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Abstract
Image retrieval critically relies on the distance functionused to
compare a query image to images in the database. We suggest
to learn such distance functions by training binary classifiers with
margins, where the classifiers are defined over the product space of
pairs of images. The classifiers are trained to distinguish between
pairs in which the images are from the same class and pairs which
contain images from different classes. The signed margin isused
as a distance function. We explore several variants of this idea,
based on using SVM and Boosting algorithms as product space
classifiers. Our main contribution is a distance learning method
which combines boosting hypotheses over the product space with
a weak learner based on partitioning the original feature space.
The weak learner used is a Gaussian mixture model computed us-
ing a constrained EM algorithm, where the constraints are equiv-
alence constraints on pairs of data points. This approach allows
us to incorporate unlabeled data into the training process.Us-
ing some benchmark databases from the UCI repository, we show
that our margin based methods significantly outperform existing
metric learning methods, which are based on learning a Maha-
lanobis distance. We then show comparative results of imagere-
trieval in a distributed learning paradigm, using two databases: a
large database of facial images (YaleB), and a database of natu-
ral images taken from a commercial CD. In both cases our GMM
based boosting method outperforms all other methods, and its gen-
eralization to unseen classes is superior.

1. Introduction
Image retrieval is often done by computing the distance
from a query image to images in the database, followed by
the retrieval of nearest neighbors. The retrieval performance
mainly depends on two related components: the image rep-
resentation, and the distance function used. Given a specific
image representation, the quality of the distance function
used is the main key to a successful system.1. In this paper
we focus on learning ’good’ distance functions, that will
improve the performance of content based image retrieval.
The quality of an image retrieval system also depends on its
ability to adapt to the intentions of the user as in relevance

1A distance function is a function from pairs of datapoints tothe posi-
tive real numbers, usually (but not necessarily) symmetricwith respect to
its arguments. We do not require that the triangle inequality holds, and
thus our distance functions arenotnecessarily metrics.

feedback methods [1]. Learning distance functions can be
useful in this context for training user dependent distance
functions.

Formally, letX denote the original data space, and as-
sume that the data is sampled fromM discrete labels whereM is large and unknown. Our goal is to learn a distance
functionf : X �X ! [0; 1℄. In order to learn such a func-
tion, we pose a related binary classification problem over
product space, and solve it using margin based classifica-
tion techniques. The binary problem is the problem of dis-
tinguishing between pairs of points that belong to the same
class and pairs of points that belong to different classes.2 If
we label pairs of points from the same class by0 and pairs
of points belonging to different classes by1, we can then
view the classifier’s margin as the required distance func-
tion.

The training data we consider is composed of binary
labels on points inX � X . The labels describe equiva-
lence constraints between datapoints in the original spaceX . Equivalence constraints are relations between pairs of
datapoints, which indicate whether the point in the pair be-
long to the same category or not. We term a constraint ’pos-
itive’ when the points are known to be from the same class,
and ’negative’ in the opposite case. Such constraints carry
lessinformation than explicit labels of the original images
in X , since clearly equivalence constraints can be obtained
from M explicit labels on points inX , but not vice versa.
More importantly, we observe that equivalence constraints
are easier to obtain, especially when the image database is
very large and contains a large number of categories without
pre-defined names.

To understand this observation, ask yourself how can
you obtain training data for a large facial images database?
You may ask a single person to label the images, but as the
size of the database grows this quickly becomes impracti-
cal. Another approach is thedistributed learningapproach
[9]: divide the data into small subsets of images and ask a

2Note that this problem is closely related to the multi class classifica-
tion problem: if we can correctly generate a binary partition of the data in
product space, we implicitly define a multi-class classifierin the original
vector spaceX .The relations between the learnability of these two prob-
lems is discussed in [4].
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number of people to label each subset. Note that you are
still left with the problem of coordinating the labels pro-
vided by each of the labellers, since these are arbitrary. To
illustrate the arbitrariness of tags, imagine a database con-
taining all existing police facial images. While in one folder
all the pictures of a certain individual may be called ’Insur-
ance Fraud 205’, different pictures of the same individual
in another folder may be called ’Terrorist A’. In this dis-
tributed scenario, full labels are hard to obtain, but ’local’
equivalence information can be easily gathered.3

Learning binary functions with margins over an input
space is a well studied problem in the machine learning
literature. We have explored two popular and powerful
classifiers which incorporate margins: support vector ma-
chines (SVM’s) and boosting algorithms. However, exper-
iments with several SVM variants and Boosting decision
trees (C4.5) have led us to recognize that the specific classi-
fication problem we are interested in has some unique fea-
tures which require special treatment.

