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Abstract

Many learning algorithms use a metric defined over the inpate as a principal tool, and their
performance critically depends on the quality of this neetve address the problem of learning metrics
using side-information in the form of equivalence consii®i Unlike labels, we demonstrate that this
type of side-information can sometimes be automaticaltgioled without the need of human interven-
tion. We show how such side-information can be used to mdb#yrepresentation of the data, leading
to improved clustering and classification.

Specifically, we present the Relevant Component AnalysidRalgorithm, which is a simple and
efficient algorithm for learning a full ranked Mahalanobigtnic. We show that RCA is the solution
of an interesting optimization problem, founded on an infation theoretic basis. If the Mahalanobis
matrix is allowed to be singular, we show that Fisher’s Imdscriminant followed by RCA is the
optimal dimensionality reduction algorithm under the samiterion. Moreover, under certain Gaussian
assumptions, RCA can be viewed as an ML estimation of the iriaes covariance matrix. We conclude
with extensive empirical evaluations of RCA, showing ityaatage over alternative methods.

Keywords. clustering, learning from partial knowledge, metric leagy Mahalanobis metric, dimen-
sionality reduction, side information.

1 Introduction

A number of learning problems, such as clustering and neaegghbor classification, rely on some apriori
defined distance function over the input space. In many aielpeoblems it is often the case that selecting
a “good” metric critically affects the algorithms’ perfoemce. In this paper, motivated by the wish to boost
the performance of these algorithms, we study ways to leggnad” metric using side information.

One difficulty in finding a “good” metric is that its quality mde context dependent. For example,
consider an image retrieval application which includes yrfanial images. Given a query image, the appli-
cation retrieves the most similar images in the databaswdiog to some pre-determined metric. However,
when presenting the query image we may be interested irvitg other images of the same person, or



we may want to retrieve other faces with the same facial egmwa. It seems difficult for a pre-determined
metric to be suitable for two such different tasks.

In order to learn a context dependent metric, the data set Imeusugmented by some additional infor-
mation, or side-information, relevant to the task at handr éxample we may have access to the labels
of part of the data set. In this paper we focus on another type ofisfdemation, in whichequivalence
constraintsbetween a few of the data points are provided. More spedifioa assume knowledge about
small groups of data points that are known to originate froendame class, although their label is unknown.
We term these small groups of poirithunklets”.

A key observation is that in contrast to explicit labels thet usually provided by a human instructor,
in many unsupervised learning tasks equivalence contgraiay be extracted with minimal effort or even
automatically. One example is when the data is inherentyeetial and can be modeled by a Markovian
process. Consider for example movie segmentation, wherelfective is to find all the frames in which
the same actor appears. Due to the continuous nature of nmgesn faces extracted from successive
frames in roughly the same location can be assumed to cometfre same person. This is true as long
as there is no scene change, which can be automatically andthp detected (Boreczky & Rowe, 1996).
Another analogous example is speaker segmentation angniéoa, in which the conversation between
several speakers needs to be segmented and clusteredirgdtorsbeaker identity. Here, it may be possible
to automatically identify small segments of speech whihlikely to contain data points from a single yet
unknownspeaker.

A different scenario, in which equivalence constraints taee natural source of training data, occurs
when we wish to learn from several teachers who do not knov etir and who are not able to coordinate
among themselves the use of common labels. We call this soedistributed learning® To illustrate,
assume that you are given a large database of facial imagesamf people, which cannot be labeled by
a small number of people due to its vast size. The datababernsfore divided (arbitrarily) intd® parts
(whereP is very large), which are then given fdteachers to annotate. The labels provided by the different
teachers may be inconsistent: as images of the same pengearap more than one part of the database,
they are likely to be given different names. Coordinating ldbels of the different teachers is almost as
daunting as labeling the original dataset. However, edgrivg constraints can be easily extracted, since
points which were given the same tag by a certain teachemangrkto originate from the same class.

In this paper we study how to use equivalence constraintsier o learn an optimal Mahalanobis metric
between data points. Equivalently the problem can also begas learning a good representation function,
transforming the data representation by the square rodteoMahalanobis weight matrix. Therefore we
shall discuss the two problems interchangeably.

In Section 2 we describe the proposed method — the Relevanp@uent Analysis (RCA) algorithm.
In the subsequent three sections we show how RCA can be déniyarallel from three different perspec-
tives: In Section 3 we describe a novel information theoretiterion and show that RCA is its optimal
solution. Moreover, if dimensionality reduction is pentait, the optimal solution is Fisher’s linear discrim-
inant (Fukunaga, 1990) followed by RCA. In Section 4 we shbat RCA is also the optimal solution to
another optimization problem, seeking to minimize innasssldistances. Viewed this way, RCA is directly
compared to another recent algorithm for learning Mahdlandistance from equivalence constraints (pro-
posed in (Xing et al., 2002)). In Section 5 we show that undagSian assumptions RCA can be interpreted
as the maximume-likelihood (ML) estimator of the within-stacovariance matrix. We also provide a bound
over the variance of this estimator, showing that it is attwice the variance of the ML estimator obtained
using labeled data.

The successful application of RCA in high dimensional spacggires dimensionality reduction, whose

LA related scenario (which we call ‘generalized relevaneelback’), where users of a retrieval engine are asked taaterihe
retrieved set of data points, has similar properties.



details are discussed in Section 6. An online version of t@é\ RIgorithm is presented in Section 7. In
Section 8 we describe an extensive empirical evaluatiom®fRCA method. We focused on two tasks -
data retrieval and clustering. We used three types of dajaA (lata set of frontal faces (Belhumeur et al.,
1997); this example shows that RCA with partial equivalermastraints typically yields comparable results
to supervised algorithms which use fully labeled trainiaged (b) A large data set of images collected by a
real-time surveillance application, where the equivadetmnstraints are gathered automatically. (c) Several
data sets from the UCI repository, which are used to competveden RCA and other competing methods
that use equivalence constraints.

