2IPWITI2 N2V TVIDIINGT
PawT wTRDY aRtuRnNRY Ut
IR WTAY 2NN

D2V OYTRL TR0 ININY AN NTIAY

Object Detection from Multiple
Overlapping Views Using
Semantic and Geometric Context
in 3D

NIDDIM NIINAN 5912997 2OWPIRIN NI
NBN2 SWIADT TWAIN BOPBIIP NIV
7%

Avram Golbert
Advisor: Daphna Weinshall

Object Detection from Multiple Overlapping Aerial
Images

Thesis Avram Golbert
Advisor Daphna Wienshall
Hebrew University Computer Science
2012

Abstract

We present a method for object detection in a multi view 3D
model. Out data is comprised of many overlapping aerial
images with a 45 degree slant. These datasets are typical for the
task of 3D reconstruction and include ground, roofs, building
facades and many urban objects such as cars, plants and
windows. These 3D models are becoming more and more
common as 3D reconstruction algorithms improve, computation
becomes cheaper and more and more uses are being found for
them such as navigation, context for geo-referencing, urban
planning etc. As the uses of these models grow beyond
visualization so will the need for high level understanding of
the scene and its contents. We use cars as a test case for a
general framework for object detection in these datasets.

Typical aerial car detectors do significantly worse on this
dataset because of the 45 degree angle photos that include many
rectangular shaped objects, such as windows and doors, that are
not visible in aerial datasets that are taken from the nadir. The
good news is that the high redundancy that is necessary for the
task of 3D reconstruction contains a lot of information that is
generally not fully taken advantage of in classical object
detector frameworks. In this work we focus on using all
available information: highly overlapping views, geometric data
and semantic surface classification in order to boost a simple
2D detector. Specifically, a 3D model is computed from the
overlapping views, which represents the 3D scene and
geometric relations. The model is segmented into semantic
labels using height information, color and local planar features
which describe the surfaces of the scene using high level
classes such as roof, wall, road etc. A 2D detector is run on all

images separately and then detections are mapped into 3D via
the model. The 3D space is used as a common language for all
images and the detections are clustered in 3D and represented
by 3D boxes. Finally, the detections, visibility maps and
semantic labels are combined using a Support Vector Machine
to achieve a more robust object detector.

We show that a simple car detector based on Haar-like features
does not fare very well on these images, however integrating
over multiple images, and using semantic and geometric
context can achieve a high Precision-Recall ratio.

asxpn

12977 729 NPN 7 DTV VPR OITY VW NAXIA AT NRN2
L0010 NPTNR MIAN 120 2020 QORI DO1INIT .00
019X 11 Mon (Datasets) 2°1n1 .poIRD nnnn 45° 5w o2 mw
D°1°°12 MINOTA ,NA3 L, NIWPR NPT NTAN N9N W Nnvwnd
D°72°% NON 2O9T7IN MNP 2°0A% ,0°297 1130 02°27 070110V 2YUPAINY
NN NPW OV QAR DWW aY N D1OW N1AY 09917 9K
WP LI MO DD QUMW DRXMY L NVWONT NYNN TR
798 2°97I1M2 DOWIRTRYW 722 .3A1731 CIN2TIX 110N ,N1DININA N1NINAY
731272 78T A9 70 ,A0IWD DONIA AR TIRD Wiadwh Navia 0%ananng
NP2 9IPND 0°2372 YIRS YXIAN AT Pnn2 LA°200707 1701 DW N0y
.D°1IN37 DIARA2 DOVPIR NNRY NI30N NPRH

NI MYAYA AME2 NITD DRYA 001D 2YTNR 27 XY
NINGI A0 0°27 2%12%n DUPPAIR Mon 45° D pmta mnanw
VINWA NINOT LTIAN IMXW NPPNR NINNN2 2°D¥I IRY L,NINHN
non NAWS DWITIT AM23T MOPNIW X ,AT 2101 22101 MDIvRa
MY NPBITIVO NIDIWAR DX IR 2MPW 27 VTR a900n I
,A2173 719°5M2 0O02N PRI YT 952 WINNW AWYI NNT 7Taya .0%200
SRDAT DY MMV DR 9WH NIn OV NO0IND PEPID0YRY 0NN YN
mMoDIT NINNANA MW TAM-N2N D702 VI WY1 092 TN-1T1
PR DTN .DIURINCAT 20T NOTAR NYNA JIX0T DROAXTRN
L U2X 20 NYTATDIRI WY TN DOLIAD MYAYA SOV DODINA0Y
O¥2 0°2°07 DAY 77T DR DOIRND AWK 21MIPR DONWA DOIMOKRNA
YTNR-177 ORDAT OV %00 AYXI2 N0 2OW020 ,MTP L, NIAX IR0 Mvawn
27N 9717 070 DY 191N 21T 197 IMRDY TID12 MINANAN DR 70 DY
OX .MINANT 2V NOMIWN 79w WHwn YTna-nYNa anang LTnon nhn
TR D90 7200 070 DY AR YaRPn 91 7101 NhN2 2O¥Pn 0110 D
DAY DANWR OLIADA WPATM NMN0AT DB DI L1020

N PRI CNIDR DOWPIAIR X723 N°RH Support Vector Machine

MINT QUIORA DY DDAAT WD 0°257 ORDAW NIRIA PRI NIRXIN
5w 219w NKRT av 700 .9KR 22101 MDY DY NI9T MIRXIN Pwn Haar
W mMax O 292011 SLINDY CUMIRCA WP WYY MNnAn 207

.Precision-Recall

Contents

1

4
5

INEFOTUCTION ..ttt ettt st st besbe st be st e re e 6
11 Object DEteCtion iN IMAgES. ..o 6
1.2 Using Context to0 BOOSE DEECTIONcviveieiiieieiiieieeese e 10
1.3 Integration of 3D INFOrMAtIONccccviiiice e 13

Our Method: Object Detection from MUItiple VIEWS........ccccvevvererieieninie e 16
21 3D RECONSIIUCTION ...ttt ettt eb et se et st sreene e 17
2.2 b =] T (o] RS T TP TRPR 23
2.3 (08 1015 (=T T TN T4 1< OSSP 23

2.3.1 Clustering Implementation DetailS...........ccccvviiiieiiiciieieiie e 24
24 SemMANtIC LADEIINGovviviiiiceice e 25
25 Boosting Classification with Semantic CONtEXt...........cccviereiiiereiinenee e 26

2.5.1 Classification Implementation Details..........c.cccceoviiiieiiciieice e 27

(0T 15T]SS SR 28
3.1 Data and 3D RECONSIIUCTIONcueiuiiieieieieieie et 28
3.2 THRINING. ettt b bbbt bbbttt bt e 28
3.3 RESUIES. ..t bbbt b b nr s 30

SUMMArY N0 DISCUSSION ...c.uviivieieeiecie st ste e ste et ste e te e e e e e sraesreesteesteanteeneennee e 32

R E] (=]][0T 34

1 Introduction

3D reconstruction is becoming more and more common as computing power
increases and more methods are being developed. Standard graphics cards are
now strong enough to generate photorealistic images of complex scenes in
real-time. Typical data consists of multiple images with large overlap, where
the camera’s internal parameters and location are either known or estimated
with SFM methods. The model is reconstructed using multiview geometry,
and may be represented by such means as polygons, voxel space or planar
disks; it typically contains no high level understanding or semantic
interpretation. The widespread existence of such datasets and the existence of
only low level understanding of the scene geometry have caused a need to
build autonomous methods of extracting information from the data.

1.1 Object Detection in Images

Common methods for object detection in 2D images often use sliding
windows of different sizes, where each window is tested for the existence of
an object. A standard way of testing a given window is by extracting features
and using machine learning to test it.