1. The product space binary function we wish to learn has
some unique structure which may lead to ’unnatural’
partitions of the space between the labels. The con-
cept we learn is an indicator of an equivalence relation
over the original space. Thus the properties of transi-
tivity and symmetry of the relation place geometrical
constraints on the binary hypothesis. Obviously,
traditional families of hypotheses, such as linear sepa-
rators or decision trees, are not limited to equivalence
relation indicators, and it’s not easy to enforce the con-
straints when such classifiers are used.

2. In the learning setting we have described above, we are
provided withN datapoints inX and with equivalence
constraints (or labels in product space) over some pairs
of points in our data. We assume that the number of
equivalence constraints provided is much smaller than
the total number of equivalence constraintsO(N2).
We therefore have access to large amounts of unlabeled
data, and hence semi-supervised learning seems an at-
tractive option. However, classical SVM and boosting
methods are trained using labeled data only.

These considerations led us to the development of the
DistBoostalgorithm, which is our main contribution in this
paper.DistBoostis a distance learning algorithm which at-
tempts to address all of the issues discussed above. It learns
a distance function which is based on boosting binary clas-
sifiers with a confidence interval in product space, using a

3Inconsistencies which arise due to different definitions ofdistinct cat-
egories by different teachers are more fundamental, and arenot addressed
in this paper. Another way to solve the problem of tag arbitrariness is to
use pre-defined category names, like letters or digits. Unfortunately this
is not always possible, especially when the number of categories in the
database is large and the specific categories are unknown apriori.

weak learner that learns in theoriginal feature space (and
not in product space). We suggest a boosting scheme that
incorporates unlabeled data points. These unlabeled points
provide a density prior, and their weights rapidly decay dur-
ing the boosting process. The weak learner we use is based
on a constrained EM algorithm, which computes a Gaussian
mixture model, and hence provides a partition of the orig-
inal space. The constrained EM procedure uses unlabeled
data and equivalence constraints to find a Gaussian mixture
that complies with them. A product space hypothesis is then
formed based on the computed partition.

There has been little work on learning distance functions
in the machine learning literature. Most of this work has
been restricted to learning Mahalanobis distance functions
of the form(x�y)TA(x�y). The use of labels for the com-
putation of the weight matrixA has been discussed in [10];
the computation ofA from equivalence constraints was dis-
cussed in [17, 13]. Yianilos [18] has proposed to fit a gener-
ative Gaussian mixture model to the data, and use the prob-
ability that two points were generated by the same source
as a measure of the distance between them. Schemes for
incorporating unlabeled data into the boosting process were
introduced by Ambroise et. al [5, 19]. We discuss the rela-
tion between these schemes and ourDistBoostalgorithm in
Section 3.

We have experimented with theDistBoostalgorithm as
well as other margin based distance learning algorithms,
and compared them to perviously suggested methods which
are based on Mahalanobis metric learning. We used several
datasets from the UCI repository [15], the yaleB facial im-
age dataset, and a dataset of natural images obtained from
a commercial image CD. The results clearly indicate that
our margin based distance functions provide much better re-
trieval results than all other distance learning methods. Fur-
thermore, on all these datasets theDistBoostmethod outper-
forms all other methods, including our earlier margin based
methods which use state of the art binary classifiers.