Related work

There has been much work on learning representations atahcdésfunctions in the supervised learning
settings, and we can just briefly mention some examples. tigH&sTibshirani, 1996) and (Jaakkola &
Haussler, 1998) use labeled data to learn good metricsdssification. In (Thrun, 1996) a distance func-
tion (or a representation function) is learned for clasaifan using a “leaning-to-learn” paradigm. In this
setting several related classification tasks are learned) s&veral labeled data sets, and algorithms are
proposed which learn representations and distance funscitioa way that allows for the transfer of knowl-
edge between the tasks. In (Tishby et al., 1999) the jointiligion of two random variableX andY is
assumed to be known, and the problem is reduced to the Igaphim compact representation &f which
bears high relevance 6. This work, which is further developed in (Chechik & Tishi®002), can be
viewed as supervised representation learning. Informatieoretic criteria for unsupervised learning in
neural networks were first suggested by (Linsker, 1989), lmsibeen used since in several tasks in the
neural network literature, e.g., (Bell & Sejnowski, 1995).

In recent years some work has been done on using equivalemstraints as side information. In
(Wagstalff et al., 2001) equivalence relations were intoeduinto the K-means clustering algorithm. Both
positive ('a is similar to b’) and negative (‘a is dissimikaom b’) relations were used. An initial description
of RCA using positive equivalence constraints was giverSineftal et al., 2002), in the context of image
retrieval, and expanded in (Bar-Hilel et al., 2003). Leag Mahalanobis metric from positive and negative
equivalence constraints was addressed in (Xing et al.,)2@®2onjunction with the constrained K-means
algorithm. We compare this algorithm to our current work econ 4, and compare our empirical results
with the results of both algorithms in Section 8. We have abstzently developed a way to introduce
both positive and negative equivalence constraints irgcetll algorithm for the estimation of a mixture of
Gaussian models (Shental et al., 2003).

2 Relevant Component Analysis: thealgorithm

Relevant Component Analysis (RCA) is a method that seekdemwtify and down-scale global unwanted
variability within the data. The method changes the feaspace used for data representation, by a global
linear transformation which assigns large weights to \rah¢ dimensions” and low weights to “irrelevant
dimensions” (cf. (Tenenbaum & Freeman, 2000)). These Vasiedimensions” are estimated usictgun-
klets i.e, small subsets of points that are known to belong toaheesalthouglunknownclass.

More specifically, points:; andz, are said to be related by a positive constraint if it is knotat both
points share the same (unknown) label. If poinisandz, are related by a positive constraint, andand
x3 are also related by a positive constraint, then a chudldetzs, 23} is formed. Generally, chunklets are
formed by applying transitive closure over the whole setasfifive equivalence constraints.

The algorithm is presented below as Algorithm 1. The RCAdfarmation is intended to reduce clutter,
so that in the new feature space, the inherent structureeaddka can be more easily unraveled (see illus-



trations in Figs. 1la-f). Thus the whitening transformatidn(in step 3 of Alg. 1) assigns lower weights to
directions of large variability, since this variability isainly due to within class changes and is therefore
“irrelevant” for the task of classification. RCA can be usedagpreprocessing step for both unsupervised
clustering of the data and nearest neighbor classification.

Algorithm 1 The RCA algorithm
Given a datasetr;} Y ; andk chunkletsC; = {z;;}2, j=1...k, do

1. For each chunklef’;, subtract the chunklet's mean from all the points it corggfig. 1d).

2. Compute the covariance matrix of all the centered datatgp@n chunklets (Fig. 1d). Assume a total
of p points ink chunklets, where chunklet; consists of point{z;;};”, and its mean ish;. RCA
computes the following matrix:
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3. Compute the whitening transformatiéii = ¢~ associated with this covariance matrix (Fig. 1e),
and apply it to the original data points;,.,, = Wz (Fig. 1f). Alternatively, use the inverse 6f as a
Mahalanobis distance.
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& | T
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Figure 1:Anillustrative example of the RCA algorithm applied to dyetic Gaussian data. (a) The fully labeled data set with
3 classes. (b) Same data unlabeled; clearly the classastist is less evident. (c) The set of chunklets that areighedvto the
RCA algorithm (points that share the same color and marker figrm a chunklet). (d) The centered chunklets, and thefpigral
covariance. (e) The whitening transformation applied &dhunklets. (f) The original data after applying the RCAsfarmation.

The following sections present theoretical justificatifmsthe RCA algorithm.



3 Information maximization with chunklet constraints

How do we find the optimal transformation of the data whichsudeunklets to improve its representation
value? In Section 3.1 we state the problem for general famif transformations, presenting an information
theoretic formulation. In section 3.2 we restrict the fanof transformation to non-singular linear maps,
showing that the optimal solution is given by RCA. In sect®8 we widen the family of permitted trans-
formations to include non-invertible linear transformat, showing (for normally distributed data) that the
optimal transformation is given by Fisher’s Linear Disdriant (FLD) followed by RCA.

3.1 Aninformation theoretic per spective

Following (Linsker, 1989), an information theoretic criten states that an optimal transformation of the
input X into its new representatior, should seek to maximize the mutual informatibiX, Y') between
X andY under suitable constraints. In the general deterministse@ seX = {z;};", of data points in
RN is transformed into the s&t = {f(z;)}7, of points inRM. We wish to find a functiorf € F that
maximizesI (X,Y ), whereF is the family of permitted transformation functions (a “logpeses family”).
First, note that/(X,Y") is the differential mutual information asX andY are continuous variables.
Moreover sincef is deterministic, maximizind (X, Y') is achieved by maximizing the entrop¥(Y") alone.
To see this, recall that

I(X,Y)=H(Y) - H(Y|X)

Sincef is deterministic, the uncertainty concerniigvhenX is known is minimal, thug? (Y'| X') achieves

its lowest possible value atoo.? However, as noted in (Bell & Sejnowski, 1993J(Y | X) does not depend
on f and is constant for every finite quantization scale. Hencemriaing with respect tgf can be done by
considering only the first terri/ (V).

