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All men naturally desire knowledge. An indication of this is our
esteem for the senses; for apart from their use we esteem them for
their own sake, and most of all the sense of sight. Not only with a
view to action, but even when no action is contemplated, we prefer
sight, generally speaking, to all the other senses. The reason of this
is that of all the senses sight best helps us to know things, and reveals
many distinctions.

Aristotle, first lines of Metaphysics
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Abstract

Effective segmentation prior to recognition has been shown to improve recog-
nition performance. However, most segmentation algorithms adopt methods
which are not explicitly linked to the goal of object recognition, e.g., using low-
level brightness and texture cues in image regions and the relations between
them. These methods are highly susceptible to errors in the segmentation stage.
No attempt based purely on low-level segmentation has solved this to date, al-
though many have been made - merging multiple segmentations, sampling the
space of segmentations for optimal ones or using different kinds of segmentations.
The amelioration of this problem is often attempted via explicitly introducing
object-class specific (high level) knowledge into the segmentation process. Such
knowledge is an exaggerated prerequisite if the segmentation is to aid recogni-
tion instead of being merely a side-effect thereof. In this work, we attempt to
assist object recognition more directly - via the extraction of a foreground mask,
which identifies the locations of objects in the image, while requiring no explicit
class-specific knowledge. We propose a novel foreground/background segmen-
tation algorithm that attempts to segment the interesting objects from the rest
of the image, while maximizing an objective function which is tightly related to
object recognition. A probabilistic formulation is derived by observing manually
segmented images. The model includes a geometric prior and an appearance
prior, whose parameters are learnt on the fly from images that are similar to
the query image. The geometric prior models the general expected layout of
objects in the scene and the appearance prior models the local appearance of
foreground or background. The models are learnt independently from properly
chosen subsets of the training set. We use graph-cut based energy minimization
to enforce spatial coherence on the model’s output. The method is tested on
the challenging VOC09 and VOC10 segmentation datasets, achieving excellent
results in providing a foreground mask. We also provide comparisons to the
recent segmentation method of [8].
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Chapter 1

Introduction

Object recognition is one of the holy grails of computer vision. While many
current object recognition methods do not rely on segmentation, a natural and
common assumption is that good segmentation prior to recognition can improve
the recognition results. This is because good segmentation is expected to narrow
down the number of options to search among, allowing less room for false alarms
and improving the run-time. In addition, a well segmented object will hopefully
contain the relevant image features needed for recognition, thus reducing the
signal to noise ratio [33, 24].

Following this assumption, a segmentation algorithm is applied to the im-
age, and the different segments are classified using a trained object classifier.
The results may vary according to how accurate the segmentation is, and of
course the quality of the classifier. However, the problem is that many popular
segmentation algorithms [36, 13, 32], while having some desirable mathematical
properties, have little to do with the end goal, which is recognizing objects. For
instance, consider an image of a person’s face. For the human observer, the per-
son’s hairline is not perceived as the boundary between the face and a different
object. However, for an algorithm such as e.g. [13], the inter-segment distance
is large. In order for the segmentation algorithm to keep the face and the hair
in the same segment, the measurement of the distance between them has to be
small enough. Thus, if segmentation was to achieve true object boundaries, it
would have to ignore these differences somehow.

Why indeed should one expect a segmentation algorithm to identify true
object boundaries? Most segmentation algorithms (e.g., [4, 13, 32]) are designed
to segment the entire image with no regard to the notion of foreground or
background. While this may create a good delineation of the boundaries of
objects in the scene, the background becomes segmented as well. Instead, here
we define a different goal – to directly extract a foreground mask from the image
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that indicates as accurately as possible where the objects lie within the scene.
This can serve as a first step for an object recognition pipeline, without the
additional noise of an over-segmented background and with the advantage of
feeding the recognizer with relevant image regions.

In chapter 3 we present an algorithm that achieves figure-ground segmen-
tation, with the intent of leaving the objects of interest whole and untouched.
It appears that in order to distinguish whole objects from the background, one
should have access to some implicit knowledge about the objects of interest.
Our approach attempts to approximate this ideal situation, by training the
foreground/background segmentation algorithm using other images similar to
the query image, without using the class-specific knowledge.

We present a probabilistic formulation comprised of two components, corre-
sponding to information about geometry (shape and location) and appearance.
The parameters of both priors are estimated separately for each query image,
using images from a large pre-segmented training set. The geometric prior is
estimated using the most similar images according to the GIST representation
[28], while the appearance prior is estimated using the most similar images ac-
cording to a Bag Of Words representation. In this way we avoid the daunting
task of learning the entire probabilistic distribution of general foreground and
background segments in images, relying instead on local approximations. Our
choice of splitting the learning set into two independent ones is justified by the
experiments in chapter 4. Segmentation is achieved by solving an energy min-
imization problem over a superpixel graph attained using [1]. In chapter 4 we
describe experiments on images from the PASCAL 2009 and 2010 segmentation
benchmarks, and offer a way to compare our results to that of [8].
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Chapter 2

Related Work

Before delving into some details of segmentation methods, we introduce some
key ideas from the past several years regarding object recognition.

2.1 Object Recognition

In this section, We briefly summarize some different approaches to object recog-
nition. When it comes to reporting which objects occupy an image, we can
always ask - is there a need to localize the objects, accurately, roughly, or at
all? Different answers to these questions lead to different approaches.

