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Abstract

We present an efficient method for learning part-based
object class models. The models include location and scale
relations between parts, as well as part appearance. Mod-
els are learnt from raw object and background images, rep-
resented as an unordered set of features extracted using an
interest point detector. The object class is generatively mod-
eled using a simple Bayesian network with a central hidden
node containing location and scale information, and nodes
describing object parts. The model’s parameters, however,
are optimized to reduce a loss function which reflects train-
ing error, as in discriminative methods. Specifically, the
optimization is done using a boosting-like technique with
complexity linear in the number of parts and the number
of features per image. This efficiency allows our method
to learn relational models with many parts and features,
and leads to improved results when compared with other
methods. Extensive experimental results are described, us-
ing some common bench-mark datasets and three sets of
newly collected data, showing the relative advantage of our
method.

1 Introduction

One of the important organization principles of ob-
ject recognition is the categorization of objects into object
classes. Humans learn to categorize objects into classes
from an early age, and usually begin by learning “basic cate-
gories”, such as balls or chairs [14]. Categorization is a hard
learning problem due to the large inner-class variability of
object classes, in addition to the “common” object recogni-
tion problems of varying pose and illumination. Recently,
there has been a growing interest in the task of object class
recognition [11, 10, 3, 2] which can be defined as follows:
given an image, determine whether the object of interest ap-
pears in the image (and perhaps also provide its location).

Following previous work [1, 11], in this paper we repre-
sent an object using a part-based model (see Fig. 1). Such
models can capture the essence of an object class, since they

represent both parts’ appearance and invariant relations of
location and scale between the parts. Part-based models are
somewhat resistant to various sources of variability such as
within-class variance, partial occlusion and articulation, and
they may be convenient for indexing in a more complex sys-
tem.

Figure 1. Dog im-
age with our learnt
model drawn on top.
Each circle represents a
part in the model. The
parts relative location
and scale are related
to one another through
a hidden center (better
viewed in color).

Part-based approaches
to object class recognition
can be crudely divided into
two types: (1) ’generative-
model-based’ methods (e.g.,
[11]) and (2) ’discriminative-
model-free’ methods (e.g.,
[2]). In the ’Generative-
model based’ approach a
probabilistic model of the
object class is learnt by
likelihood maximization.
The likelihood ratio test is
used to classify new images.
The main advantage of this
approach is the ability to
model relations between
object parts. In addition, domain knowledge can be
incorporated into the model’s structure and priors [9].
’Discriminative-model-free’ methods seek a classification
rule which discriminates object images from background
images. The main advantage of discriminative methods is
the direct minimization of a classification-based error func-
tion, which typically leads to superior classification results
[4]. Additionally since these methods are model-free, they
are usually computationally efficient.

In our current work, we try to enjoy the benefits of both
worlds: The modeling power of the generative approach,
with the accuracy and efficiency of discriminative optimiza-
tion. We present a novel method for object class recogni-
tion, based on discriminative optimization of a simple gen-
erative object model. Specifically, we use a compact star-
like Bayesian network as our generative model, and extend
current discriminative boosting techniques to enable param-
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eter optimization of this model. This combination provides
some benefits which are not available in the purely genera-
tive or discriminative frameworks. Thus, in the framework
of generative object modeling, our discriminative optimiza-
tion allows - for the first time - efficient learning from un-
segmented images, with complexity linear in P and Nf , the
number of model parts and the number of features per im-
age respectively. This is in sharp contrast to the O(NP

f )
complexity of maximum-likelihood estimation [11], which
remains essentially exponential even when a star-like rela-
tional model is used [12]. It also improves the behavior
of feature selection during learning. From the discrimina-
tive perspective, a classifier based on a generative model
allows for the natural treatment of spatial relations between
model parts, which are not easily incorporated into current
discriminative techniques.

In an earlier work [1] we considered discriminative op-
timization via boosting of a very simple generative model,
in which parts were assumed to be independent, and only
the parts’s appearance was modeled (i.e without consider-
ing any relations between the parts). Here we extend the
generative model to include dependencies between parts,
modeling both parts’ location and scale. The model, de-
scribed in Section 2.2, includes a hidden variable to repre-
sent the object’s center, and the location and scale of each
part depend only on this hidden variable. Parts are therefore
conditionally independent given the location of the ’hidden
center’. In section 3 we show how to modify a boosting like
algorithm in order to learn a model in which parts are only
conditionally independent of one another. Unlike the boost-
ing technique used in [1], which views boosting as gradient
descent in function space [8], the modified boosting pre-
sented here is based on a new simpler view of boosting as
gradient descent. Our final algorithm is a boosting exten-
sion with some elements from traditional gradient descent
techniques.

