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Image Retrieval and Class Representation
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Abstract—One of the key problems in appearance-based vision is understanding how to use a set of labeled images to classify new
images. Classification systems that can model human performance, or that use robust image matching methods, often make use of
similarity judgments that are nonmetric; but when the triangle inequality is not obeyed, most existing pattern recognition techniques are
not applicable. We note that exemplar-based (or nearest-neighbor) methods can be applied naturally when using a wide class of
nonmetric similarity functions. The key issue, however, is to find methods for choosing good representatives of a class that accurately
characterize it. We show that existing condensing techniques for finding class representatives are ill-suited to deal with nonmetric
dataspaces. We then focus on developing techniques for solving this problem, emphasizing two points: First, we show that the
distance between two images is not a good measure of how well one image can represent another in nonmetric spaces. Instead, we
use the vector correlation between the distances from each image to other previously seen images. Second, we show that in nonmetric
spaces, boundary points are less significant for capturing the structure of a class than they are in Euclidean spaces. We suggest that
atypical points may be more important in describing classes. We demonstrate the importance of these ideas to learning that
generalizes from experience by improving performance using both synthetic and real images. In addition, we suggest ways of applying
parametric techniques to supervised learning problems that involve a specific nonmetric distance functions, showing in particular how
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to generalize the idea of linear discriminant functions in a way that may be more useful in nonmetric spaces.

Index Terms— Nonmetric, image retrieval, classification, supervised learning, median, condensing, nearest-neighbor, triangle

inequality, robust distance, representation.

1 INTRODUCTION

wo fundamental issues in pattern recognition and

cognitive science include the problems of cluster-
ing—the partitioning of data into parts or classes, and
classification—the representation of classes and the asso-
ciation of a new data item (query) with a certain class. In
this paper, we are interested in the classification of
images, including class representation and image
retrieval.

Approaches to classification can be characterized by
the type of data used and its representation. Two cases
are typically considered: either the data items are
mapped to some real normed vector space (called feature
space), or they are mapped to the nodes of a weighted
graph, with edge weights representing similarity or
dissimilarity relations (henceforth, we will call the
dissimilarity value between 2 images “distance”). The
second form, called “pairwise representation,” lacks
geometrical notions such as interpoint Euclidean distance
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and its size is O(N?) for N datapoints. However, it has
the advantage that no feature selection is required.
Moreover, pairwise relations may violate metric
properties such as the triangular inequality, a situation
that cannot be modeled when data is embedded in a
normed vector space. The same is true with respect to
symmetry violation, which can be represented by a
directed graph.

We assume here the second type of data representation
as a weighted graph of image dissimilarities, since feature
selection is often an elusive task (especially as it concerns
images). In principle, it may be possible to embed this
representation in a vector space, obtaining the first type
of data representation, as assumed in most of the work
on image classification. If the distances are metric, such
embedding is feasible as discussed below. However, most
recent work in computer vision compares images using
measures of similarity that are complex and nonmetric, in
that they do not obey the triangle inequality ([1], [7], [9],
[11], [22], [23], [25], [32], [33], [35]). This can occur
because the triangle inequality is difficult to enforce in
complex matching algorithms that are statistically robust
(see discussion in Section 2.1). Also, when matching is
conceptualized as the comparison between two probabil-
ity distributions, there may be strong reasons for using
distances such as the Kullback-Leibler measure of cross-
entropy, which is asymmetric and does not obey the
triangle inequality (eg., see [28]). Moreover, much
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research in psychology suggests that human similarity
judgments are also not metric. This raises serious
questions about the extent to which existing work on
classification can be applied using complex models of
similarity, either in computer vision or as cognitive
models.'

1.1 Vectorial Embedding

Most work on supervised classification assumes vectorial
representation, typically with the ¢, (Euclidean) norm. For
example, in linear discriminant analysis and in many
multilayer neural network models, hyperplanes are found
that separate labeled points as well as possible. Similarly,
the mean point of a set is used in methods such as k-means
clustering, and minimal linear spanning bases are used in
methods such as Radial Basis Functions [34] or Principal
Component Analysis (PCA). For some applications, a
vectorial representation can describe the data in a very
natural way.

In many other applications, however, there is no obvious
vectorial representation, although algorithms do exist to
compare different objects. To use the techniques mentioned
above, in this case, metric dissimilarity relations d;; between
datapoints may be transformed to vectorial representation.
The embedding problem is to map each node (datapoint) ¢
to a vector v; in some real normed space, such that
|lvi —vj|| = dij. It can be shown that the mapping that
assigns v; < [d;1,...,d;,] embeds n points in R" with the
max norm /.. Recently, for example, [15] have applied
support vector machines to classification after embedding
datapoints in a Euclidean, or pseudo-Euclidean space.
Alternately, they have shown improvements over nearest-
neighbor methods by representing each object by its
distance to all others, and then applying support vector
machines to the resulting vectors. However, the runtime of
this latter approach is at least as great as a brute force
approach to nearest neighbor, since the distance from a test
object to all training objects must be computed.

However, n is usually very large and dimensionality
reduction is often required, where possible methods are
PCA, random projection [26], principal curves [19], and
others, thus introducing distortion into the low-dimensional
representation. A low-dimensional graph embedding with
controlled distortion is proposed in [30], using the
transformation described above for metric dissimilarity
relations. An alternative method is Multidimensional
Scaling (MDS) [27], where the embedding may preserve
the ranking of the pairwise distances, but not necessarily
their ratios. We note that dimensionality reduction is
another name for the problem of feature selection, namely
it involves the assumption that a small number of features
can be found that describe the datapoints with sufficient
accuracy.

1. We should note that, in contrast to supervised learning, there has been
a good deal of work on clustering, or unsupervised learning that is applicable
to nonmetric spaces. An early example of such work, which stresses the
importance of nonmetric distances, is [33]. Brand [5] has proposed
clustering based on E-M in nonmetric spaces. In addition, clustering
methods based on graph partition or physical models (e.g., [4], [21]) are
suitable for nonmetric clustering. These works do not directly address the
issue of using these clusters for classification of new data (see [33] for some
comments).

Our work is motivated by work on image similarity that
suggests that practical and psychologically valid measures
of similarity are nonmetric. Note that some authors use the
phrase nonmetric to imply a qualitative, or rank ordering of
distances. We use nonmetric in the standard mathematical
sense. A distance function, D(i1,i3), between pairs of
images, is metric when:

1. D(iy,is) >0

2. Dliy,i9) = 0 if and only if 4; = 5.

3. DC(iy,13) = D(is,11) (symmetry).

4. D(i1,13) < D(i1,i9) + D(ia,143) (the triangle
inequality).

We are interested in spaces in which the last condition fails.
Failure of symmetry is also of interest, but this is beyond the
scope of the present paper. We will also consider some
robust distances in which Condition 2 does not hold
because some limited deviation between objects may be
ignored.

Nonmetric distances turn up in many application
domains, such as string (DNA) matching, collaborative
filtering (where customers are matched with stored “pro-
totypical” customers), and retrieval from image databases.
Fig. 11 shows one example, the output of an algorithm for
judging the similarity of the silhouettes of different objects
[11]. Given a series of labeled pictures of common objects
(cars and cows, Fig. 11a and Fig. 11b, we may wish to
identify new silhouettes (Fig. 11d) based on their similarity
to the previously seen ones. In [1], many such algorithms
are reviewed, showing why their use will typically lead to
nonmetric distances (see discussion in Section 2.1).

Unfortunately, the methods described above cannot
guarantee low distortion vectorial embedding of nonmetric
dissimilarity relations. We will give a concrete example
below. Consequently the vectorial methods described above
may not be suitable for many applications. We therefore
focus our attention on classification methods that use
pairwise representation.