2.1.1 Sliding-Windows

The seemingly most trivial approach to try to find an object in an image is the
sliding window-approach : check each of a large subset of rectangular sub-images
for the existense of the object by trying to match a pattern to the observred sub-
window. The pattern-matching process may be either very simple (computing
the normalized-correlation) or more sophisticated, eg, applying a cascade of
classifiers [40]. There is a very large amount of possible subwindows: in a
square image whose side is n pixels, the number of such sub-windows is n

2(n−1)2

4 ,
which is of course unreasonable. So not all subwindows are search as many are
very narrow, large overlaps may be redundant, etc., but there still remain very
large amounts. In addition, a bounding box will usually either contain only
a part of the object or include background clutter within it. Clever methods
which bound the number of windows to be searched ([20]) still suffer from this
problem. Another problem of scanning many sub-windows is that each image
may usually have at most a few subwindows that actually contain the target
objects, so scanning many windows greatly increases the probability for false
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alarms. Thus such methods are forced to have a very low false-alarm rate, or
otherwise there may be a false alarm in every image scanned.

2.1.2 Part-Based

A different approach is the part-based method, where an object is modeled
as a consellation of different parts and the relations between them. In this
model there is an attempt to detect some or all parts of the object and the
more parts reliably detected (with the appropriate spatial relations), the higher
the algorithm’s score will be that there exists an instant of the object in the
image. Of course, different strategies exist for modelling parts appearance, such
as template based [12] or feature based [23]. Of course the correct assignment
of image areas to corresponding parts is a crucial step, which either relies on
detecting correct image features or sub-images which relate to the object parts.
These are among the most prominent models today.

2.1.3 Bag of Visual Words

Ubiquitous in text retrieval [41], the Bag of Words (also known as Bag of Visual
Words, Bag of Features, and abbreviated BOV, BOW) has become a basis for
some of the most widely popular methods for scene classficiation and object
recognition ([37, 26, 29] and many more) for the past decade. In this method,
each image is represented as a set of visual words. In order to be able to trans-
form the image into this repsentation, we must first create a visual vocabulary
(codebook, dictionary) V = (wi)i=1...N , where N may vary largely depending on
the task (typically ranging from a few hundreds to a million).V is a quantization
of a larger space of local image descriptors (e.g., SIFT descriptors) extracted
from local image patches, where the sampling method may also vary according
to one’s needs [27]. In the most basic form, each local descriptor dk is assigned
to some wdk

∈ V and the set H = (wdk
)k is the representation of the image.

V is created beforehand by sampling a large numbers of descriptors from many
images and clustering them via some method (usually k-means, where |V | = k).
Of course some information is lost when quantizing the descriptors. If the quan-
tization is too fine, even descriptors that need to be matched might be assigned
different words. If it is too coarse, discriminative power is lost. Some meth-
ods alleviate these problems by using soft quantization [30] or augmenting each
quantized descriptor with a small codeword to express it’s location within the
assigned cluster [18].

Thus each image is represented by H, the collection visual words assigned
to it. Usually the representation is turned to a histogram, counting the number
of occurences of each word within the image. Comparing between two images
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I1, I2 boils down to comparing the respective histograms -H(I1), H(I2). Popular
metrics used are for instance the L1and L2 norms where either histogram may
be normalized (again, using each of the norms) or weighted. Common weighting
schemes are (1) binary, where all counts are discarded and only the occurence of
a word is taken into account and (2) tf-idf weighting, where a word’s importance
is inversley proportional to its frequency throughout the corpus of images. In
effect, the bag-of-words model is a rather effective summary of the statistics of
the appearance of local image regions.

The basic description of an image using this method is thus a global rep-
resentation, as the whole image is represented as a histogram of visual words.
When the object of interest occupies a large enough portion of the image, the
method seems to work well. Of course, when the scene becomes “contaminated”
with clutter and other object types, the histogram no longer represent a pure
instance of the object class(es) we seek. As the complexity and diversity of
images in which we attempt to recognize objects keeps increasing, the method
becomes less and less effective. As mentioned above, we would like to avoid scan-
ning many sub-windows of the image and rectangular sub-windows might not
capture the required features without introducing background clutter. Thus,
much recent work on object recognition and multi-class labeling has focused on
pre-segmenting the image before applying algorithms for recognition. In section
2.3, we summarize both popular segmentation methods and previous attempts
to link the processes of segmentation and recognition.

2.2 Global Shape of a Scene

As will be elaborated later on, we have a need to be able to match scenes relying
on both statistics of local-patch appearance (as in BOW) and the rough shape
of the scene. The latter may provide us with useful cues as to where in the scene
the objects are more likely to be (eg, cars appear on the road in street images)
and even their shape. To this end we use the GIST [28] descriptor, which creates
a low-dimensional representation of the scene but claims to capture some high-
level properties such as scene naturalness,openness, roughness, etc. Effectively,
the descriptor is able to discriminate rather well between scenes of different types
(for instance, outdoor vs. indoor). There is also a good correlation between
the distance of two GIST descriptors from different images their low resolution
layout.

To compute the feature-vector, the image is first filtered with a filter-bank
of oriented Gabor filters, typically using 8 or 6 orientations. Each response
is kept separately. The image is divided into a rough grid (eg, 4x4) and for
each bin we sum up the energy of the response for each of the oriented filters.
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This is usually done for several scales, optionally using different image grids
and number of orientations per scale. For a color image, we simply compute
the descriptor for each channel independently and concatenate the results. In
our example, we have a 4x4 grid for 3 scales where the number of orientations
is (8,8,4), for a total of 320 dimensions which becomes 960 since we are dealing
with color image.

2.3 Segmentation Methods

Image segmentation is typically approached by solving a type of clustering.
Indeed, popular methods for segmentation use well-known clustering methods
adapted to the image domain. The complexity of features to be clustered ranges
from simple features such pixel colors and locations, to more complex options,
such as using local texture or geometry. We review here some of the more widely
used and noteworthy methods.

Mean-Shift

Mean-Shift [9] attempts to find the modes of a probability distribution func-
tion, sampled at a set of points. The method is iterative, starting with some
arbitrary point. Using a (usually) Gaussian kernel function (whose radius is
a parameter of the algorithm), the local mean of the density function at that
point is estimated, and used as the center for the next iteration. The process
converges when a local maxima of the density is reached. This is repeated until
all points in the data have been covered. The algorithm is simple and intuitive
but tends to oversegment the image.