Second, note also tha@f (Y') can be increased by simply 'stretching’ the data space fample by
choosingf = Az, wherel > 1). Therefore, in order to avoid the trivial solution— oc, we constrain the
distance between points contained in a single chunkletinexceed a fixed threshold. This gives us the
following optimization problem:

1 p N
I(X,Y) st - -l < K 2
max (X Y) st 303 lyse — il < @
j=1li=1
where{y;; ?:’1,77:1 denote the set of points pchunklets after the transformationﬁ:,? denotes the mean of

the points in chunklej after the transformation, anl denotes some constant (the fixed threshold). From
the discussion above, (2) can be simplified to the followipgmization problem, which henceforth we will
try to solve:

1 p Ny .
max H(Y) st =Y Y |lyj—mY|]* <K 3)
fer pj:li:l

3.2 RCA: thesolution to the optimization problem

Consider the problem posed in (3) for the famifyof invertible linear transformations. Singds invertible,

the connection between the densities’of= f(X) and X is expressed by, (y) = f’}((;))‘, where|.J(z)| is

2This non-intuitive divergence is a result of the generdiimaof information theory to continuous variables, i.eisithe result
of ignoring the discretization constant in the definitiorddferential entropy.
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the Jacobian of the transformation. Frep{y)dy = p,(x)dz, it follows that H(Y') and H (X) are related
as follows:

p(z)
| J(z)]

HY) =~ [ p)logpy)dy = - [ pla)log "% dw = H(X) + (log|1(2) )

Y

For the linear mafy’ = AX the Jacobian is constant and equal§ and it is the only term irH (Y)
that depends on the transformatidn Hence problem (3) is reduced to

k nj
YD My —md|P < K (4)

1
max log|A| st —
A PS5

Let B = A A; sinceB is positive definite antbg |A| = 1 log | B, (4) can be rewritten as

k nj
Y3 llmgi —myllh <K (5)

rg%clog|B\ s.t. %
j=li=1
where||.|| p denotes the Mahalanobis distance with weight mafrix
The optimization problem in (5) can be solved easily, sitngedonstraint is linear il3. The solution is
B = %C’*l, where( is the average chunklet covariance matrix (1) ahé the dimensionality of the data
space. This solution is identical to the Mahalanobis matriRCA up to a global scale factdrand hence
RCA is a scaled solution of (5).

3.3 Dimensionality reduction

We now solve the optimization problem in (5) with the familiygeneral linear transformations, i.&/, =
AX whered € My«ny andM < N. To simplify the analysis, we assume that the distributibriXois
multivariate Gaussian. Sincg is assumed to be Gaussidnjs also Gaussian with the following entropy

d 1 d 1
H(Y) = 3 log 2me + §log Eyl = Elog 2me + 3 log |AX, A"

Now (3) becomes

k nj
Yo llmji—myllhia < K (6)

max log |[AX,A'|  s.t.
A i £
j=1i=1

I
p
For a given target dimensionality/, the solution to the problem is Fisher linear discrimingritD)
followed by RCA in the reduced space. A sketch of the proofismyin Appendix 10. Notice that after the

FLD the inner covariance matrix in the reduced space is diag@nd so RCA only scales each dimension
separately. The computation of FLD based on equivalencsti@nts (cFLD) is described in Section 6.

4 RCA and the minimization of inner classdistances

In order to gain some intuition to the solution provided by thformation maximization criterion of Eq. (3),
let us look at the optimization problem obtained by revaydime roles of the maximization term and the

3Such a global scale constant is not important in most climgteand classification tasks, which essentially rely ontiega
distances.



constraint term in (5):

k nj
.1
min— >3 [laj —myl[p st B> 1 ™

P

j=1l:i=1
We interpret (7) as follows: a Mahalanobis distar¢és sought, which minimizes the sum of all inner
chunklet squared distances, whijlB| > 1 prevents the solution from being achieved by “shrinking® th

entire space. Using the Kuhn-Tucker theorem, we can redde (

k nj
mgnzz;uzﬁ—mjug—nogm\ st. A>0, Aog|B|=0 (8)
Jj=li=

Differentiating the Lagrangian above shows that the mimmis given byB = \C‘ﬁé—l, whereC' is the
average chunklet covariance matrix. Once again, the saligiidentical to the Mahalanobis matrix in RCA
up to a scale factor.

It is interesting, in this respect, to compare RCA with thethmd proposed recently by (Xing et al.,
2002). They also consider the problem of learning a Mahdl@ndistance using side information in the
form of pairwise constraints They assume the knowledge of a Sedf pairs of points known to be similar,
and a se of pairs of points known to be dissimilar. Given these séisy pose the following optimization
problem.

n%in Z ||z — zo||% s.t. Z |z1 —x2|lp>1, B>0 9)
(z1,22)€S (z1,22)€ED

This problem is solved using gradient ascent and iteratiggption methods.
To allow a clearer comparison of RCA with Eq. (9), we reforatalthe argument of (7) in terms of inner
chunklet pairwise distances. For each paigtin chunklet; we have:

1 & 1 &
Tji = M =%~-;Zz]~k= - > (@i = wjn)
T k=1 T k=1
k#i
Problem (7) can now be rewritten as
k 1 n;
min > ) (w50 —zw)l[p st |B] >1 (10)
j=1 "7 i=1 k#i

When only chunklets of size 2 are given (as in the case studiéding et al., 2002)), the problem reduces
to

k
1
Hgnaz lzj1 — ol st [Bl > 1 (11)
j=1

Clearly the minimization terms in problems (11) and (9) demiical up to a constanﬂ. The difference
between the two problems lies in the constraint term: thesttaimt proposed in (Xing et al., 2002) uses
pairs of dissimilar points, whereas the constraint in theAR@mulation affects global scaling so that the
'volume’ of the Mahalanobis neighborhood is not allowed toirgk indefinitely. This difference has the
immediate effect that the algorithm described in (Xing et2002) to solve (9) is substantially slower and
does not always converge. In contrast, the RCA distance atatipn is simple and fast (requiring a single
matrix inversion) without the need for costly iterative pedures.

4Chunklets of size> 2 are not considered in (Xing et al., 2002).