2. Learning in the product space using
traditional classifiers

We have tried to solve the distance learning problem over
the product space using two of the most powerful margin
based classifiers. The first is a support vector machine, that
tries to find a linear separator between the data examples
in a high dimensional feature space. The second is the Ad-
aBoost algorithm, where the weak hypotheses are decision
trees learnt using the C4.5 algorithm. Both algorithms had
to be slightly adapted to the task of product space learning,
and we have empirically tested possible adaptations using
data sets from the UCI repository. Specifically, we had to
deal with the following technical issues:� Product space representation: A pair of original space
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points must be converted into a single which represents
this pair in the product space. The simplest represen-
tation is the concatenation of the two points. Another
intuitive representation is the concatenation of the sum
and difference vectors of the two points. Our empirical
tests indicated that while the SVM works better with
the first representation, the C4.5 boosting achieves its
best performance with the ’sum and difference’ repre-
sentation.� Enforcing symmetry: If we want to learn a symmet-
ric distance function satisfyingd(x; y) = d(y; x), we
have to explicitly enforce this property. With the first
representation this can be done simply by doubling
the number of training points, introducing each con-
strained pair twice: as the point[x; y℄ and as the point[y; x℄. In this setting the SVM algorithm finds the
global optimum of a symmetric Lagrangian and the so-
lution is guaranteed to be symmetric. With the second
representation we found that modifying the representa-
tion to be symmetrically invariant gave the best results.
Specifically, we represent a pair of pointsx; y using the
vector[x + y; sign(x1 � y1) � (x � y)℄, wherex1; y1
are the first coordinates of the points.� Preprocessing transformation in the original space: We
considered two possible linear transformation of the
data before creating the product space points: the
whitening transformation, and the RCA transforma-
tion [9] which uses positive equivalence constraints. In
general we found that pre-processing with RCA was
most beneficial for both the SVM and C4.5 boosting
algorithms.� Parameter tuning: for the SVM we used the polyno-
mial kernel of order 4, and a trade-off constant of 1 be-
tween error and margin. The boosting algorithm was
run for 50 rounds, and the decision trees were built
with a stopping criterion of train error smaller than
0.05 in each leaf.

These design issues were decided based on the performance
over the UCI datasets, and all settings remained fixed for all
further experiments.

3. Boosting original space partitions
using DistBoost

OurDistBoostalgorithm builds distance functions based on
the weighted majority vote of a set of original space soft
partitions. The weak learner’s task in this framework is to
find plausible partitions of the space, which comply with the
given equivalence constraints. In this task, unlabeled data
can be of considerable help, as it allows to define a prior on
what are ’plausible partitions’. In order to incorporate the

unlabeled data into the boosting process, we augmented an
existing boosting version. The details of this augmentation
are presented in Section 3.1. The details of our weak learner
are presented in Section 3.2.

3.1. Semi supervised boosting in product space
Our boosting scheme is an extension of the Adaboost al-
gorithm with confidence intervals [11] to handle unsuper-
vised data points. As in Adaboost, we use the boosting pro-
cess to maximize the margins of the labeled points. The
unlabeled points only provide a decaying density prior for
the weak learner. The algorithm we use is sketched in
Fig. 1. Given a partially labeled datasetf(xi; yi)gNi=1 whereyi 2 f1;�1; �g, the algorithm searches for a hypothesisf(x) = kPi=1�kh(x) which minimizes the following loss

function: Xfijyi=1;�1g exp(�yif(xi)) (1)

Algorithm 1 Boosting with unlabeled data

Given(x1; y1); :::; (xn; yn); xi 2 X ; yi 2 f�1; 1; �g
InitializeD1(i) = 1=n i = 1; ::; n
For t = 1; ::; T

1. Train weak learner using distributionDt
2. Get weak hypothesisht : X ! [�1; 1℄ withrt =Pni=1Dt(i)ht(i) > 0.

If no such hypothesis can be found, terminate the loop
and setT = t.

3. Choose�t = 12 ln( 1+r1�r )
4. Update:Dt+1(i) = � Dt(i) exp(��tyiht(xi)) yi 2 f�1; 1gDt(i) exp(��t) yi = �
5. Normalize:Dt+1(i) = Dt+1(i)=Zt+1

whereZt+1 =Pni=1Dt+1(i)
6. Output the final hypothesisf(x) =PTt=1 �tht(x)
Note that the unlabeled points do not contribute to the

minimization objective of the product space boosting in (1).
Rather, at each boosting round they are given to the weak
learner and supply it with some (hopefully useful) informa-
tion regarding the domain density. The unlabeled points ef-
fectively constrain the search space during the weak learner
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estimation, giving priority to hypotheses which both com-
ply with the pairwise constraints and with the density in-
formation. Since the weak learner’s task becomes harder
in later boosting rounds, the boosting algorithm slowly re-
duces the weight of the unlabeled points given to the weak
learner. This is accomplished in step 4 of the algorithm (see
Fig. 1).

In product space there areO(N2) unlabeled points,
which correspond to all the possible pairs of original points,
and the number of weights is thereforeO(N2). However,
the update rules for the weight of each unlabeled point are
identical, and so all the unlabeled points can share the same
weight. Hence the number of updates we effectively do in
each round is proportional to the number of labeled pairs
only. The weight of the unlabeled pairs is guaranteed to de-
cay at least as fast as the weight of any labeled pair. This
immediately follows from the update rule in step 4 of the
algorithm (Fig. 1), as each unlabeled pair is treated as a la-
beled pair with maximal margin of 1.

