parameters is, however, much smallese€ahis, supposA is a4 x 4 matrix
representing a projective transformatipn— Ap. It can easily be verified that this transformation,
when applied to a Pliicker and a dual Pliicker matrix, isgtweS — ASAT andS* — A-TS*A-1,
respectively. By substituting these mappings into (3.28) obtains the same equation, and therefore
(3.22) is invariant to a projective transformation of a8l élements. Note, however, that due to the
construction of matriXV with 2 points on the plane at infinity, we are only free to ctoas3D affine
transformation to change the coordinate system; this resm&2 degrees of freedom, leading us to the
conclusion thakF" is fully determined by 22 free parameters at most.

We can deriveF directly from the camera parameters as follows. peindp’ denote the corre-
sponding projections of 3D poimt in the two images. As discussed above, the projection rayiof
camerdT is defined by the intersection of the two plar&§3VIp andS5Mp. It follows thatp must lie
on the two planes, namelp” S:Mp = 0 andp?'S;Mp = 0. A similar argument regarding camera

T’ allows us to conclude that’ S'TM'p’ = 0 andp? S’;M'p’ = 0.
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Let us define thel x 4 matrix B whose columns are the vector representations of the 4 planes

namely
B=|S:Mp S;Mp S TM'p S5M'p (3.24)

Clearlyp” - B = 0. This implies that the null space & is not empty, and thus the determinant
of B must be 0. The equatiodet(B) = 0 gives us another expression for the bi-quadratic relation
between the image points described by the fundamentabnfatiWith some algebraic manipulations

of det(B) = 0, we can arrive at the following form
0=det(B)=v(p)!’ -H-G v(p) (3.25)

whereH andG are two6 x 6 matrices which depend eaohly on the camera®¥ andT’ respectively.
Let us take a closer look &(p)” - H. For any matrixX*, | use the notatioX"* to denote thek-th

column ofX*. By construction we have

v(p)TH! p"MT[(81)(S3)T — (S3)(SP)TIMp
v(p)TH? = p"MT[(S])(S3)" — (S3)(S9)"IMp
v(p)TH? = p"MT[(S])(S2)" — (S3)(S1)"IMp (3.26)
v(p) H' = p"MT|[(S1)(S3)" — (S3)(S%)"|Mp
v(p)TH> = p"MT|(S])(S2)" — (S3)(S1)"IMp
v(p)TH® = pTMT[(S})(S3)" — (S3)(S1)"|Mp

This defined matriX; moreover, it can be shown that the rankkbfis at most 4 given that thé x 4
matricesS} andS} are anti-symmetric and of rank s is defined in a similar way for camef#, and

its rank is therefore also 4. Since the fundamental matrix H - G, we can conclude the following:

Proposition 3.1 The rank of the fundamental matrix of the X-Slits project# at most.

This proposition immediately gives us 4 independent cairgs on the elements &. For example,

we can choose four differefitx 5 sub-matrices oF', and require that the determinant of each equals 0.
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(@) (b)

Figure 3.4: Visibility quadrics: (a)Q’(p) is the collection of projection rays &' passing through lin&, while Q(p’) is
the collection of projection rays @F passing througiL’. (b) When the cameras have a shared Hlit=f 1'1), the visibility

quadrics intersect in a plane.

3.2.3 Visibility Quadrics

Let L denote the projection ray of camelapassing through image poipt Let Q'(p) denote the
quadricS’7LS’; whereL is defined in (3.21); thu€’(p) is the projection of. in cameraI’. This

guadric is a double-ruled surface that is ruled by the familgll rays of cameral’ passing through
the lineL (see Fig. 3.4a). Similarly, |ek’ denote the projection ray of caméeld passing through

image pointy’, and let the quadriQ(p’) = S;L’S; denote the projection di’ in camerdT.

Definition 3.3 The quadricQ’(p) (resp. Q(p’)) for any image point® (resp.p’) is called avisibility

quadric

Visibility quadricsplay a role similar to epipolar planes in the pinhole camelawever, unlike the

perspective model, these quadrics are not necessarily symomwith respect to the two cameras. For

a given scene poin that is projected t@ andp’ in T andT’ respectively, the corresponding surfaces

of rays of T andT’ areQ’(p) andQ(p’) respectively. These quadrics do not usually coincide.

WhenQ'(p) andQ(p’) do coincide, | refer to this quadric as apipolar quadric The property

of an epipolar quadric is that all points on it are projectec tsingle conic in each camera, and the

corresponding conics can be used for matching in the sameasvapipolar lines are used in perspective

images. | shall describe next the camera configurations ichithis occurs for all scene points; in these
cases theisibility curvesin both cameras can be matched with each other, similarlpifmotar lines

in the perspective camera. This notion will be made moreipeatext.
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Figure 3.5: lllustrations for the proof of Lemma 3.2.

Epipolar Quadrics

In this section | assume thalits are not visible by their camerdecause otherwise epipolar quadrics
are not well defined for points on the slits To make the disonsprecise, let us start with a few
definitions: We say that twdines intersecif they have a common point. We say that lines disgoint
if they do not intersect. Lek be a set of lines. Denote [9(L) the set of lines that intersect every line
in L and call7 (L) the transversabf lines in L. Adopt that a sef of lines is calledregulusif there
are three pairwise disjoint linds, 15, 13 such thatkR = 7 ({1;,15,15}).

Let T denote a X-Slits camera with slits, 1o. We say that lind is a projector of a pointp in
camerdT if 1is transversal to slity, 1o, andp isin1\ (1; Uly). A nonempty quadric) is said to be
anepipolar quadricof two X-Slits camerad, T’ if for every pointq € Q all projectors ofq in T and

T’ are contained iid).

Lemma 3.2 Letly, 15, 13 be three distinct lines, out of which at least two are digjoirhen transversal
R =T ({l1,12,13}) is either the union of two planar pencils of lines that have éne in common, or

a regulus.

Proof: Let w.l.0.g. 11, 15 be disjoint. Then one of the following 3 possibilities hold%) 15 intersects
both1;, 1> (see Fig. 3.5a); (2 intersects eithel, or 1y, be itl; w.l.o.g. (see Fig. 3.5b); (), 1,13
are pairwise disjoint (see Fig. 3.5¢).

case 1:Denotel; N 13 by p; andl, N 13 by po. The set of lines transversal 1p 15 is the union

of the setL; of all lines passing througp; and the sef., of all lines in the plane spanned by, 15.
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The lines inL; that intersecl, form the pencil of lines with centgs, in the plane spanned Qy, I3.
The lines inLy that intersecl, form the pencil of lines with centgs, in the plane spanned Wy, I3.
Clearly linels lies in both pencils.

case 2:Denotel; N 13 by p;. Line 1, intersects the plane spannedlpyls in a pointps. Now,
the set of lines transversal 19, 15, 13 is the union of two planar pencils of lines that have one lime i
common by the same argument as in the previous case.

case 3:In this caseR is a regulus, see [56, p. 42] for the proof. [

Theorem 3.3 Let T (resp. T’) be a X-Slits camera with disjoint slits, 1> (resp. disjoint slitd}, 15).
Then, every point in the s&t of all points that have a projector in both cameras is conggirin an
epipolar quadric < the cameras either share a slit, or slits 1, intersect with slitd}, 15, in four

pairwise distinct points.

Proof: (=) One of the following must be true: (1) all projectorsBfintersect at least one of the
slits 1] or15; (2) there is a projectdrof T so thatl, 1}, I}, are pairwise disjoint.

case 1:The set of projectors df is the union of two sets of lines

A = {misaprojector ofTl|/m N1} # 0} = 7 ({11, 15,1} })

B = {misaprojector ofTm N1 # 0} = T ({13,12,15}) (3.27)

It follows from Lemma 3.2 that transversal({1, 1,,1}) for alinel # 1y, 1, is either a planar pencil of

lines or a regulus. Therefore, from
T({ll, 12}) =AUB= T({ll, 12, ,1}) U T({ll, 12, 1/2}) (328)

it follows thatl] € {l;,15} orl, € {1;,15}. This is becaus& ({1;,1>}) is not a surface (but rather a
volume), since for every point there is a line in7 ({1, 15 }) passing througip.

case 2:Takep € 1N V. There is an epipolar quadr{@ containingp. Thusl is in ¢ and also the
regulusR = 7 ({1},15,1}) is in Q by which @ is a regular double ruled quadric. Either (2.1) there is a

line s € R which doesotintersect both, 15, or (2.2)11, 1, intersect all lines inR.
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e case 2.1: Regulug ({11, 15, s}) is in @ and therefore linek , 1, are in@. Linesly, 1, are disjoint
and consequently are in the same regulus. The same holtis ¥or Line s intersectd], I, but
does not intersedt, 15, and thud, 1, are in the opposite regulus to the regulus contaidnij,
(in other words, they are in different rulings on the surjageonsequently, slits;, 15 intersect

with slits 1}, 15 in four pairwise distinct points.

e case 2.2: Line$, 1, are in regulusZ (R). Sincel},l; € T(R), all four1;,15,1;, 1, are in the
same regulus and are pairwise distinct becdusgersectsl;, l; but does not intersedf, 15.
Then, however, no poinf € V \ @ is contained in an epipolar quadric due to the following
argument. Denote by (resp. n’) the line fromT (resp. T) that passes through a poigte
V. Assume that there is an epipolar quadfj€ containingqg. Then both7 ({1;,13,n'}) and
7 ({1},1,,n}) are in@’, and thus ally, 15,1},1, are inQ’. However, nowQ = Q' since every

four distinct lines from a regulus are exactly in one regullisereforeq € Q.

(<) By the assumption one of the following holds: (1) the cametege exactly one slit; (2)
the cameras share both slits; (3) the cameras interseatiimfstinct points.

case l:Letw.l.o.g.l; = 1}. A pointq € V is not contained ifl; and therefore there is exactly
one planer throughl; andq. Every projector fronil' or T’, which containgg, intersectd; and is
therefore inr; thusw is an epipolar quadric.

case 2:Letw.l.o.g.1; = 1] andl, = 1,. Then every poiny € V is projected in botfl' and'T’ by
the same projector. Every € V and its projectoi are contained in, e.g., the regular epipolar quadric
that contains regulug ({1, 15,1'}) for some linel’ that containgy and does not intersett, 1.

case 3:Every pointqg € V is contained in exactly one projectbfrom T and in exactly one pro-
jectorl’ from T’. We assumed thdt, 1, are transversal tf , 15. Line1 (resp.l’) is transversal td,, 1
(resp.1},15). Linelis transversal td since both contairy. Linesly, 1,1’ (resp.1;,15,1) are pairwise
disjoint. Thereforeq is contained in a regular epipolar quadric that containgltesg/ ({1;,15,1'}). =

We can now conclude the following:

Corollary 3.4 If two X-Slits cameras share a slit, then every point is ciorg@d in an epipolar plane,

see Fig. 3.6b. Moreover, the epipolar planes form a penqilahes.
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(b)

Figure 3.6: Epipolar quadrics of a pair of X-Slits cameras with noniségting slits. (a) The slits intersect in four

pairwise disjoint points. (b) The cameras share a slit.

Vice versa, when the epipolar quadrics are planes in genénal cameras must have one common

slit.

Corollary 3.5 If the slits intersect in four pairwise distinct points, thevery point is contained in a

regular epipolar quadric, see Fig. 3.6a. Moreover, the gbgp quadrics form a pencil of quadrics.

3.2.4 \Visibility Curves

One property of visibility curves is that they must all irstect two specific points, which are the points

where the slits intersect the image plane.

Proposition 3.6 In cameraT, denote the image points where slitsand 1, intersect with the image
plane asc; andc, respectively; then all scene lines are projected into cetiat pass through; and

Co.
Proof: The lineL is projected into the conic given by
pI MTSILS;Mp = 0 (3.29)

Fori = 1,2, the 3D point corresponding g is Mc;, and since this point lies on slif, it follows that
S:Mc; = 0. Therefore, (3.29) holds fgr = ¢;, which means:;, c; both lie on the conic which is the

projection of the lindL.. [

Corollary 3.7 ¢; andc, lie on all visibility curves.
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The projection of a ray is the intersection of the image plaitle a subset of a quadric double-ruled
surface containing the slits of the camera and the ray of ther @amera through the scene point, as
discussed above and in Section 3.2.3. When this set is a, glaneisibility curve degenerates into a

line. This gives us the following result:

Proposition 3.8 When two X-Slits cameras share a slit, visibility curveslies and can be matched,
i.e., points on a visibility line of one camera can be matcteedoints on the corresponding visibility

line of the other camera.

This proposition shows that in the case of a shared slitetisagreat similarity to the epipolar geometry

of the perspective projection. The following lemma chagdezes this similarity:

Lemma 3.9 For two camerasT, T’, if the cameras have a common slit, then each visibility €urv
is composed of a pair of lines, one of which is the projectiba singular point; excluding singular
points, the remaining family of lines is the family of linesliced by the perspective fundamental

matrix.

Proof: Since a slit is shared, let us assume w.l.0.g. #jat S'7. It can easily be shown th&8tS,S} =
uS;, for somep € R. From (3.22) it follows that for each scene point projecteg,tp’ in T, T

respectively,

0 = p"M"S[(Mpp"M”S]S; — S,STMpp” M")S ;M p/
— p/TM,TST(MppTMTSTSQ - ,uMppTMT)S,;M,p/
_ p/TM,TS/TMppTMT(STSQ _ MI)S,;M,p,

p'TAp . pTBp' (3.30)

SinceMp andM'p’ are 3D points on the image planesbfand T’ corresponding te andp’ respec-
tively, p’7 Ap = 0 if and only if p andp’ are coplanar with the common slit.
Imagine that instead of the two X-Slits camefBsand T’ we have two perspective cameras with

focal centers orl;; clearly the same relationship would exist between comedimg image points.
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This means that the first constraint, denotedpasAp is equivalent to the constraint on matching
points between two perspective cameras that lig, on

On the other hand(S;Sy — I)S} = (uS% —uS3) = 0. Thereforep? M7 (S3S; —al)St = 0,
which means thap? M7”'(S§S, —al) is a point on slitl;, and therefore the visibility lin®87p is a
projection of a point on a slit. This projection is singulargoint is projected to a line), and therefore

we exclude it from the set of points feasible for matching. [

3.3 Summary

| presented a hew non-perspective projection model, wkideiined by two slits and a projection sur-
face. This model can be physically realized, and has bednintine late 19th century. Algebraically,

| showed that this model corresponds to a second-orderforamation from three-dimensional space
to two-dimensional space (while perspective projectioaligear, or first order, transformation).