In order to compare our algorithm to the previously sug-
gested state-of-the-art generative and discriminative meth-
ods, we used the benchmark datasets used by both [11] (our
generative competitor) and [2] (our discriminative competi-
tor). Results are shown in Section 4, showing the advantage
of our algorithm over both competitors. Our algorithm’s
performance becomes competitive even with a small num-
ber of parts, at low computational costs.

To further test our method, we collected three more chal-
lenging datasets containing images of chairs, dogs and hu-
mans, with matching backgrounds. We used these datasets
to test the algorithm’s performance under harder conditions:
high visual similarity between object and background, and
large pose and scale variability. We investigated the relative
contribution of the appearance, location and scale compo-
nents of our model, and showed the importance of incor-
porating relations between object parts. We experimented

with a generic interest point detector [15], as well as with
a discriminative interest point detector [5], and our results
show a small advantage for the later.

2 A generative model

We represent an input image using a set of local descrip-
tors obtained from an interest point detector. Some details
regarding this process are given in Section 2.1. We then
define a classifier over such sets of features using a genera-
tive object model. The model and the resulting classifier are
described in Sections 2.2 and 2.3 respectively.

2.1 Feature extraction and representation

Our feature extraction and representation scheme mostly
follows the scheme used in [11, 1]. Initially, images were
rescaled to have uniform horizontal length of 200 pixels.
We experimented with two feature detectors: (1) Kadir and
Brady (KB) [15], and (2) Gao and Vasconcellos (GV) [5]1.
The KB detector is a generic detector that searches for cir-
cular regions of various scales, corresponding to the max-
ima of an entropy based score in scale space. The GV de-
tector is a discriminative saliency detector, which searches
for features that permit optimal discrimination between the
object class and the background class. Given a set of la-
beled images from two classes, the algorithm finds a set
of discriminative filters based on the principle of Maxi-
mal Marginal Diversity (MMD). It then identifies circular
salient regions at various scales by pooling together the re-
sponses of the discriminative filters.

Both detectors produce an initial set of thousands of
salient candidates for a typical image. We select a subset
of Nf high scoring features with limited overlap (in our ex-
periments, Nf varied from 13 to 228). Fig. 2(left) presents
a set of 75 features detected using the KB detector. The
selected regions are represented using the first 15 DCT co-
efficients (not including the DC) of a 11× 11 subsample of
the image patch. We concatenate 3 additional dimensions
to the descriptor of each patch (or feature), corresponding
to its x and y image coordinates and its scale respectively.

Each image I is therefore represented by an unordered
set F (I) of 18-dimensional vectors. Since our suggested
algorithm’s runtime is only linear in the number of image
features, we can represent each image using a large pool of
features, typically in the order of several hundred features
per image. Note that purely generative methods typically
use only 20 [11] or 40 [12] features , due to their high learn-
ing complexity.

1We thank Dashan Gao for making his code available to us, and pro-
viding useful feedback.
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Figure 2. Left: Output of the KB interest point (or feature)
detector, marked with green circles. Right: a Bayesian network
specifying the dependencies between the hidden variables Cl, Cs

and the parts scales and locations Xk
l
,Xk

s for k = 1, .., P . The
part appearance variables Xk

a are independent, and so they do not
appear in this network.

2.2 Model structure

We consider a part-based model, where each part in a
specific image Ii corresponds to a patch feature from F (Ii).
Denote the appearance, location and scale components of
each vector x ∈ F (I) by xa, xl and xs respectively (with
dimensions 15,2,1), where x = [xa, xl, xs]. We can assume
that the appearance of different parts are independent, but
this is obviously not the case with the parts’ scale and lo-
cation. However, once we align the object instances with
respect to location and scale, the assumption of part loca-
tion and scale independence becomes reasonable. Thus we
introduce a 3-dimensional hidden variable C = (Cl, Cs)
stating the location of the object and its scale. Our assump-
tion is that locations and scales of different parts are con-
ditionally independent given the hidden variable C, and so
the joint distribution decomposes according to the graph in
right panel of Fig 2.