5 RCA and Maximum Likelihood: the effect of chunklet size

We now consider the case where the data consists of sevemaalip distributed classes sharing the same
covariance matrix. Under the assumption that the chunkietsampled i.i.d. and that points within each
chunklet are also sampled i.i.d., the likelihood of the dtiers’ distribution can be written as:

1
H H exp (= § (wji—m;) '~ (i-m;)) (12)
el (20) 2|2

Writing the log-likelihood while neglecting constant tesrand denoting? = X!, we obtain:

k nj
> llwji — myl|B — plog|B) (13)

j=li=1

wherep is the total number of points in chunklets. Maximizing thg-lkelihood is equivalent to mini-
mizing (13), whose minimum is obtained wh&nequals the RCA Mahalanobis matrix from Eq. (1). Note,
moreover, that (13) is rather similar to the Lagrangian i éhere the Lagrange multiplier is replaced by
the constanp. Hence, under Gaussian assumptions, the solution of prof@is probabilistically justified
by a maximum likelihood formulation.

Under Gaussian assumptions, we can definaerdrasedversion of the RCA estimator. Assume for
simplicity that there are@ constrained data points divided intochunklets of sizé each. Theunbiased
RCA estimator can be written as:

n k ) )
Cln k) = =3 s S (el = i) (o — i)' a4)

wherex{ denotes the data poigtin chunkleti, and,; denotes the empirical mean of chunkdeﬁ‘(n, k)
in (14) is the empirical mean of the covaﬁance estimatooslpeed by each chunklet. It is shown in Ap-
pendix 10 that the variance of the eleme@its of the estimating matrix is bounded by

. 1 .

Var(Cij(n, k) < (1+ kf)Var(Cij(l,nk)) (15)
whereC‘ij(l, nk) is the estimator when all the = nk points are known to belong to the same class, thus
forming the best estimate possible fronpoints. This bound shows that the variance of the RCA estimat
rapidly converges to the variance of the best estimaton &resmall chunklets.

6 Dimensionality reduction

As noted in Section 2 the first step in RCA is usually dimenalityn reduction. We now turn to address this
issue in detail. The RCA algorithm decreases the weightiatjgal directions along which the inner class
covariance is relatively high, and increases the weighirettions along which it is low. This intuition can
be made precise in the following sense:

Denote by{);} 2, the eigenvalues of the inner covariance matrix, and consigesquared distance
between two points from the same class — 2||2. We can diagonalize the inner covariance matrix using
an orthonormal transformation which does not change thardie. Therefore let us assume without loss of
generality that the inner covariance is diagonal.



Before whitening, the average squared distandg{js:' — 22(|?] = 23, ); and the average squared
distance in direction is E[(x} — 2?)?] = 2);. After whitening these values a2 and2, respectively. Let

us define the weight of dimensianW (i) € [0, 1], as
Bl —23)
WO = Ear

Now the ratio between the weight of each dimension beforeaftied whitening is given by

Wbefore(i) _ >\i
Wafter (7') % Z?:l >‘j

(16)

In (16) the weight of each principal dimension increasessiritial variance was lower than the average,
and vice versa. When there is high irrelevant noise alongraédimensions, the algorithm will indeed scale
down noise dimensions. However, when the irrelevant ngiseattered among many dimensions with low
amplitude in each of them, Whitening will amplify these nodimensions, which is potentially harmful.
Therefore, when the data is initially embedded in high disi@mal space, dimensionality reduction must
precede RCA to avoid this problem.

We have seen in section 3.3 that FLD is the dimensionalitycgon technique which maximizes the
mutual information under Gaussian assumptions. TraditipirLD is computed from fully labeled training
data, and the method therefore falls within supervisedhlegr However, it is easy to extend classical FLD
to the case of partial supervision in the form of equivalecmestraints. Specifically, lef; and S,, denote
the total covariance and the inner class covariance regglgctFLD maximizes the following determinant
ratio

AlS; A
Aé%fi;, AtS,A
by solving the appropriate generalized eigenvector probM/ith chunklets, we can use the inner chunklet
covariance matrix from (1) to approxima$g,, and compute the projection matrix is the usual way. We term
this FLD variant cFLD (Constraints based FLD).

The cFLD dimensionality reduction can only be used if thekraithe inner chunklet covariance matrix
is higher than the dimensionality of the initial data spatfethis condition doesn’t hold, we use PCA to
reduce the original data dimensionality as needed. Theletarocedure is summarized below in Algo-
rithm 2. We compare this dimensionality reduction schenté gimple PCA in Section 8.1.4.

Algorithm 2 RCA's dimensionality reduction
Denote byd the original data dimensionality.
Given a set of chunklet§C;} X | do

1. Compute the rank of the estimated covariance mdrix X | |(¢;| — 1).

2. If (d > R), apply PCA to reduce the data dimensionalityntB, where0 < a < 1 (to ensure that
cFLD provides stable results).

3. Apply cFLD to achieve the target data dimensionality.




7 Onlineimplementation of RCA

The standard RCA algorithm presented in Section 2 is a bagchigom which assumes that all the equiv-
alence constraints are available at once. Here we brieflseptean alternative online implementation of
RCA, suitable for a neural-network-like architecture. histimplementation a weight matri¥’ € Mp«p,
initiated randomly, is gradually developed to become theAR@nsformation matrix. The algorithm is
presented below in Algorithm 3.

Algorithm 3 Online RCA

Input: a stream of pairs of poinfs;1, z2), where the points in a pair are known to belong to the sams.clas
initialize W to a symmetric random matrix withi? || << 1.

For t=1:T do

e receive paitr}, z};

¢ take the difference between the poiniss z; — x9;
e transformh usingW, to gety = Wh;

e updateW = W + n(W — yy'W).

wheren determines the step size.

The steady state of this stochastic process can be founduatieg the mean update €& where the
mean is taken over the next example fdaif, z5):

E[n(W —yy'W)] =0
= E[I-yy'|=1-W'ELR W =0
= W = E[hh!] 2P

Where P is an orthogonal mari’!P = 1. The steady stat®/ is a whitening transformation of the
correlation matrix ofh. Sinceh = 2(z; — W), it is equivalent (up to the constant 2) to the distance
of a point from the center of its chunklet. The correlationtnimeof & is therefore equivalent to the inner
chunklet covariance matrix. Thu& converges to the RCA transformation of the input populatiprto

an orthogonal transformation. The resulting transforamats geometrically equivalent to RCA, since the
orthogonal transformatiof® preserves vector norms and angles.