The second-order nature of the X-Slits projection is furthieserved in its epipolar geometry. |
studied the multiple view geometry and described the malietween two X-Slits images with the
same slit configuration and different image planes, whicthésequivalent of homographies in the
perspective, as well as the relation between two arbitraf§lidé cameras, which is the equivalent of
the fundamental matrix. In both instances, correspondirage points have the same relation as in the
perspective model, except that here the constraints adrafi@rather than linear.

Consequently, epipolar planes and epipolar lines becomvedin the X-Slits projection. | defined
visibility surfaces, which were shown to be double-rulecadyics, and visibility curves, which were
shown to be conics. Interestingly, unlike the perspectieeleh here visibility surfaces and curves need
not correspond, except for certain special cases. In oneesktcases, when the cameras share a slit,
the epipolar geometry exhibits some similarity with thegperctive epipolar geometry. This particular

configuration turns out to be useful for image-based rendapplications, as presented next.
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Chapter 4

Non-Perspective View Synthesis

In this chapter | describe how to synthesize X-Slits imagemfa sequence of perspective images
acquired using a sideways-moving perspective camera. éwrsin Section 4.1, a simple column-
sampling method that does not require any knowledge abegdbne can be used to generate X-Slits
views with one slit coinciding with the camera path and thHeeott arbitrary locations. This method
is also extended to non-linear slits.

In Section 4.2, this technique is used for creating an onmeictional virtual environment, where
the point-of-view is moved by moving one of the slits. Sinlee K-Slits projection is not perspective,
it appears distorted, and | present a method for reducirggtdistortions by perspective reprojection
using a coarse approximation of the scene structure.

In Section 4.3 | consider the problem of optimal mosaicinggobonly on the available set of rays,
without any information about the scene by approximatingspective camera based on the set of

rays alone.

4.1 Crossed-Slits Image Generation

| now consider the issue of synthesizing new X-Slits vievesrfr‘regular” perspective images. The
input sequence is assumed to be captured by a pinhole carmeskating along a horizontal line in 3D

space in roughly constant speed, and without changingidatation or internal calibration. As | show
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below, in the simplest case we can generate a new X-Slitsdmémgre the two slits of the underlying

virtual X-Slits camera are defined as follows:

1. A horizontal slit that lies on the path of the optical cemtethe moving pinhole camera.

2. A vertical slit that is parallel to the image’s verticali®xand whose location is determined by

the parameters of the mosaicing process.

In practice, new view synthesis is performed by non-statiprmosaicing. Basic non-stationary

mosaicing is defined as follows:

e From each frame, sample the vertical column (strip) centered on the hotelaoordinates(t).

e Paste the strips into a mosaic image, as in [55].

In the general case we may sample slanted strips rather #rdinal columns (strips), and the
orientation may also change as a functiort.olin this case the “vertical” slit of the underlying virtual
camera may not be parallel to the image’s vertical axis. Hewdor clarity of presentation and without
loss of generality, | will continue calling one slit of thewa@irtual camera “horizontal” and the other
slit “vertical”. Typically the “horizontal” slit is alignd with the path of the camera, while the second
“vertical” slit is not constrained a priori and need not bthogonal to the first slit.

The parameters of the strip sampling functign) determine the location of the vertical slit of the
virtual camera. A virtual walkthrough is obtained by getieigaa sequence of X-Slits images via non-
stationary mosaicing, while moving the vertical slit alomgplanar path. Adjusting the image plane
orientation is done by warping the mosaiced image, as destin Section 3.2.1.

In Section 4.1.1 | show how to sample vertical strips fromitipeit images in the sequence in order
to generate a valid X-Slits image. | also discuss the reldigtween the sampling functiait) and the
parameters of the virtual X-Slits camera. In Section 4.1distuss implementation issues, including

the treatment of deviation from constant speed and aspzin@malization.
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sampled column

vertical slit

Figure 4.1: The non-stationary column sampling routine which is usesitihesize new images.

4.1.1 Non-Stationary Strip Sampling

| start my analysis with the simplest case where the inpugarsequence is generated by a camera
moving sideways in a direction parallel to tBé-axis of the image. The camera is also assumed
to be internally calibrated. In this simple case the newlsssized image is an Orthogonal X-Slits
image (see Section 3.1.2), and the non-stationary stripplsagnis a linear function. | show below
the exact relation between the parameters of the linear Isagrionction and the parameters of the
corresponding virtual X-Slits camera. In Appendix A it isogin that even when the camera is not
internally calibrated, any linear strip sampling functi@sults in a X-Slits image (but not necessarily
Orthogonal X-Slits). When the motion of the camera is noaplrto the image plane, the sampling

function is not linear anymore.

When the basic assumptions of the analysis are violatedglyathe camera changes its orientation
and internal calibration arbitrarily along the input seqees we need to preprocess the sequence. One
solution involves registering all the images with each otleing the homography of the plane at in-
finity. This computation requires, however, either (pdriisternal camera calibration or some domain

knowledge (such as parallel lines in the scene) [26].

40



sampled ray

f rt sampled ray

N ; r s
b o ; | N4

1 It |

-r r

A X0Zo)

(a) (b)
Figure 4.2: New image formation with two possible positions of the \@tislit (see text).

Mosaicing by Linear Strip Sampling

Let our input be a sequence of images captured by a pinholereananslating in constant speed along
the X axis from left to right. We generate a new panoramic imagedstipg columns from the input
images, as illustrated in Fig. 4.1. We start by sampling éfiedolumn of the first (leftmost) image,
and conclude by sampling the right column of the last (righgthimage. In between, intermediate
columns are sampled from successive images using a linegaliag function.

A schematic illustration of this setup is given in Fig. 4.2aa top-down view. A sequence of
positions of the real pinhole camera is shown, together Wighcorresponding field of view. The
moving input camera, whose optical centers are locatedsitigmusc(t) = (X4, 0,0), generates images

according to the following mapping:

X-X: Y

p:(X,KZ) = p:(l',y):(f 7 7

Denote the range of columns)(in each pinhole image dsr, r], and the range of camera pinhole
positions (X;) as[—1,] (see Fig. 4.2a). The new synthesized image is constructpadting columns
from the input images. The range of columns in the synthdsimage is|—(r + 1), r + []. For each

t € [-1,1], we assign to thél + )t column of the new image the image values atitheolumn of
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the pinhole camera positioned @t, 0,0) (i.e., X; = It, see Fig. 4.2a). It now follows from Eq. (4.1)

thatrt = f2-L. In addition, for each columm € [—(r + 1), (r + 1)] in the new imaget = - and
therefore
rt r Z l
X=—Z+It= =
7o w@+rf+bw)
or
L+r X
= f- -
r Z + f;

Observe that this defines a vertical slitat= —f% (see Fig. 4.2a). The horizontal slit is Z&t= 0

(all pinhole camera centers arezat= 0). Eq. (4.1) can therefore be rewritten as

=X, Y,2) = p=(z,y) = (4.2)

(ﬁz+xﬁz)
wheref, = HTTf is the horizontal focal lengthy,, = f is the vertical focal length, and = f% is the
distance between the two slits.

Suppose next that instead of taking thecolumn from the camera tt,0,0), we choose an
arbitrary linear column sampling function. More specifigalor ¢ = as + 3, we take the s column
of the lt camera, see Fig. 4.2b. (Recall that are fixed, whilet, s are free parameters). Let the field
of view of the original pinhole camera [2d. It can be shown as above that such a choice of columns
defines the mapping

ol X—-pl .Y

(x7y):((f+tan9)z+ta0;l67f§) (43)
This can be written simply as
. X=Xo

whereX, = 081, A = 2L f, = fandf, = f + A.
The method described so far produces images which do nawfdhe perspective projection
model. They do, however, follow the X-Slits projection mbd€o see this, observe that all the rays

which participate in the generation of each new image, rmistsect the following two lines:
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1. The line of camera motion; this is because each projecéipmust be collected by some camera

whose optical center is on this line.
2. The vertical line located &Xy, Zy) (as in Eq. (4.4), wher&, = Z + A).

The projection model is therefore defined by a family of ray®isecting a pair of lines'glits” ),
projecting 3D points onto a plane. Moreover, the model i©i@gbnal X-Slits (compare Eq. (4.4) with
Eqg. (3.8)).

In the derivation leading to (4.4) | effectively showed tlzaty linear sampling function yields
a valid new Orthogonal X-Slits image. Furthermore, we cantlse location of the vertical slit to
(Xo, Zp) by fixing a = —% tand and = % This result enables us to synthesize new views of
the scene with any vertical slit of our choice, by sampling ¢blumns of the original input sequence

according ta = as + g, with o and 3 assigned the appropriate values.

4.1.2 Implementation Issues

In this section | address the case when the motion of the eadestiates from constant speed, and how
the aspect ratio of the resulting mosaic is determined.d jpiesent an alternative implementation of

mosaicing, hamely the slicing of space-time volume.

Variable Camera Speed

When the camera moves in a linear trajectory but varyingntai@n and speed, we compensate for
this variability by estimating the camera motion (see [2&}d by derotating the image planes. |
found that when the changes in camera orientation are smailinple approximation is sufficient.
Specifically, we compute the 2D rotation and translatiomken consecutive input frames using the
method described in [14], and warp the images to cancel 2&ioot and vertical translation. The
residual 2D translation is used as a rough approximatiohd@D velocity of the translating camera,
and determines the thickness of the vertical strip. This@ggh is similar to the pushbroom mosaicing

technique described in [55].
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Aspect Ratio Normalization

The most apparent aspect of the distortion in X-Slits imagése variation of aspect ratio, as analyzed
in Section 3.1.3. To reduce this distortion, we verticaltale the new images. This normalization is

essential for achieving compelling results.

Specifically, the distortion on thisnage planeof objects at deptl¥ given in Eq. (3.12) can be
written asZJrLA . % in the notation of Eq. (4.4). In order to keep the horizon&lbfiof-view angle con-
stant in the walk-through animation, we sample all the caisifitom left to right (from the appropriate
frames, according to the column sampling function). Withaay scaling, this process generates an
image in which only the plane at infinityZ( = oo) appears undistorted. Therefore, in order to cancel

the distortion at deptlr,, we scale the image vertically by the factor:

A
1 4.5
Z (4.5)

The Space-Time Volume

In Section 4.1.1 | described how to synthesize a X-Slits inlag sampling columns from the input

images using the following linear sampling formula:
t=as+ 0 (4.6)

wheret denotes the camera translation. Recall that are free parameters which control the location
of the vertical slit.

A useful representation for the visualization of this pexés the Space-Time Volume (or the
epipolar volumg which is constructed by stacking all input images intoragkd volume. In case of
constant sideways camera motion, any vertical planar slitee volume according to (4.6) is a X-Slits
image. This process is illustrated in Fig. 4.3; it assumasttie input sequence has high frame-rate and
negligible spatial aliasing, so that simple interpolatigsoch as bilinear or bicubic) of the volume is

sufficient. Thus rendering new X-Slits images is as simplgliagg a plane in the space-time volume.
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Figure 4.3: A schematic description of images generated as slices isphee-time volume. (a) Changing the orientation of
the slice moves the vertical slit inside and outside theecgs) The central slice gives a pushbroom image (the “iadit”

mosaic). Sliding parallel slices in the space-time volusmilts in different viewing directions of oblique pushbmomnages.

4.1.3 Non-Linear Slits

One of the slits in the synthetic X-Slits images is the triajac of the camera. When the camera’s
trajectory is not linear, a X-Slits view can be generatedvitiich one of the slits is curved. An
interesting family of such views has one circular slit ane dinear slit. One way to generate such
images is to use a camera rotating off-axis on a circle, amntentric mosaics [64]. Concentric
mosaics allow the generation of images in which the viewemsave continuously in a circular region.
Each image generated from concentric mosaics is consisfémia circular X-Slits projection: One
slit is the horizontal circular path of the camera cented, e second slit is a vertical linear slit placed
at the location of the viewer. To generate an image from awdfft viewing position, the vertical slitis
placed in the new location.

While images generated from the concentric mosaics poitward, and the viewer location is
inside the circle, it is also interesting to generate inwaaking images from locations outside the
circle. This can be realized by moving the camera in a cingerd an object, or by having a stationary
camera viewing an object rotating on a turntable. Now thatioa of the viewer in the synthesized

images can be as far or as close to the object as we wish, inis@éside the circular slit.

The column sampling function which generates circular XsSinages is not linear. It is easier to
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vertical Iit

Figure 4.4: Synthesizing new views using the circular slit model

express it in angular terms, so | denote columns by theireafighm the optical axis, and frames by
the angular position of the camera. Assume that the images taken by a pinhole camera rotating
off-axis at radiusRy. In order to synthesize a X-Slits image with vertical slitratlius R, we take

columng from the pinhole camera atand paste it as colummin the new image, as shown in Fig. 4.4.

Ry

It can readily be seen that the following relation shoulddhgl = arcsin(R—O

sina) andy = (§ — a.

The distortions of such images are more complicated to aealidowever, in practice, since the
field-of-view angles of cameras tend to be rather small, itwailar slit in the relevant region is nearly
linear, and therefore the distortions are approximatedysghme as with linear slits. Using the same

aspect ratio normalization method as with linear slitsrésilts we achieve are quite convincing.

4.1.4 Results

In all my experiments | used a camera moving in the horizoptahe. As discussed above, new
view generation in this case is done by sampling verticgstirom successive images and pasting
them together into individual X-Slits images. The paramgetd the strip sampling function determine
the location of the vertical slit of the X-slit camera. In myperiments below, | manipulated the
parameters of the sampling function so that the locatiorhefvertical slit moves according to the
desired egomotion. A very compelling impression of cameddian is obtained, even though the
horizontal slit of the X-slits camera, which is the trajegtof the input camera, remains fixed.

In addition, | also simulated a change of camera orientatiging the equations derived in Sec-

tion 3.2.1. Note that the slits are left as are, changing tmyorientation of the image plane. This
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is because the full rotation of the slits would change theo§eisible projection rays, and therefore
cannot be performed by a 2D transformation of the image.

Next | discuss two applications: the generation of a virtwalkthrough from a sequence of per-
spective images, and 3D object visualization. The inpué@idequences used in these examples, as
well as the synthesized walkthrough movies, are currentiylable on the web at

http://ww. cs. huji.ac.il/~daphna/denos. ht m #xslits .

Virtual Walkthrough

In the first experiments (Figs. 4.5-4.8) | synthesized negueaces which correspond to a camera
motion that has forward motion component, with visible faraand lighting effects. In addition, the
direction of the image plane was changed.

Another example used a sequence taken by a helicopter fliong a rocky coast in an unknown
path and viewing direction (Fig. 4.9). Here | synthesizedew rsequence which corresponds to a
forward moving camera. This sequence was more challengimg ghe input sequence was taken in
free motion with random disturbances (e.g., the effect afdji and thus motion compensation was

required (see discussion in Section 4.1.2).