Viola and Jones [1] used Haar like features to describe a given patch. They
define three kinds of features, two-three- or four rectangle features, see Fig. 1.
The two rectangle feature defined as the sum of pixels in one rectangular area
of the image minus the sum of pixels in an adjacent rectangular area, three
rectangle feature is the sum of two rectangles minus the sum of a third
rectangle and similarly the four rectangle feature is the sum of two rectangles
minus the sum of another two rectangles. The size and location of rectangles
in the given patch defines an overcomplete base. For a patch size of 24x24 the
Haar like features define a set of 180,000 features.

Viola and Jones utilized a concept called Integral Images to enable fast
computation of the Haar like features in all resolutions. The Integral images is
defined as an image, ii, where the value of each pixel is the sum of all pixels
in the upper left rectangle from the top left pixel to the given pixel; ii(x,y) =
Yx'<x L(x',y"). The integral image can be computed quickly in O(#pixels) in
<

onye ypass over the image since ii(x,y)=ii(x—1,y)+ii(x,y—1)—
ii(x —1,y — 1) + i(x,y). Once ii is computed the sum of a given rectangle is
ii(bottom right) — ii(top roght) — ii(bottom left) + ii(top left). This
representation allows us to compute the features at different resolutions
without computing a pyramid of the original image as is often computed in
other feature representations.

[T

Figure 1: Types of Haar like features: two- three- four rectangle features. In all cases the
sum of each rectangle can be computed by accessing 4 values of the integral image.

Viola and Jones used the given features to build a classifier using Adaboost.
AdaBoost is a greedy algorithm that learns in every iteration a weak classifier
h;(x) consisting of feature f; , threshold 6; and parity p; indicating the
direction of the inequality sign:

J 0 otherwise
Each weak classifier and its weight ojare chosen to minimize the

misclassification error for the current dataset with the current weights and the
previous weak classifiers. Finally a classifier is defined:

1
H(x) = 1 Zatht(x)zzzt:at

0 otherwise

A given patch x is detected as a car if H(x) = 1. Viola and Jones' main
contribution, besides the choice of features and their fast computation, was to
speed up the computation time of H(x) by substituting H(x) with a cascade of
classifiers. Notice that the complexity, and also the success, of H is dependant
on the number of features f used. They suggested to learn a cascade
H,, H,, ..., H, such that the success of H; on the patches that pass all previous
classifiers will have a false negative rate smaller than e and false positive rate
smaller than §. After n stages the overall false negative rate will be bounded
from below by (1 — €)™ and the false positive will be bounded from above by
&". Clearly this task gets more and more difficult and demands more and more
features and the runtime of each stage will grow. However most patches that
do not contain the desired object will fail in a very early stage, thus saving us
a lot of unneeded computation in later stages. The result is a detector that
works nearly as well in a fraction of the time.

Lienhart and Maydt [2] extended the set of features to include diagonal
features and centered surround features while excluding the four-rectangle-
features since these can be well represented by 2(e) and 2(g), see Fig 2. To
support these new features they extended the integral image to incorporate a

possible rotation. In addition to the integral image of Viola and Jones they
also calculated RSAT (Rotated Sum Area Table) for a rotation of 45 degrees.
This paper also incorporated a contrast stretching of the form i(x,y) =

IxV7k o e R+ y can easily be computed for a given area using RSAT,

co
however o needs information for the sum of sqruared pixels in the given area.
To quickly compute this, another integral image of the squared pixels is
needed. In total this paper uses 4 pre-computed images and boasts
approximately 10% decrees in false alarms for a given hit rate in comparison
to [1]

1. Edge features (a) (b)

[I : Q /’ TEAT(x.y)
@ ® @ (d SAT(x,y)
2. Line features "
= S *e
@ 0 0@ © O @ @ ©

3. Center-surround features

i

(=] <»> il
(@ (&

4. Not used, but used in [3,2.4]

Figure 3. (a) Upright Summed Area Table (SAT)and (b)
Rofated Summed Area Table (REATY, calculs-

Figurs 2. Featurs prototypes of simple haar-ike and center-sur- fion scheme of the phoed sum of uprght () and rotat-
round features. Black areas have negative and white ar- ed (d) rectangles.
eas positive weights.

Figure 2 extended set of Haar like features and the rotated integral image (RSAT) for 45
degree rotated features

Although [1-2] developed and tested their methods on databases for face
detection there is nothing inherent in the algorithm for face detections. H.
Grabner et al [3] learned a car detector for large aerial images using extended
Haar features along with local orientation histogram and local binary patterns.
They trained the classifier using online boosting which drastically reduces the
need for a large training set. In each learning iteration the user marked one
wrongly labeled detection and the classifiers were adjusted. In this way
marking multiple examples that aren't informative is avoided and only
significant examples are labeled. The online learning is done using online
AdaBoost. In the offline AdaBoost all training samples are available and the
weak classifiers hq, h,, ... h,, are train sequentially on all the training samples
with their current weight and then the samples reweighted before the next
learning stage. Online boosting introduces a new concept “Selectors” which
holds a set of M weak classifiers and selects one of them hg;(x) = A% (x)
according to an optimization criterion (specifically the estimated error of each
weak classifier). When a new sample is introduced each selector trains all its
weak classifiers and then best one is selected, the weight of the new sample is
updated and passed to the next selector to continue the training. In the online
boosting algorithm a strong classifier is available at all times.

Kluckner et all [4] extend the idea of online learning by using 3D information
to automate the labeling in each step in order to detect and label false

positives. The database they used is the UltraCamD camera from Microsoft
Photogrammetry which consists of 11500 x 7500 pixel images taken from
the Nadir with high overlap. The images are taken by flying in strips with a
60% overlap between strips and an inner strip overlap of 80%. They used the
multiple views to assign a depth for each pixel. The reference image is
compared with 2 other overlapping images where each depth defines a pixel
matching to the other images and the pixels are compared using a similarity
function, in this case Normalized Cross Correlation (NCC). Since the images
are very close to each other, using only triangulation will result in erratic and
large changes in the depth map caused by noise in the pixel matching,
occlusions and changes in lighting. To overcome the inherent noise a global
optimization scheme is used to achieve a more consistent solution. Intuitively
we expect neighboring pixels with similar appearance to have similar depth
values. Instead of performing global optimization over all image pixels,
which is computationally expensive, they introduced super pixels and local
planar constraint. The image was segmented into super pixels and each super
pixel was assumed to correspond to some 3D plane. Neighboring super pixels
should ideally reside on the same plane. The problem was formalized as a
Markov Random Field (MRF) combining a Data term for assigning a given
segment to a certain plane, and a Smoothness term for assigning neighboring
segments to different planes. The Data cost is the sum of pixel
correspondence defined by the homography induced by the 3D plane. The
smoothness cost is a discontinuity penalty that incorporates the common
border lengths and the mean color similarity. Loopy Belief Propagation was
used to find an approximate optimal assignment of planes to each segment.

(a) (b)

Figure 3 a small part of the depth image with the corresponding color image and
detected cars. The depth map maximizes both the correlation to matching pixels in
other images and global depth consistency between neighboring pixels

This extra data was used to learn an aerial car detector. Like Grabner et al [3]
they used online Adaboost starting from a single positive example, and after
each iteration the depth image was used to automatically label the false
positives. A simple method was used to identify false positives. They assumed
that for true car detections all pixels in the current window (and a small area
surrounding it) should all have similar depth values. All pixels in the
detection window were fitted to a plane, and if this plane had a slant above a
certain threshold the detection was declared to be false and was reweighted
for the next iteration of online learning. Since it's not possible to
automatically label true positives using the height map, only initially hand
labeled positives were available during the learning. To compensate, when a

hand labeled car was not detected, it was reweighted and no false positives
were added in that round. It is important to emphasize that once the detector
was learned, no depth information is calculated or used when evaluating a
new image. This can be seen as an advantage and a disadvantage. On the one
hand it can run on a single image with no extra demands. On the other hand
when multiple images, or depth information are available, it doesn't utilize
this valuable information to improve detections.