One other basic tenet of pattern recognition is that all the
information is in the distribution of the data. One should
note, however, that most methods to estimate such
distributions based on a small sample, including nonpara-
metric methods such as Parzen windows and interpolation
methods such as Radial Basis Functions (RBF), implicitly
assume Euclidean structure on the data by the very essence
of interpolation. Once again, this assumption makes these
algorithms unsuitable for our domain; instead, we directly
estimate the distribution of the data in term of its pairwise
dissimilarity representation.

1.2 Dissimilarity-Based Methods

In classification methods that use pairwise representation,
retrieval is based on the distance from query to class,
typically measured by the k-nearest neighbor of a query.
Brute force implementation of nearest neighbors is of high
complexity in both space and time—linear in the size of the
data where sublinearity is desired with large databases. In
particular, time complexity may be high because many
similarity functions used in computer vision are complex,
and require considerable computation. Many techniques
therefore have been devised to speed up nearest-neighbor
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Fig. 1. The Voronoi diagram for two points using, from left to right, p-distances with p = 2 (Euclidean distance),

= 1 (Manhattan distance, which is

still metric), the nonmetric d|stanges arising from p = .5, p = .2, and the min (1-median) distance. The p- dlstance between two points (z1,y;) and

(9, y2) is: (|z1 — 22|’ + |y1 — y2|")7; the min distance is min(|z; — zal, [y1 —

y2|). Min distance in 2D is illustrative of the behavior of the other median

distances in higher dimensions. The region of the plane closer to one point |s shown in dark gray, and closer to the other in light gray. Note that only

the first is invariant to our choice of axis direction.

classification. Some of these methods build tree structures
that rely on the points lying in a Euclidean [10] or at least in
a metric space [43]. So once again, these methods are not
appropriate for our domain.

A more heuristic approach to decrease the time and
space complexity of nearest-neighbor classification—the use
of condensing algorithms—has been developed in the
context of metric spaces but is potentially applicable in
nonmetric spaces as well. These algorithms select subsets of
the original training classes that are as small as possible,
and that will correctly classify all the remainder of the
training set, which is then discarded. Condensing algo-
rithms do not explicitly rely on distances that obey the
triangle inequality. However, we will show below that the
performance of existing condensing methods can be
severely degraded with nonmetric distances. In particular,
the selection of representative data items in the condensing
process should take into account the nature of the
dissimilarity between items; for example, you may only
need to compare a query with boundary points in the
Euclidean space, but the nature of boundaries changes
tremendously with the change of distance function. This
problem is illustrated in Fig. 1, showing the different
decision boundaries that arise when using three nonmetric
distance functions, in comparison with the metric Manhat-
tan and Euclidean distances.

1.3 Condensing Methods—Previous Work

Condensing algorithms select small subsets of the original
data such that they will correctly classify all the remainder
of the data using nearest-neighbor classification; such
methods are essential to decrease the complexity of
nearest-neighbor classification and make it practical. Many
condensing methods have been developed: Hart [18]
proposed an iterative algorithm that initializes a represen-
tative set and then continues to add elements from the
training set that cannot be correctly classified by the
representative set, until all remaining training elements
can be correctly classified. Gowda and Krishna [14] propose
an algorithm like Hart’s, but which explicitly attempts to
add first to the representative set the points nearest the
boundary. Fukunaga and Mantock [16] propose an iterative
algorithm, that attempts to optimize a measure of how well
distances to the representative set approximate distances to
the full training set.

Dasarathy [8] more explicitly searches for the smallest
representative set that will correctly classify the training set.
We will discuss this algorithm in more detail and show
experiments with it in Section 4. Dasarathy notes that once
an element is added to the representative set, it is
guaranteed that other elements of the same class will be
correctly classified if they are closer to this representative
element than to any element of any other class. A greedy
algorithm is used, in which the representative set is
augmented at each step by the training element that
guarantees correct classification of the largest number of
elements not yet guaranteed to be correctly classified. This
basic step is followed by subsequent steps that refine the
representative set, but in practice these are not found to be
important.

1.4 Our Contribution

In this paper, we make two contributions: First, we discuss
the use of nonmetric distances in applications and show
that existing classification methods can indeed encounter
considerable difficulties when applied to nonmetric simi-
larity functions. Second, we propose a new condensing
method, demonstrate analytically some of the conditions
under which this strategy is preferable, and show experi-
mentally that it is effective.

The rest of this paper is organized as follows: In Section 2,
we discuss why nonmetric dissimilarity-based representa-
tions of data are commonly used (and needed) in applica-
tions. In Section 3, we describe our approach to the
organization (or condensing) of a nonmetric image data-
base. In Section 4, we describe a concrete condensing
algorithm and compare it to other algorithms using both
simulations and real data. Finally, in Section 5, we discuss
the possibility of relaxing the assumptions in this paper and
building parametric supervised learning algorithms suited
to specific nonmetric distances.

2 NoNMETRIC DISTANCES—WHY AND WHEN

In the introduction, we described the difficulties with using
existing classification techniques when given nonmetric
dissimilarity-based representations of data. In this section,
we show that such representations are common in applica-
tions and discuss some of the reasons why they are needed.
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Fig. 2. Object 1 (left) and object 2 (right) used in our discussion of
Hausdorff matching.

2.1 Nonmetric Distances in Applications

Distance functions that are robust to outliers or to extremely
noisy data will typically violate the triangle inequality. One
group of such functions is the family of image comparison
methods that match subsets of the images and ignore the
most dissimilar parts (see [1], [11], [2], [32]). As one
example, Huttenlocher et al. [22], [23] perform recognition
and motion tracking by comparing point sets using the
Hausdorff distance. They consider only a fixed fraction of
the points for which this distance is minimized. By not
considering the most dissimilar parts of the images, these
methods become both robust to image points that are
outliers, and nonmetric. We call these nonmetric methods
median distances. A k-median distance between two
vectors (or images, represented as vectors) x=
(r1,29,...,2,) and y = (Y1,¥2, - -, Yn) is defined as:

d(Xv y) =k— median“xl - y1|7 RN ‘xn - yn‘}’

where the k-median operator returns the kth value of the
ordered difference vector. Related robust techniques, such
as M-estimation which identify outliers and weigh them
less heavily, also lead to nonmetric distances [17].

We will now describe an example of matching with a
robust Hausdorff distance. This illustrates robustness
considerations that are very common in machine vision
and will also allow us to be more concrete about the
difficulties raised by nonmetric distances. Fig. 2 shows two
shapes. We will compare these shapes to each other and to
other shapes by comparing points sampled along their
boundaries. Specifically, the two shapes are compared by
translating one with respect to the other and choosing the
translation that minimizes the k-median Hausdorff distance
between the two. Hausdorff distance is the maximum

distance between any point in one shape and the point that
is closest to it in the other. That is, for point sets Z, 7 it is:

maX(rgleaIX{jrg}l I = 4ll, max min e = 3ll)-

By k-median Hausdorff distance we mean (following
Huttenlocher et al. [22]) that instead of considering the
maximum distance over all points in a set to their nearest
neighbor, we consider the distance at some percentile. In
the following example, we consider 60 percent of the points
in each set that are closest to the other set.

In Fig. 3, we show a picture of one of these objects
partially occluded. It is such cases that motivate the use of
robust matching techniques—when we can extract points
along part of the boundary of the object, but should only
expect a partial match between the image and the objects in
the data base. In more complex problems, our database
itself may consist of images of noisy or partially occluded
objects, rather than idealized perfect appearance-based
representations.

In Fig. 3, we also show the translation that minimizes the
robust Hausdorff distance between each object and the
partially occluded object, and also between the two objects.
In this example, the distance from the occluded version of
object 1 and the unoccluded version is zero, because
60 percent of the object was visible. The distance from
object 1 to object 2 is 2 pixels, and the distance from the
occluded version of object 1 to object 2 is 41. These
distances clearly violate the triangle inequality.