New Views of Extended X-Slits Images

In this example | show how to generate new views from a sequeha@ rotating object, where the
new sequence demonstrates forward motion with parallax @F10). The projection model of the new

images correspond to non-linear slits, as discussed ifdBettl. 3.

Object Visualization

Here | demonstrate the use of the X-Slits projection for cbjésualization — an object can be “flat-
tened”, revealing several of its sides simultaneously, dsitipning the vertical slit behind the object
(Fig. 4.11). Since the image is a valid X-Slits image that loarcharacterized and analyzed, we need

not worry about such issues as duplicate images, whichlysesgjuire hand-crafted stitching.
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Figure 4.5: This scene is located in a small room where moving backwarapbure the whole room is impossible. The
scene was filmed by a sideways moving camera, total of 591efsaone of the original frames is shown in (a). | show three
new images: one where the vertical slit is located in frortheforiginal track (b), and two where the vertical slit isdoed
behind the original track (c-d). For comparison, | took amak (pinhole) picture from the same location as (c), wheregfa
the scene is obscured by the wall; this picture is shown irafe] it demonstrates the ability to make images from imjbtessi

camera positions. Finally, (f) shows a simulated image witiee camera was translated and rotated.
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Figure 4.6: This scene was filmed by a sideways moving camera in our l&,db567 frames. | generated a X-Slits movie

where the virtual camera rotated about an object in the S@ehg and then translated ahead in a diagonal (c).

() (d)

Figure 4.7: Virtual walkthrough from a translating camera. (a), (b) Tinames from the input sequence. (c), (d) Two images

rendered in forward motion. Note the apparently realistianges in parallax and reflection.
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Figure 4.8: This scene was filmed by a sideways moving camera, total ofrfa®8es. | generated a movie which included
both rotation about the person and forward motion. Thremdésof this movie are shown above; note the changes in the

window reflections, which appear realistic.

(e) ()

Figure 4.9: Virtual walkthrough generated from a sequence taken byedyfifying helicopter. (a), (b) Two frames from the
input sequence. (c), (d) Two images rendered in forwardondiliagonal slices). (e), (f) Two images rendered in differ

viewing angles (parallel slices).
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Figure 4.10: A rotating object: (a), (b) Two images from the original sence of a rotating object. (c), (d) Two synthesized

images from a forward moving viewpoint.

(© (d)

Figure 4.11: Object representation. (a), (b) The original input imag@&s, (d) Visualization with the vertical slit located
behind the object. The object is seen as if “opened” insiadte-giving a cubist effect: multiple sides are seen in a gingl

picture.
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4.2 Omnidirectional Crossed-Slits Mosaicing

| adopt here the circular X-Slits camera model, in which ohhe slits is a circle in theX — Z plane,

and the second is a linear slit in tliedirection. In this case, each scene point defines a planghéth
linear slit, which intersects the circular slit ago points, and thus each scene point has two rays. Of
the two intersections with the circular slit, we choose the that is closer to the scene point, and the
corresponding ray is defined to be the unique ray throughdéeespoint (this is the “outgoing” ray,
emanating out of the circular slit). To complete the defomitof the circular X-Slits camera model,
the image surface is chosen to be the sphere at infinity, mgdhat the correspondence between a
ray and a point in the image is defined only by the azimuth aedaébn angles. Such an image is
onmidirectionaj as rays in all directions are imaged.

We synthesize such images from a set of images taken by ahgamera rotating off-axis. The
input camerais a central camera, thus all the rays captured by the canassatprough a single point
(its center of projection). Unlike regular perspective eaas which sample these rays on a planar rect-
angle (the image plane), the input camera samples the ragdhiemisphere at its center of projection.
Generating a new omnidirectional X-Slits view of the scenasists of generating a spherical view
from a chosen slit location, i.e., an image of the rays pgsirough a virtual slit.

The path of the input camera is assumed to be a circle of radiuthe X — Z plane. Thevirtual
slitis a vertical line passing through the point= (z., 0, z. ), which is defined to be the location of the
virtual “eye”. The new view at each slit location is sampladtbe output spherecentered about the
virtual eyee. With this definition, moving around the scene is a matter ofiimg the virtual slit and
generating the X-Slits image corresponding to each newipnosi

Omnidirectional X-Slits rendering is done, as in the linease, by means of mosaicing. Strips are
taken from each input image, and stitched together into aimage. The strips are selected according
to the location of the virtual eye, and the result is a X-Siitage that looks as if it were taken from
that location.

Specifically, given a virtual slit location, we need to datare which rays should be sampled from

which input camera. Each input camera cewtdefines a planél. with the virtual slit; all the rays on
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Figure 4.12: Omnidirectional X-Slits mosaicing. (a) Overview: the rgassing through the virtual slit and the input camera
center form a plane of rays, which intersects the input heheige in a meridian. (b) Top view: determining which strip of

pixels is sampled from which input image.

this plane pass through the virtual slit and a point on theutr slit (the camera centej. Thus this
plane includes all the rays that should be sampled from camegivene. The intersection ofI,. with
the input camera hemisphere is a meridian (see Fig. 4.12as, Bach input camera contributes a strip

of rays that lies on an input meridian.

The sampled strip is pasted as a strip on the output spheree,Siy definition]I. passes through
the center of the output sphere)(its intersection with the output sphere is also a meridibiote,

however, that the sampledysgenerally do not pass through

It follows from the discussion above that meridians fromitipgut cameras are pasted as meridians
in the output cameras. Hence, it would be beneficial to usenaigé representation that is based on
latitude and longitude (Fig. 4.13b,c). In this represeatatthe coordinates of a pixel are its longitude
and latitude on the sphere, so each meridian on the spheredhimn in the image. Generating

omnidirectional X-Slits images becomes a matter of mosgigertical strips, as in linear X-Slits.

How do we determine which strip to sample from each input cafh&iven a vertical slit passing
throughe, let us define the polar coordinatés= /22 + 22, 6. = arctan ﬁ— As can be seen from

Fig. 4.12b (and triangle geometry), for evety, the strip to paste at th. meridian of the output

53



(@) (b) (©

Figure 4.13: Spherical images. (a) An image from the input sequence, @srad with a panoramic lens. (b) The same

image in latitude-longitude representation of a hemisphf@) An output spherical image.

sphere should be taken from themeridian of the input camera é¢, where

0; = arcsin(dsin(f, —6,))
00 = 07“ - 0@

4.7)

4.2.1 Distortion

In this section | analyze the nature of X-Slits distortionaused by the absence of a single center
of projection. Specifically, | compare between X-Slits imagorresponding to the model described
above, and the regular perspective image correspondingdmaidirectional camera centered around
the virtual “eye”e.

Recall that the plane of ray$. determined by (4.7) is the same as if it were perspectiveptiopn,
but the rays within the plane do not interseckirbut rather in the input camera centerswvhich are
different for each plané&l.. As a result, a scene poipt that is seen at some elevation angleby
the input camera, would be seen at a different elevatioreasjgby the virtual eyee (see Fig. 4.14a).
Without correcting the elevation angle of each gayyould appear shifted vertically at a false location
(Fig. 4.14a).

In order to cancel out this distortion, we need to determimedorrect elevation angle for each
input ray, estimating how the scene point would have beemfsem e. This would produce the correct
perspective view of the scene, but it requires a dense andaedknowledge of the 3D structure of the

scene.
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Figure 4.14: (a) Distortion: the object is seen at a different elevatingle from the input camera and from the virtual eye.

(b) Normalization: cancelling out distortion by correditne elevation angle of the input ray, using a normalizasiarfiace.

When accurate depth information is not available or hardbtaio, we can still produce appealing
images by using a coarse estimation of depth. In general,efieedanormalization surfacewhich
crudely approximates the scene structure, and use it tojegpithe rays before pasting them into the
mosaic. This allows us to generate images that look conmgelivithout relying on an elusive depth

map. The normalization procedure is described next.

4.2.2 Normalization

In general, normalization is done by intersecting each $sgnmy with the normalization surface,
and reprojecting this intersection through the virtual esancenter. Given an input ray of azimuth
f, and elevationyp,, the input camera’s position on the circle (denotellis determined by (4.7),
see Fig. 4.12. The sampled ray is defineccas Ar, wherec = (—sin#,,0,cos6.)” denotes the
input camera location andl = (— sin 6, cos ¢,., sin ¢, cos 6, cos ¢,)* denotes the ray direction (see
Fig. 4.14b). Given a normalization surface expressed oitiylias N (p) = 0, the intersection is at
min{A\|[N(c + Ar) = 0,\ > 0}.
To begin with, let us consider sphericalnormalization surface. Thuy(z,y, z) = 2% + y? +

22 — R?, whereR is the radius of the normalization sphere. Substituting \r into N gives
Mrelr 4 oxrfe+clec—R?2=0 (4.8)
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Figure 4.15: Normalization — a view of the synthesized scene without m@dization (a), and with normalization using a

sphere (b) and an ellipsoid (c). Note how the aspect ratidferent for objects at different depths in the sphericaleca

Solving for A > 0 yields the intersection of the ray witN at A\ = —k + Vk2 + R2 — 1, where
k = cos ¢, cos 8;. From Fig. 4.14b one can see that the ray should be reprdjduteugh the virtual

camera center at an elevation angle of

Asin ¢,

A cos ¢ + 1 (4.9)

¢, = arctan

wherel = cos#; + dcos(f, — 0. — m) is the distance between the slit and the input camera (see
Fig. 4.12b). Note that unnormalized omnidirectional XtSimages ¢ = ¢,) correspond taR — oo.
Normalization onto a sphere is appropriate for scenesithat b relatively constant distance from
the viewer, e.g., a room viewed from its center. If the rooml@mgated, however, the sphere provides
a poor approximation of the scene’s structure (Fig. 4.18bjhis case, normalizing onto an ellipsoid
may be more appropriate.
For an ellipsoid (or any quadric), let us redefinandr as homogeneous coordinatesFn with
the forth coordinate set tband0, respectively, and lelN (p) = p” Qp whereQ is the4 x 4 matrix
that describes the quadric. The intersection is then=at—k + v/k2 — m where

T T
k= ET—SE m = iT—gj (4.10)
and the ray is reprojected according to (4.9). Fig. 4.15wides an illustrative example, and some
comparisons between the different normalization methods.
In general, one can use an estimated sparse depth map toucbasjeneral normalization surface,

and use ray tracing techniques to reproject the rays.
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Figure 4.16: Distortion under normalization. (a) Overview: when themalization surface is incorrect, reprojection makes
the object appear shifted vertically. (b) Side view: theeaspatio distortion as it is related to the distances betvie input

camera, the virtual eye, the normalization surface and bfect

4.2.3 Measuring Distortions

Since the normalization surface gives only a crude appration of the scene structure, itis not likely
to eliminate all distortions, and in some cases it may evandoce new distortions.

| propose to measure distortions in X-Slits images by thengbdn aspect ratio. In perspective
projection, aspect ratio is preserved, and any rectangleeiiscene that is parallel to the image plane
would be projected into a rectangle with the same propastimetween width and height. In X-Slits
projection, this is usually not the case.

Normalization corrects this problem for objects that ar¢h@normalization surface, since they are
projected as if they were perspective. As | show below, thiadéa an object is from the normalization
surface, the more distorted its aspect ratio would be.

Consider a poinp on an object in the scene. We would like to estimate the asp8otdistortion
in a neighborhood arounglin a normalized X-Slits image, whegmis not on the normalization surface.

The pointp and its neighborhood is captured by rays passing througinhe cameras. These
rays intersect the normalization surfa¥eatp, and are reprojected during normalization (Fig. 4.16a).
This normalization is correct only for a poipt on V; otherwise the object appears to be in a false

location.
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As we shall see, aspect ratio distortion is not necessanistant, so we will estimate tHecal
aspect ratio distortion ai. Assume that the normalization surface arogngdis parallel to the object
surface aroung. Denote the plane that contains the virtual slit and theleyughp by 11, (Fig. 4.16b
shows a view ofl,). If the length onlI, of the patch aroung is Ap, and the length of the patch as it

is projected onV is Apy, then it follows from triangle similarity that

Ap dep
 _ 411
Apy den ( )

whered,, is the distance oml, betweenc and the plane tangent to the objectpatandd.y is the
distance between and the plane tangent f§ atpy. For the same reason,Ap* is the length of the

false object, then

Ap* dep ch
- _ Gep 4.12
P Ap dcp deN ( )

Since the X-Slits projection only introduces distortionghe vertical direction, and since normal-
ization also deals only with the vertical direction, thesend horizontal change in the way the patch
aroundp is projected. Therefore, the ratios the aspect ratio distortion that poptundergoes when
projected with a X-Slits projection normalized by surfa€égcompare to the result in Section 3.1.3).

Denoting the distance between the normalization surfadepaas D (henced.y = d., + D and
d.n = dep + D), when the virtual eye iehindthe camera path (i.ed., > d.,), the aspect ratio
grows with D: when D is positive — the object will appear taller, and vice vers@h{worrect aspect
ratio whenD = 0). This is reversed when the virtual eye is in front of the cearpath.

When the normalization surface is not parallel to the scdrectd and there is a difference in

elevation angle between them, it can be shown that the asgtecbecomes

Ap*  dep . den ' sin oy . sin(apo—apN)

= 4.13
Ap dep den sinoy, sin(ap;—apN) ( )

whereqy,;, oy, are the angles between the object plane and the input argjeeted rays, respectively,

anda,y is the elevation angle difference between the object pladetfze normalization surface.
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4.2.4 Discussion

As the distance between the scene and the normalizatioaceudecreases, so does the aspect ratio
distortion. Thus, in order to achieve correct aspect ratmneed to approximate the scene as well as
possible. However, this may lead to other, often worse distts.

Specifically, Equation (4.12) states that the aspect ratia function of the distances between
the normalization surface, the scene surface, the virymalaad the input camera. Variation in these
distances across the image causes variation in aspect &ttiong variations in aspect ratio may be
caused by abrupt variations in the depth of the normalimagiarface, if these do not correspond to
real variations in scene depth. It is usually hard to obtadepth map that fits the scene structure
accurately, especially where depth changes abruptly, @.depth edges); in these areas in particular,
abrupt changes in the normalization surface may causegstraticeable distortions.

In contrast, depth discontinuities in the scene withoutesponding variations in the normalization
surface pose less of a problem, since the arising aspectvatiation will occur over a few pixels
spanning the edge in the image. It is therefore often prefert® simply use a smooth normalization

surface, which provides only crude approximation of thetllegpructure of the scene.