For a model with P parts, the joint probability of
{Xk}

p

k=1 and C takes the form

p({X
k
}
P
k=1, C|Θ) = p(C|Θ)

P
∏

k=1

p(Xk|C, θk) = (1)

p(C|Θ)

P
∏

k=1

p(X
k
a|θ

k
a)p(Xk

l |Cl, Cs, θ
k
l )p(Xk

s |Cs, θ
k
s )

We assume a uniform probability for C and Gaussian con-
ditional distribution for Xa, Xl, Xs as follows:

P (Xk
a |θ

k
a) = G(Xk

a |µ
k
a, Σk

a) (2)

P (Xk
l |Cl, Cs, θ

k
l ) = G(

Xk
l − Cl

Cs

|µk
l , Σk

l )

P (Xk
s |Cs, θ

k
s ) = G(log(Xk

s ) − log(Cs)|µ
k
s , σk

s )

where G(·|µ, Σ) denotes the Gaussian density with mean
µ and covariance matrix Σ. We index the model compo-
nents a, l, s as 1, 2, 3 respectively, and denote the log of
these probabilities by LG(xj |C, µj , Σj) for j = 1, 2, 3.

2.3 A model based classifier

Our input is not an ordered vector of parts, and so we
ideally should consider all the O(NP

f ) possible feature vec-
tors that can be composed from the set F (I). In order to
compute the likelihood P (I |M), we should average over
all these vectors and all the possible values of the hidden
variable C. We assume a uniform prior over the possible
ordered vectors, and approximate the average as follows

P (I |M) = K0

∑

C

∑

(x1,..,xp)∈F (I)P

xi 6=xjfor i6=j

P
∏

k=1

P (xk|C, θk)

≈ K0

∑

C

∑

(x1,..,xp)∈F (I)P

P
∏

k=1

P (xk|C, θk)

≈ K0 max
C

max
(x1,..,xp)∈F (I)P

P
∏

k=1

P (xk|C, θk)

= K0 max
C

P
∏

K=1

max
x∈F (I)

P (x|C, θk) (3)

where K0 is a constant. In the first approximation we allow
vectors with repeating features, which weren’t allowed be-
fore. While not desirable, this approximation is necessary
for the decomposition of the maximum operator achieved in
the last line. In the second approximation above, the aver-
ages are replaced with the likelihood of the best vector and
best hidden C. We prefer working with the best single vec-
tor since it uniquely identifies the parts, the object’s location
and its scale.

The decomposition of the maximum achieved is the key
to efficient likelihood computation. If we consider Nc pos-
sible values for the hidden variable C, the maximum over
the Nc ·N

P
f arguments can be computed in O(NcNfP ) op-

erations using this decomposition. However, the parameter
optimization of such a model cannot be done by likelihood
maximization: if feature repetition is allowed, the ML so-
lution will choose the same (best) part P times. Maximum
likelihood learning thus cannot decompose the likelihood
by allowing feature repetition, and learning remains expo-
nential even in a simple star model as suggested in [12].

The natural generative classifier compares the LRT
statistic to a constant threshold ν, and it therefore requires a
backgorund model in addition to the object model. Model-
ing a general background is clearly difficult, due to the di-
versity of objects and scenes that do not share simple com-
mon features. We hence approximate the background likeli-
hood by a constant. Our LRT based classifier thus becomes

f(I) = log P (I |M) − log P (I |BG) − ν
′

(4)

= max
C

P
∑

k=1

max
x∈F (I)

log p(x|C, θk) − ν
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3 Discriminative optimization

Given a set of labeled images {Ii, yi}
N

i=1, we wish to find
a classifier f(I) which minimizes the exponential loss

L(f) =

N
∑

i=1

exp(−yif(Ii)) (5)

This is the same loss minimized by the the Adaboost algo-
rithm [13]. In Section 3.1 we learn a classifier of the form
(4) using a variant of the boosting technique. We show that
boosting can be naturally extended to handle classifiers of
this form, despite the dependencies between parts due to the
hidden variable C. In Section 3.2 we consider the optimiza-
tion from a more general viewpoint of gradient descent, and
present an algorithm (see Algorithm 1) which includes sev-
eral enhancements to the pure boosting technique.