FH

The segmentation by Felzenszwalb and Huttenlocher [13] is a pure bottom-up
method which starts from single pixels (modeled as nodes of a graph with edges
for neighboring pixels) and merges segments so the final segmentation is neither
coarse nor too fine, according to some criterion. A segmentation is too fine if
there exist two adjacent segments with no evidence of boundary between them;
it is too coarse if there exists a refinement - a different segmentation where each
segment is contained in the original one - which is not too fine, i.e., one of
the original segments can be split resulting in two segments with an evidence
of a boundary between them. They prove that for some segment comparison
predicate they define, there is always such a segmentation and show an efficient
algorithm (O(n logn) for n image pixels) to do so. This segmentation is very
fast and is considered as one of the better methods around. Some drawbacks
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are that the merging criteria is often too local in nature. In addition the family
of functions provably solved by the method is quite limited and it is shown by
the authors that richer criteria lead to an NP-hard formulation.

Normalized Cuts

One of the more popular segmentation methods, introduced in [36], formulates
the problem as a partitioning of a weighted graph. Let G = (V,E) be a graph
and A,B be subsets of vertices. The weight ωij of an edge (i, j) ∈ E is a function
of the similarity (affinity) between the nodes i and j. Let

ω(A,B) =
∑

ωij
i∈A,j∈B

ncut(A,B) = ω(A,B)
ω(A, V ) + ω(A,B)

ω(B, V )

We wish to find a partition (cut) S, S̄ of V that minimizes ncut(S, S̄). This
is an NP-hard problem. However, a cut with small weight can be found in
polynomial time via spectral techniques.

2.4 Segmentation for Recognition

It has been shown in [24] that good spatial support is important for object
categorization. They compared the performance of a classifier when presented
with the visual features of the bounding box surrounding the object vs. the
exact segmentation. For almost all object classes, exact segmentation improves
the categorization accuracy. They used combinations of segments from over-
segmented images using several popular segmentation methods, in order to find
an optimal cover for the objects in question. Given the ground-truth object
boundary, the right combination of segments to cover it is found quite easily,
but of course this information is not available for unseen images.

The work of [33] also shows how segmentation improves the performance
of standard recognition algorithms. They first create a collection of segments
by sampling the set of stable segmentations [32] of the image. The result is
a “soup” of segments - many possibly overlapping segments covering the im-
age. A baseline algorithm is applied to each of the resulting segments, and
the segments whose classification was most confident are retained. While this
segmentation algorithm shows some impressive results, it has a very long run
time - many hours per image on a single computer, as reported by the authors.
In addition the cost function optimized by the segmentation is not related to
object recognition.
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2.4.1 Usage of Class-Specific Knowledge

Many lines of work, some of which we mention here, incorporate class-specific
knowledge into the process of segmentation, by either training for specific object
classes or assuming that all images are from a single class.

For instance [15] avoid the question of perfect segmentation and break the
image into super-pixels. They train a classifier to differentiate between object
classes based on the BOW representation of local features extracted from each
super-pixel and its neighborhood. A CRF is employed to enforce spatial consis-
tency on the results.

Some papers use training images to gain knowledge about the appearance of
background and foreground. An elegant approach is presented in [5], where both
top-down information (similar image fragments found in training images) and
bottom up (image based) criteria are employed to achieve impressive results.
However, their dataset includes rather homogeneous (horse-side) images, while
still requiring a substantial amount of training examples. [22] use multiple local
and global image features types in a learning framework, in order to detect
salient object in images. They train a CRF using these features, employing
thousands of training images.

Class-Cut [2] automatically segments class objects, alternating between seg-
menting object instances and learning a class model. Their approach requires
that the input set of images contain only a single class of images.

We note that the idea of choosing the right image or part of an image for use
in an algorithm has also been applied in other areas, such as super-resolution
[14] and scene completion [17].

2.4.2 Non Class-Specific Knowledge

In contrast to such methods, some of which require many images for training, our
approach is rather simple and uses only a few (well selected) training examples
for each test image. Training is performed on the fly, requiring only a few
seconds to segment the image.

Ours is not the only work that does not make explicit assumptions about the
object classes at hand. The recent work of [8] segments the image in numerous
ways by providing a min-cut algorithm with different parameters and initializa-
tions. Each segment is scored according to a function learned via regression on
a training set of image segments, where the objective function is to maximize
the score for images segments which likely to contain an object. The segments
are ranked in descending order and it is shown that the first few segments ac-
cording to this ranking indeed contain good object segmentation. We compare
our result to theirs.
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Instead of pre-segmenting the image, [3] present a measure of “objectness”
which predicts how likely it is for a rectangular image window to contain an
object. The measure uses several cues, including saliency, color contrast, edge
density and a feature they name “straddleness”, measuring if superpixels cross
the border of the bounding box. They show how to use the objectness measure
to provide a prior on image locations for a classification task. Although this
can dramatically decreased the runtime of an otherwise exhaustive detector, as
mentioned before, the spatial support of an accurate segmentation is preferable
for the task of recognition.

In [34], a database of scenes is searched for similar images to the currently
observed one. Both the distribution of object identities and locations are inferred
from the resultant set of images, aiding recognition of most object classes. The
training set is of more than 15,000 images and 100,000 annotated objects, with
some 560 images for testing. In our setting, the training set is significantly
smaller (less than 1000 images), whereas the test is of a comparable size. The
locations of objects are modeled as Gaussian distributions over bounding boxes.
In contrast, We model the layout of the object non-parametrically, with a per-
pixel probability for foreground presence.