We note in passing that it is possible to incorporate un-
labeled data into the boosting process itself, as has been
suggested in [5, 19]. Their idea was to extend the margin
concept to unlabeled data points. The algorithm then tries to
minimize the total (both labeled and unlabeled) margin cost.
The problem with this framework is that a hypothesis can
be very certain about the classification of unlabeled points,
and hence have large margins, even when it classifies these
points incorrectly. Indeed, we have empirically tested some
variants of these algorithms and found poor generalization
performance in our context.

3.2. Mixtures of Gaussians as product space
weak hypotheses

The weak learner inDistBoostis based on the constrained
EM algorithm presented in [9]. This algorithm learns a mix-
ture of Gaussians over the original data space, using unla-
beled data and a set of positive and negative constraints. In
this section we briefly review the basic algorithm, and then
show how it can be extended to incorporate weights on sam-
ple data points. We describe how to translate the boosting
weights from product space points to original data points,
and how to generate a product space hypothesis from the
soft partition found by the EM algorithm.

A Gaussian mixture model (GMM) is a parametric sta-
tistical model which assumes that the data originates from a
weighted sum of several Gaussian sources. More formally,
a GMM is given byp(xj�) = �Ml=1�lp(xj�l), where�l de-
notes the weight of each Gaussian,�l its respective parame-
ters, andM denotes the number of Gaussian sources in the
GMM. EM is a widely used method for estimating the pa-
rameter set of the model (�) using unlabeled data [6]. In
the constrained EM algorithmequivalence constraintsare
introduced into the ’E’ (Expectation) step, such that the ex-

pectation is taken only over assignments which comply with
the given constraints (instead of summing overall possible
assignments of data points to sources).

Assume we are given a set of unlabeled i.i.d. sampled
pointsX = fxigNi=1, and a set of pairwise constraints over
these points
. Denote the index pairs of positively con-
strained points byf(p1j ; p2j )gNpj=1 and the index pairs of neg-

atively constrained points byf(n1k; n2k)gNnk=1. The GMM
model contains a set of discrete hidden variablesH , where
the Gaussian source of pointxi is determined by the hid-
den variablehi. The constrained EM algorithm assumes
the following joint distribution of the observablesX and
the hiddensH :p(X;H j�;
) = (2)1Z n�i=1�hip(xij�hi) Np�j=1 Æhp1j hp2j Nn�k=1(1� Æhn1j hn2j )
The algorithm seeks to maximize the data likelihood, which
is the marginal distribution of (2) with respect toH .

The equivalence constraints create complex dependen-
cies between the hidden variables of different data points.
However, the joint distribution can be expressed using a
Markov network, as seen in Fig. 1. In the ’E’ step of
the algorithm the probabilitiesp(hijX;�;
) are computed
by applying a standard inference algorithm to the network.
Such an inference is feasible if the number of negative con-
straints isO(N), and the network is sparsely connected.
The model parameters are then updated based on the com-
puted probabilities. The update of the Gaussian parame-
tersf�lg can be done in closed form, using rules similar
to the standard EM update rules. The update of the cluster
weightsf�lgMl=1 is more complicated, since these param-
eters appear in the normalization constantZ in (2), and it
requires a gradient descent procedure. The algorithm finds
a local maximum of the likelihood, but the partition found
is not guaranteed to satisfy any specific constraint. How-
ever, since the boosting procedure increases the weights of
points which belong to unsatisfied equivalence constraints,
it is most likely that any constraint will be satisfied in some
partitions.

We have incorporated weights into the constrained EM
procedure according to the following semantics: The algo-
rithm is presented with a virtual sample of sizeNv. A train-
ing pointxi with weightwi appearswiNv times in this sam-
ple. All the repeated tokens of the same point are consid-
ered to be positively constrained, and are therefore assigned
to the same source in every evaluation in the ’E’ step. In all
of our experiments we have setNv to be the actual sample
size.