This violation of the triangle inequality is not an artifact
of a poor choice of features. It is inherent in the idea of
robust matching, which allows one portion of an object to be
matched to one image, and a different portion to match a
different image. These objects cannot be mapped into a
metric feature space without large distortions in the
distances between them. Moreover, we know of no work
that suggests how one can extract features from these
shapes that enable robust matching using the Euclidean
norm in a vector space.

We can contrast this with statistical methods for
handling missing data, which can be robust without
introducing nonmetric distances. These rely on identifying
outliers explicitly using domain specific knowledge or
parametric models. For example, the values of some
variables obtained in a survey may be identified by hand
as clearly incorrect; or values that deviate too far from the
mean value may be discarded. In vision, missing data can
arise in problems such as structure-from-motion when
some point features disappear from view during the course
of a motion sequence, or some values clearly disagree with
a linear motion model. When some values are known to be
outliers, they can then be replaced by other reasonable
values. In statistics, sometimes missing values are replaced
by the mean value; or linear regression may allow one to
infer the value of missing data. [31] provides an overview of
these methods, while [39] and [24] describe solutions to
missing data problems in vision. However, in the example
above, the shape of the points that are missing due to
occlusion could only be inferred after the object has been
recognized. For this reason, missing data techniques are not
applicable in problems of interest to us here.
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Fig. 3. On the left, object 1 is shown partially occluded. The middle two figures show alignments between points sampled along its visible boundary,
and along the boundaries of objects 1 and 2. These alignments minimize the robust Hausdorff distance between the objects and the occluded
version of object 1. On the right, we show the best alignment between object 1 and 2 (a range of alignments produce the same Hausdorff distance

between these shapes).

As another example, the use of nonmetric ¢, distances,
with 0 <p <1 has been suggested for robust image
matching [9]. ¢, distance (or p-distance) between two vectors
X,y, is defined as:

d(x,y) = () | — wil")".
i=1

Thus, p = 2 gives the Euclidean distance, and p =1 gives
the Manhattan distance. These distances are nonmetric for
p < 1 (see Royden [36]). As shown in Fig. 4, they are less
affected by extreme differences than is Euclidean distance,
and can therefore be more robust to outliers. Related robust
distance functions have become widespread in many
aspects of vision in recent years, especially for problems
such as boundary detection, motion estimation, and

parametric object detection (eg., [29], [13], [3], [2], [12],
[32]). In this paper, we will focus more on the use of robust
distances in supervised learning, while noting that their
significance in vision seems quite broad.

One interesting property of robust distances such as the
median and nonmetric p-distances is that although they
apply to feature vectors, they treat the space these vectors
occupy in a way that is not rotationally symmetric. The
distance between two points doesn’t just depend on the
length of the vector connecting one to another, it also
depends on how this vector is aligned relative to the
coordinate axes (this is true for all p-distances except
Euclidean distance). This is appropriate when different
coordinates denote independent features. For example,
when the pixels of an image are used as coordinates, the
axes of the space denote separate pixels, while an arbitrary

0 02 04 06 08 1 12 14 186 18 2 0 02 04 06 08

1

12 14 16 18 2 ] 02 04 06 08 1 12 14 186 18 2

Fig. 4. Graphs of 22 (left), 2°° (middle) and 2?2 (right). We can see that when properly normalized, for p-distances less than 1 the cost function rises
quickly at first, then more slowly, so that extreme values do not dominate the total cost.
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Fig. 5. Judgments of visual similarity between these three images may violate the triangle inequality.

direction represents some linear combination of all pixels.
When we wish to be robust to the possibility that some
pixels have spurious values, it is important to treat the
directions of the axes quite differently from other directions.

Besides a desire for robustness, another reason for
nonmetric distances to arise is that image distances may
be the output of a complex algorithm, which has no obvious
way of ensuring that the triangle inequality holds. Jain et al.
[25], for example, perform character recognition and other
image comparisons using a deformable template matching
scheme that yields distances that are not symmetric and do
not obey the triangle inequality. Related elastic matching
methods have been widely used (e.g., [1], [11], [20], [40],
[44], [38]) often in ways that do not appear to lead to metric
distances.

In fact, Basri et al. [1] show that contradictions can exist
between forcing such methods to obey the triangle inequal-
ity and other goals that are desirable in deformable
template matching. More specifically, they consider the
class of algorithms that match closed contours elastically,
using dynamic programming to find correspondences
between the contours that minimize the sum of a local cost
function based on comparisons between small portions of
the contours. They articulate a set of desirable properties for
such a cost function and show that they cannot all
simultaneously be met. Specifically, they consider three
criteria: 1) that the more one deforms a contour by bending
it, the more dissimilar it becomes from its original shape;
2) that a series of small deformations should affect
similarity less than one large deformation equal to the
sum of the small ones in magnitude; and 3) the triangle
inequality. They show that these criteria cannot all be
achieved with such an elastic matching approach, explain-
ing why such approaches may adopt nonmetric distances.

Finally, we are interested in image comparison methods
that model human vision. This may also be desirable in
many applications. However, there is much work in
psychology that suggests that human similarity judgments
are nonmetric. Most notably, Tversky et al. (e.g., [41])
showed in a series of studies that human similarity
judgments often violate metric axioms: in particular, the
judgment need not be symmetric (one would say “North

Korea is similar to Red China,” but not “Red China is
similar to North Korea”), and the triangle inequality rarely
holds (transitivity should follow from the triangle inequal-
ity, but the similarity between Jamaica and Cuba and
between Cuba and Russia does not imply similarity
between Jamaica and Russia). This occurs because different
features can be attended to when different comparisons are
made. In some cases, this may allow objects to be
represented in a small number of different spaces in each
of which we may use metric distances. However, in visual
comparisons this is not possible.

Fig. 5 provides a visual analog of this example that
demonstrates this point. Many observers will find that the
centaur is quite similar to the person and to the horse.
However, the person and the horse are quite different from
each other. For observers who determine that the dissim-
ilarity between the horse and person is more than twice as
great as the dissimilarity between either shape and the
centaur, there is a violation of the triangle inequality.
Intuitively, this occurs because when comparing two images
we focus on the portions that are very similar, and are
willing to pay less attention to regions of great dissimilarity.
However, one cannot necessarily divide objects into a few
discrete components that are individually compared using
metric distances. Consequently, any computer vision
system that attempts to faithfully reflect human judgments
of similarity is apt to devise nonmetric image distance
functions (see also [37] for discussion of this issue).

2.2 Problems that Are Inherently Nonmetric

Are there problems that are inherently nonmetric, or is
nonmetricity only induced by one’s choice of representation
and distance function? Our answer is tentative: We consider
what happens when researchers approach a problem by
first designing the best possible distance function or
matching algorithm. Issues related to dealing with missing
data, noise, and robustness should all be taken into account.
When these conditions can be modeled, one can even
design an optimal distance function. For example, if one
knows that point sets have been generated by adding noise
to some points of a model, and adding some random
outlying points, a robust, nonmetric distance will be
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optimal. If the optimal distance is nonmetric, and if the data
cannot be embedded in a metric space without greatly
distorting this distance function, then our answer is that the
problem is inherently nonmetric.

As described above, methods such as PCA and MDS can
be used to embed any data in a metric space by accepting
distortions of the distance function. Moreover, one can
always trivially transform any set of distances using a
monotonic function so that they form a metric by, for
example, scaling all distances to lie within the range from
one to two. While such embeddings are possible, they are
not useful. For example, neither a trivial nor a very noisy
embedding can be used to assist in finding nearest
neighbors quickly using a tree structure. If large deviations
from the triangle inequality are a necessary consequence of
the image comparisons that are desired, accepting distor-
tions of the distance function as a form of noise will lead to
poor performance. Moreover, the view that violations of
such metric properties as the triangle equality are “Eu-
clidean inconsistencies,” evidence for a poor design of the
distance function, is not true in the domains we consider.
We therefore would avoid data embedding with high
distortion cost.