1.2 Using Context to Boost Detection

While methods for patch based detection and recognition are making progress
using better descriptors and learning methods, others are seeking to use more
information than just the pixels in a given patch. This includes a variety of
context and scene understanding cues, in order to boost performance for
object detection. Oliva and Torralba [5] review current research about the
importance of context in human vision. Real world object co-occur with
objects of the same type as well as different types of objects. A computer
screen will often be above a keyboard and a desk, and a fire hydrant will be
above a grey-street layer with a dark building type background above it, see
Fig. 4. Experiments show that humans find objects with higher percentage
when the object is in its natural context in multiple levels: semantic, spatial
and pose. Semantic: a table and chair are probably present in the same
images, whereas an elephant and a bed are not. Spatial configuration: a
keyboard is expected to be below a monitor. Pose: chairs are oriented towards
the table, a pen should have a particular pose relative to the paper to be useful
for writing and a car will be oriented along the driving directions of a street.
In typical experiments the subjects are shown an image or a few consecutive
images for less than 200ms, and asked to identify the objects and/or scene.
These experiments show the importance of the location. A plate should be on
table but also could be on wall or cabinet, a fire hydrant will always be on top
of the sidewalk, not below the ground plane or floating in the air. Object
recognition was shown to be more accurate if the relationship between the
context and the object is strong, and the observers’ accuracy was facilitated if
the target (e.g. a loaf of bread) was presented after an appropriate scene (e.qg.
a kitchen counter) and impaired if the scene—object pairing was inappropriate
(e.g. a kitchen counter and bass drum)

Figure 4 images averaged over the LabelMe dataset. The images were translated and scaled
to put the object in the center before averaged. It's easy to see that the context of these
objects.

(a) person—person (b) house —chimney

BD

Figure 5: locations were objects may be found in relation to the center object (shown in red).
In the left image we see people in relation to a person in the center. In the right image we see
likely locations of a chimney in relation to a house.

Heitz et al. used Spatial Context by using the co-dependence between local
scenes and the presence of certain objects to label the scene and boost object
detection simultaneously. They worked on two very different datasets:
PASCAL VOC 2005/2006 and satellite images from Google Earth. The
PASCAL dataset was used to perform detection of cars, bicycles and
motorbikes in street scenes and detection of cows and sheep in rural scenes.
The Google Satellite images were used to perform car detection. The image
was segmented into super pixels and a local scene feature was extracted for
each segment. N implicit local scene classes were learned from the training
images, which can intuitively be identified as classes such as street, building,
trees, water, etc. The relationships, R, between the N classes and the objects
were also learned using a Bayesian network model and Expectation-
Maximization. During testing the base detector is run over the image and all
windows, W, above a minimum threshold are considered. Finally, given the
features F; for each window, an assignment T(the presence of objects) was
estimated that maximizes p(T|F,R, W).

The probability of an assignment Tis a summation of all possible
assignments, S, of each segment to a class

p(T|F,R,W) = ZP(T,SlF,R, w)
S

Since all possible assignments, S, is exponential in the number of classes, it’s
not feasible to search over all possible assignments for S,T and choose the
maximum likelihood. Instead, they used the Gibbs sampling which is an
iterative method. An initial assignment for T, S are chosen and are alternately
updated by re-sampling with the distribution P(T|S,F,R,W) and
P(S|T,F,R,W). Since the Bayesian model assumes the S; labels are
independent given T and T; are independent given S

P(SlT)R)F)W) = HP(SllTIR;F;W)
P(T|S,R,F,W) =T[[P(T;|S,R,F, W)
which can be calculated easily by further decomposing:

P(SIT,RE,W) o< P(S) - PCES) - | | PCRuwl T, 5
ik

After the last iteration T is used as an estimate of the maximum likelihood of
the object detections.

Hoiem et al [7] used geometric context, photometric context and local objects
in a naive Bayes model. The task combined detection of pedestrians and cars
in images taken from street level. Geometric context attempts to recognize
surface orientation, ground, vertical and sky, with 5 subclasses of vertical:
planar facing “left”, “center”, and “right”, and non-planar “solid” and
“porous”. The image was segmented into super pixels and features containing
color, texture, shape, location and 3D geometry (long lines, intersections of
lines, parallel lines and texture gradients) were extracted. A classifier was
trained using Adaboost with weak learners based on eight-node decision trees.

Photometric context is an estimation of viewpoint. All images were assumed
to be taken from approximately human height facing the horizon. Given the
location of the horizon and the height of the camera, the expected size of an
object in the image can be calculated depending on its location in the image.
They used a simple Gaussian model prior for camera height and orientation,
which were also assumed independent. The scene was modeled by a graphical
model: geometric surfaces are independent given their corresponding object
identities and object identities are independent given the viewpoint, see Fig.
6. These assumptions make the decomposition task possible and each variable
is dependent on only one other allowing these dependences were learned.
Given an image the maximum likelihood assignment was found using the
Pearl’s belief propagation algorithm.

Viewpoint

Image 2]
Horizon\ plane
Camera

A i
(1 Pos| tion, \ .
———————————— ‘ Local Object Local Object
Object Image g Evidence Objects Evidence
1 Height 4
Camera 0 aas fs)
‘ Height 1 n

Local Geometry Local Local Geometry
Evidence Geometries Evidence

bject Image
eigh!
3D Object g4
" i P == gl Tt gu
oty I ight & 2 ht

Figure 6: pose estimation. Given the camera height and location of horizon object sizes are
governed by their location. On the right is the graphical model.

o

Divvala et al. [24] performed an extensive experiment testing the importance
of different types of context. They combined local pixel context, 2D scene
gist, 3D geometric, semantic, geographic and photogrammetric context. Local
pixel context is simply using a slightly larger bounding box that includes
pixels from the surrounding area. In this way we implicitly expect green
pixels in close proximity of “cow” and road in close proximity of "cars". 2D
scene gist includes global image statistics to classify the gist of the scene. 3D
scene includes physical layout of the scene, support surface, surface
orientations, occlusions, etc. Semantic context includes scene category,
objects present in the scene and types of surfaces. Geographic context is a
novel context they presented and includes the actual location the image was
taken. This information includes terrain type, land category, elevation,
population density etc. Photogrammetric context includes image orientation,
height, internal camera parameters, radial distortion, etc. All these types of
context can directly affect the probability of the presence, location and size of
different types of objects in the image. A classifier is learned for each type of
context. For each detection object presence, object location and object size
estimates are calculated using each of the defined context classifiers. A
logistic regression classifier is trained using the above features on the
VOC’08 validation set. Their experiments showed the importance of
reasoning about an object within the context of the scene, as the average
precision of the original detector was boosted from 18.2 to 22.0.

1.3 Integration of 3D information

The use of 3D scene information to enhance object detection has been made
even more explicit. It’s common in robotics to find systems that combine
standard images with auxiliary input such as laser sensors, Sonar, Radar as
well as navigational data such as GPS and inertial systems. These inputs can
be combined to generate a full map of the locations of the platform over time
as well as a 3D map of the scene. This task is called Simultaneous
Localization and Mapping (SLAM), see section 2.1.

Posner et al [8] used a system comprised of an RGB camera, Lidar and
inertial measurement system for the task of adding semantic labeling to the
map. Typically, pixel features are extracted from the image for the task of
learning a semantic classifier. Posner et al incorporated the 3D information as
well. 3D laser points were accumulated over a time window of length At into

the past. Thus, a 3D point cloud was assembled which represents the 3D scene
in a limited time around t. The 3D points were segmented into planes
following a divide-and conquer approach: a given point cloud was discretized
into cubic cells and planes were fitted locally using RANSAC. Plane
segments, for which the support (i.e. the number of inliers) was less than a
threshold, were discarded. Planes obtained in neighboring cells were merged
according to two constraints relating to relative surface orientation and
translation. The merging criteria for neighboring planes demands that the
normal of the planes be closer than a maximum angle and the distance
between them, defined by the distance of the center of mass projected onto
the other plane, be smaller than a given distance. Finally these planes were
projected back onto the image to define a depth and normal for each pixel as
well as a geometric segmentation. Appearance features were extracted from
the image for both color and texture. Color features were represented by a 15
bin histogram for Hue and Saturation of pixels in a 15x15 neighborhood as
well as variance. Since the platform is always on the ground facing the
horizon (as in [7]) the spatial location of the pixel is very informative as
spatial context, thus the X,y location was also added to the feature. An all-vs-
one classifier was learned for each class using Gaussian Kernel SVM, and
each pixel was labeled with the classification that gave the greatest margin.