2.5 Common Datasets

Of the methods mentioned above, many consider the PASCAL VOC1 (Visual
Object Categorization) challenge (or PASCAL challenge, for short) [11] to be a
good benchmark for the comparison to other works, owing to both its popularity,
diversity of tasks and level of difficulty. It is actually a series of challenges
maintained for several years in a row, with ever growing diversity and complexity
of tasks and number of different visual categories. Specifically, one of the tasks
is to create a good segmentation over the diverse images in the dataset. The
dataset contains around 1500 manually segmented images of many different
scenes with at least 20 instances of object classes spread throughout the images
(there are many additional different kinds of objects since it is a collection of
natural images). To evaluate our segmentation results, we split the manually
segmented data and used it for both training and testing.

1http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2010/index.html
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Chapter 3

Approach

Given a set of manually segmented images, we wish to learn a model which will
allow us to segment a novel image into two groups: foreground and background.
The training data consists of a set I1, I2, . . . , In of images. For each image I
we are given some ground-truth pixel-wise labeling LI(x, y) for the objects in
the image and their classes. The original labels belong to a set of categories:
LI(x, y) ∈ C = {c1 · · · cm}, including a background category, which is typically
labeled implicitly (i.e., no label).

The labels provide much useful information for the task. First, they provide
the visual characteristics of foreground objects. Second, we observe the scene
containing the object, making it possible to learn different segmentation rules for
different scenes. Lastly, we are given geometric cues including shape and image
location of foreground objects. Next we show how all of those cues combine into
a single framework.

Similarly to [16] we formulate the problem as graph-partitioning. Let G =
(V,E) denote a graph whose nodes correspond to superpixels. Those are ob-
tained from [1], allowing us to control both the approximate size of the graph
and its spatial regularity while still preserving object edges. Neighboring super-
pixels define the graph’s edges.

Specifically, each node v ∈ V is first assigned a category label L(v) ∈ C.
Since we want to segment the image to foreground and background segments as
opposed to creating class-specific labeling, we simplify this notation by using an
indicator function Fv, which takes the value of 1 iff L(v) is one of the foreground
classes and 0 otherwise. Like L(v), Fv is well defined only if the superpixel
contains exactly one label. Using fine enough superpixels, this is almost always
true. Note that under this definition, foreground objects which are adjacent in
the image end up as one connected component of the resulting foreground mask.
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3.1 Probabilistic Formulation

Our model assigns to each node v ∈ V some probability that it belongs to the
foreground given the underlying superpixel Sv : P (Fv = 1 | Sv), and to each
pair of neighboring nodes (u, v) ∈ E the probability that they have the same
label (i.e, both are from the foreground objects or are background): P (Fu =
Fv | Su, Sv). For brevity, we write

Pf (v) = P (Fv = 1 | Sv) (3.1)

Ps(u, v) = P (Fu = Fv | Su, Sv) (3.2)

By doing so, we consider only two types of visual categories - foreground and
background, avoiding the additional complexity of multi-class classification.

The two terms are combined to form the following energy function

− logP (F | G;α) =
∑
v∈V

ηf (v) + α
∑

(u,v)∈E

4s(u, v) (3.3)

where α is a regularization parameter, controlling the trade-off between the
fidelity and smoothing terms. We show how to compute ηf (v) = − logPf (v) in
Section 3.2.2. 4s(u, v) is computed exactly as in [16], i.e.,

4s(u, v) = −logPs(u, v) = ( L(Su, Sv)
1 + ‖Su − Sv‖

) [Fu 6= Fv] (3.4)

where L(Su, Sv) denotes the length of the boundary between Su and Sv, ‖Su − Sv‖
the norm of the color difference between superpixels in the LUV color space,
and [·] the indicator function.

The choice of 4s(u, v) was based on some experimentation; an earlier at-
tempt was to learn how likely it is that two image areas e.g. patches/superpixels
belong to the same object. This attempt didn’t show much promise (perhaps
due to implementation details) and so a simpler approach was chosen.

3.2 Context on the fly

The probability distribution in (3.1) may in reality be quite complex. In addi-
tion it is scene dependent, as a foreground object in one scene may very well
have the local appearance properties of the background in another. We avoid
the daunting task of learning a model to represent the entire distribution by
simplifying the problem. Thus, for each test image we consider only similar
images observed in the training set and use them to model the distribution.
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(a) (b)

(c)

(d)

(e) (f) (g) (h)

Figure 3.1: Automatic foreground extraction process: (a) Input image. (c) Ge-
ometrically similar images, used to train the geometric prior (f). (d) Visually
similar images, used to train the appearance prior (g). (e) SLIC [1] superpix-
els, used to aggregate the priors, producing probability map (h). (b) Final
foreground mask (green tint) with ground-truth overlayed (red borders).

13



Our probability distribution is composed of two semi independent components:
shape\location and local appearance. We use different training sets to learn
each component independently.

3.2.1 Geometric Prior

In order to obtain a suitable training set to learn the geometric prior, we use
the GIST descriptor introduced in [28]. The descriptor gives low-dimensional
representation of an image used to find similar images in very large datasets
with good precision [10]. Essentially, the operation sums up the response to
different oriented Gabor filters over a grid of rectangular areas over the image, at
multiple scales. The number of orientations may differ per scale. The responses
are concatenated into a single feature vector. The standard implementation,
used here, produces a feature vector of length 960 for a color image.

We compute the descriptor for all images in the training set. Given a test
image I, we compute its GIST descriptor as well, denoted G(I) ∈ RG. We
find the KG-nearest neighbors of this image from the set of training images,
where distances are measured using the GIST representations of the images.
Thus we retrieve a set of images whose general layout is similar to that of the
query image. Denote those images by neiG(I) = {IN1 , . . . , INKG

} (see example in
Fig. 3.1c).