Under certain conditions, data can be mapped with low
distortion to a metric space. For example:

e We may assume that there are “hidden variables”
such that in a higher-dimensional space (with more
features than the original feature space) the appro-
priate distance function is metric, and possibly even
Euclidean. An assumption to this effect underlies
many methods in pattern recognition and statistical
estimation, which then proceed in the quest to find
the hidden variables. The good performance of
support vector machines in many applications may
indicate that this assumption is often reasonable and
useful.

e  Since axes in the feature space are chosen somewhat
arbitrarily, we may assume that there exist “objec-
tive” axes where the distance between datapoints is
invariant with respect to rotation and translation of
these axes. (Typically, however, features are not
completely arbitrary but have a meaning inherent to
the data and the measurement procedures.)

In this paper, we address problems for which such
assumptions cannot be made. Since there is no inherent
reason (other than computational convenience) to assume
that one of these assumptions would always hold, and since
nonmetric distances are so common in applications,
techniques to address such problems should be of practical
interest. This commits us to nearest-neighbor methods in
preference of many better-behaved pattern recognition
techniques. By relying directly on the distance function,
we exploit whatever “Euclidean inconsistencies” there are
in the data, rather than try to remove them.

3 OuR APPROACH

Our goal is to develop condensing methods for selecting a
subset of the training set, and then to classify a new image
according toits nearest neighbor among this subset. We seek a
subset of the training set that minimizes errors in the

classification of new datapoints: a representative subset of
the training data whose nearest distance to most new data
items approximates well the nearest distance toall the training
set. Thus, we emphasize that the representative set maintains
the same generalization function as the whole dataset.

3.1 How to Determine Data Redundancy

In designing a condensing method, one needs to under-
stand when is one image a good substitute for another? For
example, when are two images a redundant set? Our
answer to this question is what most distinguishes our
approach from previous work on nearest neighbors in
metric spaces; specifically, our answer depends on a
relevant statistical measure which we call redundancy,
and not directly on distances.

3.1.1 Redundancy

We begin by considering the answer to this question that is
implicit in previous work. In what follows, let ¢; and i,
denote two arbitrary elements of the training set, and let 4
denote a new image that we wish to classify. Let d(i1,2)
denote the distance between the two elements iy, is.

In a metric space, symmetry and the triangle inequality
guarantee that the distance between ¢; and iy bounds the
difference between d(i;,i) and d(is,i), that is,
|d(i1,4) — d(i2,1)| < d(i1,42). Thus, when d(i1,42) is small,
we know that one of these images can substitute for the
other. However, in a nonmetric space, the value of d(i;,2)
need not provide us with any information about the
relationship between d(i1,%) and d(is,¢). Our first observa-
tion is that we must use more information than just the
distance between two datapoints to decide whether the
presence of one in the training set makes the other
superfluous.

More specifically, our desired condensing algorithm will
discard an image, in favor of another one which is already
stored, only when the two images are expected to have
similar distances to other images, yet unseen; i.e., when
they have high redundancy. We define this property—the
redundancy relation between two images—as follows:

Definition 1. The redundancy R(iy,i2) between two images
i1, 19 is the probability that images i1, i have similar distances
to other images, i.e.,

R(ir,is) — / F(i)di
|d(i1,8)—d(ia,i)| <€

for some small e and image sampling distribution f(i).

3.1.2 Atypical Points

Existing condensing methods focus on choosing representa-
tive points from the boundaries between classes. Boundary
points are especially important to retain as representatives
in metric spaces because they influence the decision
boundary between two classes in the region that is near
the classes. Our second main intuition is that it is important
to retain atypical examples in the training set rather than just
boundary points. An “atypical” image is any image that is
dissimilar from most other images in the class, and
especially from the already chosen representatives of the
class. Atypical points can be important to retain as
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Fig. 6. The Voronoi diagram for two sets of points, each containing five points (shown as squares and crosses). The distance functions used are,

from left to right, p-distances with p = 2 (Euclidean distance), p

= 1 (Manhattan distance), p = 0.5, p = 0.2, and median distance. The region of points

closer to the class of crosses is shown in black, and the region closer to the class of squares is shown in white.

representatives because points that are far from the other
representatives can have a big effect on the decision
boundary between the two classes. This can also be true in
metric spaces, but it is especially true in nonmetric spaces
because there can be points in nonmetric spaces that are
close to elements in each class even though these elements
are not boundary points. We give an example of this below.

3.1.3 Example: A 2D Domain

Let us illustrate these points in a simple 2D domain. Thus,
in this section, all “images” are 2D vectors. In this domain,
we will use the nonmetric 1-median distance, i.e., the min
distance. Min distance may not be a good robust estimator;
our goal is only to demonstrate ideas that apply to other
median distances in higher dimensions. The relevant
geometrical structure is the Voronoi diagram: a division
of the plane into regions in which the points all have the
same nearest neighbor.

Our first example is Fig. 1, showing that nonmetric
distances (Fig. 1, three right-most pictures) can produce
much more complex Voronoi diagrams than do metric
distances (Fig. 1, two left-most pictures). Fig. 6 further

illustrates the complex structures that classes can take with
nonmetric distances. These examples illustrate our second
point: the difficulty in relying on decision boundaries when
dealing with nonmetric data.

Next, Fig. 7 shows a simple example illustrating our first
point: the potential value in looking at pairwise redundancy
in determining image interchangeability as representatives
of a class. In the top right, we show the Voronoi diagram,
using median distance for two clusters of points (i.e., each
point in the plane is labeled according to the cluster to
which its nearest neighbor belongs). One cluster, P, consists
of four points (labeled pi,ps,ps,ps in the upper left and
shown as black squares) all close together, both according to
median distance, and to Euclidean distance. The second
cluster, @, (labeled ¢, ... g5 in the upper left and shown as
black crosses), all have the same x coordinate, and so all are
separated by zero distance when using the median distance;
however, the points are divided into two subgroups in
feature space: ¢; and ¢; on top, and g3, g4, g5 on the bottom.

To characterize Q) well, it is important to pick representa-
tives from both the bottom group and the top group. To
illustrate this, the bottom lefthand figure shows the Voronoi

Fig. 7. Top: two clusters of labeled points (left) and their Voronoi diagram (right) using the median (min) distance. Bottom: the Voronoi diagram
resulting when only ¢; and ¢, represent class @ (left) and when ¢, and ¢; are chosen as representatives (right).
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diagram produced when werepresent () using g3 and g4, while
the bottom right figure shows the Voronoi diagram resulting
when we choose ¢, and g3. Clearly, the latter choice produces a
Voronoi diagram much more faithful to the true one.

Existing condensing algorithms cannot handle this
situation. First, every element of @) will correctly classify
all the other elements; no point will be preferable in this
regard. Second, ¢3,qs, and g5 are nearest to class P, and
would be judged boundary points. So, although cluster @ is
really split into two distinct groups, this is not directly
reflected in their distances to each other. However, one can
detect the two subgroups of cluster () in a natural way by
looking at the pairwise redundancy of elements of Q); for
example, although d(q1, ¢s) = 0, R(q1, g5) is small because the
distances from ¢; and g5 to the elements of P are quite
different. Notice in this example that ¢, has a big effect on
the Voronoi diagram even though it is not a boundary point
in the sense of being close to P. Such mishaps happen more
frequently in nonmetric spaces; in our example, even though
the distance from ¢, to P is fairly large, there are points in the
space that have zero distance to both ¢; and to elements of P.

In summary, by considering a 2D domain, we first see
that robust, nonmetric distances lead to rather odd,
nonintuitive decision boundaries between clusters. Second,
we see that for the median distance, the extent to which two
images have similar distances to other images can be a good
predictor of their interchangeability as class representatives,
much better than just the distance between them. We wish
to emphasize that while these results are illustrated in a 2D
domain, it should be clear that they extend to higher
dimensions as well. In fact, in higher-dimensional spaces
one can show that on average the median distance will be
less correlated with Euclidean distance.