While the weak learner accepts a distribution over origi-
nal space points, the boosting process described in 3.1 gen-
erates a distribution over the sample product space in each
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Figure 1:A Markov network representation of the constrained mixture
setting. Each observable data node has a discrete hidden node as a father.
Positively constrained nodes have the same hidden node as father. Neg-
ative constraints are expressed using edges between the hidden nodes of
negatively constrained points.Here points 2,3,4 are knownto be together,
and point 1 is known to be from a different class.

round. The product space distribution is converted to a dis-
tribution over the sample points by simple summation. De-
noting bywpij the weight of pair(i; j), the weightwsi of
point i is defined to bewsi =Xj wpij (3)

In each round, the mixture model computed by the con-
strained EM is used to build a binary function over the prod-
uct space and a confidence measure. We first derive a par-
tition of the data from the Maximum A Posteriori (MAP)
assignment of points. A binary product space hypothesis is
then defined by giving the value1 to pairs of points from
the same Gaussian source, and�1 to pairs of points from
different sources. This value determines the sign of the hy-
pothesis output.

This setting further supports a natural confidence mea-
sure - the probability of the pair’s MAP assignment which
is: maxi p(h1 = ijx1;�) �maxi p(h2 = ijx2;�)
whereh1; h2 are the hidden variables attached to the two
points. The weak hypothesis output is the signed confi-
dence measure in[�1; 1℄, and so the weak hypothesis can
be viewed as a ’weak distance function’.

4. Learning distance functions: com-
parative results

In this section we compare ourDistBoostalgorithm with
other distance learning techniques, including our two other
proposed methods for learning in product space (SVM and
boosting decision trees). We begin by introducing our ex-
perimental setup. We then show results on several datasets
from the UCI repository, which serve as benchmark to eval-
uate the different distance learning methods.

4.1. Experimental setup
Gathering equivalence constraints: we simulated adis-
tributed learningscenario [9], where labels are provided by

a number of uncoordinated independent teachers. Accord-
ingly, we randomly chose small subsets of data points from
the dataset and partitioned each of the subsets into equiva-
lence classes.

The size of each subsetk in these experiments was cho-
sen to be2M , whereM is the number of classes in the data.
In each experiment we usedl subsets, and the amount of
partial information was controlled by theconstraint indexP = k � l; this index measures the amount of points which
participate in at least one constraint. In our experiments we
usedP = 0:3; 0:5. However, it is important to note that
the number of equivalence constraints thus provided typi-
cally includes only a small subset of all possible pairs of
datapoints, which isO(N2).4
Evaluated Methods: we compared the performance of
the following distance learning methods:� Our proposedDistBoostalgorithm.� Mahalanobis distance learning with Relevant Compo-

nent Analysis (RCA) [3].� Mahalanobis distance learning with non-linear opti-
mization [17].� SVM for direct discrimination in product space.� Boosting decision trees in product space.

In order to set a lower bound on performance, we also com-
pared with the whitened Mahalanobis distance, where the
weight matrixA is taken to be the data’s global covariance
matrix.

We present our results using ROC curves andcumula-
tive neighbor puritygraphs. Cumulative neighbor purity
measures the percentage of correct neighbors up to theKth
neighbor, averaged over all the queries. In each experi-
ment we averaged the results over 50 different equivalence
constraint realizations. BothDistBoostand the decision
tree boosting algorithms were run for a constant number of
boosting iterationsT = 50. In each realization all the algo-
rithms were given the exact same equivalence constraints.

4.2. Results on UCI datasets
We selected several standard datasets from the UCI data
repository and used the experimental setup above to evalu-
ate our proposed methods. The cumulative purity was com-
puted using all the points in the data as queries.

Fig. 2 shows neighbor purity plots for each of these data
sets. As can be readily seen,DistBoostachieves significant
improvements over Mahalanobis based distance measures,

4It can be readily shown that by wisely selectingO(NM) equivalence
constraints, one can label the entire dataset. This followsfrom the transi-
tive nature of positive equivalence constraints.
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Figure 2:Cumulative neighbor purity plots over 6 data sets from the UCI repository. The UCI results were averaged over 50 realizations of constraints,
and 1-std error bars are shown. The percentage of data in constraints was50% in all cases.

and also outperforms all other product space learning meth-
ods (except SVM in the ’balance’ dataset).

5. Experiments on image retrieval
We ran experiments on two image retrieval tasks: facial im-
age retrieval using the YaleB dataset, and color based image
retrieval using pictures from a commercial image CD. The
evaluated methods are described in Section 4.1.

In our experiments we randomly selected from each
dataset a subset of images, to be the retrieval database,
and this subset was used as the training set. We then fol-
lowed the same experimental setup of distributed learning
(described in Section 4.1) for the generation of equiva-
lence constraints, and trained all methods on the selected
data. Retrieval performance was measured using test im-
ages which were not presented during training.