This work did not use any spatial or temporal inner-pixel reasoning, i.e
neighboring pixels were classified independently and a 3D point projected
onto 2 different images may be labeled differently in each. This was partially
addressed by voting over each planar segment and showed better results but
was only expanded on in [9], also Posner et al. In this work the images were
segmented both by the 3D planes as well as standard image super pixel
techniques. Instead of using SVM to classify each pixel, a probabilistic
framework was defined and each segment was assigned a probability for each
class. More specifically, a feature is computed for each pixel in the segment,
and the feature is associated with a “word” from a vocabulary learned during
the learning phase. The segment is assigned a binary vector (zl, ...,z|V|) where
|[V] is the size of the vocabulary and z; = 1 if the word v; is present in the
segment, 0 otherwise. The probability of class k given an observation z,
P(Cy|z) is proportionate to P(z|C,) and some priors. Calculting P(z|Cy) is
dificult to learn unless approximating that all z; are independent given CKk;
P(z|C,) =[IP(z|Cy). This however is a bad assumption as different words
are very dependent on each other. Instead the full dependence is modeled by
constructing a dependence tree. i.e P(Z,|z,Cy) = P(Z,|Zpq Ck) Where pqis
the parent of g. The Chau Liu tree is the optimal tree approximation. Once
each segment in the image has a probability for each class, an optimal
assignment is one that maximizes both the inner segment probability and a
temporal probability. More explicitly we expect neighboring segments to have
the same label with high probability. The problem was formulated as a
Markov Random Field using 1 — P(Cy|zs) as the data cost of assigning label
C, to segment s, and the smooth cost is a simple probability of two different
classes being neighbors which can easily be measured from the training set.

Posner et al added temporal context in [10] by adding links in the MRF over
N images (in their experiments N = 3). Segments from different images were

linked if their corresponding 3D points overlap by more than 20%. The MRF
was solved for segments in all N images.

Kluckner et al. [11] used a similar concept for the task of semantic labeling in
aerial images combining laser scans with color images although their method
was different. Unlike Posner et al. an initial segmentation of the image was
not performed. Instead, features were extracted per pixel, and class
probability was estimated per pixel using Random Forests. A Conditional
Random Field was defined on the four neighborhood graph of the image
pixels where edges between neighboring pixels are weighted according to the
height difference in the Lidar images. The energy is minimized using graph
cuts based on linear programming.

Figure 7: Aerial Semantic labeling. Shown the original image and depth map from Lidar.

Waterbody

Figure 8: associated Semantic labeling by performing Graph Cuts on 4 neighborhood image
grid

Bischof et al. [13] used similar data for the task of street layer extraction and
car detection. Overlapping images were used to generate depth maps, and
objects that are specific to roads were detected and used as starting points for
full street layer segmentation. They employed a specifically designed Gabor
filter to detect zebra crossing (cross walks). Again, a 4 neighborhood grid was
built for the image and the edges between pixels were weighted according to

color and height similarity. Since the images were taken from the nadir, the
street layer was assumed to be well connected in the image. Zebra crossings
from multiple images were projected onto the reference image using the 3D
information and Dijkstra’s shortest path algorithm was used to find lowest
cost paths between zebra crossings. Zebra crossings with large distances were
filtered out as false detections, while the remaining zebra crossings and the
paths between them were assumed to be points on the street layer. A Thin
Plate Spline (TPS) was fitted to these points using Least Squares as well as
the color distribution for streets. All other points in the image that match the
TPS and color distribution were labeled as street layer. Cars were detected
using Adaboost, although any other method is possible, and detections that do
not lie on the street surface were removed. Although they used overlapping
images, the process was done independently for each image followed by
interpolation obtained by projecting the street layer onto the Digital Terrain
Map (DTM).

Our approach takes this research direction a bit further starting from the
reconstruction of a 3D scene model from the overlapping views. Inference is
done in the 3D space using all images equally as multiple measurements
simultaneously and not defining one image as a reference while using a few
overlapping images as support like [8-13]. We detect static objects in the
model by using detections from all images and 3D semantic labeling
simultaneously. More specifically, the camera location and orientation are
calculated for each image using Slam [14] and then a dense 3D model is
calculated [15-17]. A sliding window detector is run on each image at 6
different rotations and each image detection is translated to a 3D Bounding
Box using the camera calibration and 3D model. All 3D Bounding Boxes are
clustered into a smaller set of representative 3D Bounding Boxes. This allows
us to infer from many images while overcoming obstructions and greatly
varying viewpoints. A multiclass semantic labeling of the model is performed
using geometric information, local planes and color information from all
images. We show that using multiple overlapping viewpoints and context
greatly improves the initial performance of the 2D detector.

2 Our Method: Object Detection from
Multiple Views

Our method is described in Algorithm 1 below. The input is a set of
overlapping images {I;}. We first reconstruct the 3D scene from these images
in order to obtain estimated location and orientation for each image and a 3D
model — a mesh (V,T) consisting of vertices and triangles, see Section 2.1.
Next, we look for objects in the images - cars defined by location, orientation
and size d = (1,0,s). In Section 2.2 we describe how for each image I; a set
of cars d;; is detected and assigned weights w;; using a cascade of weak
classifiers. In Section 2.3 we describe how each detection d;; in image I; is

mapped to a 3D Bounding Box D;;, and how a 3D Bounding Box is projected

onto an image.

Algorithm 1: object detection in multiple overlapping views

Input: set of images {I;}.
Output: set of object detections in images

1. (V,T) < Reconstruct the 3D scene and obtain 3D model.
2. For each image I;
o {d;j,w;;} <Run sliding window detector in 6 rotations
o {D;;, W;;} «Map 2D detections into 3D
3. {Dy,W,} «Cluster 3D detections and choose representatives {D,} c {Dl—j}
and corresponding weights {W,}.
4. Compute semantic labels for each vertex in the model v € V
o {f,} <compute feature vector containing 3D and photometric
information
o (W} E[01],xs < compute a semantic weight for every
semantic class
5. Classification with Semantic Context
a. {ka} « compute feature vector containing semantic information
from all vertices in the neighborhood of D, local information and
detection weight W,
b. Final car classification using SVM

The detections d;; are mapped into 3D in order to achieve common
parameterization and used together to infer information about the existence of
objects. They are first clustered into a set of 3D boxes D,. The local
information around each D, is used along with the 2D information to better
understand the scene and improve the detection. In Section 2.4 we define
semantic classes S: Ground, Wall, Vegetation, Roof, Tiled Roof and Car.
Every 3D vertex v € V is assigned a semantic weight, W,’, for each semantic
class. In Section 2.5 the semantic weights and previously calculated
information in the neighborhood of D, are used to construct a semantic vector
o, final classification is obtained with SVM.

2.1 3D Reconstruction

It’s common in robotics to find systems that combine standard images from
multiple viewpoints with auxiliary input such as laser sensors, Sonar, Radar
as well as navigational data such as GPS and inertial systems. These inputs
can be combined to generate a full map of the locations of the platform over
time as well as a 3D map of the scene. This task is called Simultaneous
Localization and Mapping (SLAM). Usually the auxiliary information isn’t
complete or is not exact enough and multiple overlapping data from different
times must be combined to produce a coherent map. Visual Slam, or

Monocular Slam, uses only a single moving camera and also measurements
estimating its location and orientation if available.