The selected images are used to estimate a prior on the distribution of loca-
tions of foreground objects by summing over the foreground mask in each pixel
(x̂, ŷ):

PGf (x̂, ŷ) = 1
KG

∑
IN

j
∈neiG(I)

[LIN
j

(x̂, ŷ) ∈ foreground] (3.5)

where LI(x̂, ŷ) denotes the label of the image I at the coordinates (x, y) after
being normalized to the size of the test image, and [·] denotes the indicator
function. PGf (x̂, ŷ) is smoothed using a Gaussian kernel with σ = 7, to produce a
more continuous result. Thus we obtain a pixel-wise probability for the presence
of a foreground object, see Fig. 3.1.

Note that this prior is quite informative, since we sum over the objects’
masks and not only their centers, thus gaining information about the outline of
the objects of interest. We call this the geometric prior ; examples are shown
in Fig. 3.2. The figure also shows the advantage of computing this prior from
GIST-based nearest neighbors, compared to using a generic mask computed
from all the images in the database (or a random sample of the images). Note
that the geometric prior, as presented here, differs from other work e.g. [34].
While they learn a Gaussian distribution over the parameters of the bounding
boxes surrounding objects, our model allows a much richer representation, as it
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(a) 15-NN (b) 30-NN (c) 100-NN (d) 15-R (e) 30-R (f) 100-R

Figure 3.2: Geometric Prior: Using scenes of similar layout (not necessarily
similar objects), object location and shape are estimated. Top: green outline
marks the query image, followed by its 5 nearest GIST neighbors. Bottom:
Location priors (normalized) are calculated by summing up different object
masks from a set of retrieved images. NN marks the masks computed from the
15, 30 and 100 Nearest Neighbor images, and R those masks computed from
Random images. Clearly similar images consistently generate better geometric
priors.

is computed non-parametrically.
A somewhat delicate point here is the value of the normalized coordinate

pair (x̂, ŷ). As the coordinates of all images in neiG(I) are normalized to fit the
coordinate frame of I, some skewing may appear due to different aspect ratio in
image dimensions. This is a property of the dataset rather than a “real world”
situation, and we ignore problem.

3.2.2 Appearance Prior

The GIST descriptor, while enabling the retrieval of scenes with similar layout,
typically retrieves images with different scene content than the query image (see
Fig. 3.2). Thus if we wish to discriminate between foreground and background
on the basis of visual features, we need to choose a different learning set. In
order to find scenes with similar content, we use a standard BOW method: a
k-means dictionary is computed for a large set of local descriptors from the set
of training images.

Specifically, for each training image I we store the L1−normalized and tf-idf
weighted histogram of visual word appearances. Denote this appearance de-
scriptor by A(I). Given a test image, we find its KA nearest neighbors from
the set of training images where distances are computed using the BOW rep-
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Figure 3.3: Some of our segmentation results on VOC09. Top two rows: the
algorithm provides a foreground mask (green tint) with the goal to extract all
foreground objects (red outline), without oversegmenting the background. All
results were obtained using the same parameters of KA = KG = 30 along with
the geometric prior. The foreground need not be a single connected component
(1st row, right). The algorithm succeeds in highly cluttered backgrounds (2nd
row, right and center). Last row: results on VOC10.

resentations of the images. Denote those images by neiA(I) = {N I
1 , . . . , N

I
KA
}.

They are used to estimate the prior on the visual properties of foreground and
background objects, as described in the next section.

We wish to assign a foreground probability to each pixel. Let P̃ denote
the set of pixels belonging to the images in the set neiA(I). For pixel p, let Fp
denote the indicator function defined over pixels: Fp = [LI(x, y) ∈ foreground].
The positive and negative examples for foreground pixels are

P̃F = {p ∈ P̃ : Fp = 1}

P̃B = {p ∈ P̃ : Fpi
= 0}

In order to make fast segmentation possible despite the fact that P̃ is differ-
ent for each image, we use an approximation of the Parzen-window estimator.
Let It be a test image. We define a dense regular grid (each 2 pixels) on It.
Let p ∈ PIt

be a pixel in the grid PIt
. Define P+

f (p) to be the estimator of the
probability that p would be drawn from the positive sample distribution defined
as

P+
f (p) =

∑
q∈P̃F

φ(p, q)

with kernel function φ(p, q) ∝ e−(d(p)−d(q))2/2σ2 , where d(p) ∈ RD denotes the
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feature vector for the local descriptor at pixel p. Similarly

P−f (p) =
∑
q∈P̃B

φ(p, q)

The probability Pf (p) is thus calculated by the the normalized ratio:

Pf (p) =
P+
f (p)

P+
f (p) + P−f (p)

(3.6)

This is done for each p ∈ PIt
.

Since we use an exponential kernel function, the density can be well approx-
imated by considering only the k-nearest neighbors of d(p) in the set of training
examples. Although nearest-neighbor algorithms are constantly improving [25],
this is still too time consuming if we want reasonable performance: we need to
perform |PIt

| searches in the sample set of size
∣∣∣P̃ ∣∣∣, which can be quite large

(millions).
Instead, we create a quantized code-book (as in the bag-of-features) model.

Adapting the framework described in [39], PHOW Descriptors are sampled at
multiple scales and locations from the training images. The descriptors are
quantized via K-means clustering. Each local descriptor in both the test and
training set is assigned its nearest cluster in the K-means dictionary. Let wv ∈
W = {w1, . . . , wk} denote the visual word assigned to the descriptor of pixel p.
The probability of foreground for the pixel p (Eq. (3.6)) is approximated by the
probability for the corresponding visual word wv:

P̃f (wp) =

∑
q∈P̃F

[wq = wp]∑
q∈P̃F

[wq = wp] +
∑
q∈P̃B

[wq = wp]
(3.7)

In other words, we count how many times each visual word is assigned the
foreground or background labels.

