Learning Distance Functions for Image Retrieval

Tomer Hertz, Aharon Bar-Hillel and Daphna Weinshall
{email: tomboy,aharonbh,daphna@cs.huji.&c.il
School of Computer Science and Engineering and the Centdleioral Computation
The Hebrew University of Jerusalem, Jerusalem Israel 91904

Abstract feedback methods [1]. Learning distance functions can be

Image retrieval critically relies on the distance functiosed to useful in this context for training user dependent distance

compare a query image to images in the database. We suggesfunctions.

to learn such distance functions by training binary class#fiwith Formally, letX’ denote the original data space, and as-
margins, where the classifiers are defined over the prodwaatespf sume that the data is sampled frdmdiscrete labels where
pairs of images. The classifiers are trained to distinguistween M is large and unknown. Our goal is to learn a distance
pairs in which the images are from the same class and pairstwhi  functionf : X x X — [0, 1]. In order to learn such a func-
contain images from different classes. The signed margisésl  tjon, we pose a related binary classification problem over
as a distance function. \We explore several variants of ##®i  yroquct space, and solve it using margin based classifica-
based on using SVM and Boosting algorithms as product spaceyjgn techniques. The binary problem is the problem of dis-
classifiers. Our main contribution is a distance learningthoel tinguishing between pairs of points that belong to the same

which combines boosting hypotheses over the product spiéite w . : .
a weak learner based on partitioning the original featuracg. class and pairs of points that belong to different clasdés.

The weak learner used is a Gaussian mixture model computed us W€ |abel pairs of points from the same classignd pairs
ing a constrained EM algorithm, where the constraints araieq of points belonging to different classes bywe can then
alence constraints on pairs of data points. This approadbves view the classifier's margin as the required distance func-
us to incorporate unlabeled data into the training proce&ss- tion.
ing some benchmark databases from the UCI repository, we& sho The training data we consider is composed of binary
that our margin based methods significantly outperformtigs labels on points it x X. The labels describe equiva-
metric learning methods, which are based on learning a Maha- |ence constraints between datapoints in the original space
lanobis distance. We then show comparative results of image ' gquivalence constraints are relations between pairs of
trieval in a distributed learning paradigm, using two datales: 8 4,9 56ints, which indicate whether the point in the pair be-
large database of facial images (YaleB), and a database tf-na L,
long to the same category or not. We term a constraint 'pos-

ral images taken from a commercial CD. In both cases our GMM .2 h h ; K be f h |
based boosting method outperforms all other methods, amgit- itive’ when the points are known to be from the same class,

eralization to unseen classes is superior. and 'negative’ in the opposite case. Such constraints carry
lessinformation than explicit labels of the original images
1. Introduction in X, since clearly equivalence constraints can be obtained

from M explicit labels on points int’, butnot vice versa.
Image retrieval is often done by computing the distance More importantly, we observe that equivalence constraints
from a query image to images in the database, followed byare easier to obtain, especially when the image database is
the retrieval of nearest neighbors. The retrieval perforcea  very large and contains a large number of categories without
mainly depends on two related components: the image reppre-defined names.
resentation, and the distance function used. Given a specifi  To understand this observation, ask yourself how can
image representation, the quality of the distance functionyou obtain training data for a large facial images database?
used is the main key to a successful systerim this paper  You may ask a single person to label the images, but as the
we focus on learning 'good’ distance functions, that will sjze of the database grows this quickly becomes impracti-
improve the performance of content based image retrieval.cal. Another approach is traistributed learningapproach

The quality of an image retrieval system also depends on its[9]: divide the data into small subsets of images and ask a
ability to adapt to the intentions of the user as in relevance