3.2 Measuring Redundancy: Correlation vs.
Distance

We compare two methods of estimating redundancy: 1) the
distance between the two images; and 2) the correlation
between their distance vectors: {d(i1, k)|Vk € T, k # 1,42} and
{d(is, k)|Vk € T, k # i1,i2}, where T is the training set.
Starting with (2), we first discuss in Section 3.2.1 when
correlation is a good estimator of redundancy. Moving to
(1), we analyze the relation between distance and
redundancy for two specific examples: in Section 3.2.2, we
show that in Euclidean space, pairwise image distance
alone gives an excellent indication of redundancy; in
Section 3.2.3, we show a robust space where more reliable
results are obtained by using correlation to estimate
redundancy.

3.2.1 Correlation and Redundancy

Correlation predicts redundancy well when the distances
from one datapoint P to other datapoints in the training set
are sampled from the same distribution as the distances
from P to other datapoints in the test set. Thus, the use of
correlation as a measure of redundancy does not entail any
assumption about the nature of the distance function, but
requires that the statistical estimation is proper in that the
training set is large and representative enough. In other
words, correlation is a good estimator of redundancy for
distance functions whose corresponding graphs, or “pair-
wise representation,” are smooth enough to enable estima-
tion using the small available sample.

3.2.2 Euclidean Space: Distance Predicts Redundancy
From the definition of redundancy in Section 3.1.1, it can be
readily shown that the Euclidean distance between points
in the Euclidean plane is monotonically decreasing with
redundancy (i.e., closer points are more redundant). Thus,
in Euclidean space, distance is a good estimator of
redundancy. In fact, since this estimator is independent of
the sample training set, it is preferable over correlation.
More specifically, we can show the following:

Lemma 1. For three points iy, i9, i3 in Euclidean space, and
assuming data is sampled from the uniform distribution over a
compact subspace of Euclidean space,

d(ir,i2) < d(i1,i3) = R(i1,i2) > R(i1,143).

Proof. From the definition of redundancy in Section 3.1.1
and assuming a uniform prior, the redundancy between
two points iy, i;—R(i;, i2)—equals the volume of space
which includes all images i, where |d(i1,4) — d(i2,7)| < €.
(We neglect discrepancies due to boundary effects at the
boundaries of our compact subspace.) It immediately
follows (in Euclidean space) that redundancy is the
volume between the two surfaces of a hyperboloid sheet,
defined by d(i1,7) — d(iz, ) = e. All that remains to be
shown is that this volume monotonically decreases with
the distance between the points dyo = d(i1, i2).

Fig. 8 illustrates the situation in R?, clearly showing
that the delineating surfaces where |d(i1,7) — d(i2,7)| =€
are getting closer together—meaning decreased redun-
dancy—as the distance between the points increases. We
next outline a proof that this is always the case, which
completes the proof of the lemma. We work in R? for
simplicity of notations, although the proof readily
extends to any dimension R".

We first translate and rotate the plane so thati; = [0, %]
and iy = [ ,—d—éz}. When dys > 6,2 |d(22, [x,y(m D —
d(i1[z,y(z)])| = € defines a hyperbola y(z), whose two
vertices are at [0,5], and [0,—g. Denoting the two
hyperbolic curves passing respectively through the two
vertices by y; (x) and y»(x), we can show (by differentiation
with respect to djo) that y;(z) — y2(x) is monotonically
decreasing with di» at every point x # 0. At z =0 the
distance is ¢, independent of d,. O

In fact, we can show another interesting lemma (the
proof is omitted) which sheds more light on the connection
between distance and redundancy in the Euclidean space:

Lemma 2. For three points i1, is, i3 in the Euclidean space, and a
random point j sampled from a “reasonable” prior,

d(Zl,Zg) < d(ll,lg) —
Pr (|d(i1, §) — d(iz, j)| < |d(i1, ) — d(is, 5)]) > 3
That is, it is more likely that two points that are closer

together will have similar distances to a new point than two
points that are further apart.

2. When d; < ¢, redundancy is 1—all points have similar distances to
i y 9.
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Fig. 8. The two delineating curves, where |d(i1,%) — d(i2, )| =€, are
shown for three pairs of points i1,i, in R? located on the vertical axis
symmetrically around the origin. The most distant pair of points (in light
gray) are separated from each other by 6e: the points are marked with
circles, and their corresponding delineating curves are hyperbolas
shown as dashed lines. The second pair (in black) is separated by 2e:
the points are marked with crosses, and the delineating curves are
shown as solid lines. The closest pair (in dark gray) is separated by only
1.2¢: the points are marked with boxes, and the delineating curves are
shown as dotted lines.

3.2.3 Nonmetric Space: Distance and Redundancy

We have shown that in Euclidean space, when points are
closer together they must have higher redundancy. This
need not be true in nonmetric spaces as can be readily
shown by example, since almost anything can happen in

d(i,j) =25

d(i, j) = 15

arbitrary nonmetric spaces. We will demonstrate what
typically happens when using one nonmetric distance—the
2D min distance (a member of the family of median
distances). We demonstrate three characteristics of the
relation between distance and redundancy in this space:
1) pairs of points separated by the same distance can have
very different redundancy (which is not possible in
Euclidean space); 2) nevertheless, other factors being equal,
smaller distances typically lead to equal or greater
redundancy (as in Euclidean space); 3) empirically measur-
ing the redundancy using the distance between the two
points and other points is typically more reliable than
estimating redundancy solely from the distance separating
two points. We therefore conclude that in the absence of any
additional information, the k-median distance between two
points provides a useful clue to their redundancy; but when
other points are available they will provide valuable
additional information about redundancy.

Fig. 9 shows redundancy between different pairs of
points. Let ¢; and 4, denote two points, shown with a square
and a cross in the pictures; then each point ¢ in the plane is
shaded dark gray if |d(i1,4) — d(i2,7)| < ¢, and redundancy
is measured by the area of points shaded dark. We show
eight cases, arranged in four pairs where the min distance
between 14,4 is the same; but in the top picture the
difference in the z and y coordinates of i; and i is also the
same, while in the bottom picture the difference in the y
coordinate has been enlarged. This does not change the min
distance between i; and iy, which is based on only the
closest coordinates. In the four pairs of pictures we
gradually increase the distance between ¢, and i3, from
less than e (left) to greater than e (right).

First, by comparing the top and bottom pictures,
especially on the left, we can see that the redundancy
between ¢; and i, can vary dramatically, even when the
distance between them is held constant. At the same time,
in some cases, points separated by a larger distance can

d(i, §) = 45 d(i,j) = 65

Fig. 9. In each picture, two points are shown as a square and cross. The darkly shaded region shows all points such that the difference in the
distance from this point to the square and cross is less than ¢ = 30 pixels (image is 200 x 200). The min distance is used here. The min distance
between the cross and square varies between 15 (left) to 65 (right). For each distance, we show two pairs of points: The min distance between these
pairs is the same, but the difference in the other coordinate varies considerably—same in the first row, different in the second row.
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have smaller redundancy (compare the top picture with
distance 25 to the bottom picture with distance 15). This
effect is common with median distances since the distance
between two objects tells us only about one part of the
object and ignores other parts that can still affect the
distance to other objects. Thus, we have demonstrated point
1 above—pairs of points separated by the same distance can
have very different redundancy.

Next, we see that increasing the distance between i,
generally increases redundancy: in each row, as the distance
increases from left to right, the dark shaded area decreases
at the same time. In particular, increasing the distance
between points from less than e to greater than e can
dramatically affect the redundancy. In other cases, increas-
ing distance may lead to no increase in redundancy,
especially when distances are large relative to e. Thus, we
have demonstrated point 2) above—other factors being
equal, smaller distances typically lead to equal or greater
redundancy. Finally, we conclude point 3) from elementary
probability theory—if we have access to the distances from
i1 and ¢y to points randomly sampled in the plane, we can
estimate redundancy accurately.