3.1 Boosting

Boosting is a common method which learns a classifier
of the form f(x) =

∑p

k=1 αkhk(x) in a greedy fashion.
Several papers [6, 8] have presented boosting as a greedy
gradient descent of some loss function. In particular, the
work of [8] has shown that the Adaboost algorithm [13] can
be regarded as a greedy gradient descent of this loss in L2

function space.
We suggest a simpler way to derive Adaboost, by consid-

ering the Taylor expansion of the exp loss. In what follows
and throughout this paper, we use superscripts to indicate
the boosting round in which a quantity is measured. At the
p’th boosting round, we wish to extend the classifier f by
fp(x) = fp−1(x) + αphp(x). We first assume that αp is
infinitesimally small, and consider which weak hypothesis
hp(X) is appropriate under such conditions. Since αp is
small, we can approximate (5) using the first order Taylor
expansion. The derivative of L(f) w.r.t. αp is

dL(f)

dαp
= −

N
∑

i=1

exp(−yif(xi))yih
p(xi) (6)

We denote wi = exp(−yif(xi)), and derive the following
Taylor expansion

L(fp) ≈ L(fp−1) − αp

N
∑

i=1

wp−1
i yih

p(xi) (7)

Assuming αp > 0, the steepest descent of L(f) is
gained for some weak hypothesis hp which maximizes
∑N

i=1 wp−1
i yih

p(xi), and this maximization is the task of
the weak learner. After the determination of hp(x), the co-
efficient αp is determined by the direct optimization of the
loss (5). This can be done in closed form only for weak

hypotheses with the range of {1,−1}. In the general case
numeric methods are employed, such as line search [13].

In order to derive a similar algorithm in our case, we cast
our proposed classifier (4) in an equivalent form. Following
[1], we re-parameterize the log-Gaussians to have a fixed
covariance determinant of 1 and multiplicative coefficients.
This leads to the following parametrization of (4)

f(I) = max
C

P
∑

k=1

αkhk(I, C) − ν (8)

where for k = 1, .., P

hk(I, C) = max
x∈F (I)

3
∑

j=1

λk
j

∑3
j=1 λk

j

LG(xk
j |c, µ

k
j , Σk

j ) (9)

|Σk
j | = 1 , λk

j > 0 j = 1, 2, 3

In this parametrization αk, which replaces the scale of
the covariance matrix, can be thought of as the weight of
hypothesis hk, while λi/

∑3
j=1 λj measures the relative

weights of the appearance, location and scale components.
In order to allow tractable maximization over C, we dis-
cretize it and consider only a finite grid of locations and
scales with Nc possible values.

We can now derive a greedy loss minimization algorithm
using (7) and the subsequent discussion. Denote the accu-
mulated log-likelihood ll(I, C) =

∑p

k=1 αkhk(I, C) and
C∗ = arg max

C

ll(I, C). The derivative of L(f) w.r.t. αp is

now

dL(f)

dαp
= −

N
∑

i=1

wiyih
p(Ii, C

∗
i ) (10)

and using the Taylor expansion we get

L(fp) = L(fp−1) − αp

N
∑

i=1

wp−1
i yih

P (Ii, C
∗,p−1
i ) (11)

In analogy with the discussion following (7), the weak

learner should now get as input {wp−1
i , C∗,p−1

i }
N

i=1 and try

to maximize the score S(hp) =
N
∑

i=1

wp−1
i yih

P (Ii, C
∗,p−1
i ).

This task is not essentially harder then the weak learner’s
task in regular boosting, since it ’assumes’ that the value of
the hidden variable C is known and set to its optimal value
according to the previous hypotheses. In the first boost-
ing round, when C∗,p−1 is not really defined, we only train
the appearance component of the hypothesis. The relational
components of this part are set to have low weights and de-
fault values.

Choosing αp after the hypothesis hp(I, C) has been cho-
sen is trickier than in standard boosting. First, it is more
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computationally demanding since a change in the value of
αp requires to recompute the maximum over C as part of
the classifiers estimation. Another difference lies in the ex-
istence of the threshold parameter ν in our model. Instead of
searching for the value of αp alone, we should search for the
best update of both αp and ν together. However, in [1] we
show a closed form formula for the optimal ν. We then use
a gradient descent procedure to optimize αp, as shown in
steps 2,3 of Alg. 1. Since the gradient of αp in (10) depends
on {C∗

i }
N
i=1 and {wi}

N
i=1, we iterate in step 3 of Alg. 1 be-

tween gradient steps, inference of {C∗
i }

N
i=1, and updates of

{wi}
N
i=1. This loop must be preceded by the computation

of the messages h(i, c) in step 2.