8 Experimental Results

The success of the RCA algorithm can be measured directlydasaring neighborhood statistics, or indi-
rectly by measuring whether itimproves clustering resuitishe following we tested RCA on three different
applications using both direct and indirect evaluations.

The RCA algorithm uses only partial information about théadabels. In this respect it is interesting
to compare its performance to unsupervised and supervistidoads for data representation. Section 8.1
compares RCA to the unsupervised PCA and the fully supehi$d on a facial recognition task, using
the YaleB data set (Belhumeur et al., 1997). In this appboabf face recognition, RCA appears very
efficient in eliminating irrelevant variability caused bgrying illumination. We also used this data set to
test the effect of dimensionality reduction using cFLD, #mal sensitivity of RCA to average chunklet size
and the total amount of points in chunklets.
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Figure 2: A subset of the YaleB database which contains 1920 fronta fanages of thirty individuals taken under different
lighting conditions.

Section 8.2 presents a more realistic surveillance agjgitén which equivalence constraints are gath-
ered automatically from a Markovian process. We concludesgperimental validation by comparing RCA
with other methods which make use of equivalence constr@ira clustering task, using a few benchmark
data sets from the UCI repository (Blake & Merz, 1998).

8.1 Applying RCA to facial recognition

The task here is to classify facial images with respect tg#reon photographed. In these experiments we
consider a retrieval paradigm reminiscent of nearest meigblassification, in which a query image leads to
the retrieval of its nearest neighbor or its k-nearest r@gh in the dataset. Using a facial image database,
we begin by evaluating nearest neighbor classification thig#hRCA distance, and compare its performance
to supervised and unsupervised learning methods. We ther nroto address specific issues regarding
RCA: In Section 8.1.4 we test RCA with various dimensiogal@éduction procedures, and in Section 8.1.5
we evaluate the effect of different chunklets sizes. Finall Section 8.1.6 we show that RCA can also be
successfully used to augment (standard) FLD.

8.1.1 Thedataset

We used a subset of the yaleB data set (Belhumeur et al., 1288ith contains facial images of 30 subjects
under varying lighting conditions. The dataset containetal tof 1920 images, including 64 frontal pose
images of each subject. The variability between images @fstime person is mainly due to different
lighting conditions. These factors caused the variabdlityong images belonging to the same subject to be
greater than the variability among images of different saty (Adini et al., 1997). As preprocessing, we
first automatically centered all the images using optical.flonages were then converted to vectors, and
each image was represented using its #BICA coefficients (we experimented with= 30, 60, 100, 200).

Fig. 2 shows a few images of four subjects.

8.1.2 Obtaining equivalence constraints

We simulated thedistributed learning’scenario presented in Section 1 in order to obtain equicaleon-
straints. In this scenario, we obtain equivalence comgaising the help of" teachers. Each teacher is
given a random selection df data points from the data set, and is asked to give his owrslabell the
points, effectively partitioning the dataset into equérale classes. The constraints provided by the teachers
are gathered and used as equivalence constraints. Thentmidler of points in chunklets grows linearly

11



with T K, the number of data points seen by a teacher. This amounthvgives a loose bound on the
number of points in chunklets, is controlled by varying thentoer of teacherd’. We tested a range of
values ofT" for which TK is 10%, 30%, or 75% of the points in the data set.

In appendix 10 we show that the distribution of chunklet $zeontrolled by the ratie = % whereM
is the number of classes in the data. In all our experimentsave used = 2. For this value the expected
chunklet size is roughl®.9 and we typically obtain many small chunklets. Fig. 3 showsstogram of
typical chunklet sizes, as obtained in our experiménts.

30% of points in chunkelts

120

1001

80

601

401

207

2 3 4 5 6 7 8 9 10

Figure 3: Sample chunklet size distribution obtained usirgydistributed learning scenario on a subset of
the yaleB dataset with920 images fromM = 30 classes, withr = % = 2. The histogram is plotted for
30% of the data in constraints (chunklets).

8.1.3 RCA on the continuum between supervised and unsupervised learning

The goal of our main experiment in this section was to assesselative performance of RCA as a semi-
supervised method in a face recognition task. To this extentompared the following methods:

e Eigenfaces (Turk & Pentland, 1991): this unsupervised owetteduces the dimensionality of the
data using PCA, and compares the images using a Euclideait fimethe reduced space. Images
were normalized to have zero mean and unit variance, anduthder of dimensions was varied until
optimal performance was obtained.

e Fisherfaces (Belhumeur et al., 1997): this supervised ogegtarts by applying dimensionality reduc-
tion as in the Eigenfaces method. It then uses all the datdslad compute the FLD transformation
(Fukunaga, 1990), and transforms the data accordingly.

¢ RCA: RCA with the dimensionality reduction procedure déssul in Section 6. We varied the amount
of data in constraints provided to RCA, using thistributed learningparadigm described above.

Fig. 4 shows the results of the different methods. The lefplgiin Fig. 4 shows the relative performance
of the three methods using nearest neighbor classificafiercan be seen, RCA sometimes achieves error
rates which are even lower than the error rates of the fulhestised Fisherface method, while relying only

®In this scenario one usually obtains mostly 'negative’ eglgince constraints, which are pairs of points that are kntw
originate from different classes. Note that RCA doesuse these 'negative’ equivalence constraints.
But we used a different sampling scheme in the experimenishvatldress the effect of chunklet size (Section 8.1.5).
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on fragmentary chunklets with unknown class labels. Thisesghat surprising result stems from the fact
that combining RCA with cFLD usually yields better performea than using FLD alone. (In Section 8.1.6
we discuss RCA as an extension to the fully labeled FLD.)