Denote:

e TY W' -The camera parameters (location and orientation) at time ¢

e RY-—The rotation matrix for the camera at time t as defined by ¢!

e K - The camera’s intrinsic matrix. Used to project a 3D point to a pixel
in homogeneous coordinates. Assumed to be the same for all cameras.

e P, - The 3D location of point i.

e p! - The 2D pixel representing the 3D point i on the camera at time ¢.

v} (0)

vi(2)

vi (1)

v (2)

The projection function is: pf = ;v = KR*(P; = T")

2x1

~ Camera2

Cameral
{l:I:I Camera 2

[]
Figure 9: 3 images of the scene. 3D points are tracked through all images. A 3D Point, P; is
projected onto image t at p!

The first step is to generate corresponding points, also known as tracks,
between the images. A track, {p;*,p;2, ..., p;"}, is a list of pixels in different
images that correspond to a single point in the 3D word. Given this set of
tracks and an initial guess for Tt @t the problem can be formalized as
finding the correct orientation of these images and the 3D locations of the
points that were extracted using maximum likelihood estimation.

We assume that the given measurements have some Gaussian error with
known covariance:

o pf=pl+nfwherenf € V(0,A}) and p! is the true projection of P; on
image t

o Tt =T!+nt Where nk € M(0,A%) and T? is the true camera position
at time t

o« Pt=wt4nl Where nb € N(0,4%) and ¥¢ is the true camera
orientation at time ¢

We see that given the normal distribution, the probability of a measurement pf
given its true projection pf is a normally distributed variable:

1

P! = P — pt) = P(nt) = AL o (aF D) (4D (v -1)

The problem is then formalized as flnding the parameters P, Tt W' that
maximize the likelihood of the measurements pf, T¢, *:

argmaxp rtyt {1_[P(nf =p; —p) - np("T Tt —Tt)
Lt

-ﬂp(nf,, =Pt —yt)
t

1
ATz T, =1,
= argmaxp. pt gt | |%e(l’f—l’f) (ah) (8f-»})
i ’ 7-[
it

1
AL _
T roan ™ er

1 2r
l 1
R LR

1 2m
t

= argmaxp.Ttwt«Z<pl PHT@D @ — pD)
+ Z(Tt 7Y (@)1 (T - T%)
S

The above cost function corresponds to the weighted Sum of Squared Error
(SSE) when we wuse the inverse of the covariance matrices
(ADH7L, (AL, (AL) T as the weights.

Once the camera calibration is known, dense reconstruction algorithms

attempt to "fill in the blanks" of the sparse 3D map. There are a few ways to
represent the scene, most notably Voxels (VMolumetric Pixels), Range Maps
and Polygon Mesh. Voxels form a regular 3D grid where each voxel can
encode a binary variable, occupied/solid vs. vacant, or as a function encoding
the distance to the surface. This representation is useful for its simplicity and
its quick query time for a given location in space. However, its cost in
memory consumption may become impractical for large areas since the
volume of the scene grows polynomialy in space and resolution. Range maps
are a set of 2D images for known locations and encode the distance to the
surface. Range maps avoid the need to resample the 3D space and offer an
easy way to break certain tasks into smaller ones that can be easily managed
and computed in parallel. Polygon meshes represent a surface as a set of
connected planar facets. They are efficient to store and render and are
therefore a popular output format for multi-view algorithms.

Given a point P on the scene surface and two or more cameras with known
orientation in which P is visible, we can demand the appearance of the
projected pixels be similar. This is called the Photo consistency of the scene.
The photo consistency measure varies between methods and the similarity
measure between pixels is generally not intrinsic to the reconstruction
algorithm. The Photo consistency function can be divided into two types,
Scene Space or Image Space. The former integrates over the scene and
evaluates the accuracy of the model by comparing the pixels in all relevant
images. An example of such a measure can be the variance of the pixels. The
latter uses the scene to warp, or project, one image onto another, and then
compare the reprojected image to the original, called the Prediction Error or
Reprojection Error. An example of the comparison method can be Normalized
Cross Correlation (NCC), Sum of Square Differences (SSD), etc. Scene Space
error functions are integrated over the surface of the scene and thus often tend
to prefer smaller surfaces, whereas prediction error is integrated over the set
of images of a scene and thus ascribe more weight to parts of the scene that
appear frequently or occupy a large image area.

Goesele et al. [14] presented a simple yet robust method to build a depth map
for each image and merge them into a mesh. In the first stage a set of range
maps are built, one for each image. A depth is assigned per pixel encoding the
estimated distance to the surface of the scene from the camera center. Each
image is compared to a set of target images, V, that have similar viewpoints.
The target images are chosen using the tracking information from the SLAM
with the assumption that images with many mutual tracks are similar enough
to be successfully compared at the pixel level.

Two cameras with images I;,I, and known orientations R, R, define a
fundamental Matrix F € R343 such that any 3D point P projected to pixels
p1, D2 € R3y10n images Iy, 1, respectively fulfill pTFp, = 0. Alternatively, a
given pixel p; in I; defines a line [, = plF in I,. This line is called the
epipolar line and every point on the epipolar line in I, uniquely defines a
depth for p,, see Fig. 10.

Every pixel p in the reference camera and every depth, d, is assigned a grade
according to the similarity of the projection on the target images. The

Normalized Cross Correlation between pixel p and view j, NCC(p,Vj,d) is
computed between an mxm window centered around p and the
corresponding windows centered around the projections in each of the views
R;. If two views show the same surface we expect to see a high NCC score for
some value of d. If, in contrast, there is an occlusion or other compounding
factor, the NCC value will typically be low for all depths. We wish to rely on
a depth value only if the window in the reference view correlates well with
the corresponding window in multiple views. We therefore define that a depth
value is valid if NCC(p,V;,d) > thresh for at least two views in V. The set of
all views with NCC larger than thresh for a given depth d is denoted as Cy, (d).
For a valid depth d we compute a correlation value as the mean of the NCC
values of all views in C,(d):

Zey@ NCC(p,V, d)
1Cy (@]

For each pixel the depth is chosen to be the value that maximizes corr(d) or
none if no valid depth is found. This method is very simple and easy to
implement and has a short runtime on modern multi-threaded platforms since
we don't assume any dependence between pixels in the range map. Using only
values that are greater than a minimum thresh implicitly handles obstructions
caused by the 3D nature of the scene and the viewpoint changes. The
Normalized Cross Correlation method normalizes each patch according to its
mean and STD and is therefore robust to light changes. However, it is not
rotation invariant. Therefore, for databases with few images, Goesele's
method results in large areas with low confidence or no depth. For databases
with many images such as the Dino and Temple dataset, with over 300 images
each, the method shows good results with completeness of 98% and 80%
respectively, but only 86% and 57% respectively when using only 50 images.

corr(d) =

A

* Hypothesized

v f
, : depths

\ it 4

-.',u_.-.---:..\‘.-----."g,..

e -
B L
R ——

|
1

el ik

VP e

-

S

N
Sy

Figure 10: Given a pixel and an image window around it, a number of depths along its
viewing ray are hypothesized. At each depth, the window is projected onto the other images.
At the true depth (highlighted in green), the consistency score is at its maximum.

photograph templeSparseRing templeRing templeFull
Figure 11: Dense recursion results for temple data using 16, 47 and 317 images.