3.2 Gradient descent

In [1] we considered two types of weak learners:
selection-based and gradient-based. A selection based
learner constructs a part hypotheses based on real image
features, and returns the part hypothesis with the highest
score S(h). Such weak learners are commonly used in vi-
sion tasks [2, 7]. However, in [1] such weak learners were
usually outperformed by gradient based learners. A gra-
dient based learner learns a part hypothesis using gradient
ascent dynamics on the score S(h). The weights wp−1

i in
the score S(hp) do not depend on hp, and so its derivative
with respect to the vector of its parameters θp is given by
the weighted sum

dS(hp)

dθp
=

N
∑

i=1

wp−1
i yi

dhp(Ii, C
∗,p−1
i )

dθp
(12)

The gradient dynamics, presented in step 1 of Alg. 1,
iterate between gradient steps in θ and re-computation of
the best parts and their scores.

In boosting the optimization of a new part is done in two
sequential steps: Hypothesis parameters θp are optimized,
then the mixture coefficient αp. However, in our case feed-
back between these two optimizations is plausible, since a
change in αp may induce changes in C∗ for some images
and can therefore change the optimal hp(I, C). Such feed-
back can be introduced by using a more general gradient
descent algorithm, constructed by: 1) differentiating L(f)
directly instead of its Taylor approximation, and 2) iterating
small gradient steps on both α and θp in a single loop.

When one considers the update steps required for such
a gradient descent algorithm, the derivatives w.r.t αp and
θp are similar to the ones used in (10), (12). The only
difference is that now the gradient w.r.t θ depends on the
weights {wp

i }, and hence it is no longer constant w.r.t. hp

and αp. Exact gradient descent therefore requires the re-
computation of wi at each gradient iteration, which is quite
expensive computationally. We have experimented in the

Algorithm 1 Optimization of part p

Input : F (Ii), yi , wi, C∗
i i = 1, .., N

ll(i, c) i = 1, .., N , c = 1, .., Nc

initialize weak hypothesis using a selection learner :
Choose θ = λj , µj , Σj j = 1, .., 3 , α = 0
Set [h(i, C∗

i ), x∗(i)] = max, arg max
x∈F (Ii)

g(x, C∗
i )

where g(x, c) =
3
∑

j=1

λj
P

3

j=1
λj

LG(xj |c, µj , Σj)

Loop over 1, 2, 3 K1 iterations

1. Loop over a,b K2 iterations (θ optimization)

(a) Update weak hypothesis parameters

θ = θ + η
∑N

i=1 wiyi
dg(x∗

i ,c∗i )
dθ

(b) Update best part candidates for all images

[h(i, C∗
i ), x∗

i ] = max, argmax
x∈F (Ii)

g(x, C∗
i )

2. Compute for all i, c h(i, c) = max
x∈F (Ii)

g(x, c)

3. Loop over a,b,c K3 iterations (α optimization)

(a) Update α : α = α + η
∑N

i=1 wiyih(i, C∗
i )

(b) Update hidden center for all images

[f0(Ii), C
∗
i ] = max, argmax

c

ll(i, c) + αh(i, c)

(c) Update f(Ii) and the weights

ν = 1
2 log







N
P

{i:yi=−1}

exp(f0(Ii))

N
P

{i:yi=1}

exp(−f0(Ii))







f(Ii) = f0(Ii) − ν

wi = exp(−yif(Ii))

Set llp(i, c) = ll(i, c) + αh(i, c)
Return θ, wi, C∗

i ,llp(i, c) i = 1, ..N c = 1, .., Nc

continuum between the ’boosting’ and the ’gradient de-
scent’ approaches using Algorithm 1, which enclose the
’boosting’ optimization loops of hp and αp in a third feed-
back loop. Setting the outer loop counter K1 to 1 we get
the booting optimization strategy, while setting K1 to some
large value and K2 = 1,K3 = 1 we can get exact gradient
descent. A good complexity and performance trade-off is
achieved with a version which is rather close to boosting,
with the outer loop repeated several times. Our final opti-
mization algorithm is hence essentially repeated, sequential
calls of Algorithm 1 with such a parameter setting.
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Figure 3. Images from the Chairs, Dogs and Humans datasets and their corresponding backgrounds. Object images appear on the left, background
images on the right. In the second row, the two leftmost background images are of ’easy animals’ and next are two ’hard animals’ images. In the
third row, the two leftmost object images belong to the easier image subset. The next two images are hard due to the person’s scale and pose.