0.25 T T T - . 0.9
0.8

0.7}

PCA RCA-10 RCA-30 RCA-75 FLD PCA RCA-10 RCA-30 RCA-75 FLD
Method Method

Figure 4: Classification Error rates for (1) Eigenface (PCA), (2) RON4, (3) RCA30%, (4) RCA75% and (5) Fisherface
(FLD). RCA was used in 3 conditions, with chunklets obtairfienin a distribution of a fraction of the total number of paint
from small (0% and30%) to large (5%). The left graph shows results of nearest neighbor claasifit. The right graph shows
the mean error rate on all neighbors. Results are averagadsOvchunklet realizations. Note that when using large antsoof
equivalence constraints the performance of RCA is better the fully labeled Fisherface, which is not followed by RCA

Another interesting measure of performance is the totallbamof errors on all neighbors. For each
imagex;, we compute theC;| — 1 nearest neighbors of that image whéfg| is the size of the class to
which z; belongs. We then compute the fraction of neighbors whictewetrieved incorrectly. The right
graph in Fig. 4 shows the mean error rate on all neighborgyubimthree methods. The pattern of results is
similar to the one obtained for the first neighbor error. Ewdth small amounts of equivalence constraints
(10% and30%) RCA achieves error rates which are far better than the wrsiged PCA, and as good as
the fully supervised FLD.

In order to visualize the effect of RCA in this task we alsoateel some RCAfaces (following (Bel-
humeur et al., 1997)): We ran RCA on the images after appli6g, and then reconstructed the images.
Fig. 5 shows a few images and their reconstruction. CleathARramatically reduces the effect of varying
lighting conditions, and the reconstructed images of tineesiadividual look very similar to each other.

In another experiment we compared the performance of (Xiad),£2002) to RCA on the YaleB dataset
using code obtained from the author's website. The experiahesetup was the one described in Sec-
tion 8.1.2, with30% of the data points distributed into chunklets. Results hosve in Fig. 6.

8.1.4 Dimensionality reduction with cFLD vs. PCA

In this experiment we compare PCA to cFLD as the mechanismedoce dimensionality prior to RCA.
Results over the YaleB data set are shown in Fig. 7, witmulative neighbor purityplots of the two
methods Cumulative neighbor puritypneasures the percentage of correct neighbors up & ttteneighbor,
averaged over all the datapoints. Not surprisingly, we eantBat even with small amounts of constraints,
cFLD gives better performance.

8.1.5 Theeffect of different chunklet sizes

In Section 5 we showed that RCA typically provides an innasslcovariance estimator which is not very
sensitive to the chunklets’ sizes. In order to empiricadlst the effect of chunklets’ size, we fixed the number
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Figure 5: Top: Several facial images of two subjects undiéerdint lighting conditions. Bottom: the same
images from the top row after applying PCA and RCA and theonstucting the images. Clearly RCA
dramatically reduces the effect of different lighting citiwhs, and the reconstructed images of each person
look very similar to each other.
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Figure 6: Comparison of Xing’'s method (Xing et al., 2002)WRCA on the YaleB facial image dataset.
Results are presented using neighbor purity plots.

of equivalence constraints, and varied the size of the detsiK in the range{2 — 10}. The chunklets were
obtained by randomly selectir3®% of the data (total ofV = 1920 points) and dividing it into chunklets of
sizeS.’

The results can be seen in Fig. 8. As expected the performainREA improves as the size of the
chunklets increases. However, most of the gain in perfoomamobtained with chunklets of si&e= 3, in
agreement with our theoretical analysis.

8.1.6 RCA in asupervised learning scenario

RCA can also be used when given a fully labeled training sethis case, chunklets correspond uniquely
and fully to classes, and the cFLD algorithm for dimensiipaéduction is equivalent to the standard FLD.
In this setting RCA can be viewed as an augmentation of sterfelD. Fig. 9 shows comparative results of
FLD with and without RCA in the fully labeled case.

"When necessary, the remainingd(IV, S) points were gathered into an additional smaller chunklet.
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Figure 7: Neighbor purity plots of RCA after dimensionaligduction using PCA and cFLD. When using
cFLD each image was first represented using its first 100 aBdPZIA coefficients respectively. We then
used cFLD to reduce the dimensionality 36 = 30, the number of classes in the data (as described in
Section 6). When using PCA the dimensionality was reduced CA coefficients directly. Left10% of

the data in constraints. Right5% of the data in constraints. As can be seen, even with a smalbauof
equivalence constraints, the combination of cFLD+RCAqren§ better than the combination PCA+RCA.

% Error

2 3 45 6 7 8 9 10
Chunklet Sizes

Figure 8: Mean error on all neighbors on the yaleB datasehwising30% of the data in chunklets. In this
experiment we varied the chunklet sizes while fixing theltataount of points in chunklets. As expected,
as the size of the chunklet increases performance imprdyesiever, note that most of the performance
gain is obtained using chunklets of size 3.

8.2 Surveillance application

In this application, a stationary indoor surveillance cearpgrovided short video clips whose beginning and
end were automatically determined by the appearance aagpm#iarance of a moving target. The database
therefore included many clips, each displaying only onsg@eiof unknown identity. Effectively each clip
provided a chunklet. The task in this case was to clustethegall clips in which a certain person appeared.

Thetask and our approach: The video clips were highly complex and diversified, for sal/eeasons.
First, they were entirely unconstrained: a person coulkweérywhere in the scene, coming closer to the
camera or walking away from it. Therefore the size and remwiwf each image varied dramatically. In
addition, since the environment was not constrained, imagsuded varying occlusions, reflections and
(most importantly from our perspective) highly variableishination. In fact, the illumination changed
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Figure 9: Neighbor purity plots on the yaleB dataset usin@® klith and without RCA. Here RCA dramat-
ically enhances the performance obtained by FLD.
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Figure 10:Left: several images from a video clip of one intruder. Rigigrcent of correct retrievals as a function of the number
of retrieved images.

dramatically across the scene both in intensity (from kiegto darker regions), and in spectrum (from neon
light to natural lighting). Fig. 10 shows several imagesrfrone input clip.

We sought to devise a representation that would enable fhetigé clustering of clips, focusing on
color as the only low-level attribute that could be reliabbed in this application. Therefore our task was
to accomplish some sort of color constancy, i.e., to overctime irrelevant variability due to the varying
illumination.