The depth maps are merged into a single surface mesh using the volumetric
method of Curless and Levoy [17]. The space is discretized into voxels and an
implicit continuous function D(x) is estimated. The function represented is
the weighted signed distance of each 3D point, x, to the nearest surface. Each
point x in the voxel space is projected onto all range maps I; ..I, and
distances d;(x),...,d,(x) are calculated using the distance between x and
camera location and the estimated depth in the range map. Weights
w;(x), ...,w,(x) are assigned using the correlation grade calculated by the
NCC described above. Then

Y wi(x) - di(x)
Ynwi(x)

Finally an iso-surface is extracted using marching cubes at points
xs.tD(x)=0

D(x) =

Range surface

\":Jlumc___,_---"";-/,_h

e .,

= F_ =
- -

Sensor Tl

from
surface

Distance [

Zero-crossing New zero-crossing
(isosurface)

(a) (b)

Figure 12: (a) A range sensor looking down the x-axis observes a range image. Following one
line of sight down the x-axis, we can generate a signed distance function as shown. The zero
crossing of this function is a point on the range surface. (b) The range sensor repeats the
measurement, but noise in the range sensing process results in a slightly different range
surface. Following the same line of sight as before, we obtain another signed distance
function. By summing these functions, we arrive at a cumulative function with a new zero
crossing positioned midway between the original range measurements.

2.2 2D Detections

We train a single 2D detector for each oriented object. We first train a cascade
of 22 weak classifiers using Haar-like features [1,2], retrieving those windows
that pass all levels of the cascade. The cascade is run on 6 different rotations

of the image, see Fig. 13. For angle 6 € [, 7] the image is rotated and the
detector is used to find detections that are parallel to the image axis.
Detection d;; in location (x,y) in a rotated image is translated to location

R(O)¢ [;C,] with orientation - 8 in the original image.

As is customary, we perform post processing to overcome multiple detections
of the same object in close locations. In order to take location, size and
orientation into account, we define two detections to be "close" if all
corresponding corners are no more than « - size apart. In our experiments we
set a = 0.3. All detections are clustered using disjoint sets, i.e. two sets A, B
will be joined if they contain items that are close. Finally, we set w;; =
#{detection in cluser}.

2.3 Clustering in 3D

Each 3D obiject is visible in many images. The 2D detector may fail to detect
it in some images but succeed in others. In order to collect data from different
images and use them together, the detections are mapped into 3D. Using the
calculated camera locations, a vertex v € R3 is projected onto the image plane
with the projection matrix P; and, conversely, a pixel in image I; defines a ray
that intersects the 3D Mesh at point p. Thus detection d;; in image I; is
projected to a 3D box D;; by projecting the center c;; of detection d;; onto the
mesh at point C;;, which is used as the center point of D;;. The 3D orientation
is calculated by projecting the 2D orientation onto the x,y plane (z = 0)
around C;;. D;; is always assumed to be parallel to the x,y plane, and is
assigned weight W;; = w;;.

Next, we seek a subset of all 3D boxes from all images that best explains the
2D detections. We define a measure of similarity between two 3D boxes

S(Di1]1’ 1212) VOl(Dl1J1 lz]z)/VOZ(DHh U Dlz]z)

This can easily be calculated since the detections are parallel to the x,y plane
and can be calculated as the area of the intersection and union of 2D
rectangles. The z dimension is ignored when there is an overlap, whereas
s(Dllh, i,j,) = 0 otherwise, to help prevent the similarity function from
diminishing too quickly.

We represent this problem as a multi-labeling problem. The goal is to choose
a representative for each D;; that best describes it, requiring that similar
detections have the same representatives. We define a graph ¢ = (V, E) whose
nodes are the 3D detections, and edges are drawn between any intersecting
detections: V = {D;;}, E = {(Di,;,, Di,;,)Is(Dij,» Di,j,) > O}. A labeling of the
graph is a function L:{D;;} - {D;;}; it is a mapping from each 3D detection to
a representing 3D box. We use Graph Cuts to minimize the total energy [21-
23].

E(G,L) = Z Wi - (1 - S(L(Dij)'Dij))

+ Z mln(i1j1’ 1212) S(Dl1]1’ lz]z)
(Di1]'1’Di2]'2)EE'
L(Di1j1)¢L(Di2}'2)

The first sum is the data fidelity term - the cost of assigning D;; to L(D;;). The
second sum is the smoothness term - the cost of assigning neighboring
detection to different labels. We use the image of the labeling function as the
representative set: {D} « {D;;|3i’j’,L(D;/;1) = Dy;}, and each label’s weight
is assigned the sum of weights over the cluster

Wk = z WDij
Wp, €L~ (D)

2.3.1 Clustering Implementation Details

In our experiments described below, mapping all 2D detections into 3D
resulted in approximately 80k detections. Building the entire graph G, and
running Graph Cuts on all possible labeling, would have been prohibitive
despite recent improvements in the runtime of Min cut-Max flow and Graph
Cuts algorithms. Graph Cut works by running iterations of min-cut on
intermediate graphs G, for every potential label a. The runtime is controlled
by the size of G, and the number of labels. To improve runtime we divide the
problem into smaller problems by splitting G into sub graphs and run Graph
Cut on each independently. We split G using disjoint sets with an aggressive
distance threshold a = 0.4, i.e. two disjoint sets A, B c {D;.} will be joined if
maXgeaqpep S(a,b) > a. This is done quickly by utilizing a KD-tree

architecture to search for close neighbors. An aggressive threshold can be
used since we expect the detections around a car to be dense and separating
them is unlikely. In our experiments this resulted in small graphs that
contained at most a couple thousand detections.

To further improve runtime we consider only a small portion of the potential
labels. For each D, we add the four best representatives
argming,p,y{Data(Dy)}. Alpha expansion is performed only on these labels,

where during construction of the intermediate graph G, we restrict the graph
to nodes {Dy|s(Dy, @) > 0}. This greatly reduces runtime and guarantees that
the representative L(D;) of D is not too far from D,,.

2.4 Semantic Labeling

The mesh is represented by a set of 3D vertices (point cloud) and a set of
polygons, but it doesn’t contain any high level information. It’s not possible
to ask questions such as “What’s in this area?”, “Is there a lot of vegetation
here?”, or “Is there a car here?”. Intuitively we expect to find certain objects
in a natural context - bears in the forest, toaster in the kitchen, etc. Here we
represent the context by learning semantic classes: Ground, Vegetation, Wall,
Roof, Tiled Roof and Car. We use information from the surrounding geometry
as well as information from the images that view each vertex v € V to assign
weights W,’ € [0,1] for every semantic class. Local geometric information is
achieved by adapting the methods of [19] to 3D models, as opposed to range
maps, in order to segment the model into planar and non-planar areas.

We use these planar segments when creating a feature vector f, as follows:

1. Vertex Normal: average normal of polygons that contain this vertex

2. Vertex Height: height above Digital Terrain Map (DTM); when DTM
is not available, RANSAC is used to obtain one

Planar Segment Normal: the normal of the segment

Planar Segment Type (binary): planar or non-planar

Planar Segment size: the size of the segment

RGB histogram, 15 bins

RGB standard deviation

Hue histogram, 15 bins

NGO AW

For each semantic class a “One Vs. All” classifier was learned using
AdaBoost; it is a greedy algorithm that learns in every iteration a weak
classifier h;(x) consisting of a feature f; , a threshold 8; and a parity p;
indicating the direction of the inequality sign:

) 0 otherwise
Each weak classifier and its weight o;are chosen to minimize the

misclassification error for the current dataset with the current weights and the
previous weak classifiers. Finally, a strong classifier is defined:

B = 1 Zatht(x) > %Z a;

t
0 otherwise

Alternatively, we can define a; = Za—; and h'(x) = Yt aih:s(x). In this way
t Ut

h'(x) € [0,1] and h'(x) 2% if f h(x) = 1. We use this slight modification to

be able to compare the confidence of the different classifiers by setting

W, « hi(v). In Fig 14 each vertex, v, was colored with the corresponding

color of argmax,(W,’).

2.5 Boosting Classification with Semantic Context

When examining a potential detection of a car, it’s important to consider its
surroundings and not only what this location looks like when projected onto
different images. Thus, we may expect the vertices that constitute a car and its
surroundings to have high scores in the Road and Car coordinates of WS, and
low scores in its Roof coordinate.