4.2.5 Augmented Reality

Generating realistic views of a precaptured scene in nealis useful for virtual reality. A user's head
motion may be tracked and the appropriate views of the scanée generated and displayed at a
reasonable rate. However, the rendered scene is statid, rmagl be desirable to add virtual objects to
the scene, which would be rendered and superimposed on 8lésXdmage. | shall discuss only the
geometric issues of augmented reality with the X-Slitsgtpn.

Since the rendered scene is a X-Slits image, the added ohjestt also be projected according
to the same projection model in order to appear consistentolfject added in a certain place in the
scene should appear in the same position when viewed frdaratit viewpoints, and this can only be
accomplished if the object is projected using the same gtioje model as the rest of the image.

Most computer graphic renderers generate perspectiveesnag order to use such engines for
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Figure 4.17: Augmented Reality. Scene poiptis reprojected into the virtual eye through pogt; on the normalization

surface, so if a virtual object is augmentedpait should be shifted vertically to appear correct.

the rendering of X-Slits images, we must first transform thgnaented objects in a manner similar
to the reprojection discussed above, so that when projecied) the regular perspective projection,
they would appear correct in the X-Slits image. As shown abdive distortions and normalization
associated with the X-Slits projections are in the vertidiaéction alone, so only vertical shifting

needs to be done when transforming the augmented object.

Specifically, suppose an object is augmented at pwirand the ray througlp intersects the nor-
malization surface gby. In order for the object to look as if it were at it must be on the reprojected
ray throughpy (see Fig. 4.17). Shifting the object’s location verticghior to imaging, so that it is
on this ray, would give this effect.

Given a point(z, y, z) where we wish to add an object, and given a sliXat z., Z = z., the

azimuth of the object i§,, = arctan ‘AAZ”” whereAx = x — z., Az = z — z., and the elevation angle

relative to the input camera is

(4.14)

¢, = arctan Ly—l
wherel is the distance between the slit and the input camera as9) @dL = VAz2 + Az2 is

the horizontal distance between the slit and the objectowt follows that the distorted location of
the augmented object {8° = L - tan ¢, whereg; is given in (4.9). If we shift the object’s position
vertically to this height, it can be projected normally aqmpear as if it were in the X-Slits image of

the scene at the desired location (Fig.4.18).

Since the distortion is variable, this transformation dtidae applied separately to every point on
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Figure 4.18: Augmented Reality. (a) The image-based views of the scetieangmented objects. (b) The same scene from

a different viewpoint. (c) Without vertical correction gtlobjects’ locations are not correct.

the augmented object. In practice, it is usually sufficiemhbve the object according to just one point,

e.g., the point where it is supposed to touch some real oipjelce scene.

4.2.6 Implementation Issues

Using the latitude-longitude representation of sphericalges, the rendering of omnidirectional X-
Slits images is just a matter of sampling columns from imagekpasting them in the output image,
like linear X-Slits rendering. Normalization requires tieal transformation of each pixel, which may
be a costly calculation for a realtime application. Howewenen the input camera path is small in
relation to the normalization sphexg, is nearly linear inp,, and a (much faster) linear transformation

is sufficient.

Specifically, the top and bottom pixels in each input colurarrespond to elevation angles =
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+7. Substituting these values in (4.9) gives the normalizeglagion angles op; = + arctan % SO
normalization can be done approximately by scaling eaalneollinearly according to this formula.

Displaying the omnidirectional X-Slits images with a depldevice involves projecting the spheri-
cal image on a plane. Graphic engines that handle perspgutijection are abundant, so this mapping
can be done efficiently by mapping the rendered image on aspbatered about the virtual eye. Fur-
thermore, if the sphere is approximated as a mesh, the neatiah can be done on each vertex of the
mesh, instead of on each pixel of the X-Slits image.

The same graphic engine can be used for augmented objeotsdd&t their position is corrected
according to (4.14), they can simply be rendered along wignesh.

The scene shown in Fig. 4.15 and Fig. 4.18 is rendered fron af §29 panoramic images (size
2500 x 1024). Rendering is done in realtime at a rate of 20 frames pemsk(ze1024 x 1024) on a
Pentium IV 2.8GHz. Captures from my implementation can legved online at

http://ww. cs. huji.ac.il/~daphnal/ibr .

4.3 Optimal Mosaicing

Consider a perspective video camera moving continuously amved segment with its image plane
orientation tangent to the curve. Assume w.l.0.g. that #mgreent length is 1, and let € [0, 1]
be a parameter describing the location of the camera in thmexat. A multi-perspective mosaic is
generated by selecting a vertical line in each fraff¥g according to ssampling functiony(¢), and
pasting it into the mosaiap(t) denotes the location of the line sampled from frah(®. Let 7 (t) be
the plane joining the camera center of projection at locatito the sampled ling(t). The pasting
location in the mosaic is defined by the intersectionr@f) with the mosaic manifold. In case the
camera moves on a linear trajectory, this manifold is a pl@therwise, the manifold is determined by
the camera trajectory. As in [55], the distance of the mdahife set to be equal to the camera’s focal
length, in order to maintain the vertical resolution of thege.

It is assumed that the camera motion and internal calibratre known, or were estimated from

the video (for a review, see [26]), and that the horizontddlfad-view angle of the camera &
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Figure 4.19: Mosaicing by (a) a constant sampling function and by (b) edirsampling function.

| first analyze mosaics generated from linear camera tjest and find the optimal mosaic an-
alytically. Two useful examples of sampling functions fmelar camera trajectories, depicted in Fig-
ure 4.19, are the linear sampling functioft) = ot + (3 and a special case of it, the constant sampling
function ¢(t) = § (wherea = 0). It was shown in Section 4.1.1 that in the former case, g fzass
through a vertical line in the plane

k
Zr=Ti+ " (4.15)

where 7 is the the plane of the camera trajectory ane- cot(g); in the latter case, this plane is at
infinity.
General smooth trajectories are analyzed in Section 4s3n§Uocal linear approximations.

4.3.1 Necessary Conditions for a Good Mosaic

LetV = {(X,Y, Z)|Z > 0} be the set of viewed scene points, i.e. the points in frorh@fcamera. |

define the following necessary conditions for a good mosaic:
e Unique Projection:Every 3D pointP € V' is projected to a single point in the mosaic image.

e Continuous ProjectionConnected sets of scene points are projected to connedteodf $mage

points.
e Data Utilization: Strips are taken from all images.
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Figure 4.20: 3D object representation by mosaicing with a monotonic elsing function. Mosaic (a) was generated by

a linear sampling function, so every point on the object soamted with a single point on the image. Mosaic (b) was

generated by a non-linear sampling function, and as candre seme scene points appear twice in the mosaic.

Unigue projection is important in order to avoid duplicateages of an object in the mosaic image.
In Section 4.3.2 | show that for linear camera trajectoribis, condition holds if and only if the sam-
pling function is monotonic non-decreasihdn Section 4.3.3 | relax the unique projection condition
by allowing a set; of points of measure 0 to violate the uniqueness conditisholv that in this case,
G must be a line, and in case the camera moves on a linear tngjeittis corresponds to a linear sam-
pling function. An almost-unique projection can be usetul donstructing representations of convex
objects. An example is shown in Figure 4.20.

The requirement for a continuous projection is obvious —vimichdiscontinuities in the mosaic
image. It follows that the sampling function must also betitarous.

The data utilization requirement is important for ensummaximal field of view when minimizing

the geometric distortion.

4.3.2 Projection Uniqueness

The projection is unique if every scene point is projecte@ &ingle point in the mosaic image. A

key observation is that the scene poibtsarein front of the camera. Hence the planeg;), = (t2)

lwithout loss of generality, it is assumed that the cameradging from left to right.
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Figure 4.21: lllustrations for the proof of Theorem 4.1

must not intersect in front of the cameras for @&y t; < t5 < 1. For a camera moving on a linear

trajectory, this implies that the sampling mustrim-decreasing monotonic

4.3.3 Uniqueness Excluding a Set of Measure 0

Another useful criterion relaxes the requirement by allmyvsome points to violate the unigueness
condition; This set of points; is required to be of measure 0 (e.g. a point or a curvejs tfoes not
include any scene point, ho scene point would appear mailtiples in the mosaic. As | show below,

this criterion implies tha{7 is a line.

Theorem 4.1 For any continuous sampling functiaf(t), if the set of points that are not uniquely

sampled is of measure 0, then this set is a line.

Proof: The planesr(0), (1) intersect in a lind, and all of its points are sampled by both cameras
t =0, 1. | show that if there are points that are sampled by two casniiat are not on this line, then
the set of all such points is of measure greater than 0: Foyave < [0, 1], the intersection of plane

m(s) with planer(¢) can be represented by the dual Plicker matrix:
L*(s,t) = n(s)m(t)T — w(t)n(s)T (4.16)

(the planes are represented in homogeneous coordinagef26se. 52]). Sincer(¢) is continuous, it

follows thatL*(s,t) is continuous ins,t. If there exists a point not ohthat is sampled more than
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once, then it lies on a plane(a) for somea € (0, 1) such thatL.*(0,1) % L*(a,1) (i.e., 7(0) and
m(a) intersectr(1) in different lines). Refer to Figure 4.21 for illustrationSonsider the union of all
lines of the formL*(s, 1) for s € [0,a) (which are intersections of the planeés) in this range with
m(1)). SinceL*(s, t) is continuous, it follows that this union is a set of area tgethan 0 on the plane
7(1). Let A(t) denote the set of all points on the lines associated Wiits, ¢) for all s € [0,a). Then
the above can be written #4(1)| > 0. Due to the continuity ofr(¢), there exists an intervéb, 1] for
which |A(¢)| > 0 holds foreveryt € (b, 1]. Therefore, since all planegt) are distinct, it follows that
the unionUA(t) is a set of volume greater than 0. Since it is contained in¢hefsall points that are

sampled more than once, this set cannot be of measure 0. [

Result 4.2 In the case of linear camera motion, the sampling functiaisfying the uniqueness cri-

terion up to measure 0 are either monotonic non-decreasirimear (see Figure 4.20).

4.3.4 Perspectivity: a Measure for Geometric Quality

| consider perspective images to be non-distorted. Hereeligtortions in a mosaic image are mea-
sured with respect to the closest perspective image. In fod]stortion was measured with respect
to the closest perspective image, with the distance defigdékdeasum of distances of matching image
points. Such a measure, while visually compelling, requkeowledge of the scene depth. Since in
our case the scene depth is unknown, | compar@ihto 2D projectiongather than the images. That
is, we would like the 3D to 2D projection induced by the mosgjanethod to be as close as possible
to a perspective projection. In a perspective projectitimags intersect in a point. Hence, for a multi-
perspective mosaic, the set of sampled rays should be adyclmsdled as possible. We find a center
point that has a minimal distance to all sampled rays, and easore how small this distance is.

First, | define thdocal perspectivity distortionwhich implements the idea above locally, for a
neighborhood around an image point. | then defiggohal perspectivity distortioy integrating the
local perspectivity distortion on the entire image. | chaseadditive measure, so that the perspectivity
of one region in the image is not influenced by other regiorteérimage.

| first analyze the case of linear camera motion. For this,dhsdeast distorted mosaic is derived
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Figure 4.22: The relation between the local perspectivity distortiod #me error in estimation of the 3D scene. See Sec-

tion 4.3.5 for details.

analytically, and it turns out that the least distorted nmoséso has the widest field of view. Non-
linear camera trajectories are analyzed in Section 4.3 Uscal linear approximations. The global

perspectivity is minimized numerically using standardmptation techniques.

4.3.5 Perspectivity: Linear Camera Trajectory

| consider only monotonic non-decreasing sampling fumatisatisfying the necessary conditions de-
fined in Section 4.3.1.

Given a sampling functiow, each image point is associated with a single ray. Let ustdehe
intersection of the ray of image poiptwith the planeZ = Z by (X (p), Y (p), Z). | define the distor-
tion of the sampling functior with respect to a candidate center pait, Y, Z) in a neighborhood

w of image pointp as -

A~

(X(0)-XP + (YD) -Y)* .

n(6,p, X,Y,2) = / = 5 (4.17)
PEW
and thelocal perspective distortioatp as -
nr(¢,p) = min n(¢,p,X,Y, 2) (4.18)

s 4y

The expression given in (4.17) measures the distarafehe ray from the candidate center point
(X,Y,Z), on a plane, relative to the depthof that plane (see Figure 4.22). The underlying idea is

that an image is distorted if it is not consistent with a pecspe image of a 3D scene. Consider a
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scene poinP at depthd, which is projected by a ray whose erroeisWere the image perspective, this
image point would seem to be the projection of a scene péinand the error in the 3D scene would
be E, such thattl = e.

The global measure of distortion is obtained by integratiigcal perspectivity distortion on the
image. To cancel the effect of the proportions of the neighdadw, | define theglobal perspectivity

distortion of a given sampling functiog as follows:

(o) = [ Meop) 4.19
() pe/Ian,p)p (4.19)

whereg@(t) is a reference sampling function which can be chosen ariyjtrand p is integrated over
the image domaid = [Z/in, Tmaz] X [Ymin, Ymaz]- FOr simplicity, | choose the reference sampling

functionp(t) = 0.
Theorem 4.3 The global perspective distortion of a linear sampling fime ¢(t) = ot + G is -

ng(¢) =S (%QZ)? (4.20)

whereS§ is the image areak(and Z; are defined in (4.15)).

The proof of the theorem above is given in Appendix B. A diresult of the theorem above is the

following:

Result 4.4 The global perspectivity distortion of a linear samplingétion ¢(t) = ot + g witha > 0

is monotonic decreasing in. The most distorted linear sampling is the constant sargplin

Note that the distortion of a linear sampling function deggeonly on the slope of the function.

Now let us study the general case of continuous non-deagasimpling functions:

Theorem 4.5 Given a continuous non-decreasing sampling functigt), let us denote the linear

sampling function which agrees wittit) att = 0 andt = 1 as¢'(¢). If ¢ # ¢/, thenng(¢) > na(¢).

In order to prove the above, | first prove it for a polygonal péing function, i.e., a functiom(t)
for which the interval[0, 1] can be divided into segmen{s, ¢, to, ..., 1] such thaty(¢) is linear in

each segmenty, tx1].
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Lemma 4.6 Given a polygonal sampling functiaf(t) and a linear sampling functior’(¢) such that

¢(0) = ¢'(0) and (1) = ¢'(1), if ¢ # ¢’ thenng () > na(¢).