Image representation and RCA  Each image in a clip was represented by its color histografi*irt b*
space (we used 5 bins for each dimension). We used the clipsusklets in order to compute the RCA
transformation. We then computed the distance betweer phimages using two methodsl and RCA
(Mahalanobis), and sorted the neighbors of each image diogoto both distances. We used over 6000
images from 130 clips (chunklets) of 20 different peopley. ED shows the percentage of 'correct’ neighbors
up to thek’th neighbor over all 6000 images. One can see that RCA malsignificant contribution by
bringing 'correct’ neighbors closer to each other (rekativ other images).
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8.3 RCA and clustering

In this section we evaluate RCA's contribution to clustgriand compare it to alternative algorithms that
use equivalence constraints. We used six data sets fromGhedgository. For each data set we randomly
selected a sef of pairwise similarity constraints (or chunklets of size 2We compared the following
clustering algorithms:

1. K-means using the default Euclidean metric (using no-gsiftemation) (Fukunaga, 1990).

2. Constrained K-means + Euclidean metric: A K-means varsiggested by (Wagstaff et al., 2001),
in which a pair of pointgz;, z;) € S is always assigned to the same cluster.

3. Constrained K-means + the metric proposed in (Xing eR8I02): Constrained K-means using the
Mahalanobis metric proposed in (Xing et al., 2002), whicle&ned from the constraints

4. Constrained K-means + RCA: Constrained K-means usinB@¥ Mahalanobis metric learned from
S.

5. EM: Expectation Maximization of a Gaussian Mixture mo@eding no side-information).

6. Constrained EM: EM using side-information in the form glalence constraints (Shental et al.,
2003), when using the RCA distance metric as the initial imetr

The clustering algorithms numbered 4 and 6 are our own. &iingt algorithms 1 and 5 are unsupervised
and provide respective lower bounds for comparison withadgorithms. Clustering algorithms 2 and 3
compete fairly with our algorithm 4, using the same kind desinformation.

Experimental setup To ensure fair comparison with (Xing et al., 2002), we useatty the same exper-
imental setup as it affects the gathering of equivalencatcaimts and the evaluation score used. We tested
all methods using two conditions, with: (i) “little” sidediormation S, and (ii) “much” side-information.
The set of pairwise similarity constrainfswas generated by choosing a random subset of all pairs afspoin
sharing the same class identity In the case of little side-information, the size of the ®thgas chosen so
that the total number of different connected componéht§using transitive closure over pairs) was roughly
90% of the size of the original dataset. In case of much side imétion this was reduced % (where
fewer connected components imply that the components mger]avhich implies in turn more information).

Following (Xing et al., 2002) we used a normalized accuramye (the "Rand index”) to evaluate the
partitions obtained by the different clustering algorithriviore formally, with binary labels (or two clusters),
the accuracy measure can be written as:

T HHei = ¢} = H{éi = &}}
i~ 0.5m(m — 1)
wherel{} denotes the indicator functioi{True} = 1), 1{False} = 0), {¢;}, denotes the cluster to
which pointz; is assigned by the clustering algorithm, andenotes the “correct” (or desirable) assignment.
The score above is equivalent to computing the probabiigy the algorithm’s assignmedof two randomly
drawn pointsr; andz; agrees with the “true” assignment

8As noted in (Xing et al., 2002), this score should be nornealiwhen the number of clusters is larger than 2. Normaliaasio
achieved by sampling the paits andz; from the same cluster (as determinedépyith probability 0.5 and from different clusters
with probability 0.5, so that “matches” and “mismatches given the same weight.
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Figure 11: Clustering accuracy on 6 UCI datasets. In eacblptre six bars on the left correspond to an ex-
periment with "little” side-information, and the six bars the right correspond to "much” side-information.
From left to right the six bars correspond respectively ® dlgorithms described in the text, as follows:
(a) K-means over the original feature space (without usmgsade-information). (b) Constrained K-means
over the original feature space. (c) Constrained K-meags the feature space suggested by (Xing et al.,
2002). (d) Constrained K-means over the feature spaceecrégt RCA. (e) EM over the original feature
space (without using any side-information). (f) ConsteaifcM (Shental et al., 2003) over the feature space
created by RCA. Also shown aré - the number of pointg’ - the number of classes,- the dimensionality

of the feature space, arid, - the mean number of connected components. The results weragad over

20 realizations of side-information. In all experiments wed¥-means with multiple restarts as in (Xing
et al., 2002).

Fig. 11 shows comparative results using six different UGhdats. Clearly the RCA metric significantly
improved the results over the original K-means algorithbwti{ the constrained and unconstrained version).
Generally in this context, we see that using equivalencstcaints to find a better metric improves results
much more than using this information to constrain the atigor. RCA achieves better or similar results
to those reported in (Xing et al., 2002). However, while theéARmetric involves a single step efficient
computation, the method presented in (Xing et al., 2002)ireg gradient descent and iterative projections
and is also sensitive to the initial conditions used.

The comparisons in Fig. 11 involve six different clusteraigorithms. The last two algorithms use the
EM algorithm to compute a generative Gaussian Mixture Modet are therefore much more complex
computationally. We have added these comparisons becadsmplicitly changes the distance function
over the input space in a linear way (i.e., like a Mahalanalsance). It therefore may appear that EM
can do everything that RCA does and more, without any motiificaThe histogram bins marked by (e) in
Fig. 11 clearly show that this is not the case. Only when weamittraints to the EM, and preprocess the
data with RCA, do we get improved results as shown by thedpiato bins marked by (f) in Fig. 11.
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9 Discussion

In order to obtain strict probabilistic justification for RCwe listed in Section 5 the following assumptions:
e The classes have multi normal distributions.
¢ All the classes share the same covariance matrix.
e The chunklets points are an i.i.d sample from the class.

What happens when these assumptions do not hold?

The first assumption gives RCA its probabilistic justificati but even without it (i.e., a distribution-free
model), RCA is justified as the optimal transformation by wvideria: mutual information maximization,
and inner chunklet distance minimization. These criterearaasonable as long as the classes are approxi-
mately convex (as implied by the use of the distance betwkenidet's points and chunklet's means).