Specifically, each 3D detection D has 3D volume that intersects the model and
contains Np vertices. The scores for all classes are averaged over all vertices

in D to create a six coordinate vector f5=NiZVEDI/VvS. This vector is
Wp

{Ivisp)}l’
group of images in which D is visible. The last coordinate is important since it
normalizes the grade against areas with higher visibility, such as roofs that
naturally get a higher grade than obscured areas like cars in alleyways.
However, it is not sufficient since it will over-represent a single false
detection in an otherwise occluded area.

concatenated to the 3D cluster weight W), and where {I;sp} is the

In summary, each 3D detection D is represented by the vector f5, which
contains information from all images, the surrounding context and its
visibility.

Figure 14 : Original image and semantic labels. Classes are roof, tiled roof, wall, ground,
vegetation and car in blue, red, yellow, black, green and pink respectively

2.5.1 Classification Implementation Details

Here we use the feature vector f;5 to learn an SVM classifier with RBF kernel
2
k(x;, %) = e7Ix=%l" which distinguishes cars from background.

To aid classification, we uniformly scaled the data to [0,1], since w*® € [0,1]
while in some cases W, > 103. We used a small part of the data and cross
validation, in order to find good values for the penalty parameter of the error
term C and the kernel parameter y. Specifically, we used grid search on
exponentially growing values of y =27%...2% and ¢ = 27*...219 and chose
the pair that maximized the Area Under Curve (AUC) of the PR. Simple
percent correct wouldn’t work on this unbalanced dataset, where a trivial
negative classifier achieves accuracy of 96%. We chose the pair (C,y) =
(0.125,256), although there was a wide range of pairs that performed almost
equally well. SVM was then trained using v-fold cross-validation with 10
groups while weighting the positive instances by 25 to overcome the
unbalanced dataset.

3 Experiments

3.1 Data and 3D Reconstruction

We used a set of 420 aerial images that together cover a ground area of
400 x 400m with a surface resolution of 15¢m/pix. The images were taken at
a 45 — 60° below the horizon. The images have a large overlap and every
ground point is visible in at least 80 — 100 images (unless hidden by other
objects). The images came with GPS and Inertial Navigation System (INS)
measurements. They were corrected using Slam techniques and a dense 3D
model was reconstructed. Stationary cars were reconstructed as well and are
visible in the 3D model.

3.2 Training

All the data, images and model were split into two groups according to the
ground area they had covered. A geographic area covering a quarter of the
entire area, and all data associated with it, was designated as training data; the
remaining data was used for testing. This division, according to ground
coverage rather than choosing pictures at random, guaranteed that we won’t
have different instances of the same car in both the train and test sets.

We hand labeled the location and orientation of the cars in the 3D model and
projected them onto the images to create 2D training and test sets. Each 2D
instance was rotated so that the wheels are aligned with the x axis of the
image and only fully visible instances were used for training (Fig. 15).
Negative examples were selected randomly from areas of the image that don’t
have any vehicles, even partially visible (Fig. 16).

Figure 15 : Example of multiple views with large baseline and various levels of visibility. Images were
rotated to align with the x axis and only fully visible examples are used for training (marked in red)

Figure 16 : A few negative examples

We built a cascade of weak classifiers. Each weak classifier must have a false
positive rate smaller than A and a detection rate no lower than 1 — €. Thus a
cascade of N weak classifiers achieves a false hit rate lower than AN and
detection rate higher than (1 —e€)N on the training set. We set 1= 0.5,
€ =0.01,N = 22.

To train the semantic classifiers we hand labeled vertices in the part of the
model that corresponds to the ground area designated for training. Classifier
h; for class s € S was trained using all vertices with label s as positive
examples and vertices with different labels as negative examples. The
AdaBoost algorithm described in section 2.4 was used with 20 iterations.
These results are shown in Fig. 14 where each vertex v was assigned the label
corresponding to argmaxgcs{h;(v)}. We can see for example that Vegetation is
confused with Ground and with Car but almost never with Roof. Tiled Roof may
be mistaken for Roof or Wall.

V G C

T R W

vegetation
ground
car
tileRoof;]

rooft .

wallt

Figure 17 : Confusion matrix for semantic labels. On the left is the true label and on the top
is the detected label. Black denotes high detection rates.

3.3 Results

We show results comparing a pure 2D car detector vs. our method both with
and without the use of context. It’s important to emphasize that our method
detects objects in 3D, while the alternative sliding window method detects 2D
instances in single images. This means that our method detects each car only
once, while the 2D method detects all instances of the same car in different
images as unrelated detections. Note that this set is very unbalanced with only
60 cars in the entire set. This means that only 1:20000 of the model vertices
are cars. This is greatly visible in the Precision Recall (PR) curves, especially
in the 2D curve. For this reason we show both the Receiver Operating
Character (ROC) and the PR. The main difference in these two curves is that
in PR the false positives are normalized against the true positives, while ROC
is normalized against the true negatives. For this reason the ROC is much
more “forgiving” of false positives when the data is unbalanced [20].

2D Detector: The 2D detector is very noisy and never achieves Precision >
0.2, where chance detection would achieve Precision = 0.04 on this dataset.
This can be explained by the angles in which the images were taken. Many
walls are visible with box like windows. Haar-like features measure gain
changes in rectangular areas, and therefore many false positives occur on
corner/boxy objects such as windows and solar panels. We tried using an
alternative detector [6] that was trained on Google Satellite images from the
nadir with similar pixel resolution, but its performance was not better than
chance.

Our method with 3D Clustering: After clustering we were left with 1500
detections, most with small weights that could be discarded without losing
any true positives, see Fig. 18. We achieve Recall = 1, FPR > 0.65.

Our method with Semantic Context: For each detection D found by the
clustering stage we constructed the feature vector f; as described in Section
2.4. Each detection contained some 2-3 thousand vertices.

Fig. 18 shows the performance of the 3 methods: 2D detector, our method
with 3D clustering, and our method enhanced by semantic context. We see
that clustering detections from multiple images achieves 50% recall with no
false positives. At higher Recall values, using Semantic Context can reduce
false positives by a factor of 2 or more. This is hardly visible in the ROC
curve in this unbalanced data. In the PR curve a reduction in false positives is
very noticeable since it’s proportionate to the true positives.

=
[)
QL
o
[t] -
i : : : - gemantic context |
o : : : : :
g DE 3D C|LIStEI‘Ir'|g
= 20 detection :
I:?_ D_d \ \ -
it} y : I ; ;
= : : i ; :
g b e S E RS s
B]| e S e
3 | IR
0 i i 1 1 | i
0 0.1 0z 03 0.4 0s 0B

False Positive Rate

1 T
09 Semantic context |
— 3D cluster
08 =20 Fletection |
07
115 AU WWNIUE. SRRV, 9 SRR & UR———; S——— 1
05 |

precision (TP/{#of detections returned)

i i i '
0.4 05 06 07 0.8 09 1
True Positive Rate (Recall)

Figure 18 : ROC and Precision Recall Curve. For Recall = 0.5 both 3D clustering and Semantic
Context have perfect precision. For recall above 0.7 Semantic Context improves precision by a factor
of 2.

4 Summary and Discussion

We have described a method for finding static objects in multiple overlapping
views using 3D reconstruction. Our method combines detections from a 2D
sliding window detector. The detections from all images are translated into 3D
where they are all considered together. Since true detections are stable over
multiple images, clustering in 3D results in more reliable detections. Using
the semantic labels of the 3D model as context and using visibility of each
object location in the images further improves the detections.

Our choice for the 2D detector was motivated by the desire to use a generic,
simple 2D detector for 2 reasons. The first was to show that our framework is
not dependent on a designated car detector [3,4]. Clearly a better car detector
will simplify the task assigned to our framework. It is possible that a highly
designated car detector will have far less false positives to sift through in
consequent stages of our framework, in which case, perhaps, a simpler
method of clustering will suffice. This brings us to our second motivation for
using a simple detector. Our framework is not designed for a specific object
and we wanted a detector that is not specific for any one object type. The
same framework with the same detector can be trained to detect any object
that has a statistical correlation with its geometric and semantic surroundings.