2Note that this problem is closely related to the multi cldsssifica-

1A distance function is a function from pairs of datapointshe posi- tion problem: if we can correctly generate a binary panitid the data in
tive real numbers, usually (but not necessarily) symmetith respect to product space, we implicitly define a multi-class classifiethe original
its arguments. We do not require that the triangle inequdalitlds, and vector spaceY.The relations between the learnability of these two prob-
thus our distance functions amet necessarily metrics. lems is discussed in [4].
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number of people to label each subset. Note that you areweak learner that learns in tlweiginal feature space (and
still left with the problem of coordinating the labels pro- not in product space). We suggest a boosting scheme that
vided by each of the labellers, since these are arbitrary. Toincorporates unlabeled data points. These unlabeledspoint
illustrate the arbitrariness of tags, imagine a database co provide a density prior, and their weights rapidly decay dur
taining all existing police facial images. While in one fetd  ing the boosting process. The weak learner we use is based
all the pictures of a certain individual may be called 'Insur on a constrained EM algorithm, which computes a Gaussian
ance Fraud 205’, different pictures of the same individual mixture model, and hence provides a partition of the orig-
in another folder may be called 'Terrorist A. In this dis- inal space. The constrained EM procedure uses unlabeled
tributed scenario, full labels are hard to obtain, but 'lbca data and equivalence constraints to find a Gaussian mixture
equivalence information can be easily gathered. that complies with them. A product space hypothesisis then
Learning binary functions with margins over an input formed based on the computed partition.
space is a well studied problem in the machine learning There has been little work on learning distance functions
literature. We have explored two popular and powerful in the machine learning literature. Most of this work has
classifiers which incorporate margins: support vector ma- been restricted to learning Mahalanobis distance funstion
chines (SVM’s) and boosting algorithms. However, exper- of the form(z—y)” A(z—y). The use of labels for the com-
iments with several SVM variants and Boosting decision putation of the weight matrixl has been discussed in [10];
trees (C4.5) have led us to recognize that the specific elassithe computation off from equivalence constraints was dis-
fication problem we are interested in has some unique fea-cussed in [17, 13]. Yianilos [18] has proposed to fit a gener-
tures which require special treatment. ative Gaussian mixture model to the data, and use the prob-
ability that two points were generated by the same source
1. The product space binary function we wish to learn has as a measure of the distance between them. Schemes for
some unique structure which may lead to "unnatural’ incorporating unlabeled data into the boosting process wer
partitions of the space between the labels. The con-introduced by Ambroise et. al [5, 19]. We discuss the rela-
cept we learn is an indicator of an equivalence relation tion between these schemes and DistBoostalgorithm in
over the original space. Thus the properties of transi- Section 3.
tivity and symmetry of the relation place geometrical  \We have experimented with ti2istBoostalgorithm as
constraints on the binary hypothesis. Obviously, well as other margin based distance learning algorithms,
traditional families of hypotheses, such as linear sepa-and compared them to perviously suggested methods which
rators or decision trees, are not limited to equivalence are based on Mahalanobis metric learning. We used several
relation indicators, and it's not easy to enforce the con- datasets from the UCI repository [15], the yaleB facial im-
straints when such classifiers are used. age dataset, and a dataset of natural images obtained from

. : . a commercial image CD. The results clearly indicate that
2. Inthe learning setting we have described above, we A€ ur margin based distance functions provide much better re-
provided withNV datapoints it and with equivalence 9 P

) : . _trieval results than all other distance learning methods- F
constraints (or labels in product space) over some pairs :
L thermore, on all these datasets BistBoostmethod outper-
of points in our data. We assume that the number of . . . .
. . ) . forms all other methods, including our earlier margin based
equivalence constraints provided is much smaller than . . o
: ; 9 methods which use state of the art binary classifiers.
the total number of equivalence constrailiéN=).