Proof: The idea behind this proof is that by eliminating nodes ingblygon, the global perspectivity
distortion does not increase. For anywe eliminate the nodeé by defining a polygonal sampling
function ¢*(t) which agrees withy(t) everywhere except for the segment 1, ¢;,1], in which it is
linear. As shown in (4.20), the distortion of a linear samglfunction is proportional to the area of the
image and to(ﬁ)% Denote the slopes af(¢) in segmentst;_1,t;] and[t;, t;+1] by a3 andas,
respectively, and the slope of (¢) in [t;_1, t;+1] aSas. The contribution of each segment to the global

perspective distortion is proportional to its length, anereforeng(¢) > na(¢*) if and only if

k 2 k 2 k 2
ti—ti) | ——— tig—t) [ ————— ) >ty —tig) [ ———— 4.21
( 1)(04121+1f) * (fn )(ang—i—k) (tin 1)<6¥321+/€) ( )

It can be shown that this inequality always holds, and thdteitomes an equality if and only if
Q] = ag = ag, .e., if¢ = ¢*.

By repeatedly applying the result abovedgave obtainng(¢) > ng(¢'), andng(¢) = ng(¢)
only if ¢ = ¢'. [ ]

Now we can proceed and prove the theorem:

Proof of Theorem 4.5:For anye > 0, we divide the interval0, 1] into segment$0, ¢, 2¢, ... , 1]
and approximate(t) with a polygonal sampling function. (¢) such thatp(ke) = ¢.(ke) for all £,
andg.(t) is linear in each segmefits, (k + 1)z]. From Lemma 4.6 it follows thata(¢:) > na(¢').

Since this is true for alt > 0, and sincep(t) is continuous, it follows thatg(¢) > na(¢). ]

Combining Theorem 4.5 with Result 4.4, we obtain:

Result 4.7 For a camera moving sideways on a straight line, the samglimgtion with the minimal
perspectivity distortion i®.,¢(t) = Tmin + t(Tmaez — Tmin)- This linear sampling function starts with

the leftmost column of the first image and finishes with thetmigst column of the last image.
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4.3.6 Perspectivity: Non-Linear Trajectory

In order to handle non-linear camera trajectories, | defieddcal perspectivity (Equation 4.18) based
on a local linear approximation of the camera trajectory amatal planar approximation of the man-
ifold. For each framd, wherel < f < N—K+1, we compute a discrete versidip (¢, f) of the
local perspectivity (equation 4.18) over a setfofneighboring framedy, ... Iy k1 and minimize

the sum of the discrete local perspectivities:

da(o) = di(e, f) (4.22)
f

To find the minimum of (4.22), we discretize the strip locatio Note that the local perspectivity
dr (¢, f)is defined by finding an optimal center of projection for easimbination of rays. Computing
these centers of projections for all possible samplingtions and for a larges” is computationally
intractable. This can be circumvented by selectifig= 2, in which case the local distortiafy, (¢, f)
was derived analytically, as it corresponds to the lineasgextivity as defined in theorem 4.3. Once
dr(¢, f) is computed for all pairs of views, | use belief propagatié3][to find the optimum of
equation 4.22. The complexity of this algorithm is lineathe number of frames, and quadratic in the

number of possible strip locations in each frame.

4.3.7 Results

Figure 4.23 shows mosaicing results, using different samgglinctions, from video sequences cap-
tured by a camera moving on a linear trajectory. | compareogitanal sampling function with the
constant sampling function (linear pushbroom mosaiciagy with a non-linear monotonic sampling
function ¢(t) satisfying(0) = ¢opt(0) and (1) = ¢,pi(1). This demonstrates two main results
of this work. First, among all linear sampling functionét) = ot + (3, the least distorted results
are achieved with the maximal (compare Figure 4.23b vs. 4.23c). Second, among all mormoton
functions aligned at the edge poirits- 0, 1, the optimal sampling function is the linear one (compare
Figure 4.23b vs. 4.23d).

Figure 4.24 compares a stereo mosaic generated by a cosatapling function (as done by [29,
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Figure 4.23: A comparison between different strip sampling methods) éatl (a2) are two rectified input images. Mosaic
(b) was generated by the optimal sampling function, mosgiby the constant sampling function (pushbroom mosaic) and

mosaic (d) by a non-linear sampling functigtt) = v/%.

54,61, 77]) to one generated by the optimal linear samplingtion. Note that in addition to the

distortions in the image, there is a distortions in the digpavhich is larger with the constant sampling.

As for non-linear camera trajectories, | computed the idastbrted mosaics for various camera
trajectories, some examples of which are shown in Figurg. 4rRall cases | tested, the least distorted

mosaic was obtained when the projection rays intersectimedile., a X-Slits image).

One practical case of a non-linear trajectory is when theecaitmoves on a circular arc. | examined
visually the differences between the least-distorted m@sa mosaics generated by constant sampling

functions [54]. Various constant sampling functions wesenpared, each with a strip taken from a
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Figure 4.24: A comparison between different strip sampling methods fere® mosaics. The images should be viewed in

full color using anaglyphic 3D glasses. (al) and (a2) arereetified input images. Mosaic (b) was generated by the @gbtim

sampling function, mosaic (c) by the constant sampling tionpushbroom mosaic).
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Figure 4.25: Generating least-distorted mosaics with non-linear cant@jectories. The illustrations show a top view of
the camera trajectories and the planes of sampled raysngsuted by a numerical discrete optimization. In all cades, t

optimal sampling is obtained when the sampled rays intensecline.

different offset from the center. The least distorted mogaithis case is a Crossed-Slits mosaic, as
shown in Figure 4.25a. | found that the differences in digios with circular camera motion are not
as significant as with linear camera motion, as the rays sndhse are bundled together to begin with.
Furthermore, in the case of non-linear trajectory, theodisin is also affected by the fact that the
manifold is non-planar; this kind of distortion, which (ikd perspectivity distortion) can be treated

with 2D warping, has not been discussed in this work.

4.4 Summary

| have presented techniques for efficiently rendering XsSthages from image data acquired by a
pinhole camera. The main application | pursued is view ®sith or image-based rendering. View
synthesis with the X-Slits camera is greatly simplified aspared with perspective view synthesis,
since it is performed by non-stationary mosaicing, or bgistj the space-time volume. The X-Slits
theory helps the user to “drive” the slicing process in oftdeget the desired effect. When compared
with traditional mosaicing, X-Slits images can be showndalwser to perspective images than linear
pushbroom images.

Using my method one can also generate new images taken fropo&sible” positions, like behind

the back wall of a room or in front of a glass barrier. Moviethwiew egomotion can also be generated,
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such as forward-moving movies from a side-moving input sege. Although not perspective, the
movies generated in this way appear compelling and realisti

Given an input sequence of images taken by a panoramic caotatiag off-axis, one can generate
omnidirectional views of the scene from different viewgeihy simple mosaicing under the circular X-
Slits projection. | have shown how data should be repredanterder to perform this task efficiently.
| have analyzed the distortions present in such images asutided a method for reducing them by
using a coarse approximation of the scene structure. Thé ies method that combines image-based
rendering by ray sampling with approximating a perspectieg using a coarse 3D model.

Augmenting objects into the image-based rendered scen@esdhat the objects obey the same
geometric model as the background. | have shown how theidocaf the augmented objects can be
shifted, so that they would appear veridical when rendesed perspective engine, especially when
viewed from different viewpoints.

Considering the general case of multi-perspective masgiof an unknown scene, | have devel-
oped a framework for quantifying distortion and a closedrolution for the problem of generating
the least distorted mosaic. When the camera moves on a lirsgactory, the least distorted mosaic
is generated by the linear sampling function with the makist@gpe. This mosaic also has the largest
possible field of view. When the camera trajectory is notdin¢éhe least-distorted mosaic can be de-
rived numerically. | found that the distortions are espdciignificant when camera trajectory is close

to linear.
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Chapter 5

Motion Segmentation and Depth

Ordering

In this chapter | present a method for motion segmentatiahfesm a video sequence in general
motion. This method is based on a spatio-temporal diffeakoperator that responds to occlusion,
introduced in Section 5.1. | develop a multi-scale methe@kbracting a motion boundary, yielding the
segmentation. The behavior of this operator is demonsitiat8ection 5.2 and analyzed in Section 5.3.
Based on the scale space behavior of this detector, | devisedtion 5.4 a novel algorithm that can
determine depth ordering from just two frames. This algoniiassumes there is an average intensity
difference between the layers (though not necessarily @ Wifference or a visible edge), and can
be adjusted to work even without this assumption on thremdg In Section 5.5 | describe human
experiments that show that people are also capable of deiagmepth ordering from just two frames

under the same conditions as my algorithm.

5.1 Segmentation Algorithm

The motion segmentation algorithm | present is based orfexgliftial operator defined in Section 5.1.1

that is applied to the video sequence and responds at matigrdaries. While this operator is shown
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to detect motion boundaries in many cases, it is often unabtietect boundaries where certain de-
generacies exist locally. This is solved by a cross-scdierse presented in Section 5.1.2. Finally,
closed contours are extracted using a saliency measuresamgpke heuristic to overcome small gaps,

presented in Section 5.1.3. See also Appendix C.2 for somkeimentation issues.

5.1.1 Occlusion Detector

Regarding the video sequence as a spatio-temporal intdasittion, let/(z, y, t) denote the intensity
at pixel (z,y) in framet. | refer to the average of the second moment matrix over ehbeifpoodw

around a pixel as th&radient Structure Tensor

2 LI, LI
Gy, t) =Y VI(VD) =) | I, I} I, (5.1)
: i LI I, I}

This matrix has been invoked before in the analysis of lotrakcture properties. In [35], eigen-
values ofG were used for detecting spatio-temporal interest poimg42] it was suggested that the
eigenvalues ofs can indicate spatio-temporal properties of the video secgi@nd can be used for
motion segmentation. The idea behind this is reminiscetth@Harris corner detector [24], as it de-
tects 3D “corners” and “edges” in the spatio-temporal doamélere | take a closer look and develop

this idea into a motion segmentation algorithm.

Specifically, if the optical flow inv is (v,, v,,) and the brightness constancy assumption [27] holds,

then

G- (vg,v, )T =0 (5.2)

Hence,0 is an eigenvalue ofx. SinceG is positive-semidefinite, we can use the smallest eigeavalu

of G as a measure of deviation from the assumptions above, wédds lto the following definition:

Definition 5.1 LetA(z,y,t) denote the smallest eigenvalue of @radient Structure Tens@ (z, y, t).

The operator\ is theocclusion detectof

!Note that the values of at each pixel can be evaluated directly using Cardano’sttam
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Figure 5.1: Random dots example. A shape is moving sideways, where bhetshape and the background are covered by a
random pattern of black and white dots. Itis impossible &ty the moving object from each of the two frames (a) and (b
(a stereo pair) alone. The occlusion detector (c) (highkregaof X are darker) shows the outline of the object very clearly.

Compare with the ground truth (d).

We do not normalize\ with respect to the other eigenvalues®f(as in [42]), since it may amplify

noise.

In order to provide rotational symmetry and avoid aliasing ¢b the summation over the neigh-
borhoodw, | definew to denote a Gaussian window, and the operafign in (5.1) stands for the
convolution with a Gaussian. Since | do not assume tempata¢rence of motion, the Gaussian

window is restricted to the spatial domain.

Figure 5.1 demonstrates the detector results on a simpthetimexample. In this example there
are no intensity or texture cues to indicate the boundarigdheomoving object, and it can only be
detected using motion cues. The value\oShown in Fig. 5.1c, is low in regions of smooth motion,

and high values ok describe the boundary of the moving object accurately.

The values ofV 1, and hence oA, are invariant to translation transformations orAdditionally,

for any rotation matrixR,

AL - G| = |R(AI- G)R"| = AI- ) (RVI)(RVI)"

w

(T is the identity matrix) and therefore the values\adire also invariant to the rotation éf The issue

of scale invariance is discussed in Appendix C.1.
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Velocity-Adapted Detector

While rotational invariance is desirable in the spatial dom non-spatial rotations in the spatio-
temporal domain have no physical meaning. It is preferableate invariance to spatially-fixed shear
transformations, which correspond to 2D relative traimta motion between the camera and the
scene. As suggested in [36] by the referenc&#dilean diagonalizationone can use the velocity-

adapted matrixG given by

Gn Giz 0O
~ det(G)
0 0 Ar

(Gi; denote the entries di&, andG* denotes the x 2 upper-left submatrix ofz containing only

spatial information).
Definition 5.2 The operatorAr is thevelocity-adapted occlusion detector

To justify this definition, observe tha® is also invariant to translation and spatial rotation. The
entry \7 is an eigenvalue of%, and it has been suggested that it encodes the temporaimariaeing
the “residue” unexplained by pure-spatial information.

In practice, A7 gives results similar ta,, though it has certain advantages, as discussed in Sec-

tion 5.3. Throughout this chapter | uddo denote either operator, unless stated otherwise.

Detector Effectiveness

High values of\ indicate significant deviation from (5.2), which is oftenedto the existence of a

motion boundary. Other sources of large deviations inctitinges in illumination (violation of the

brightness constancy assumption), or when the motions/apatially (motion is not constant iv).

However, often these events lead to smallgalues as compared with motion boundaries (see Fig. 5.2),

in which case the boundary response can be distinguisheddifalse response (e.g., by thresholding).
Low values of\ do not necessarily indicate that the motion.iris uniform. The rank ofG is

affected by spatial structure as well as temporal strucgoa may be low even at motion boundaries,
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Figure 5.2: False) response. The same example as in Fig. 5.1: (a) 20tk white noise; (b) with illumination change of

5%; (c) with the object rotating by 20(d) with both object and background patterns deformed shiypo

linear background

/ uniform background

_«— same—color backgrounc

Figure 5.3: Areas where the detector is likely to give low values despite the existenfca local motion boundary.

when certain spatial degeneracies exist. Specificallg, dbturs when there is local ambiguity, i.e.,
when the existence of a motion boundary cannot be deternhiiwadly. This includes areas where the
occluding object and its background are of the same colegsawhere the background is uniform in
color, and areas where the background texture is uniforrhardirection of the motion (Fig. 5.3). In
the first case the rank d is 0, and in the other cases the rank@fmay bel or 2, depending on
the appearance of the occluding object (recall thattidetector is high when the rank € is 3). In
these cases, the background may be interpreted as part wioiiag object, since no features in the

background appear to vanish due to occlusion.

5.1.2 Extraction of Motion Boundaries and Scale Space Struare

The response of to occlusion occurs only where some background featuresnheoccluded. Clearly
boundary location cannot always be inferred on the basisaafl information alone. However, while
there may be no cues to indicate the location of the boundaayfime scale, there may be enough
information at a coarser scale (i.e., in a larger neighbmip@nd)\ may respond. Thus a multi-scale

element is incorporated in the algorithm, in order to detection boundaries that are not detectable at
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Figure 5.4: Checkerboard example: (a) A frame from the sequence; (bY@mshow the response of at fine ., = 1)
and coarses, = 10) scales respectively. At the fine scalepnly responds at intensity edges (which appear as discrete
“bursts™), while the entire contour is visible at the coassale, though with considerable distortion. (d) shows thal fi

contour selected by integrating over scales.

fine scales.