This approximation allows us to quantize once the local descriptors of each
of the training and test images. During run-time, the density function (3.7) is
estimated by counting features from the corresponding images, which is very
quick and requires little memory. Each pixel in the grid p ∈ PIt is assigned a
visual word wp and a probability P̃f (wp).

3.2.3 Object-Edge Preserving Smoothing

In order to obtain the probabilities Pf (v), we aggregate the local probabilities
from both geometric prior (3.5) and appearance prior (3.7) using the superpixels
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as local decision boundaries. Let pv ∈ Sv denote the set of pixels in the area of
the superpixel Sv, then

Pf (v) = 1
|Sv|

∑
pv∈Sv

P̃f (wp)(PGf (x̂, ŷ))γ (3.8)

for wp the visual word assigned to the descriptor of pixel p, and p = (x̂, ŷ).
The non-uniform smoothing resulting from the use of super-pixels has the

advantage of enhancing the effect of P̃f (wp) and PGf (x̂, ŷ) inside objects and
arbitrarily dispersing the energy of those in more uniform image areas. This
is repeated for two levels of superpixel granularity - coarse and fine. Coarse
superpixels are used to estimate Pf (v) as in Eq. (3.8). Then each image pixel in
Sv is assigned the probability Pf (v). The resulting probability map is an image
where each region in the coarse superpixel map contains the same foreground
probability for each pixel within it. The graph used for the energy minimization
is defined over finer superpixels; Pf (v) is defined by aggregating the pixel-wise
probability from the previous stage into the fine superpixels. As most fine su-
perpixels are fully contained within coarse superpixels (in which the foreground
probability is uniform), the resulting probability map is visually identical (or
almost identical) to the one from the previous stage. The only difference is that
the probabilities have now been split over a finer spatial arrangement.

The coarse stage aggregates probabilities from relatively large areas, thus
potentially capturing more informative local features at the cost of reduced ac-
curacy. This trade-off is shown in fig. 4.2, where the aggregation into superpixels
improves the performance for all but the high-precision setting. The fine super-
pixels allow for larger flexibility in the final segmentation stage, since they are
used as the graph nodes in the optimization process, after Eq. (3.8) is plugged
into Eq. (3.3). The energy is minimized using the graph-cut optimization of
[19, 16, 7, 6]. The optimization process is very fast as it operates on the super-
pixel graph which contains typically hundreds of nodes (as opposed to millions
of pixels). The parameter α is determined by optimizing over a small portion
(10%) of the dataset, and is kept constant at 16 throughout the experiments.
It can also be chosen by cross-validation of the training data.

The algorithm is summarized in the box below.
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Algorithm 1 Extraction of Foreground Mask

1. GIt
= (VIt

, EIt
)← the graph induced on It using coarse superpixels from

([1])

2. neiA(It) ← {N I
1 , . . . , N

I
KA
}, the KA nearest BOW neighbors of A(It) in

Itrain

3. neiG(It) ← {N I
1 , . . . , N

I
KG
}, the KG nearest GIST neighbors of G(It) in

Itrain

4. Obtain P̃F , P̃B from P̃ =
⋃

H∈neiA(It)
{p : p ∈ PH}

5. For each word w ∈W calculate P̃f (w) according to Eq. (3.7)

6. For each coarse superpixel v aggregate probabilities to obtain Pf (v) as in
(3.8); split results into finer superpixels

7. Sum foreground masks from neiG(It) as in Eq. (3.5) to obtain PGf (x̂, ŷ)

8. Optimize − logP (F | G;α) from Eq. (3.3) via graph-cut to obtain a fore-
ground mask F(I)
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Chapter 4

Experiments

The algorithm was tested extensively on the Pascal VOC09 and VOC10 datasets
[11], which have many training images annotated with manual segmentation. We
computed local image descriptors on a dense regular grid (with 2-pixel spacing)
using the color-phow implementation of [39], which is computed at multiple
scales. We summed up the foreground prior estimated for each scale indepen-
dently with uniform weighting. The choice of descriptor was motivated by the
survey of [38]. The size of the visual dictionary was set to K = 1000. We
computed the GIST descriptors on a 4x4 grid for all training images using a
slightly modified version of [28], allowing us to deal with rectangular (rather
than square) images. After the preprocessing stage of extracting and quantiz-
ing dense local descriptors, the runtime of the algorithm is 1-3 seconds on a
PC with 8Gb of RAM and Intel core i5 CPU. The extraction requires a few
seconds per image. The quantization is performed quickly once per image using
the nearest-neighbor framework of [25]. Some examples are shown in Fig. 3.3
and the supplementary material. The code will be made available on the web.

4.0.4 Appearance vs. Geometry

To evaluate the contribution of both the appearance and geometric priors, we
treat the problem as that of classification: Varying the threshold on the prob-
ability maps obtained by using either the appearance prior or the geometric
prior alone (or their combination), we obtain a precision-recall curve on the
test dataset - see Fig. 4.2. Perhaps surprisingly geometry alone is a stronger
cue than local appearance. Arguably, this happens because most objects are ap-
proximately centered in the VOC2009/2010 benchmarks. However, the learning
process also contributes to this success; as can be seen in Fig. 3.2, both loca-
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Figure 4.1: Segmentation results. In each image, the red border shows the
ground-truth and the green overlay shows the results of our algorithm. In some
cases, our algorithm provides arguably good results (bottom right, leftmost
element in fourth row), which disagree with the ground truth. This may happen
when most of the scene is regarded as foreground or there are several foreground
layers.
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Figure 4.2: Performance comparison of appearance and geometrical priors. Ge-
ometry alone (solid green) is stronger than local appearance cues (solid blue).
Superpixel aggregation (black) further enhances the result, for all but low-recall
cases. Dashed green/blue lines show the performance drop when choosing ran-
dom images for learning instead of those chosen by our method.

tion and shape are captured more concisely when using good training examples.
This is in contrast to [34], which only models the location of objects roughly as
Gaussian distributions over the dimensions of the objects’ bounding boxes.