4 COMPARISON OF ALGORITHMS

We now draw on these insights to produce concrete
methods for representing classes in nonmetric spaces, for
nearest-neighbor classification. In the following, we will
first describe four different condensing algorithms
(Section 4.1). In Section 4.2, we will describe a series of
simulations comparing the different algorithms under
various conditions. In Section 4.3, we will describe a
comparison of the different algorithms given a real data
set of classes of silhouettes.

4.1 Description of Algorithms

We compared the following four algorithms: the first two
algorithms, random selection and boundary enhancement,
represent old condensing ideas; the last two algorithms,
atypical selection and correlation cover, apply new ideas
discussed above for class representation in nonmetric
spaces. Each algorithm selects a representative set of
examples S of size Q..

In describing these algorithms, we use the word cover as
follows: Let P denote a class of images. For pi,p» € P, p;
covers po if and only if d(p1,p2) < d(p2,q),¥g ¢ P. That is,
choosing p; as a representative guarantees correct classifi-
cation of py. We say that a subset of P covers P when every
point in P is covered by some point in this subset. Note that
P always has a subset that covers it, since P trivially covers
itself. However, a useful cover only exists when the distance
function succeeds in ensuring that many points within the
same set are nearby relative to points in the other set. When
a compact covering set does not exist, that is strong
evidence that nearest-neighbor classification will be in-
effective. For example, if the full set P is the smallest set that
covers P then we would have 0 percent accuracy in using
nearest neighbors to classify each point in P using all the
remaining points.

Random selection. For every class C, compute S by
randomly (but without repetitions) choosing Q. exam-
ples from C.

An algorithm for the selection of class representation
is potentially useful only if it outperforms random
selection.

Boundary enhancement. For every class C, compute S as
follows:

1. compute an approximation to the minimal cover
of size < Q. using a greedy algorithm and

2. until size of S is Q., add boundary points which
are furthest from S.

This algorithm is described in detail in Appendix A.1.

Part 1 of this algorithm resembles the first iteration of
Dasarathy’s algorithm [8]; subsequent iterations were not
found by [8] to significantly affect the results. While
capturing the essence of most condensing algorithms which
look for class boundaries, our implementation ignores
important differences which address the issue of computa-
tional efficiency, since such differences are not relevant for
our purpose here.

Atypical selection. For every class C, compute S as follows:

1. compute an approximation to the minimal cover
of size < Q. using a greedy algorithm and

2. until the size of S is ()., add atypical points (not
necessarily on the boundary) which are furthest
from S.

This algorithm is described in detail in Appendix A.2.

This algorithm tests our second observation, that class
boundaries fail to capture important class structure and
that “atypical” points—which are far from the repre-
sentative set—should also be included in the class
representation.

Selection based on correlation. Following the ideas
discussed in Section 3, we compare datapoints by
measuring how well their vectors of distances are
correlated. More specifically, given two datapoints X, Y
and their corresponding distance vectors x,y € R",
where x is the vector of distances from X to all the
other training points and y is the vector of distances from
Y to all the other training points, we measure the
correlation between the datapoints using the statistical
correlation coefficient between x,y:

X He Y™ Iy

Oy oy

corr(X,Y) = corr(x,y) =

Above p,, p1, denote the mean of x,y respectively, and
0z, 0y denote the standard deviation of x, y, respectively.

We explored two ways of using correlation between
datapoints. Version 1 below is significantly less efficient
than the previous algorithms, since it requires the
computation of correlation between any two datapoints.
Version 2 only requires the computation of correlation
between any two datapoints within the same class. Since
both versions performed roughly the same in all our tests
on both simulated and real data, version 2 is our
preferred algorithm; in subsequent discussions, only
results with version 2 are shown.
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Version 1. Repeat the atypical selection algorithm as
described above, but whenever the distance between
two datapoints is used—use instead the correlation
between them.

Version 2. For every class C, compute S as follows: using a
greedy algorithm, choose Q. points that maximize Vx—a
combined measure of incremental cover and correlation
at each datapoint X.

Define Vx as Vx = (Nx + 1) I‘C%, where: Corry is
the maximal correlation of X with points in S, and Ny is
the number of not-yet-covered points which get covered
by X. While ad hoc, this measure combines two useful
criteria by favoring points that cover previously un-
covered points, while also favoring points that are
different from the currently selected points.

This algorithm is described in detail in Appendix A.3.

Note that this algorithm chooses representatives by
combining Nx, which measures how well each point
covers previously uncovered points in terms of dis-
tances, with 1 — Corry, which indicates how redundant
the point is with respect to previously chosen points.

4.2 Simulations
To compare the four algorithms described above, we
simulated data representing various conditions:

1. For simplicity, each datapoint was chosen to be a
vector in R7 or R?. Thirty clusters were randomly
chosen, each with 30 datapoints.

2. To study how the structure of the data affect the
performance of each algorithm, we simulated three
cases:

a. “Vanilla.” The points in each class form a small
cluster in the feature space. Specifically, the
center of each cluster is chosen randomly in
space, and the class members are chosen from a
spherical normal distribution around the chosen
center.

b. One outlier. The points in each class cluster
around a prototype, but many class members
vary widely in one dimension (which may be
different for the different class members).
Specifically, the center of each cluster is chosen
randomly in space, and the class members are
chosen from a spherical normal distribution; for
about half the points, however, one coordinate
(randomly chosen) takes an arbitrary value
totally different from the center value.

c. Irrelevant features. The points in each class
cluster around a prototype, but many class
members vary widely in a small number of
dimensions (less than half, and fixed for the
different class members). Specifically, the center
of each cluster is chosen randomly in space, and
the class members are chosen from one of two
normal distributions spread around the chosen
center: half the points are chosen from a
spherical normal distribution, and half the
points are chosen from an elongated elliptical
normal distribution.

In Case 2a above, robust distances are not really
required, whereas in Cases 2b and 2c robust
methods improve performance.

3.  We simulated four distance functions: Euclidean (¢),
fo.5, Yoo, and median. Note that the middle two are
nonmetric but bounded, i.e., the violation of the
triangle inequality is bounded by a constant scaling
factor independent of the size of the data (see
Appendix B), while the median distance can
arbitrarily violate the triangle inequality.

During the simulations, 1,000 test datapoints were
randomly chosen from a uniform distribution in R” and
R*. Each test datapoint was classified based on: 1) all the
data, 2) the representatives computed by each of the four
algorithms described in Section 4.1. For each algorithm, the
test is successful if the two methods (classification based on
all the data and based on the chosen representatives) give
the same results. Thus for each algorithm, we attach a score
of percent correct: the percentage of test datapoints that
scored success in this simulation block. We repeated each
block 20 times (each with a different training set), to gather
statistics on the variability in the percent correct value
(mean and standard deviation).

Fig. 10 summarizes representative results of some of our
simulations. Note that our test data comes from a different
distribution than the training set. By using uniformly
distributed test data, we estimate the volume of the
difference in the voronoi diagrams produced by the
complete set and the representative subset.

4.3 Test with Real Data

To test our method with real images, we used the local
curve matching algorithm described in [11]. This curve
matching algorithm was designed to compare curves which
may be quite different, and return the distance between
them. The steps of the algorithm include: 1) the automatic
extraction of feature points with relatively high curvature
and 2) feature matching using dynamic programming and
efficient alignment; the final distance is the median of the
interfeature distances. Thus, this algorithm is nonmetric,
due to both the somewhat arbitrary selection of features and
the final median step.

In our test, we used two classes with 30 images each. The
first set included images of two similar cars from different
points of view. The second set included images of a cow
from different points of view, including partially occluded
images. Two of the original images are shown in Fig. 11d. A
few contours from the cow class, which were automatically
extracted, are shown in Fig. 11a, while contours from the car
class are shown in Fig. 11b. 30 images were used as test
images; contours extracted from these images are shown in
Fig. 11c. These test images are also cow contours: some
were obtained from different viewpoints of the same cow,
and some from the same viewpoints with more occlusion.