Defining scale

In order to define the notion of scale in my algorithm, notd tha evaluation of\ involves Gaussian
convolutions in two different stages — during the estimatibthe partial derivatives, and when taking
the average over the neighborhaood In both cases, larger Gaussians lead to coarser structurds

| refer to the size of the Gaussian as #$wmle In this work | only consider the spatial scale. As
shown in Appendix C.1, these two scales are related, and nalefiunified scale dimension, and a
scaling-invariant operatox(®) at any scales > 0, using scale-normalization.

The notion of scale has been studied extensively for featsuweh as edges and blobs. As with
these features, different structures can be found at diffescales. The responseofo noise, which
can occur in finer scales, is suppressed in coarser scalesheQsther hand, localization is poor at
coarse scales and motion boundaries may break and merge.

Figure 5.4 illustrates this idea — at fine scale (Fig. 5.4bjesponds only at discrete locations,
because the background consists of regions with constént ead the occlusion can only be detected
where there are color variations in the background. In tlzessr scale (Fig. 5.4c¢), the neighborhood of
every boundary point contains gradients in several dwastand the boundary is detected continuously.

Image features, such as edges, typically shift and becosteridid at coarse scales. The scale

space structure of motion boundary edges (and in partiemjaocclusion detector) has its own par-
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ticular biases in coarse scales. As discussed in Sectiom®8on boundaries at coarse scales are
shifted towards the occluded side, i.e., the occludingaibjbecomes “thicker”. In addition, it can be
shown that the bias is stronger when there is a large injedference between the object and the
background, and it increases with scale.

Estimating derivatives in the temporal domain is prone tasalg. See Appendix C.2 for imple-

mentation details, including elimination of aliasing arstirmation from only two frames.

Boundary Extraction in Scale Space

Since )\ is computed by taking the average over a neighborhood, sfgorese is diffuse. We want to
extract a ridge curve whereis strongest. This can be defined locally as points whdsemaximal in

the direction of the maximal principal curvature, which denexpressed as

Ary(/\i - /\;2/) - >\r/\y(>\m - Ayy) = 0
(Aea + )‘yy) ’ (()‘m o )‘yy)()‘i - )‘32/) + 4)‘50)‘1/)‘1‘3/)
A2y — 20 Ay Aay + A2 Agg

(5.4)

N
o

N
o

Thus, at every scalg the values of\ and its derivatives are computed, and the ridge can be #xtkac
For reasons of numerical stability, the derivatives 6t are computed with the same Gaussian smooth-
ing s used for computing\(*), at each scale.

Different boundaries are extracted at different scale§inasscale boundaries may often split be-
cause of the absence of local information, and coarse-boaledaries may disappear or merge. Since
these may occur at different parts of the image at differeales, we need to construct a scale-adapted
boundary, by selecting different scales for different litiess (as in [38]). Considering the multi-scale
boundary surface as the union of all ridgesit? for s € (0,00), we want to find a cross-scale
boundary where\(®) is maximal. This can be expressed as

As = 0
(5.5)

Ass < 0

using the scale-derivatives af
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Figure 5.5: Saliency measure. (a) All boundaries extracted from theloandots example with illumination changes

(Fig. 5.2b); intensity codes response. (b) The most salient closed contour.

Combining (5.4) and (5.5) defines the fimabss-scale motion boundarit is a curve in the three-
dimensional spac& —Y — S, defined by the intersection of the two surfaces defined otispsy by

these 2 sets of equations.

5.1.3 Boundary Completion

As stated above) also has some false responses which lead to the selectiatsefioundary frag-
ments. It is therefore necessary to define a saliency anitewhich is used to select the most inter-
esting boundaries. Since we regards a measure of local boundary strength, for each conneeted s
of boundary points | define th&aliency measur be the sum of the value of along the boundary,
as in [38]. This measure may be sensitive to fragmentatidheoboundary, so in my implementation
small gaps are tolerated.

Finally, segmentation is achieved by searching for closedaurs with high saliency and small
gaps. | employ a simple greedy heuristic to connect the mdit@mindary fragments into a continuous
boundary with maximal saliency and minimal gaps. Since #ieeted boundaries are usually almost

complete, this heuristic gives good results (see Fig. 5.5).

5.2 Experimental Results

In my experiments | compared my algorithm with the most prent motion segmentation approaches,
wherever code was available. To begin with, | establish teeline result by segmenting the optical

flow. Such a segmentation lies at the heart of some more elbsegmentation methods, such as [50].
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| used arobust and reliable implementation of the Lucasaldaralgorithm [40], and segmented it using
a variety of edge operators, including Canny and variousaarapic diffusion methods and clustering

methods (e.qg., [73]), presenting the best results for ezample.

One influential motion segmentation approach relies onlgcas [34] (and is therefore related to
the more traditional regularization based approaches.[43)pde for two variants of this approach is
available on the web by the respective authors [34,69], aodld therefore use their code to establish
credible comparisons. Note, however, that in both caseguhlicly available code can only work with
rectified images. Therefore, in order to obtain fair congaans, | compared my results with the results

of these algorithms only with rectified image pairs, whensjiue.

Figure 5.6 demonstrates my algorithm on a stereo pair. Tie sadient motion boundary is shown
in Fig. 5.6b superimposed on the first input image. Fig. Sl@strates the baseline result - the edges
of the optical flow. Fig. 5.6d illustrates the best MRF-basegmentation using graph cuts [69]. More

results are shown in Fig. 5.7.

Figure 5.8 shows my algorithm’s performance on a video secpiwith a dynamic scene, featuring
non-rigid motion and illumination changes. The octopus #r&reef below have similar color and
texture, and thus spatial coherence is unreliable (notaiticplar the triangle-shaped projection near

the octopus’ head, which is in fact a background feature).

In Fig. 5.9, a large amount of noise was added to the syntbbtckerboard sequence, causing
numerous optical flow estimation errors. The magnitude efftbw estimation error is often greater
than the true flow (Fig. 5.9b), particularly around the cenigf the squares, making segmentation
based directly on the optical flow impossible. Results of dgpdthm and MRF-based method are

also shown.

The main weakness of many MRF-based methods is their reliancspatial coherence, which
leads to failure when no spatial edge coincides with the anoéidge. This is demonstrated on the
random dots example in Fig. 5.10a,b where such methods tmgpatial support and therefore fail.
Fig. 5.10c,d demonstrates my algorithm’s advantage wheglatmal motion model can be assumed.

In this example, the texture of both the moving object andotiekground undergo smooth non-linear
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Figure 5.6: Cup example. (a) The left image of a stereo pair. (b) Mosesakdge detected by my algorithm (with the
area of the segment highlighted). (c) Edges in the horizammamponent of the optical flow. (d) Edges from a graph cuts

segmentation algorithm [34].

(@) (b) () (d)

Figure 5.7: Flower example. (a) The left image of a stereo pair. (b) Madiest closed contour detected by my algo-
rithm (with the area of the segment highlighted). (c) Edgethe optical flow. (d) Edges from a graph cuts segmentation
algorithm [34].

(@) (b) (©)

Figure 5.8: Octopus example. (a) A frame from the sequence. (b) The matishsclosed contour detected by my algorithm

(with the area of the segment highlighted). (c) Edges in itecal flow.
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Figure 5.9: Checkerboard example wit5% white noise. (a) One of the frames; (b) Lucas-Kanade opfiical magnitude;

(c) Segmentation using graph cuts; (d) The most salienobcoridund by my algorithm.

(@) (b) (©) (d)

Figure 5.10: Random dots example (see Fig. 5.1). Witl% white noise: (a) Segmentation using graph cuts; (b) The most
salient contour found by my algorithm. With smooth non-tindeformation: (c) Segmentation assuming affine motiomgusi

an implementation of [73]; (d) The most salient contour fiy my algorithm.

deformation. The results of applying [73] show that wheniorovaries smoothly within an object,

global model methods fail.

Figure 5.11 demonstrates how my algorithm works with veoyvsinotion. As long as there are
features in the background that become occluded, my digoritan detect the motion boundary even
at sub-pixel motion. Figure 5.11a shows results for a sexpi@rhere the foreground object moves
by 1/2 pixel. All MRF-based algorithms | applied failed to detele tforeground object altogether.
Although the velocity in Fig. 5.11a is 8 times slower than ig.’5.11b, the values of in both cases

are similar.
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Figure 5.11: Results on a random dots example with small motiot &5 pixel per frame (a), and with larger motion 6f

pixels per frame (b).
5.3 Analysis

In order to analyze the performance of the proposed tecbnitpnsider a video of two moving layers

I', 12, where w.l.0.g/? partially occludeg'. A frame in the video sequence can be written as
I="(1-a)+1 a (5.6)

whereq is thematting map Assume w.l.o.g. that the occlusion edge is perpendicolding X axis
and that at frame = 0 it is atz = 0. Further assume that the occlusion edge is a Gaussian{saaoot

line, so« is of the forma, (x) = [ gs,(u)du (I denote the Gaussian function with variancas

gs)-
If the motions of* andi? are (v}, v,) and(vZ, v2) respectively, then the video volume is given by
I(z,y,t) = ll(:n—vit,y—v;t) c(I—a(z—v2t)) + lz(x—vit,y—vzt) ca(z—vit)  (5.7)

Note that the motion of: is the same as the motion Bf since it is the occluding layer.
Denoting the video volume of each layerBsz, y,t) = I*(z — vit,y — vft), the gradient of the

video volume is given by
VI = (1—a)-VI'4+a-VI?+(I*-1") g4 -n (5.8)

wheren = (1,0, —v2)7. Note thatn is perpendicular in space-time to the occlusion edge, 0)”
and to the motion vector? = (v2,v2,1)7; i.e.,n is the normal to the plane in the video space formed

xr 7Y

by the motion of the occlusion edge.
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Therefore V1 is composed of the matting &', V12, and a component that dependsién- I'.
Note thatV ! is perpendicular ter!, while bothVI? andn are perpendicular te?. This means that
V1 is composed of two components that are related to the ocgudyer and only one that is related
to the occluded layer.

For scale space analysis | use the approximation
gx(f-a)=(g*f) (9*a) (5.9)

whereg is a Gaussian function and is an integral of a Gaussian as defined above. Eqg. (5.9) is an
equality whenf is constant, and it provides a good approximation wlfiedoes not change rapidly
nearxz = 0 (in each layer separately).

Applying (5.9), the gradient estimated at scalelenoted byW1(*) = V (g, % I), is

VI ~ (1—gyps) - vt 4 Cgots - VI 4 ([2(8)_[1(8))  gsgts M (5.10)

5.3.1 Velocity-Adapted Occlusion Detectob

| assume the 2D gradients in each layer are distributedbigiatilly, in the sense that the mean gradient
is 0. Furthermore, | assume that they are uncorrelated. Thugg (6.8) and (5.9), we can write the

gradient structure tensor defined in (5.1) as

GO x go, (1=’ VINVIN + a2 V(YT 4 (P=1')? - g2, -on")

~ hy-M!'+hy-M?+ hs-nn” (5.11)
where
1 0 _vlgg hi = a-(1- a50+5+5w)2
ko _
M = 0 1 —U]Zj and h2 = cy- ago-i—s-i—sw (512)

—of —uf (0h)? + (vf)? hs = € Gst(so+s)/2

The constantsy, = ([[VI[2) /2 ande = ((I2 — 1)) /\/4(s + 5) describe the distribution of

intensities in the layers.
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Then, the velocity-adapted occlusion detector from (528) ke shown to be

1 2\2 1 ,2\2
SRR C ok ) (5.13)
1/h1—|—1/(h2+h3) 1/h1+1/h2

In the general case, the expression above is hard to an&@gnepling shows that; typically has
a single local maximum. Although it may have two local maxjtiés only happens whesy > 9 - ¢;

andc > 180 - ¢; for s > 1, and the second local maximum is usually very subtle. Thegefor all
practical purposes, it can be assumed Myahas a single local maximum.

Furthermore, we can draw the following conclusions:

¢ In the special case whetg = ¢ (i.e., both layers have the same intensity variance)cand0

(i.e., both layers have similar intensities); is maximal atz = 0.

e In the limit ¢ — 0, Ay is maximal whenn(z) = ¢/c1/(/c1 + /c2), which means that the

detected edge location is biased towards the layer withriaviensity variance. The magnitude

of the bias is proportional t¢/s + so + s,.

e If only ¢; = ¢y is assumed, theﬁd%T(x = 0) < 0, thereforeAr is maximal at a negative,

which means that the detected edge location is biased tevlaecdccluded layer.

5.3.2 Occlusion Detector\
Behavior analysis of the smallest eigenvalués harder. Thus | make the further assumption that
I' = [? along the edge. Then we can omit the last term in (5.11) and get
G = c(1—a)’M!+ cpa’M? (5.14)
Calculating the eigenvalue of (5.14), the following can beven:

e The smallest eigenvalue Gt is given by

a = (1—a)2c|v? + aes||v2|?
( )eer|[v] 2|2 (5.15)

A= (a —Va? — 4b) where

DO | =

b = (1-a)d?cico|vt —v?|?

88



/NN

Figure 5.12: Two-frame occlusion problem. Two of the pixels in framhedo not correspond to any pixel ip due to

occlusion, and they may belong either to the right (a) or ¢fig(b) layer.
¢ ) has a single local maximum.

2 then\ is maximal atz = 0 — where the edge is located.

o If c1||[v!]]? = 2| V?|

o If ¢1||vY|? > cof|v?||? then X is maximal at some: > 0, and vice-versa; in other words,

the detected edge location is biased towards the layer awibrl intensity variance and smaller

absolute motion.

The biasing effect towards the occluded layer is not evidiemt to the particular assumptions |
have made, although it was observed in my experiments. Kate tis affected by absolute velocity,

unlike the velocity-adapted operatay.

5.4 Depth Ordering

I now present two algorithms for determining ordinal depdisdxd on the occlusion detector defined in
Section 5.1.1, using either two frames or three frames.

When only two frames are available, it is impossible to irtfier order of depth from motion alone,
without additional assumptions or prior knowledge. Coesid pair of images of a video sequence
(or a stereo pair) that contain the motion of two layers wiare partially occludes the other. As
illustrated in Fig. 5.12, pixels that appear in one frame laacome occluded in the other may belong
to either of the layers. Whichever layer they belong to isabduded layer, and since their interframe
correspondence cannot be determined, both interpresagi@nequally valid. The two-frame algorithm,

described in Section 5.4.1, is based on the assumptiontbed ts a (possibly small) difference of
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intensity between the layers on average.