The second assumption justifies RCA's main computatioregd, shich uses the empirical average of
all the chunklets covariance matrices in order to estimaegtobal inner class covariance matrix. When
this assumption fails, RCA effectively extracts the shareaponent of all the classes covariance matrices,
if such component exists.

The third assumption may break down in many practical apfitios, when chunklets are automatically
collected and the points within a chunklet are no longer jredelent of one another. As a result chunklets
may be composed of points which are rather close to each, athérwhose distribution does not reflect all
the typical variance of the true distribution. In this caseA® performance is not guaranteed to be optimal.

10 Conclusion

We have presented an algorithm which uses side-informatiche form of equivalence constraints, in

order to learn a Mahalanobis metric. We have shown that otinadds optimal under several criteria. Our

empirical results show that RCA reduces irrelevant valitgbin the data and thus leads to considerable
clustering improvements. RCA matlab code can be downlo&dedthe authors’ site.

Appendix A: Information Maximization in the case of non invertible linear
transformation

Here we sketch the proof of the claim made in Section 3.3. A&rbewe denote by’ the average covariance
matrix of the chunklets. We can rewrite the constrained &sgion as:

13
- Z Z(:E]Z — mj)tAtA(ZEji — m]‘) = t’f'(AtAC) = t’f'(AtCA)
Piio
Hence the Lagrangian can be written as:
log |[AY, AY| — M(tr(ACA") — K)

Differentiating the Lagrangian w.r.t A gives

Y, AA'S,A) T = 0A (17)
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Multiplying by A? and rearranging terms, we g%; = A'CA. Hence as in RCAA must whiten the
data with respect to the chunklet covarian@ean a yet to be determined subspace. Uskeg- 0 it then
follows that the inequality constraint in (6) is an equalitshich can be used to finkl

1 M M
tr(ACAY =tr(=)= — =K = A= —
rACAY) = tr(3) = 5 %
K
— ACA'= —T
M
whereM is the dimensionality of the projection subspace.
Next, since in our solution spacéC A’ = £1, it follows thatlog |AC A'| = M log £ holds for all
points. Hence we can modify the maximization argument dovisl

AT, A1

IOg |AZIAt‘ = log M

K
M log —
+ og i
Now the optimization argument has a familiar form. It is kmo@iFukunaga, 1990) that maximizing the
determinant ratio can be done by projecting the space onpthre sf the first) eigenvectors ot2~'%,.
Denote byB the solution matrix for this unconstrained problem. In ortteenforce the constraints we

define the matrixd = \/%AI‘O'SB and claim that4 is the solution of the constrained problem. Notice that
the value of the maximization argument does not change wieeswitch fromA to B sinceA is a product

of B and another full ranked matrix. It can also be shown thaatisfies the constraints and is thus the
solution of the problem presented in Eq. (6).

Appendix B:Variance bound on the RCA covariance estimator

In this appendix we prove the inequality 15 from section 5sukse we havey = nk data pointsX =
{xf}?;kl’j:l in n chunklets of size; each. We assume that all chunklets are drawn independeotty f
Gaussian sources with the same covariance matrix. Denbyimg; the empirical mean of chunklet i, the
unbiased RCA estimator of this covariance matrix is

(] — i) (] = rin)
1

k
1=

A 1< 1

Let U denote the diagonalization transformation of the covagamatrixC of the Gaussian sources, i.e.,
U'CU = A whereA is a diagonal matrix wit \;}"_, on the diagonal. Le¥ = XU denote the trans-
formed data. Denote its covariance matrix@y(n, k) = U'C/(n, k)U, and denote the empirical chunklet
means by} = Um;. We can analyze the variance ©f as follows:

n k

var(C(n, k) = varl > = > (] — ) — it
i=1 j=1

1 1 i suvngd oaanT

= —var[k 1 2(91 —mY)(y; — i)’ ]

The last equality holds since the summands of the extermal ame sample covariances of independent
chunklets drawn from sources with the same covariance xnatri
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The variance of the sample covariance for diagonalized Sauslata is known to be (Fukunaga, 1990)

22 VNN
Zl;fuar(Cij) = L cov(Cyj, Cry) =0

var(Cy) =

and we get the following variance for the RCA estimator:

2

. . i .
var(Cj) = Wil);var(C;‘j) = nk] cov(C’g,Ckl) =0
As p = nk, we can write
. 2)2 AN
var(Cj) = m;var(@‘j) = COU(CZ’;,C}&) =0
and for the diagonal terms
222k 2X ko 227

Uar(é“(%,k)ii) = = var(C"(1,p)ii)

p(l—%)_k—l p ~k—1p-—-1

This inequality trivially holds for the off-diagonal covance elements.
Getting back to the original data covariance, we note thattrix elements notatioft;; = Z C“ UigUjr
while d is the data dimensionality. Therefore

Uar[éij(n,k)] . Zg,r:ﬂ)ar[éu(nak)quiqur] Z =1 F— 1Uar[ou(1 nk)ququJT} . k
var[Ci;(1,nk)] Zg#:l var[C“(l,nk)quiqur} - Z 1var[C“(1 nk)grUiqUijy | k-1

where the first equality holds becam(O“

i Cl?l) =0.

Appendix C:The expected chunklet sizein thedistributed learning paradigm

Here we estimate the expected chunklet size obtained wheg tie distributed learning paradigm intro-
duced in Section 8. In this scenario, we use the help tfachers, each of which is provided with a random
selection ofK data points. Let us assume that the data contéiresjuiprobable classes, and that the size of
the data set is large relative 6. We can define random variables as the number of points from class
seen by teacher. Due to the symmetry between classes and teachers, thibudisin of :z:i is the same for
eachi, j. It can be well approximated by a Bernoulli variable3 (K, ﬁ This variable may take values of

0 or 1, which are not allowed when we wish to describe the distidoubf chunklet size. The distribution of
chunklets with sizes bigger thdnis given by the trimmed Bernoulli distribution

=i = ! q ) (Lyig - Ly,
We can approximatg(X = 0) andp(X = 1) as
p(X=0)=e o p(le)z%e_%



Using these approximations, the expected chunklet sizetesmiined by the ratio = % through the
formula

E(zlz # 0,2 # 1) :%
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