4 Experimental results

Datasets For comparison with other methods we used the
Caltech datasets [11], which are publicly available. These
datasets contain relatively small variance in scale and lo-
cation, and the background images do not contain objects
similar to the class objects. In order to test the algorithm
under harder conditions, we compiled 3 new datasets with
matching backgrounds.2 These datasets contain images of
Chairs (800 images), Dogs (500) and Humans (593).

In the Chairs and Dogs datasets, the objects are seen
roughly from the same pose, but include large inner class
variability, as well as some variability in location and scale.
For the Chairs dataset we compiled a background dataset of
Furniture which contained images of tables, beds and book-
cases (200,200,100 images respectively). When possible
(for tables and beds) images were aligned to a viewpoint
isomorphic to the viewpoint of the chairs. As background
for the Dogs dataset, we compiled two animal datasets:
’Easy Animals’ contains 500 images of animals not simi-
lar to Dogs; ’Hard Animals’ contains 250 images from the
’Easy Animals’ dataset, and an additional 250 images of
four-legged animals (horses, goats, etc.) in a pose isomor-
phic to the Dogs.

The Humans dataset was designed to include large vari-
ability in location, scale and pose - each person was pho-
tographed standing in 4 different scales (each 1.5 times
larger than its predecessor), at various locations and with
several articulated poses of the hands and legs. For this
dataset we created a background dataset of 593 images
which contain the sites in which the Humans images were
taken. Fig. 3 shows a few images from our datasets.

Algorithm parameters In the experiments reported be-
low we constructed models with up to 60 parts using Al-
gorithm 1 with control parameters of K1 = 60, K2 =

2The datasets are available at http://www.cs.huji.ac.il/
˜aharonbh/.

100, K3 = 4. Each image was represented using at most
Nf = 200 features (KB detector) or Nf = 240 features
(GV detector). The hidden location center values were
equally spaced using a grid of 6 × 6 locations over the im-
age. The hidden scale center had a single value, or 3 differ-
ent values with a ratio of 0.63 between successive scales, re-
sulting in a total of Nc = 36, 108 values respectively. In our
experiments we set the covariance of the appearance and lo-
cation models to σI because we discovered that covariance
matrices estimation tended to overfit. We randomly selected
half of the images from each dataset for training and used
the remaining half for testing.

The learnt models Examples of the learnt models can be
seen in Fig. 4. Most of the learnt parts have clear semantics
in terms of object’s parts. For example in the dog model we
can clearly identify parts that correspond to the head, back,
legs (both front and back), and the hip. The location models
are gross, but clearly useful. In some cases both the appear-
ance of parts and their modeled locations are exaggerated to
enhance discriminative power.

Benchmark results In Table 1 we compare our results to
those obtained by a purely generative approach [11]3 and
a purely discriminative one [2]4 using the Caltech dataset.
Both methods learn from an unordered set of features, ob-
tained using an interest point detector. Following [11], the
motorbikes, airplanes and faces datasets were tested against
office background images, and the Cars rear dataset was
tested against road background images. To allow for a clear
comparison with [11], we used their exact train and test in-
dexes and the same feature detector (KB). Our results were

3Note that the results reported in [11] (except for the cars data base)
were achieved using manually scale-normalized images, while our method
did not rely on any such rescaling.

4In an unpublished manuscript, this approach was reported to give bet-
ter results using segmentation based features. We did not include these
results since we wanted to compare the different learning algorithms using
similar features.
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Figure 4. 5 parts from the dog and chair models. The top left drawing shows the spatial models of the 5 parts. Each part’s mean location is
surrounded by the 1 std line. The cyan cross indicates the location of the hidden ’center’. The top right pictures show dog/chair test images with
the model implementation found. All dogs/chairs were successfully identified except for the one on the right-bottom corner. Below each model, the
parts’s mean appearance patches are shown. The last three rows present the 3 best scoring implementations of these parts, across all test images.
Each column presents the implementations of the part shown above the column. The parts have clear semantic meaning, and repetitive locations.
Most other parts behave similarly to the ones shown.

obtained without modeling scale, since it did not improve
classification results when using the KB detector. This may
be partially explained by noting that the Caltech datasets
contain relatively small variance in scale. Error rates for
our method were computed using the threshold learnt by our
boosting algorithm. Results are presented for models with 7
parts (the number of parts used by [11]) and 50 parts. When
7 parts are used, our results are comparable to those of [11].
However, when 50 parts are used our algorithm outperforms
both competitors in all but a single case.