We therefore have access to large amounts of unlabele : : :
data, and hence semi-supervised learning seems an a(?' Learnmg in the product Space using

tractive option. However, classical SVM and boosting traditional classifiers

methods are trained using labeled data only. . . .
9 y We have tried to solve the distance learning problem over

These considerations led us to the development of theth® product space using two of the most powerful margin
DistBoostalgorithm, which is our main contribution in this ~Pased classifiers. The first is a support vector machine, that
paper.DistBoostis a distance learning algorithm which at-  fies to find a linear separator between the data examples
tempts to address all of the issues discussed above. Islearnin @ high dimensional feature space. The second is the Ad-
a distance function which is based on boosting binary clas-2B00st algorithm, where the weak hypotheses are decision
sifiers with a confidence interval in product space, using a '€es learnt using the C4.5 algorithm. Both algorithms had
SInconsistencies which arise due to different definitionglisfinct cat- to be slightly adap;e_d {0 the task of pledUCt spacg Ieamlr-]g’

and we have empirically tested possible adaptations using

egories by different teachers are more fundamental, andar@ddressed . o
in this paper. Another way to solve the problem of tag arkiitesss is to data sets from the UCI repository. Specifically, we had to

use pre-defined category names, like letters or digits. knfately this deal with the following technical issues:
is not always possible, especially when the number of categin the ) ) o
database is large and the specific categories are unknowvamiapr e Product space representation: A pair of original space
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points must be converted into a single which representsunlabeled data into the boosting process, we augmented an
this pair in the product space. The simplest represen-existing boosting version. The details of this augmentatio
tation is the concatenation of the two points. Another are presented in Section 3.1. The details of our weak learner
intuitive representation is the concatenation of the sum are presented in Section 3.2.

and difference vectors of the two points. Our empirical

tests indicated that while the SVM works better with 3.1. Semi Superwsed boos“ng in product space

E)heesprsetr;g%e;r?cn;\i/\tllsr?tr::\escljfnsagg(zjgfg?eigzler\éeieltsOur boosting scheme is an extension of the Adaboost al-
sentaﬁion P gorithm with confidence intervals [11] to handle unsuper-
' vised data points. As in Adaboost, we use the boosting pro-

e Enforcing symmetry: If we want to learn a symmet- Cess to maximize the margins of the labeled points. The
ric distance function satisfyind(z, y) = d(y,z), we  unlabeled points only provide a decaying density prior for
have to explicitly enforce this property. With the first the weak learner. The algorithm we use is sketched in
representation this can be done simply by doubling Fig. 1. Given a partially labeled datadét:;, y;)},Y, where
the number of training points, introducing each con- ¥i € {1, —1 ,*}, the algorithm searches for a hypothesis
strained pair twice: as the poift, y] and as the point fla) =
[y,z]. In this setting the SVM algorithm finds the
global optimum of a symmetric Lagrangian and the so- function:
lution is guaranteed to be symmetric. With the second
representation we found that modifying the representa- > exp(—yif(zi) 1)
tion to be symmetrically invariant gave the best results. {ily;=1,-1}

Specifically, we represent a pair of pointgy using the
vector[xz + y, sign(x; — y1) * (x — y)], wherez, y;
are the first coordinates of the points. Algorithm 1 Boosting with unlabeled data

Given(z1,y1), .., (Tn,Yn); i € X, y; € {—1,1,%}

Initialize D1(i) =1/n i =1,.,n

Z aih(z) which minimizes the following loss
i=1

e Preprocessing transformation in the original space: We
considered two possible linear transformation of the
data before creating the product space points: the
whitening transformation, and the RCA transforma-
tion [9] which uses positive equivalence constraints. In
general we found that pre-processing with RCA was 1. Train weak learner using distributidpy

most beneficial for both the SVM and C4.5 boosting
algorithms. 2. Getweak hypothesig : X — [—1,1] with

ry = Z?:l Dt(Z)ht(Z) > 0.
If no such hypothesis can be found, terminate the loop
and sefl’ =t.

Fort=1,..T

e Parameter tuning: for the SVM we used the polyno-
mial kernel of order 4, and a trade-off constant of 1 be-
tween error and margin. The boosting algorithm was
run for 50 rounds, and the decision trees were built 3. Choose; = %m(%)
with a stopping criterion of train error smaller than
0.05 in each leaf. 4. Update:

These design issues were decided based on the performance (i) = Dy (i) exp(—ouyihe(z;)) y; € {—1,1}
over the UCI datasets, and all settings remained fixed for all b+t Dy (i) exp(—ay) Y; = *
further experiments.