We used the four algorithms described in Section 4.1 to
compute representative sets of five and seven contours for
each class. We then compared the classification of the test
data based on these representatives, to the classification
obtained using all the data. Results (percent correct scores)
are shown in Fig. 12.
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Fig. 10. Simulation results, with data chosen from R (left column) and R (right column). Plotted are the values of percent correct scores, as well as
error bars giving the standard deviation calculated over 20 repetitions of each experiment. Each graph contains a histogram composed of four
groups of four bars: each group gives the percent correct score for each of the different distance functions used here: median, ¢, 45, and ¢y; for
each group (distance function) we plot four bars for each of the four algorithms described in Section 4.1 (from left to right): random selection,
boundary enhancement, atypical selection, and selection based on correlation. (a) “Vanilla” case, (b) one outlier, and (c) irrelevant features (see

text).

4.4 Discussion

In all our experiments using simulated and real data
(Figs. 10b, 10c, and 12), the correlation-based algorithm
performs significantly better than any other algorithm with
any of the nonmetric distance functions; given the Eu-
clidean distance, its performance is similar (or slightly, but
significantly, better) as compared to the boundary and
atypicals methods. Interestingly, the boundary method
performs significantly worse than a random selection of
representatives with the median distance and the /4y,
distance.

In Fig. 10a, which represents the “vanilla” case where the
data lacks any “interesting” structure and where a class is
just a clump of entities which are truly close to each other
and well-separated from other classes, all the methods are
comparable in performance. In this case, there is no need to
use a nonmetric distance. Occasionally, especially with the

Euclidean distance, the random selection performs signifi-
cantly worse than the other methods, although its score is
not much lower (and the difference may not be worth the
additional effort).

4.5 Summary

Our results clearly demonstrate an advantage to our
method over existing methods in the classification of data
in nonmetric spaces. Almost as important, in metric spaces
(fourth column in Figs. 10a-c) or when the classes lack any
“interesting” structure (Fig. 10a), our method is not worse
than any existing method. Thus, it should be generally used
when the nature of the data and the distance function is not
known a priori. Note that although the random method
sometimes performs as well as the other methods, it does
not provide any criteria as to how many points should be
selected for the representative set. This is a rather important
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Fig. 11. Real data used to test the four algorithms: (a) Twelve examples from the first class of 30 cow contours, (b) 12 examples from the second
class of 30 car contours, (c) 12 examples from the set of 30 test contours, and (d) 2 examples of the real images from which the contours in (a) were

obtained.

hidden advantage of the three principled methods over the
random method.

5 EXTENSION: PARAMETRIC METHODS

We now consider the extension of parametric methods to
vectorial data described by nonmetric distances. Some of
the simplest and most popular parametric methods seek a
hyperplane that best separates two classes; yet Fig. 1 tells us
that linear discriminants and hyperplane separators are
problematic and ill-defined in robust nonmetric vector
spaces. We note, however, that using a linear discriminant
in Euclidean space is equivalent to performing nearest-
neighbor classification with respect to two points (i.e., the
two prototypical examples representing each class), where
the separating hyperplane is perpendicular to the line
connecting these two points and located midway between
them. Thus, the most obvious generalization of linear
discrimination to nonmetric spaces is via the use of
prototypical examples and nearest-neighbor classification
(or networks of Radial Basis Functions).

More specifically, we seek a prototype instance of each
class and perform nearest-neighbor classification using

= N
e
g
= 70 -
Q@
<4
@
= correlation
atypical -------
boundary ------
50 F random —— |

5 reps 7 reps

Fig. 12. Results with real data: Two histograms of four bars show the
percent correct score for each of the four algorithms described in
Section 4.1: random selection (where standard deviation of perfor-
mance is also plotted), boundary enhancement, atypical selection, and
selection based on correlation. The number of representatives chosen
by the algorithm was limited to five (left histogram) and seven (right
histogram).

these prototypes, and using the distance function that is
appropriate to the space. Optimal prototypes are defined as
points in the vector space such that nearest-neighbor
classification according to the given distance produces
correct classification of the training set. Unfortunately,
finding the optimal prototypes for most distance functions,
including the median, is prohibitively computationally
demanding. In other words, an exponential search may be
needed to guarantee prototype optimality. It may be fruitful
in the future to approach this problem by using heuristic
methods to find good, though suboptimal, prototypes.

A simpler approach is to represent each class by its
generalized “centroid.” In the Euclidean space, the centroid
(or mean) is the point § whose sum of squared distances to
all the class members {¢;}\;, measured by

Uid(@ 4),
i

is minimized. Suppose now that our data comes from a
vector space where the correct distance is the ¢, distance
from (1). With the natural extension of the above definition,
we use the following lemma to generalize the concept of
centroid to nonmetric ¢, spaces:

Definition 2. For a set of points in ¢, the point g which obtains
the minimal sum of distances to all the set members

B ;,/id@, @) (3)

is the generalized centroid of the set.

Lemma 3. For p < 1 (the nonmetric cases), the exact value of
every feature of the generalized centroid g must have already
appeared in at least one element in the class, i.e., V j 34 such
that @ = g/ (see [9] for a related result).

Proof.
1. Since the function f(z) = 2P is monotonic, the

minimum of F in (3) is obtained for the same g as
the minimum of E?:
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TABLE 1
Results Showing How Often Members of a Class (from Five Arbitrary Classes in the
Corel Database) Are Closer to Their Own Class Prototype Than to Other Prototypes

Euclidean prototype | £y.5 prototype
(mean) (sparsc)
ly.5 distance 68% 80%
Euclidean distance 72% 73%

Each image is represented by a vector of 11 features (following[7]). Each row corresponds to a different distance function used to match images with
prototypes: the metric Euclidean and the nonmetric ¢,; (used in [7]). Each column corresponds to a different method used to compute class
prototypes: the features’ mean, which is the Euclidean prototype, and the ¢, ; sparse prototype computed as described in Lemma 3.

E' = Z d(@ %)p
n d (4)

> Dol -4l = ZZIq

1 =1

2. Since E? in (4) is separable in the features, the
minimum can be computed for each feature ¢’
separately by minimizing £

E(q Z @ —qll". ®)

3. Ej(¢’) is a function of one variable, continuous
and piecewise differential. Assume w.l.o.g. that
the features are ordered so that ¢} < ¢} < ... < ¢/;
then E” (¢’) is continuous and dlfferentlal in every
segrnent (¢/,q.,). Let us compute its second
derivative inside the ith segment:

CE (- plp—1)
d(@)* ql*"
where the sum is negative for p < 1 because each
of its components is negative. This shows that
E}(@) is concave within every segment for
0< p < 1; thus it can only obtain a local max-
imum within the segment, and local minima can
only be obtained at the boundary points ¢/, ¢/ 1
4. Every point 7 = ¢ for some i is indeed a local
minimum. To see this, note that the jth compo-
nent of the first derivative of the sum in (5) goes
to infinity as ¢/ approaches ¢ from above, and to
negative infinity when § approaches ¢/ from
below. Therefore, this term dominates the deri-
vative, so pushing ¢/ towards ¢ decreases the
sum.

; <0,
=@ -

Thus, in order to find the vector of feature values ¢ which
globally minimizes (3), we need only search among the set
of existing feature values: {¢/},_, for every j separately. O

Corollary 1. The wvalues of the elements of the generalized
centroid can be determined separately with complexity O(n?)
or less (less for p =1, where the median feature obtains the
minimum), and total complexity of O(dn?) given d features. q
is therefore determined by a mixture of up to d exemplars,
where d is the dimension of the vector space.