5.1 Facial image retrieval - YaleB

As an image retrieval example with known ground-truth
and a clear definition of categories, we used a subset of
the YaleB facial image database [7]. The dataset contains
a total of 1920 images, including 64 frontal pose images
of 30 different subjects. In this database the variability be-
tween images of the same person is mainly due to differ-
ent lighting conditions. We automatically centered all the
images using optical flow. Images were then converted to
vectors, and each image was represented using its first 60
PCA coefficients. From each class, we used 22 images
(a third) as a data base training set, and 42 images were
used as test queries. In order to check different types of

generalization,we used a slightly modified policy for con-
straint sampling. specifically, constraints were drawn from20 out of the30 classes in the dataset, and in the constrained
classesp was set to1 ( which means that all the training
points in these classes were divided between uncoordinated
labellers). When testing the learnt distance functions mea-
surements were done separately for test images from the
first 20 classes and for the last10. Notice that in this sce-
nario images from the 10 unconstrained classes were not
helpful in any way to the traditional algorithms, but they
were used byDistBoostas unlabeled data. On the left in
Fig. 3 we present the ROC curves of the different methods
on test data from the constrained classes. We can see that
the margin based distance functions give very good results,
indicating an adaptation of the distance function to these
classes. On the right we present the ROC curves when the
queries are from unconstrained classes. It can be seen that
the performance of SVM and C4.5Boost severely degrades,
indicating strong overfit behavior. TheDistBoost, on the
other hand, degrades gracefully and is still better then the
other alternatives.

5.2 Color based image retrieval

We created a picture database which contained images from
16 animal classes taken from a commercial image CD. The
retrieval task in this case is much harder then in the facial
retrieval application. We used70% of the data from each
class as our dataset (training data), and the remaining30%
as our test data. We experimented with two scenarios vary-
ing in their difficulty level. In the first scenario we used 10
classes with a total of 405 images. In the second scenario



In IEEE Conf. on Computer Vision & Pattern Recognition, Washington DC, 6/2004 7

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

False positive %

D
et

ec
tio

n 
ra

te
 %

YaleB−Constrained Classes

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

False positive %

D
et

ec
tio

n 
ra

te
 %

YaleB−Unconstrained Classes

Figure 3: ROC curves of different methods on the YaleB facial image database. Left: retrieval performance on classes on which constraints we are
provided. Right: retrieval performance on classes on whichno constraints were provided. Results were averaged over 80realizations

Figure 4:Typical retrieval results on the Animal image database. Each row presents a query image and its first 5 nearest neighbors comparing DistBoost
and normalizedL1 CCV distance (baseline measure). Results appear in pairs ofrows: Top row: DistBoost results, Bottom row: normalizedL1 CCV
distance. Results are best seen in color.

the database contained 16 classes with 565 images, and 600
’clutter’ images from unrelated classes were added to the
data base. The clutter included non-animal categories, such
as ’landscapes’ and ’buildings’.

The original images were heavily compressed jpg im-
ages. The images were represented using Color Coherence
Vectors [2] (CCV’s). This representation extend the color

histogram, by capturing some crude spatial properties of the
color distribution in an image. Specifically, in a CC vector
each histogram bin is divided into two bins, representing
the number of ’Coherent’ and ’Non-Coherent’ pixels from
each color. ’Coherent’ pixels are pixels whose neighbor-
hood contains more than� neighbors which have the same
color. Following [2] we represented the images in HSV
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Figure 5:Neighbor purity results on color animal database. Left: results when on a database of 10 classes, 405 images and no clutter. Right: results with
16 classes, 565 images and 600 clutter images. The clutter was added to the database after the training stage. Results were averaged over 50 realizations

color space quantized the images to4 � 2 � 4 = 32 color
bins, and computed the CCV of each image - a64 dimen-
sional vector - using� = 25.

Fig. 5 shows neighbor purity plots of all different dis-
tance learning methods. As our baseline measure, we
used the normalizedL1 distance measure suggested in
[2]. Clearly theDistBoostalgorithm and our product space
SVM methods outperformed all other distance learning
methods. The C4.5Boost performs less well, and it suffers
from a relatively high degradation in performance when the
task becomes harder. Retrieval results are presented in Fig4
for our proposedDistBoostalgorithm (Top row) and for the
baseline normalizedL1 distance over CCV’s (bottom row).
As can be seen our algorithm seems to group images which
do not appear trivially similar in CCV space.
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