] o o 5. Normalize:Dyy1(i) = Diy1(i)/Ze11
3. Boosting original space partitions whereZ; ;1 = S27, Diy1 (i)

using DistBoost 6. Output the final hypothesj§z) = Zle aihy(z)
Our DistBoostalgorithm builds distance functions based on
the weighted majority vote of a set of original space soft  Note that the unlabeled points do not contribute to the
partitions. The weak learner’s task in this framework is to minimization objective of the product space boosting in (1)
find plausible partitions of the space, which comply with the Rather, at each boosting round they are given to the weak
given equivalence constraints. In this task, unlabeled dat learner and supply it with some (hopefully useful) informa-
can be of considerable help, as it allows to define a prior ontion regarding the domain density. The unlabeled points ef-
what are 'plausible partitions’. In order to incorporate th fectively constrain the search space during the weak learne
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estimation, giving priority to hypotheses which both com- pectation is taken only over assignments which comply with
ply with the pairwise constraints and with the density in- the given constraints (instead of summing cakmpossible
formation. Since the weak learner’s task becomes harderassignments of data points to sources).
in later boosting rounds, the boosting algorithm slowly re-  Assume we are given a set of unlabeled i.i.d. sampled
duces the weight of the unlabeled points given to the weakpoints X = {z;}Y,, and a set of pairwise constraints over
learner. This is accomplished in step 4 of the algorithm (seethese point{). Denote the index pairs of positively con-
Fig. 1). strained points by (p}, p2)} 1%, and the index pairs of neg-
In product space there a@(N?) unlabeled points, atively constrained points by(nk,n3)}~",. The GMM
which correspond to all the possible pairs of original paint  ,qe| contains a set of discrete ﬁiddelﬁf\}arialﬁewhere
and the number of weights is therefa¢N). However, 1o Gaussian source of point is determined by the hid-
the update rules for the weight of each unlabeled point areyqp, variableh;. The constrained EM algorithm assumes

identical, and so all the unlabeled points can share the same;, following joint distribution of the observable¥ and
weight. Hence the number of updates we effectively do in ,q hiddensy:

each round is proportional to the number of labeled pairs

only. The weight of the unlabeled pairs is guaranteed to de- x| H|0,0) = )

cay at least as fast as the weight of any labeled pair. This . N, N

immediately follows from the update rule in step 4 of the - O ap,p(x;i|0k,) T On ,n i (1=6n 10 )
i=1 Jj=1 P Pik= "i T

algorithm (Fig. 1), as each unlabeled pair is treated as a la-

beled pair W_'th max_lmal margin of 1'_ _ The algorithm seeks to maximize the data likelihood, which
We note in passing that it is possible to incorporate un- is the marginal distribution of (2) with respect ib.

labeled data into the boosting process itself, as has been The equivalence constraints create complex dependen-

ig?‘ggstfg lIJrr]ﬂEft;ellggj. d;rt]aelr;?niz le’ﬁzgjl ?)):ittinrg tt::nr:m.agg'tn cies between the hidden variables of different data points.
P P ' 9 However, the joint distribution can be expressed using a

minimize the total (both labeled and unlabeled) margin.cost Markov network, as seen in Fig. 1. In the 'E’ step of

The problem with this framework is that a hypothesis can the algorithm the probabilities(h;| X, ©, Q) are computed

be very certain about the classification of unlabeled pqints . : .
and hgnce have large margins, even when it classifizg thesIOy applying a standard inference algorithm to the network.
' Such an inference is feasible if the number of negative con-

points incorrectly. Indeed, we have empirically tested som straints isO(N), and the network is sparsely connected.