4.0.5 Quality of Segmentation

Overlap score

Since our algorithm provides a foreground mask (with possible several connected
components), we score each result produced by our algorithm according to its
overlap score:

O = |S ∩ S
′|

|S ∪ S′|

where S is the ground-truth segmentation mask, i.e., the union of all foreground
segments, and S′ is the result of our algorithm. This scoring scheme reflects
the fact that our algorithm makes no effort to split adjacent foreground objects.
Instead, it aims to produce foreground masks that include all objects in the
image. The average of this score over the test set of the VOC09 benchmark is
given in Table 4.1.

To study the effect of the algorithm’s parameters KG , KA we varied them
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Figure 4.3: Mean segment overlap score on VOC09 for varying numbers of
nearest neighbors chosen for learning geometric and appearance priors (KA =
KG). Dashed red lines (“visual”) - performance using the appearance prior only.
Green (“visual x geom”) - contribution of the geometric prior. The solid blue
curve (“best”) shows performance when choosing for each image its best scoring
method.

and calculated the overlap score over the test set. We tested how switching the
usage of geometric prior on and off changed the final results. A summary of this
test can be seen in Fig. 4.3. There are several things to be noticed here. First,
it is apparent that for even a small amount (e.g. 5) of training images chosen
for the different prior types, the method already performs quite well. Second,
adding too many training images hinders the result: with too many images
chosen for learning an appearance prior, some images are already far (in BOW
terms) from the target image and so each feature has a larger chance to appear
as both foreground and background. Limiting the number of training images
by the BOW distance rather than number of nearest neighbors could perhaps
prevent this situation. Although on average the geometric prior improves on
the result, clearly this isn’t always the case, as can be seen by the mean grade
attained by choosing for each image its best scoring method. To illustrate, Fig.
4.4 shows an example where using geometric prior leads to a poorer result.

4.0.6 Further analysis

The performance shown in Fig 4.3 seems to peak around 30 neighbors for both
types of priors. To gain some insight into this, we checked the pairwise distances
between a large sample of images. For each image, we have ranked the other
images according to ascending distance. Fig. 4.6 demonstrates this for the
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(a) (b)

Figure 4.4: Geometric prior doesn’t always help. (a) Segmentation using ap-
pearance and geometric prior. (b) Segmentation using appearance only.

geometric prior; the mean distance between a source image and its neighbors is
shown. The distance becomes large after 30 or so images. Incorporating such
“distant” images into the geometric prior intuitively decreases performance as
these images no longer represent geometrically similar scenes.

Finally, we ask - what happens in configurations where KG 6= KA? Several
different combinations have indeed been checked, but the results were non-
conclusive. Still, we show a plot of a non-parametric density function obtained
by checking the frequency of co-occurrence of values of KG , KA. The result is
shown in Fig. 4.5. Note the low correlation between the two types of distances.
This analysis justifies using GIST and Bag-Of-Words as independent sources of
data.

We would like to explore the choice of GIST as a good descriptor for find-
ing images with a similar geometric layout. Indeed, why should images with
a similar GIST descriptor have foreground objects in similar shapes and posi-
tions? Observe image 4.7, where the mean overlap score for the ground-truth
foreground mask is plotted vs. the mean GIST-based distance. The values are
rather correlated, justifying our choice.

Segmentation Covering

The following score, used in [8], is defined as the covering of the ground-truth
segmentation by a machine segmentation:

C(S, S′) = 1
N

∑
R∈S
|R| ∗max

R′
O(R,R′) (4.1)
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Figure 4.6: (a) ranked distances (L2 norm) for geometric prior. The red arrow
points at 30 nearest-neighbors, after which adding more images as source of ge-
ometric information decreases. (b) shows a similar analysis for the appearance-
based distances (L1 norm over tf-idf weighted histograms).
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Figure 4.7: Visualizing the correlation between the distance in images mea-
sure via the GIST descriptor (blue cross) and the overlap score between their
foreground masks. This justifies the choice of GIST as a predictor for similar
foreground layout. The red dots show the BOW distances (stretched for vi-
sualization purposes), demonstrating their lack of ability to predict the scene
layout.

where N denotes the number of pixels in the image, |R| the number of pixels in
the ground-truth segment, and O the overlap.

We compare our results to those of [8], which achieves excellent segmenta-
tion results by creating diverse segmentations and ranking them automatically
using a learnt model. Having produced multiple segmentations, they compute
the average of the best covering score for varying number of segments, chosen
according to their ranking. The mean covering score we obtain for a single seg-
mentation using KA = KG = 30 is 0.4263. On average this is slightly better
when compared to the score obtained by the first ranking segment of [8], which
is 0.4018. We note their runtime is approximately 3 minutes, as compared to
1-3 seconds of our own method; this is because this algorithm solves the more
complicated problem of full segmentation and does so thousands of times per
image. The comparison we have made applies for the setting of choosing a sin-
gle foreground segment. [8] Produce many segments for each image. They rank
each segment according to a function learnt via regression, aiming to give higher
grades to more plausible segments. They check their calculate the mean best
covering score (4.1) for an increasing number of segments. Under this criteria
their performance exceeds ours when allowed to output more than one segment
(as we only provide a single foreground segment).

Since our algorithm aims at creating whole foreground masks, it is at a
disadvantage when the scoring method expects it to split connected foreground
blobs into different segments, as was done in the comparison above. A more
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Dataset CPMC Ours-Mask
VOC09 0.4018 0.4708
VOC10 - 0.4570

Table 4.1: Comparison of our method’s overlap score to CPMC [8], using their
first ranked segmentation. In the column under “Ours-Mask” we give the same
score, where in the ground-truth image adjacent object segments are merged
into one connected component.

suitable score should regard connected foreground objects as the same ground-
truth segment. Under this relaxation, we achieve a much higher result of 0.4708.
The results are summarized in Table 4.1, where results on VOC10 are reported
as well.