Data Name Our model Our model Fergus Opelt
7 parts 50 parts et. al et. al

Motorbikes 7.8 4.9 7.5 7.8

Cars Rear 1.2 0.6 9.7 −

Airplanes 8.6 6.7 9.8 11.1

Faces 9.5 6.3 3.6 6.5

Table 1. Test error rates over the Caltech dataset of our method
using 7 and 50 parts compared to a generative model approach
[11] and a discriminative model-free boosting approach [2]. Al-
gorithm’s parameters were held constant across all experiments.

The importance of using location and scale models Ta-
ble 2 shows a comparison of the test results when vary-
ing the model complexity. Specifically we present results
when using only an appearance model, and when adding

location and scale models. In this experiment we used fea-
tures extracted using the GV detector [5]. We can see that
although the appearance model produces very reasonable
results, adding a location model significantly improves per-
formance. The additional contribution of the scale model is
only minor. Additionally, by comparing the results of our
full blown model (A+L+S) to those presented in Tables 1,3,
we can see that the GV detector usually provides somewhat
better results than those obtain using the KB detector.

Data Name A A+L A+L+S
Motorbikes 8.1 3.2 3.51

Cars Rear 4.0 1.4 0.6

Airplanes 15.1 15.1 12.1

Faces 6.1 5.2 3.8

Chairs 16.3 10.8 10.9

Table 2. Errors rates using models of varying complexity. (A)
Appearance model alone. (A+L) Appearance and location mod-
els. (A+L+S) Appearance,location and scale models. Algorithm’s
parameters were held constant across all experiments.

Challenging datasets We used the Chairs and Dogs
datasets to test the sensitivity of the algorithm to visual
similarity between object and background images. We
trained the Chairs dataset against the Caltech office back-
ground dataset, and against the furniture dataset described
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above. The Dogs dataset was trained against 3 different
backgrounds datasets: Caltechs ’office’ background, ’Easy
Animals’ and ’Hard Animals’. The results are summarized
in Table 3. As can be seen, our algorithm works well in
cases where there are large differences between the object
and background images. However, it fails to discriminate,
for example, dogs from horses.

We used the Humans dataset to test the algorithm’s sensi-
tivity to variations in scale and object articulations. In order
to obtain reasonable results on this hard dataset we had to
reduce scale variability to 2 scales and restrict the variabil-
ity in pose to hand gestures only - we denote this dataset by
’Humans restricted’ (355 images).

Data Background Test Error
Chairs Office 2.23

Chairs Furniture 15.53

Dogs Office 8.61

Dogs Easy Animals 19.0

Dogs Hard Animals 34.4

Humans Sites 34.3

Humans rest. Sites 25.9

Table 3. Error rates obtained on our new datasets of Chairs,
Dogs and Humans. Results were obtained using the KB detector.

Large numbers of parts and features When hundreds
of features are used per image, many features lie in the
background of the image, and learning good parts requires
good ’feature selection’ behavior. Fig. 5 presents error
rates as a function of parts and features number. Signif-
icant performance gains are obtained by scaling up this
quantities, indicating that the algorithm is able to find good
part models even in the presence of large amount of clut-
ter features. This behavior should be contrasted with the
generative learning of a similar model in [12], where in-
creased numbers of parts and features do not in general
lead to improved performance. Intuitively, maximum likeli-
hood learning choose to model features which are frequent
in object images, even if these are simple clutter features
from the background, while discriminative learning natu-
rally tend to selects only discriminative parts.

5 Conclusion

We have presented an object class recognition method,
based on discriminative boosting-oriented optimization of a
simple relational generative model. The method combines
the natural treatment of spatial part relations, typical to gen-
erative classifiers, with the efficiency and the feature se-
lection quality of discriminative systems. Our experiments
show that the method indeed enjoys the benefits of geomet-
rical modeling on the one hand, and the large numbers of
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Figure 5. Left: Error rate as a function of the number of parts
P in the model on the Caltech datasets for Nf = 200. Right:
Error rate as a function of the number of image features Nf on
Cars rear (easy) and Airplanes (Relatively hard) Caltech datasets,
with P = 30. The X axis varies between 13 and 228 features in
log scale. All results here were obtained using the KB detector

parts and features on the other, and that it compares favor-
ably with recent purely generative or purely discriminative
systems.
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