variants of th_ese algorithms and found poor generallzatlon.l.he model parameters are then updated based on the com-
performance in our context. puted probabilities. The update of the Gaussian parame-
. . ters {#;} can be done in closed form, using rules similar
3.2. Mixtures of Gaussians as product space to the standard EM update rules. The update of the cluster
weak hypotheses weights{e; }M, is more complicated, since these param-
The weak learner ilDistBoostis based on the constrained eters appear in the normalization constanin (2), and it
EM algorithm presented in [9]. This algorithm learns a mix- requires a gradient descent procedure. The algorithm finds
ture of Gaussians over the original data space, using unla-a local maximum of the likelihood, but the partition found
beled data and a set of positive and negative constraints. Iris not guaranteed to satisfy any specific constraint. How-
this section we briefly review the basic algorithm, and then ever, since the boosting procedure increases the weights of
show how it can be extended to incorporate weights on sam-points which belong to unsatisfied equivalence constraints
ple data points. We describe how to translate the boostingit is most likely that any constraint will be satisfied in some
weights from product space points to original data points, partitions.
and how to generate a product space hypothesis from the We have incorporated weights into the constrained EM
soft partition found by the EM algorithm. procedure according to the following semantics: The algo-
A Gaussian mixture model (GMM) is a parametric sta- rithm is presented with a virtual sample of sixg. A train-
tistical model which assumes that the data originates from aing pointz; with weightw; appearsv; N, times in this sam-
weighted sum of several Gaussian sources. More formally,ple. All the repeated tokens of the same point are consid-
a GMM is given byp(z|©) = =M, ayp(x|6;), whereq, de- ered to be positively constrained, and are therefore asdign
notes the weight of each Gaussiélnits respective parame-  to the same source in every evaluation in the 'E’ step. In all
ters, andM/ denotes the number of Gaussian sources in theof our experiments we have s&t, to be the actual sample
GMM. EM is a widely used method for estimating the pa- size.
rameter set of the mode®| using unlabeled data [6]. In While the weak learner accepts a distribution over origi-
the constrained EM algorithraquivalence constraintsre nal space points, the boosting process described in 3.1 gen-
introduced into the 'E’ (Expectation) step, such that the ex erates a distribution over the sample product space in each
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a number of uncoordinated independent teachers. Accord-
/ \

N ingly, we randomly chose small subsets of data points from
/ the dataset and partitioned each of the subsets into equiva-

. lence classes.
b Data The size of each subsktin these experiments was cho-
ata : . .
Point 1 foint:6 sen to b M, whereM is the number of classes in the data.

In each experiment we usédsubsets, and the amount of
Figure 1: A Markov network representation of the constrained mixture partial information was controlled by theonstraint index
setting. Each observable data node has a discrete hiddenasaalfather. P = k - I; this index measures the amount of points which
Positively constrained nodes have the same hidden noddras. fNeg- 5 ticipate in at least one constraint. In our experimerets w
ative constraints are expressed using edges between tthenhitbdes of R

negatively constrained points.Here points 2,3,4 are knmwe together, usedP = 0.3,0.5. _Howeverr itis mportant to nqte that )
and point 1 is known to be from a different class. the number of equivalence constraints thus provided typi-
cally includes only a small subset of all possible pairs of

round. The product space distribution is converted to a dis- _ N
datapoints, which i©(N?).4

tribution over the sample points by simple summation. De-

noting bwaj the weight of pair(i, j), the weightw? of

pointiis defined to be Evaluated Methods: we compared the performance of
the following distance learning methods:

wi =S w’ ()
' ; Y e Our proposedistBoostalgorithm.
In each round, the mixture model computed by the con- e Mahalanobis distance learning with Relevant Compo-
strained EM is used to build a binary function over the prod- nent Analysis (RCA) [3].

uct space and a confidence measure. We first derive a par-
tition of the data from the Maximum A Posteriori (MAP)
assignment of points. A binary product space hypothesis is
then defined by giving the valuketo pairs of points from e SVM for direct discrimination in product space.
the same Gaussian source, antlto pairs of points from

different sources. This value determines the sign of the hy- e Boosting decision trees in product space.