More examples can be seen in Fig. 3.3 and 4.1. Clearly, the algorithm deals
well with background clutter and multiple connected components.
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Chapter 5

Discussion and Conclusions

5.1 Summary

We have presented an efficient and effective algorithm for foreground/background
segmentation, motivated by an object recognition perspective. The algorithm
learns both geometric and appearance priors for the task. For each prior, a
different set of training images is chosen independently, in order to maximize
the relevant data in the training set. This choice allows the learning from lim-
ited datasets, as images whose content and layout are both similar to the query
image may be rare. This leads to a powerful representation that seems to dis-
criminate foreground from background quite well. The algorithm was tested on
two challenging datasets, Pascal VOC09 and VOC10. We note that although
the ground-truth annotations of the dataset contain rich class-specific informa-
tion on multiple classes, none of this information is used by our algorithm, none
but the distinction between background and foreground. to assist object recog-
nition, the foreground mask computed by our algorithm can be fed into any
choice of recognition algorithm. New features may be subsequently computed
more robustly from the foreground area only, before attempting final recogni-
tion.

5.2 Discussion

The solution presented here does have some drawbacks. The datasets in the
PASCAL challenge were originally aimed towards the recognition of specific
object classes and only objects belonging to these classes are marked as fore-
ground. This might hinder the results of the algorithm, as other parts of the
image are sometimes extracted as foreground as well. On the other hand, learn-
ing the foreground appearance according to similar images is advantageous as
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it implicitly uses the visual features shared by some of the object classes.
The notion of foreground is only relevant if one wishes to identify a specific

set of objects while avoiding background clutter. Of course if there is the need
to label all parts of the image, the background should not be discarded and
there is room for a full segmentation.

The result of the algorithm is a binary foreground mask. If this is to be a
preceding step before applying object recognition, specifying inter-object bound-
aries is required as well. However, splitting a foreground mask into its con-
stituent objects is seemingly an easier task than both doing so and finding those
objects in the scene, so it may be regarded as a post-processing stage for our
algorithm.

5.3 Future Work

First and foremost, while there is much evidence to this from previous work,
it remains to verify that the proposed method indeed improves the accuracy of
object recognition methods. A reason to suspect that this may not be the case
lies in the overall performance of the segmentation algorithm. The segmentation
has been shown to achieve good results on average. Successfully segmented
images indeed have a good chance to improve the recognition performance.
However, where the segmentation fails, it might miss the whole object, labeling
instead a portion of the background as the area of interest. In such cases, it is
expected that the recognition would become much worse. The overall change in
performance lies in the balance between these good and bad cases.

Another issue is the problem formulation, which results in a single fore-
ground mask. For a single object (or even a single object type) this may be
sufficient. However, when several objects are adjacent in the image, the algo-
rithm is considered if all of them are labeled as foreground. This may a rather
confusing input for a recognition method, as the single blob is actually a mix
of different objects. A more sophisticated formulation could also learn the ap-
pearance of object boundaries instead of using a low-level cue in the graphical
model, as is currently done. In fact the usage of low-level cues for deciding if
two image regions belong to the same object or not is a blunt contradiction to
the motivation of this work and future work would remedy this by learning the
co-appearance of image regions which belong to same/different objects.

The learning set used for demonstrating the method is not very large, ap-
proximately 750 images. As the appearance and shape of foreground objects is
rather diverse, it could be beneficial to learn from a much larger training set.
There are several ways to go about this, each relaxes some more the constraints
on the dataset. One is finding a larger manually segmented training set (such
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as LabelMe [35]). A more relaxed approach would be using a training set that
contains only bounding boxes around objects and either using those bounding
boxes directly or trying to simulate finer segmentations using those bounding
boxes as a cue to some interactive segmentation method. For an even larger
database, consider images which have no bounding box at all but a label (or
several). This would already require some reasoning about where each the ob-
ject is inside the image. Finally there is an option of learning how to segmented
from a non-labeled set of images by considering some multi-way co-segmentation
(ie, we would first have to cluster the images as containing the same object and
then apply co-segmentation to each subset).

Although the overall algorithm may be novel, the methods chosen as the
building blocks for most of it are rather simple (or not implemented optimally),
and some may already be considered outdated. For instance, finding visually
similar images is done using a vocabulary of 1000 visual words, which is very
small compared to contemporary work such as [31] , dating several years ago. No
attempt was made to find the best vocabulary for the task or use any improve-
ments over the basic BOW model. Other building blocks includet the GIST
descriptor which, while prodiving a good measure for scene similarity, might
also be replaced by more recent global descriptors. For example, a BOW rep-
resentation which also considers the spatial arrangement (such as in [21])could
be considered (although in this case the independence between the two models
might become weaker). The methods for learning visual and geometric priors
are based upon the assumption that the similarity scores (BOW-based or GIST
based) are correlated with the objective functions - foreground appearance in
case of the visual prior, and foreground location and shape in case of the ge-
ometric prior. This is empirically shown by the result of the algorithm. It is
also shown in the analyses in chapter 4. However, the nature of the relation
is not well understood and used rather naively. The same weighting was used
for each image in the chosen learning set, although some images resemble the
target image more than others. For the visual prior, we use probabilities taken
over single visual words. Future work would use a stronger modeling of the fore-
ground probability, such as matching superpixels instead of descriptors of single
pixels. For the geometric prior, we used the euclidean distance between GIST
descriptors to predict the shape & location of foreground objects. We would like
to better understand how to predict this property. For example, we could cast
it as a learning problem - check which images have similar foreground geome-
tries and use regression to model how to use the GIST descriptor (or another
descriptor, for that matter) for the prediction.
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