The situation when more than two frames are available isiderably different. While there
may be two interpretations to a two-frame sequence, additiframes can be used to rule out false
interpretations. With a slight modification, my algorithmncbe applied to three frames even when the

two layers have the same intensity on average, and achiteg loealization, see Section 5.4.2.

5.4.1 Two-Frame Algorithm
Given the scenario described above and generalizing th8}pace-time gradient dfis given by
VI = VI'-(1-a)+VI* a+ (I*-I")Va (5.16)

Observe that the expression above is a sum of three vectas ef them proportional to the gradients
of the two layers, and a third component that stems from tige éétween the layers. Since the edge
and the occluding layer have the same motionc@nmon fatg the gradient of is more affected by
the motion of the occluding layer than that of the occludgeian areas of transition between layers.
This asymmetry is manifested intdas towards the occluded layer in the location of the detected
motion boundary, as derived from (5.13).

First note that this bias typically grows with scale. Thibecause the components representing
the gradients of each layer are smoothed across the motiomdboy into the other layer, and the
component that is due to the difference between the layemmdothed in both directions. Therefore,
the effect of the motion of the occluding layer expands farinto the occluded layer asis further
smoothed.

More specifically, consider the spatial scaling of a vidduay o, namely
J(x,y,t) =1(x/o,y/0,t) (5.17)
Due to scaling invariance (Eqg. C.4 in Appendix C),
AT (1) = A (2 )0,y /o, t) (5.18)

Thus, if at scales; the maximum oﬁ\gsl) is obtained at some < 0, then at scalay, the maximum

of )\((]’”2) would be obtained a{/s2/s; - * whenJ is a scaling off by s/s;. If the values ofc;, ca, ¢
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Figure 5.13: (a) The bias of the location of maximaf®) as a function ofs (scale) on a synthetic random-dot pair. Each
curve represents a different value<o{t72 — 11)2> ranging from0 (top) to0.2 (bottom). (b) The bias as predicted based on

(5.13).

(defined in (5.12)) do not vary between the scaleandss, then)\((]”) ~ )\g”) and the maximah for

I at scales, would also be at/sy/s; - . This means that the bias in the location of maximél

is proportional to,/s, which means that not only is the location biased toward®totuded side, but
this bias also grows with scale. This property\aé demonstrated in Fig. 5.13 on a synthetic example
of random dots. In real sequences, the assumption thattdwesity distribution is similar in different
scales is usually not satisfied. Nevertheless, the effextribed above is still observed qualitatively,
and can be used to determine depth ordering.

This observation can be used to design a depth-orderingithlgo The algorithm starts by seg-
menting the two-frame sequence, to yield an estimate of thigimg function&. For scales, if the
location of the maximum ridge in(®) is indeed biased towards the occluded side, then at poimmsg al
the boundary of the segment, the directionNok = (\;, \,) should be towards the outside if the

segment is the occluder, and towards the inside if it is atadiu Defining
d=VA-Va& (5.19)

we should expect that < 0 if the segment is the occluder, add> 0 if it is occluded. Thus, summing
the value ofd along a contour of the segment can determine which side afdhwur is the occluder.
Since the bias effect grows with scale, it is preferable aatde small scales. On the other hand,

higher scales distort the image data and other nearby ineagerés may interfere with the valuedf
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Figure 5.14: Results on real sequences of three dynamic scenes: (ahgldyb frames. (c) Responsedtfrom Eq. (5.19))

coded as dark=negative, light=positive. (d) Final layertedted by the algorithm with relative depth coded as whi¢ew,

grey=middle, and black=far.
Therefore, we sum the value @fin several intermediate scales:

D= i > VA .V (5.20)

$=$1 x€OA
The response af (from Eq. (5.19)) on boundary pixels in real sequences iwalino Fig. 5.14c. In

the bottom row, points on the edge between the flower and the have positive values with respect
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to the hand and negative values with respect to the floweatReldepth is shown in Fig. 5.14d. The
octopus in the top row and flower in the bottom row are coryedtitected as the occluders, while the
hand is detected as occluding the background and as ocdbydbd flower. The scene viewed through
the window of the old ruin in the middle row is correctly ddtst as occluded. Note that the internal

frame of this window is (correctly) not detected, since ¢hisrno depth discontinuity in this area.

5.4.2 Three-Frame Algorithm

Recall that high values of occur in areas where there is no smooth motion, i.e., at mbbandaries.
At points with no correspondence (due to occlusion), théaaterivatives would have random values,
leading to a high\ value, even if these points are not strictly boundary poifitese areas are adjacent
to the true motion boundary and theresponse would appear as a thick boundary region. Based on
two frames alone, it is impossible to determine which sidéhefthick boundary is the true edge, which
is equivalent to determining which side the occluded pikel®ng to.

When three frames are available, | denote the respons@oframest, ¢ — 1) asA_, and frames

(t,t + 1) asAy; tis the reference frame in both cases. | define
Amin = min{A_, A} } and  A\jgr = max{A_, A\ } (5.21)

Points on the true motion boundary are detected by hotland A, , thus\,,;,, > 0 at these points.
Points that are not occluded in any of the frames are not wetday \, thus\,,.;, =~ 0. There exist
points that are occluded ih— 1 and not int + 1 and vice versa, and in these poikg;, ~ 0 and
Amaz > 0.

Therefore, the true motion boundary can be detected as éaevarere),,,;, > 0. The regions
whereM ., =~ 0 and .. > 0 belong to the occluded layer, and the relation between tleggens
and the boundary yields depth ordering. This is illustramellig. 5.15.

This principle can be implemented by slightly modifying tiae®-frame algorithm as follows:
e Use\,,;, for the segmentation to obtaii
e Use\,q. in (5.19) to obtain the bias directiah
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t+1
Ay >0
A >0
t—1

Figure 5.15: Three frames with pixel correspondence; pixels that haveespondences betweerandt — 1 and have no
correspondence betweeéerandt + 1 are located to the right of motion boundary pixels, indiegtihat the right side is the

occluded side.

(@) (b)

Figure 5.16: Results of a real three-frame sequence (octopus examplteRig. 5.14): (a) Edges based an,i, (black)
compared with the response &f... (gray) — the response is stronger outside the edge, indicttat the segment is the
occluding layer; (b) Edges based an,.,, (black) compared with edges based)on (i.e., from two frames), showing that

three frames give better localization.

Using \,.;, for the segmentation gives better localization of the sedimedge, since it responds
only to the true edge. Since,,,, responds also to occluded regions, its profile is biasedrtisvhe
occluded side (as is the bias due to the intensity gap), amiitk 0 if the segment is the occluder,
andd > 0 if it is occluded.

Unlike the bias due to intensity difference, the bias thaliis to occluded pixels is not affected by
scale. Note that no intensity difference was assumed, sdi&s can be detected even when there is no
intensity difference between the layers. On the other hahén there is an intensity difference, both
effects contribute to the bias, boosting the correct assim. An additional advantage of the three-

frame algorithm is better localization of the segment baupdas occluded pixels are distinguished
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Figure 5.17: Two frames used in the experiment with density varying betw45% and 55%. The sequences used in the

experiment are available on the web bt t p: / / ww. ¢s. huji . ac.i |/ ~daphna/ denps. ht ml #noti on .

from boundary pixels.

Figure 5.16a shows the edges basedgp, and\,,.... from three frames of the octopus sequence.
The A\« €dge is outside thg,,.;,, edge, indicating that the segment is the occluder. Xhg -based
edge gives better localization of the motion boundary (carag with the two-frame result), as shown

in Fig. 5.16bh.

5.5 Human Experiments

The algorithms | have presented determine depth order fraonor three frames based on motion
alone. They perform well even when monocular segmentagianpossible. Below | show that human
observers can also perform these tasks, with comparabtessic

In Section 5.5.1 | describe the 2-alternative forced cheiqeeriment, in which | presented subjects
with random-dot sequences of two moving layers. In Sectiér?Zand 5.5.3 | describe the results of

experiments with two- and three-frame sequences, resphcti

5.5.1 Methods

In my experiments | presented subjects with sequences ichvihvo layers with random-dot textures,
one patrtially occluding the other, are moving horizontdtlyopposite directions. The boundary be-
tween the layers is the middle vertical line, and the derditthe dots varies across each layer along

the motion boundary. Figure 5.17 shows an example of suchwesee. Each side was the occluder
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Figure 5.18: Results of experiments on human subjects: (a) Two-frameesegs. (b) Three-frame sequences.

in half of the sequences, in random order (counter-balgnced

In each sequence, the density was characterized by somigydpagsA, so that the density varied
between(l — A)/2 and(1 + A)/2 across each layer. Participants were instructed to clickerside
(left or right) where they thought the occluder was in eacjusace. The experiments were conducted

in sessions of 20 presentations, with 3-6 sessions pecipantit for each different value of density gap.

5.5.2 Two-Frame Sequences

Seven volunteers patrticipated in this experiment. In eaebgmtation, the two frames were displayed

alternately at a rate of 3 frames/second. The density gapeleet the two frames wa¥s, 5%, 10%,
15%, 20%, 40%.

For a density gap of0%, subjects selected correctly in nearly0% of the sequences. For a density
gap of0%, i.e., the density was uniform across the whole frame, stbgelected correctly i50% of
the sequences, i.e., no better than chance. This is cantsigth the fact that both interpretations are

equally valid in this case. The results are summarized in%:itBa.

For comparison, | applied the two-frame algorithm to thesaeguences. For density gaps of more
than20%, the success rate was neatly0%. As expected, when density was uniform, the success rate

was50% (in such sequences both interpretations are equally valitg performance of the algorithm

is summarized in Fig. 5.19a.
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Figure 5.19: Performance of my algorithm on the experiment sequencgsiwe-frame sequences. (b) Three-frame se-
guences.
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Figure 5.20: Performance of an ideal observer on two-frame experimentesees.
5.5.3 Three-Frame Sequences

Two volunteers participated in this experiment. In eacts@ntation, a sequence was played back and
forth at a rate of 10 frames/second. The density gap betveetwb frames was%, 10%, 20%, 40%.
Results for three frames were much better than those for tsmods, as expected. In particular, for
a density gap 00% (uniform density), subjects selected correctly7iV of the sequences, in con-

trast to the two-frame experiment in which subjects peremo better than chance. The results are

summarized in Fig. 5.18b.

The three-frame algorithm, applied to the same sequenaes,the correct answer in neadl90%

of the sequences, and even with uniform density, its sucedssvasd6% (see Fig.5.19b).
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5.5.4 Two-Frame Sequences: Ideal Observer Analysis

In order to evaluate the results of the two-frame experisiant algorithm, consider an ideal observer
that “knows” the form of the distributions generating theuwences, but does not know which side is
the occluder. Le#d,, H, denote the two possible choices: “left-front” and “right#it”. For a given

two-frame sequencg, the probability that it was generated Hsis

Pr(I|H;) - Pr(H;)

YU = = BTy - (i)

where  Pr(I|H;) = [[ Pr(I(z,y,t)|H;) (5.22)
x,y,t

Pr(I(z,y,t)|H;) andPr(H;) are known to the ideal observer. Thus, for any giverthe ideal ob-
server can compute (5.22) for= 1,2, and then choose the most probable hypothesis. By sampling
sequences, the probability of correct choice was estimatéd.7% for A = 10% and 100% for

A = 20%. This provides a theoretical upper bound on the performahea observer in this task.

A less informed observer, that does not know the exact fortme@fistribution used to generate
the data, may consider all possible videos in which the tep$idots in each layer remains constant
within a small region. Such an observer can compare thetgansieighborhoods of occluded pixels
with nearby neighborhoods within either layer. For a ne@hbod width of16 pixels, such arad
hoc scheme chose correctly 8% of the sequences fah = 10%, and99.7% for A = 20% (see
Fig. 5.20).

5.6 Summary

The occlusion detector | have presented is useful for eiigamotion boundaries. Since | do not make
any assumptions regarding the color or texture properfiedjects, or about the geometric properties
of the motion, the algorithm works well on natural video seages where such assumptions are often
violated.

The algorithm relies mainly on background features whicdaplpear and reappear as a result of
occlusion. These features may be sparse and still indibattation of motion boundaries, as the al-
gorithm processes the data in multiple scales. As opposaiddoithms that rely on motion estimation,

my algorithm usually does not require any texture on theumtinly object.
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Since occlusion is the main cue used by the algorithm, it wavkll when velocity differences
between moving objects are small, since features willdippear due to occlusion. Algorithms that
rely on motion differences typically find it hard to distingln between different objects in such cases.

| described a second algorithm, extending the occlusioacti@t to compute the depth ordering
between the layers across the motion boundary. The algontAs shown to give good results on
real sequences with different occlusion settings. Witly awo frames, the algorithm relies on some
(possibly small) difference in texture between the moviagels. Without this assumption, we face
the well known inherent motion ambiguity, which states thepth ordering cannot be computed from
two-frames and motion alone.

Can humans use a similar heuristic to get around this inhenetiguity? | asked humans to
rank the relative depth of two moving layers in two or threafes. In these experiments there was a
difference in texture between the moving layers, but thiedihce was set to be local and small, so that
it could not be detected in a single frame as a distinct baynloletween the two layers. Nevertheless,
when presented to human subjects in motion, this differarasesufficient for the detection of relative
depth. | showed that my algorithm can also utilize this srdifiérence to detect relative depth, giving

gualitatively similar results (cf. Fig. 5.18 and Fig. 5.19)
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Chapter 6

Summary

| presented two techniques which exploit information ingpatio-temporal structure of video data. We
saw how a geometrically-constrained video sequence casdgkbio generate new views of the scene
without scene reconstruction. For an unconstrained videtaming general motion, we saw that the
spatio-temporal structure of the video is highly regulast aan be used for motion segmentation using

a differential operator that detects occlusion.

View Synthesis: | presented a new non-perspective projection model, wisiatefined by two
slits and a projection surface. Algebraically, this modatresponds to a second-order transformation
from 3D to 2D, and it has an epipolar geometry that is also obsé order. Given a video sequence
acquired by a translating camera, we can generate new Xy&#ivs of the scene, making it possible
to create a virtual environment using a simple and robustnigae. Although not perspective, the
movies generated in this way appear compelling and raalisti

Reducing the inherent distortions of the X-Slits projestaan be done by reprojecting the image
onto a coarse approximation of the scene structure. Amaltiee approach, without any assumptions
about the scene structure, is to select rays so as to apmtexiime set of rays of a perspective camera.