pothesis output.
This setting further supports a natural confidence mea-!n order to seta lower bound on performance, we also com-

sure - the probability of the pair's MAP assignment which pared with the whitened Mahalanobis distance, where the
is: weight matrixA4 is taken to be the data’s global covariance

matrix.
maxp(h; =i|z1,0) - maxp(hs = i|zs, O) We present our results using ROC curves aathula-

! ! tive neighbor puritygraphs. Cumulative neighbor purity
whereh;, hy are the hidden variables attached to the two measures the percentage of correct neighbors up t&'the
points. The weak hypothesis output is the signed confi- neighbor, averaged over all the queries. In each experi-
dence measure i1, 1], and so the weak hypothesis can ment we averaged the results over 50 different equivalence
be viewed as a 'weak distance function’. constraint realizations. BotBistBoostand the decision

tree boosting algorithms were run for a constant number of
4, Learning distance functions: com- boosting iterationd” = 50. In each realization all the algo-
parative results rithms were given the exact same equivalence constraints.

In this section we compare oWistBoostalgorithm with ~ 4.2. Results on UCI datasets

other distance learning techniques, including our twoothe \We selected several standard datasets from the UCI data

proposed methods for learning in product space (SVM andrepository and used the experimental setup above to evalu-

boosting decision trees). We begin by introducing our ex- ate our proposed methods. The cumulative purity was com-

perimental setup. We then show results on several datasetputed using all the points in the data as queries.

from the UCI repository, which serve as benchmarkto eval-  Fig. 2 shows neighbor purity plots for each of these data

uate the different distance learning methods. sets. As can be readily seddistBoostachieves significant
improvements over Mahalanobis based distance measures,

e Mahalanobis distance learning with non-linear opti-
mization [17].

4.1. Experimental setup _ _ _ ,
. . oo . . 41t can be readily shown that by wisely selectiég N M) equivalence
Gathering equivalence constraints: we simulated alis- constraints, one can label the entire dataset. This folfows the transi-

tributed learningscenario [9], where labels are provided by tive nature of positive equivalence constraints.
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Figure 2:Cumulative neighbor purity plots over 6 data sets from thd té@ository. The UCI results were averaged over 50 reéizatof constraints,
and 1-std error bars are shown. The percentage of data itraots was0% in all cases.

and also outperforms all other product space learning meth-generalization,we used a slightly modified policy for con-
ods (except SVM in the 'balance’ dataset). straint sampling. specifically, constraints were drawmrfro
20 out of the30 classes in the dataset, and in the constrained
; ; ; classegp was set tol ( which means that all the training
S. Experlments onimage retrieval points in these classes were divided between uncoordinated
We ran experiments on two image retrieval tasks: facial im- labellers). When testing the learnt distance functions-mea
age retrieval using the YaleB dataset, and color based imag&urements were done separately for test images from the
retrieval using pictures from a commercial image CD. The first 20 classes and for the la$0. Notice that in this sce-
evaluated methods are described in Section 4.1. nario images from the 10 unconstrained classes were not
In our experiments we randomly selected from each helpful in any way to the traditional algorithms, but they
dataset a subset of images, to be the retrieval databasevere used byDistBoostas unlabeled data. On the left in
and this subset was used as the training set. We then folFig. 3 we present the ROC curves of the different methods
lowed the same experimental setup of distributed learningon test data from the constrained classes. We can see that
(described in Section 4.1) for the generation of equiva- the margin based distance functions give very good results,
lence constraints, and trained all methods on the selectedndicating an adaptation of the distance function to these

data. Retrieval performance was measured using test imclasses. On the right we present the ROC curves when the
ages which were not presented during training. gueries are from unconstrained classes. It can be seen that

the performance of SVM and C4.5Boost severely degrades,
o _ indicating strong overfit behavior. THaistBoost on the
5.1 Facial image retrieval - YaleB other hand, degrades gracefully and is still better then the