In order to combine detections from different images we used the 3D
representation as a common language. Once all the 2D detections were
converted into a 3D Bounding Box we were able to compare them, measure
the distance between them and the extent to which they differ. The similarity
measure between two detections should not only measure the location but also
the size and orientations. If the detection were represented as a vector of
location, size and orientation a simple distance measure could be tricky. We
chose to use the ratio between the intersection and union as a similarity
function since this is a compact way to calculate and represent all of the
above. The similarity can be assumed to be zero if the centers are far enough
from each other. This approximation will prove important to avoid a full
graph in the clustering stage.

During clustering we use Graph Cuts. This method was chosen, instead of
standard clustering methods such as k-means and mean-shift, for several
reasons. First and foremost, Graph Cuts offers control over the representation
of the constraints. By not assigning edges to the graph we can explicitly
restrict the set of possible solutions. Since we have some insight into the type
of errors inherent in 2D detectors, we can assign different weights according
to that probability. In our case, by restricting the graph edges to detections
with nonzero intersections, we place an explicit limit to the size of a cluster.
In this dataset, with many overlapping images, an algorithm, such as k-means,
mean-shift or hierarchal clustering, is likely to result in large clusters. Since
each cluster represents a single detection, it's clear we don’t want a cluster to
grow too big.

Second, by choosing only the most promising links, and placing edges only
between “promising” detections we can explicitly lower the number of edges

in the graph to O(N) which is a huge reduction in computation time when
solving the Graph Cuts.

Future work may explore a clustering method that uses a statistical model to
representation of the links between potential detection. We can study the what
kind of errors a 2D detection generates around an object, in space scale and
rotation and how this error is projected into 3D. We tested a Gaussian Model
Mixture (GMM) clustering scheme, however, using Gaussian models on
rotation is problematic, and the runtime on a cluster this size was also
unfeasible. It is possible to use a Gaussian Model to convert a cluster into a
maximum likelihood detection instead of the average of the cluster as we
described.

Once a few key detection were selected to represent all the detections we
wished to use all the information at hand for each cluster to answer the simple
question “Is this cluster indeed a car?”. Each cluster has information from
every image that saw it (after taking obstructions into account), the weight
assigned to it (zero if there is no detection there) and the semantic information
from its surroundings. Intuitively we expect a car to have little “roof”, a lot of
“street”, and a lot of “car” in it. These labels were summed into a vector of
probabilities that can be interpreted as exactly that, the amount of “roofness”
or “carness” in this area. Using a leave-one-out method we could learn a
separator between “car” and “background” using SVM with RBF Kernel. We
found that the performance is robust to very a large range of assignments to
the parameter of the error term C and the kernel parameter y. The kernel
parameter could take a wide range of pairs with almost identical classification
results.

The choice of SVM for the inference stage is not an obvious one. Future work
can focus on an MRF model that connects different image observations, the
geometric and semantic context and possibly even other detections in this
area. Such models are popular when using context to boost classification.
They typically neglect inner model dependencies such as detection-detection
and goemtric-goemtric dependencies in the presence of a detection. These
approximations allow a simple decomposition of the statistic model into
smaller independent expressions that can estimated either from the data, or as
a prior.

5 References

[1] P. Viola and M. Jones. Rapid object detection using a boosted cascade of
simple features. In Proc. of IEEE Conference on Computer Vision and Pattern
Recognition, Kauai, HI, December 2001.

[2] Rainer Lienhart and Jochen Maydt. An Extended Set of Haarlike Features
for Rapid Object Detection. IEEE ICIP 2002, Vol. 1, pp. 900-903, Sep. 2002.

[3] H. Grabner et al., "On-Line Boosting-Based Car Detection from Aerial
Images,” ISPRS J. Photogrammetry and Remote Sensing, vol. 63, no. 3, 2010,
pp. 382-396.

[4] S. Kluckner, G. Pacher, H. Grabner, H. Bischof, and J. Bauer, “A 3D
teacher for car detection in aerial images,” in Proc. IEEE Int. Conf. Comput.
Vis., 2007, pp. 1-8.

[5] Oliva, A., Torralba, A.: The role of context in object recognition. Trends
CognSci (2007)

[6] G. Heitz and D. Koller. Learning spatial context: Using stuff to find
things. In Proc. ECCV, 2008.

[7] D. Hoiem, A. A. Efros, and M. Hebert. Putting objects in perspective.
1JCV, 80(1), 2008.

[8] Posner, I., Schroeter, D., Newman, P.M.: Describing composite urban
workspaces. In: ICRA. (2007)

[9] Posner, I., Cummins, M., & Newman, P. (2008, June). Fast probabilistic
labeling of city maps. In Proceedings of Robotics: Science and Systems 1V,
Zurich, Switzerland.

[10] Posner, 1., Cummins, M., Newman, P., “A generative framework for fast
urban labeling using spatial and temporal context” Autonomous Robots, 26(2-
3):153-170. April 2009.

[11] B. Douillard, D. Fox, and F. Ramos. A spatio-temporal probabilistic
model for multi-sensor multi-class object recognition. In Proc. of the
International Symposium of Robotics Research (ISRR), 2007.

[12] S. Kluckner et al., "Semantic Classification in Aerial Imagery by
Integrating Appearance and Height Information,” Proc. ACCV2009, 2009.

[13] Georg Pacher, Stefan Kluckner, and Horst Bischof, "An Improved Car
Detection using Street Layer Extraction” Moravske Toplice, Slovenia,
Computer Vision Winter Workshop 2008

[14] B. Triggs, P. McLauchlan, H. R.1, and A. Fitzgibbon. Bundle adjustment
- a modern synthesis. In Vision Algorithms’99, pages 298—-372, 1999.

[15]Seitz, S., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A
comparison and evaluation of multi-view stereo reconstruction algorithms. In:
Proc. IEEE Conf. on Computer Vision and Pattern Recognition. (2006)

[16]Goesele, M., Curless, B., Seitz, S.: Multi-view stereo revisited. In: Proc.

IEEE Conf. on Computer Vision and Pattern Recognition. (2006)

[17] B. Curless and M. Levoy. A volumetric method for building complex
models from range images. In SIGGRAPH, pages 303.312, 1996.

[18] A Practical Guide to Support Vector Classification. Chih-Wei Hsu, Chih-
Chung Chang, and Chih-Jen Lin Department of Computer Science National
Taiwan University, Taipei 106, Taiwan

[19] D. Gallup, J. Frahm, and M. Pollefeys, “Piecewise planar and nonplanar
stereo for urban scene reconstruction,” in Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on. IEEE, 2010, pp. 1418-1425.

[20] J. Davis and M. Goadrich. The relationship between precision-recall and
roc curves. Technical report #1551, University of Wisconsin Madison,
January 2006.

[21] Efficient Approximate Energy Minimization via Graph Cuts. Y. Boykov,
O. Veksler, R.Zabih. IEEE TPAMI, 20(12):1222-1239, Nov 2001.

[22] What Energy Functions can be Minimized via Graph Cuts? V.
Kolmogorov, R.Zabih. IEEE TPAMI, 26(2):147-159, Feb 2004.

[23] An Experimental Comparison of Min-Cut/Max-Flow Algorithms for
Energy Minimization in Vision. Y. Boykov, V. Kolmogorov. IEEE TPAMI,
26(9):1124-1137, Sep 2004.

[24] S. K. Divvala, D. Hoiem, J. H. Hays, A. A. Efros, and M. Hebert. An
empirical study of context in object detection. In CVPR, 2009.

[25] L. Zebedin, A. Klaus, B. Gruber-Geymayer, and K. Karner. Towards 3d
map generation from digital aerial images. International Journal of
Photogrammetry and Remote Sensing, 60:413-427, Sept. 2006.