Motion Segmentation: | have presented an occlusion detector that is used foratixtgamo-
tion boundaries without any assumptions regarding coleexture properties, or about the geometric

properties of the motion. The algorithm processes the tistecesponse in scale space, producing
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a scale-adaptive segmentation which tolerates local aritigig. The algorithm gives good results on
real sequences.

Using the same detector, | described a depth ordering #tgoriThe algorithm was shown to give
good results on real sequences with different occlusiaingst With only two frames, the algorithm
relies on an intensity difference between the moving lgyarsl does not depend on the existence
of a visible intensity edge. The algorithm can be adjustesvaok with three frames without this

requirement.
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Appendix A

Column Sampling Detalls

A.1 Linear Column Sampling: The Uncalibrated Case

Assume that the motion direction of the input camera is ormgalel to the image plane, with the
internal parameters of the camera being fixed but unknowowlshow that any linear sampling of the
columns results in a valid X-Slits image.

Let J denote the inverse of the calibration matrix [26, p. 141§ assume that column= s(t) is
sampled from the image captured at time'he 3D physical location of this column on the camera’s

projection plane, in standard coordinates dengted is the line defined by:

P s(t) Jiis(t) + Jigy + Ji3
q | =9 Yy = Jo2y + Jo3 (A1)
1 1 1

(J is upper triangular). Eliminating the free variablgthe line is parameterized by:

p = K1q+K2+K38(t) (A.2)
where
J J
K =2 Ky = Ji3— s, Ky =Jy
Jo2 Jo2

Assume as before that the camera center at tilse:(t) = (It,0,0). Assume also that columns

are sampled linearly, i.e., the column sampled from the @alen at time is defined by(s(t), y) Yy,
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ands(t) = at + ( for somea, 3. | will show that the result of pasting these columns togetht® a
mosaic image is a X-Slits image.

First, from the definition it follows that the image taken iaté ¢ contributes a set of rays that lie
on a 3D plane. This plane is defined by the translating camesrterc(t) and the line on the image
plane which corresponds to columfy) (see Fig. A.1, right inset). Denote this planebf¢). | first
show that all the planes(t) intersect in a line; this line defines the vertical slit of dSlits camera.

The horizontal slit is defined by the trajectory of the camera

s(-1) s(t) s(1)

camera translation
path \

column s(t) in image t . Planerr (t)

c(t)

second slit of virtual camera

Figure A.1: lllustration of the relevant geometry, including the caa®mpath, the center of projectia(¢), the column

sampling functiors(¢), and the planer(t).

Specifically, the plane(¢) is defined by the camera centsit) = (I¢,0,0) and two points on the

line given in (A.2); we choose two such points by setting 0 andq = 1:

It K2—|—K3(Oét+ﬁ) It K; +K2+K3(Oét—|—ﬁ)
0 |+ 0 and 0o |+ 1 (A.3)
0 1 0 1

As can be readily verified, the plane incident with all threéfs is defined by
7T(t) = (—1,K1,K2+K3(at+ﬂ),lt) =
= (_17K17K2 +K3ﬁv 0) + t(0,0,Kg()é,l) (A4)

It follows from Eg. (A.4) that the family of planes(t) is a pencil of planes which intersect in a

line, and | define this line to be the vertical slit of the cameFhe slit direction is determined by the
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cross product:

(=1, Ky, Ko + K30) x (0,0, K3a) o< (K71, 1,0) (A.5)

From the requirement that the slit coincides wittt) from Eq. (A.4) for everyt, we arrive at the

following slit equation:

T (K + K33) K
0 +A 1 YVAeER
—1
Ta 0

Thus by collecting vertical strips linearly and placing thén a mosaic, the resulting image is
equivalent to a X-Slits image whose slits are parallel taitiege plane. In case of zero skefy, = 0
and soK; = 0; now the two slits are orthogonal as in the Orthogonal XsStamera discussed in

Section 3.1.2.

A.2 Input Camera Moving on a General Straight Line

| shall now analyze the sampling function when the motionhef input camera is not parallel to the
image plane. Let the motion direction be an arbitrary lin@Ih Letc(t) = ¢y + Ac - t denote the
camera position at time(in R?) and let the pinhole camera’s projection matrixde —Ac(t)], where
A = [Ay, Ay, A3)T denotes thé x 3 matrix determined by the camera’s internal calibration #sid
orientation. It follows that when the camera is locatea (@}, a scene poinp € R? is projected to

(£, L) such that

w’

. Ao~ ()
= | AT(p- ) (A6)
w) A5 —et)

Suppose we sample strips from these images, at varyinggrsiand varying orientations. Let
s(t) and a(t) denote the sampling functions, giving the position of thgpsbn the imagez-axis

and the strip’s orientation, respectively, so that we samplimaget the points on the oriented line
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= s(t) + a(t)Z. Using (A.6) we obtain

z—a(t)y —s(tyw = Af (p — c(t)) — () AT (p — c(t)) — s() AT (P —c(t) =0 (A7)

This defines a plane (on whighlies) — the plane coincident with the sampled oriented Imienaget
and the center of projection of the came(a). Denote this plane by(¢) (as in Fig. A.1). This plane

in homogeneous coordinates is given by

Al —a(t)Ay — s(t)A
- | — alt) Az — s(t)As "8
—(A] — a(t)A] — s(t)AF) - c(t)
For our sample to give a X-Slits image, it is necessary arfitgrit that all these planég intersect

in a line. There are three cases to note in (A.8):

1. If s(t) = constant anda(t) = constant, thenr(¢) is linear int and therefore describes a line.

Whena(t) = 0, we get the linear (oblique) pushbroom camera model [23 g84 Fig. 4.3.

2. If ATAc =0, s(¢) is linear int anda(t) = constant, then once again(t) is linear int. This
is the case when the camera motion is parallel to the projegiane - the Orthogonal X-Slits

projection discussed in Section 3.1.2 (whe(t) # 0, we get the tilted slit variant discussed in

3.1.3).

3. In the general case, df(t) ands(t) are of the form

a2 + bot

as + bst
t) = — A.9
PRt s( (A.9)

a1 + bit

at) =
Substituting these expressions into (A.8) gives

w(t) o w(t)- (a1 + bit) =
(al +b1t)A; + (CLQ + bat) Ay + (as + bst) As

= (A.10)
—((a1 + blt)Al + (ag + bgt)Ag + (a3 + bgt)Ag)T(CO + Ac- t)
which is linear int if and only if
(b1 Ay 4 byAs + b3A3)TAc =0 (A.11)

It is easy to see that the first two cases are special cases)f (A

105



There are 4 degrees of freedom (up to scale) in choosing dq@ir, s(t)) of sampling functions
which satisfy constraint (A.11). Each pair of sampling fimes of the form (A.9) for which (A.11)
holds implies that allr(¢) intersect in a single line (the virtual slit). And vice versiacan also be
shown that every family of planes(t) which intersect in a single line uniquely defines such a piir o
sampling functions.

We can therefore conclude the following: using the samptireghod described above with sam-
pling functions as in (A.9), and given a linear camera path,can produce the image of any X-Slits

camera with one slit overlapping the camera path.
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Appendix B

The Distortion of Linear Sampling

Functions

In Section 4.1.1 it was shown that any linear sampling fumcty(¢) = at + 5 corresponds to an

Orthogonal X-Slits projection of the form given in (3.8). i$ltan be rewritten using (4.15) as:

X _ z(1 — Z%) (B.1)

Y y(l - aZa1Z+k)

(it is assumed that;, o > 0).

Assumingw = 1, 23] X [y1, y2], substituting (B.1) into (4.17)(¢, p, X, Y, Z) equals:

T2 Y 7 of
CF (- £) = X0+ (y(1 - 784) — Y0)?
72

dydx (B.2)

z1 Y1

Integrating, and then differentiating with respectfoY’, Z, the minimum is achieved Xy, Yo, Zo):

Xy = (m1+%Am)(1—§—g)
Yo = (n+38y)(1—azfs) (B.3)
2 2
ZO = 7A§2I +aAAyy2
7 Taz, ik

whereAz = zo—x1, Ay = yo — y1. Substituting the above into (B.2) we obtain the local pectipity
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distortionny, of ¢(t) = at +

3,3 2
1 Az’Ay (1 @ ) (B.4)

nL() = 12A22+ A2 \Zy aZi+k

The global perspectivity for a linear sampling functio(t) = ot + (3 is obtained by substituting

(B.4) into (4.19), and integrating over the image domain:

o nL((ZSap) _ k 2
na(@) - /I mdp—s(azl+ 0) (B.5)

whereS = (Zymazr — Tmin) (Ymaz — Ymin) 1S the image area.
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Appendix C

Motion Segmentation Detalls

C.1 Scale Normalization

One problem with multi-scale analysis is that derivativesrdase with scale. Indeedif< I < 1,

then

1
/2T Sy

when smoothing with a spatial Gaussian of variange This well-known problem can be handled by

scale normalization, as proposed in [38]. Scale normatizas done by defining thecale-normalized

partial derivatives

5o 0 . 0
[ag’ ) = v Szy %(ngyy * I) and [;S o) = vV Szy a_y(gsgyy * I) (CZ)

where g, * stands for convolution with a Gaussian with variangg. Thus Iﬁs“”y) and Lf,s“‘) are
used in the evaluation of instead ofl, andI,. Note that scale normalization does not violate the
assumptions leading to the definitionofn Section 5.1.1.

One important property of scale normalization is thdiecomes invariant to spatial scaling fof
This means thak gives comparable values for a video sequence in differeaiutons.

To see this, let us scaleby o, and define

J(x,y,t) =I(x/o,y/o,t) (C.3)
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Substituting (C.3) into (C.2) yields
VJ(UQSwy)(Ul’,O'y,t) = VIG) (2,91 (C.49)

Let s,, denote the variance of the Gaussian windowand letG(*=v-*<)[I] denote the second
moment matrix defined in (5.1), with the scale of differetidia s, and scale of averaging,. From

(C.4) it follows that
(G(Swy,&u)[[]) (z,y,t) = (G(U2Swyvo'25w)[J]) (0, 0y, 1) (C.5)

That is to say, ifJ is a scaling by of I, then the value oA at (x,y,t) in I at scaless,,, s, will be
the same as at the corresponding poin{ iat scalesr?s,,, o%s,,.

For the purpose of computing a goodclusion detectgrit follows from (C.5) that as long as the
computation scans all scales in scale space, the resulthdbe®pend on the image resolution. Note
that in order for) to be scale-invariant, it follows from (C.5) that, must be proportional te,,, as
in [35]. In my implementation | use = s,, = s, which defines a single scale | denote the\

evaluated at scaleas\(®).

C.2 Implementation Issues

C.2.1 Temporal Aliasing

Since real video data is discrete, the partial derivatimghé definition of\ must be estimated. This is
done by convolvingl with the partial derivatives of a 3-dimensional GaussiantaRonal invariance
implies that the spatial variance in theandY directions should be the same, and the kernel is there-
fore an ellipsoidal Gaussian with spatial variangg and temporal variance;. Due to the distortion
introduced by the convolution, it is desirable that thedaasbe small.

Estimating the temporal partial derivative from video rets a severe aliasing problem. Since
video frames represent data accumulated during short amdespxposure periods, and since a feature

may move several pixels between two consecutive frames, idadliased in the temporal domain
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significantly more than in the spatial domain. | overcoms ftioblem by taking advantage of the
spatio-temporal structure of video, as described next.

Suppose that the velocity in a certain regiow is- (v, v,), and therefore
I(z,y,t) = I(x — vyt,y — vyt,0) (C.6)
The temporal derivative ih= 0 is given by
I = —v I, — vy, (C.7)

In discrete video,[; can be estimated by convolution in tfiedirection, which, due to (C.6), is the
same as convolution in the direction of a subsample df(z,y,0) at intervals of sizév|. In order
to avoid aliasing due to undersampling while estimatipgthe Sampling Theorem requirdsto be
band-limited, so that its Fourier transform vanishes belyﬁgﬁﬂ. This can be achieved by smoothing
with a spatial Gaussian. However, smoothing poses a notibieback, as it distorts the image data,
causing features to disappear, merge and blur.

An alternative approach, closely related to the concepinairping” (e.g., [40]), would be to take
advantage of prior estimates of the optical flow. If a poirgsmated to move at velocity = (uy, uy),
we can use the convolution &fin the direction of(u,, u,, 1) to estimate the directional derivative

and apply
Iy = I, — uply — uyl, (C.8)

The convolution that yield$, is equivalent to subsampling in the direction(of- «), and thus the
estimate ofl; is unaliased if the Fourier transform vanishes beyngvl_—u‘. This occurs when either
the estimated velocity, is close to the real velocity, or the region is smooth. This is particularly
important, as the estimation of optical flow in smooth regigoften inaccurate. In other words, this
estimation ofl; is tolerant to inaccuracy in motion estimation exactly witeis least reliable. The
figures in Section 5.2 demonstrate the algorithm’s tolezangoor motion estimation.

Note that the spatial smoothnesswois not required. Also note that temporal smoothing has no

effect on the aliasing problem, and it is desirable to havétistemporal smoothing as possible.
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C.2.2 Differentiation with Two Frames

Differentiation, as described earlier, is done by convolutvith derivatives of a spatio-temporal Gaus-
sian, which requires several frames to achieve a good dgtima&Vhen only two frames are available,
special care should be taken to provide a consistent egbimat spatial and temporal derivatives.

Given two framed (x,y,0) andI(z,y, 1), let us define

. I(x,y,0) t<0
I*(z,y,t) = (C.9)
I(xz,y,1) t>0

Then, for any temporal variance, the partial derivative estimates are

1
I = §(f(x,y,0)+f(w,y,1))*gx
. 1
Iy = (I(z,y,1) —I(z,y,0)) x g

(wherexg, g, andxg, denote convolutions with the spatial Gaussian and witXi@sndY derivative

respectively).

C.2.3 Application to Optical Flow

It is well known that the computation of optical flow in tex#less regions and along straight lines
(aperture problem) is ill-posed. When these situationsigdbe rank ofG is 0 and1, respectively.
These situations arise from spatial structure alone, andlwerefore be detected by the spatial 2D
second moment matrix (used, for example, in the Lucas-Kamdgorithm [40]), in order to mark
these regions as unreliable (as done in many implemenstio®ptical flow is also unreliable at
motion boundaries, which may be treated by the joint estonaif motion and segmentation [60, 72].
These two cases can be treated jointly using the raik dDptical flow in regions whereank(G) #
2 can be estimated by filling from adjacent regions whernek(G) = 2. In a coarse-to-fine algorithm,

this should be done at each scale.
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