. . _ other alternatives.
As an image retrieval example with known ground-truth

and a clear definition of categories, we used a subset of

the YaleB facial image database [7]. The dataset contains5 2 Color based image retrieval

a total of 1920 images, including 64 frontal pose images

of 30 different subjects. In this database the variabildéy b We created a picture database which contained images from
tween images of the same person is mainly due to differ- 16 animal classes taken from a commercial image CD. The
ent lighting conditions. We automatically centered all the retrieval task in this case is much harder then in the facial
images using optical flow. Images were then converted toretrieval application. We uset)% of the data from each
vectors, and each image was represented using its first 6@lass as our dataset (training data), and the remabtifig
PCA coefficients. From each class, we used 22 imagesas our test data. We experimented with two scenarios vary-
(a third) as a data base training set, and 42 images weréng in their difficulty level. In the first scenario we used 10
used as test queries. In order to check different types ofclasses with a total of 405 images. In the second scenario
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Figure 3: ROC curves of different methods on the YaleB facial imageafiase. Left: retrieval performance on classes on whichtins we are
provided. Right: retrieval performance on classes on whizlonstraints were provided. Results were averaged overai@ations
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|

Figure 4:Typical retrieval results on the Animal image database hEaw presents a query image and its first 5 nearest neighborparing DistBoost
and normalized.1 CCV distance (baseline measure). Results appear in paimswst Top row: DistBoost results, Bottom row: normalizéd CCV

distance. Results are best seen in color.

the database contained 16 classes with 565 images, and 60@istogram, by capturing some crude spatial propertiesof th
‘clutter’ images from unrelated classes were added to thecolor distribution in an image. Specifically, in a CC vector

data base. The clutter included non-animal categories, suc each histogram bin is divided into two bins, representing
as 'landscapes’ and 'buildings’. the number of 'Coherent’ and 'Non-Coherent’ pixels from

each color. 'Coherent’ pixels are pixels whose neighbor-

The original images were heavily compressed jpg im- pq4 contains more thanneighbors which have the same
ages. The images were represented using Color Coherencgg|qr.

) ; Following [2] we represented the images in HSV
Vectors [2] (CCV’'s). This representation extend the color
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Figure 5:Neighbor purity results on color animal database. Leftultesvhen on a database of 10 classes, 405 images and na. dRigfet: results with
16 classes, 565 images and 600 clutter images. The cluteadded to the database after the training stage. Resultsawerraged over 50 realizations

color space quantized the imagesite 2 x 4 = 32 color [7]1 Georghiades, A.S. and Belhumeur, P.N. and Kriegman, D.J

bins, and computed the CCV of each image64adimen- From Few To Many: Generative Models For Recognition Un-

sional vector - using = 25. der Variable Pose and lllumination”, IEEE Int. Conf. on Au-
Fig. 5 shows neighbor purity plots of all different dis- tomatic Face and Gesture Recognition, page 277-284, 2000.

tance learning methods. ~ As our baseline measure, We[g] K. Fukunaga. Introduction to statistical pattern recibign.

used the normalized.1 distance measure suggested in Academic press, 1990.

[2]. Clearly theDistBoostalgorithm and our product space

SVM methods outperformed all other distance learning [9] T. Hertz, N. Shental, A. Bar-Hillel, and D. Weinshall. £n
methods. The C4.5Boost performs less well, and it suffers ~ hancing Image and Video Retrieval: Learning via Equiva-
from a relatively high degradation in performance when the lence Constraints. In Proc. of CVPR, 2003.

task becomes harder. Retrieval results are presented # Fig [10] D. G. Lowe. Simlarity metric learning for a variablerke!

for our proposedistBoostalgorithm (Top row) and for the classifier. Neural Computation 7:72-85, 1995.

baseline normalizedl 1 distance over CCV'’s (bottom row).
As can be seen our algorithm seems to group images whic
do not appear trivially similar in CCV space.

H11] R.E. Schapire and Y. Singer Improved Boosting Algarith
using Confidence-Rated Predictions.RAroc. of COLT1998

, 80-91.
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