The corollary implies that there are efficient algorithms for
finding the generalized “centroid” of a class, even using
certain nonmetric distances. Moreover, the point which
replaces the centroid in ¢, spaces for p < 1 contains values
from at most d datapoints, which means that the repre-
sentation is “sparse”—a desirable property for data
compression.

We now use this result with a concrete example to
compute prototypes for the corel database, a large com-
mercial database of images prelabeled by different cate-
gories (such as “lions”), where nonmetric distance functions
have proven effective in determining the similarity of
images [7]. The corel database is very large, making the use
of prototypes desirable.

We represent each image using a vector of 11 features
(thus, d = 11) describing general image properties, such as
color histograms, as described in [7]. We consider the
Euclidean and /4,5 distances, and their corresponding
prototypes: the Euclidean mean and the /js-prototype
computed according to Lemma 3. Given the first five
classes, each containing 100 images, we found their
corresponding prototypes; we then computed the percen-
tage of images in each class which are closest to their own
prototype, using either the Euclidean or the {5 distance
and one of the two prototypes. The results are given in
Table 1, showing that indeed best performance is obtained
with the nonmetric 45 distance and the corresponding ¢ 5
generalized centroid used as class prototype (computed as
described in Lemma 3).

Another important distance function is the generalized
Hamming distance: given two vectors of features, their
distance is the number of features which are different in the
two vectors. This distance was assumed to underlie human
perception in psychophysical experiments which used
artificial objects (Fribbles) to investigate human categoriza-
tion and object recognition [42]. In agreement with experi-
mental results, the prototype g for this distance computed
according to the definition above is the vector of “modal”
features—the most common feature value computed in-
dependently at each feature.

6 DISCUSSION

It is an interesting question as to how such nonmetric
parametric classifiers compare to other parametric methods,
such as Support Vector Machines [6]. This is a problem of
large scope, so we will make only some preliminary
comments. We focus in this paper on classification using
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data items that contain outliers and have missing elements,
where robust distances like the k-median are appropriate.
In this case, a single object can produce an infinite number
of images, each containing some core number of elements in
common, and other elements that can vary arbitrarily. A
limited number of images does not accurately delineate the
entire set of possible images. It is therefore difficult to
expect standard parametric classification methods to fit any
surface (such as a linear separator) to the existing data and
use this surface to extrapolate to new data. This is because
any new image may be very far (in Euclidean distance)
from every previously seen image. However, when we use
a robust, nonmetric distance, we are making explicit
important domain specific knowledge. For example, using
a median distance can allow us to trivially extrapolate to
many new images, correctly ignoring outliers and spurious
data. From very few samples, we may build a classifier that
correctly classifies test items that are very different in
Euclidean space, but very similar with the appropriate
nonmetric distance. However, the general effectiveness of
any of these methods will depend greatly on the specific
domain and task.

7 CONCLUSIONS

We feel that our paper makes two main contributions. First,
we reassessed the relevance of existing supervised classi-
fication techniques to application-based and human-like
classification. We argued that classification systems that can
model human performance, or use robust matching
methods that are typically used in successful applications,
make use of similarity judgments that are nonmetric, and in
particular, do not obey the triangle inequality. In this case,
most existing pattern recognition techniques are not
relevant. Exemplar-based methods, however, can be ap-
plied naturally when using a wide class of nonmetric
similarity functions. The key issue, however, in applying
exemplar-based methods in such settings is to find methods
for choosing good representatives of a class, that accurately
characterize it.

We then focused on developing techniques for solving
this problem, emphasizing two points: First, we showed
that the distance between two images is not a good measure
of how well one image can represent another in nonmetric
spaces. Instead, we suggested considering the correlation
between the distances from each image to other previously
seen images. Second, we showed that in nonmetric spaces,
boundary points are less significant for capturing the
structure of a class than they are in the Euclidean space.
We suggested that atypical points may be more important
in describing classes. We demonstrated the importance of
these ideas in greatly improving classification results using
both synthetic and real images.

Finally, we have suggested ways of applying parametric
techniques to supervised learning problems that involve a
specific, nonmetric distance function. We have shown how
to generalize the idea of linear discriminant functions in a
way that may be more useful in nonmetric spaces. And we
have shown a “proof-of-concept” for classification using the
centroid of a class as determined by the specific distance,
with ¢, distances for p < 1.

APPENDIX A

DETAILED DESCRIPTION OF CONDENSING
ALGORITHMS

A.1 Boundary Enhancement
For every class C, compute its representative set of examples

S of size @), using the following algorithm:

1. compute cover
(0) Initialization:
set of representative examples S is empty
set of examples which are incorrectly
classified A «— C
(1) For every datapoint ¢ in C\ S, compute N.—the
number of points in A closer to ¢ than to any point
in any other class (i.e., the number of points
covered by c).
(2) Find ¢ with the largest value of N, over all
c € C\ S. Let T; denote the group of points
in A closer to ¢ than to other classes (i.e., the
points covered by ¢).
(3) update:
S —Su{ect
<= while size of S is smaller than Q. and A not
empty, return to (1)

2. Add boundary points: while size of S is smaller than

Q., repeat:

(1) Vc € C, compute
D.—the distance of c to the nearest datapoint
in another class
d.—the distance of ¢ to the nearest datapoint
in the representative set S
Ac=d.— D,

(2) Find ¢ which produces the largest A, over all

cel.

(3) update:

S—Su{c}

A.2 Atypical Selection
For every class C, compute its representative set of examples

S of size Q,, using the following algorithm:

1. compute cover, same as described in A.1 for the
boundary algorithm.
2. Add atypical points: while size of S is smaller than
Q., repeat:
(1) Ve € C\ S, compute
d.—the distance of ¢ to the nearest datapoint
in the representative set S
(2) Find ¢ which obtains the largest d. over all
ceC\S.
(3) update:
S—Su{e}

A.3 Selection Based on Correlation
For every class C, compute its representative set of examples

S of size Q., using the following algorithm:
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(0) Initialization:
set of representative examples S is empty
set of examples which are incorrectly classified
A—C
(1) For every datapoint ¢ in C \ S, compute
N.—the number of points in A closer to ¢ than to
any point in any other class
Corr.—the maximal correlation of ¢ with
points in S
Ve ::(Dﬂt+'1)'l:%;ﬂl
(2) Find ¢ which obtains the largest V, over all c € C\ S. Let
T: denote the group of points in A closer to ¢ than to
other classes (i.e., the points covered by ¢).
(3) update:
A— A\T;
S—Su{e}
<= while size of S is smaller than (). and V. > t for some
threshold t, return to (1).

APPENDIX B

A BOUNDED TRIANGLE INEQUALITY FOR NONmetric
¢, DISTANCES

It is known that for p < 1, the p-distance defined in (1) does
not satisfy the triangle inequality: given three points
q,G2,93 € R", d(q1,43) > d(q1,q2) + d(ge, g3). More specifi-
cally, let x denote the vector connecting ¢;, g2, and y denote

the vector connecting g3, g3; then

n % n % n %
(z |xi+yi|p) . (z w) +(z w) |
1 1 1

We will now show that there exists x > 1 such that the -

bounded triangle inequality is satisfied:

d(q1,93) < k(d(q1, q2) + d(q2,¢3));

more specifically,

(Zl +yz'l”>%s ((D) (>wr) ) ©

First, from the concavity of f(t) =t” for p < 1, and for

a,b>0:

(a” + ) < (a+b)’ < aP + b,

21—p

where the first inequality follows from WW) < (4P, Let

then

((Z W) (Zw) ) (a+b)
> @ ) = o (Z il +3 ym)
— ey (w + |y>

Thus, (6) holds with k = 2]1_1 Furthermore, this inequality
cannot be improved; a worst case, for which equality is
obtained, is the case where n is assumed even, x is the
vector whose even components are 1 and the odd ones are
0, and y is the vector whose odd components are 0 and the
even ones are 1.

Note that the smaller p is the larger the bound « is, and
the further from metric the corresponding p-distance is.
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