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Abstract

We report a series of robust empirical observa-
tions, demonstrating that deep Neural Networks
learn the examples in both the training and test
sets in a similar order. This phenomenon is ob-
served in all the commonly used benchmarks we
evaluated, including many image classification
benchmarks, and one text classification bench-
mark. While this phenomenon is strongest for
models of the same architecture, it also crosses
architectural boundaries — models of different ar-
chitectures start by learning the same examples,
after which the more powerful model may con-
tinue to learn additional examples. We further
show that this pattern of results reflects the in-
terplay between the way neural networks learn
benchmark datasets. Specifically, when fixing the
architecture, we describe synthetic datasets for
which this pattern is no longer observed. When
fixing the dataset, we show that other learning
paradigms may learn the data in a different order.
‘We hypothesize that our results reflect how neural
networks discover structure in natural datasets.

1. Introduction

Typically, neural networks (NN) in common use include
a large number of parameters and non-linear operations,
resulting in a highly non-convex, high-dimensional opti-
mization landscape. These models are usually trained with
some variant of Stochastic Gradient Descent (SGD), ini-
tialized randomly, thus introducing stochasticity into the
training procedure both in the form of initialization and the
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Figure 1. Images learned at the beginning (top row) and the end of
the training (bottom row). Top: CIFAR-100, bottom: MNIST.

sampling of gradients. As a result, training the same neural
architecture several times generates models with drastically
different weights (Li et al., 2015; Yosinski et al., 2015),
which presumably correspond to different local minima of
the optimization landscape.

In spite of this observation and for most practical purposes,
models trained with the same dataset, architecture and train-
ing protocols are typically considered similar by practition-
ers, as they tend to achieve similar accuracy. Neural com-
parison methods (Li et al., 2016; Raghu et al., 2017; Morcos
et al., 2018) find them to be more similar than models trained
on different datasets, using different comparison scores. On
the other hand, many applications consider such models to
be distinct enough to merit the use of ensemble methods
(Le & Yang, 2015; Kantor et al., 2019) and average train-
ing epochs (Vaswani et al., 2017; Junczys-Dowmunt et al.,
2018). All in all, the question of how to meaningfully eval-
uate the similarity between trained neural models remains
open.

Contemporary approaches tend to measure the similarity
between neural models by comparing their underlying com-
positional properties, as done for example in Lenc & Vedaldi
(2015); Alain & Bengio (2016); Li et al. (2016); Raghu et al.
(2017); Wang et al. (2018); Cohen et al. (2019). Instead, we
propose to measure similarity via the direct comparison of
their classification predictions per example, as formally de-
fined in §2. Thus we show empirically that for a wide range
of classification benchmarks, including ImageNet (Deng
et al., 2009), CIFAR (Krizhevsky & Hinton, 2009), and text
classification (see §3.2), models of the same architecture
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classify the data similarly (see §3) during the entire learning
process. As long as the models share the same architecture,
this similarity is independent of such choices as optimiza-
tion and initialization methods, hyper-parameter values, the
detailed architecture or the particular dataset. The similarity
can be replicated for a given test set even when each model
is trained on a different training set, as long as both sets of
training data are sampled from the same distribution (see
§3.3).

The similarity between different models is not restricted to
their accuracy at the end of the training, but rather can be
observed throughout the entire learning process (see §3).
Specifically, trained models exhibit a similar classification
profile in every epoch from the beginning to the end of the
training. Combined with the observation that once an exam-
ple is classified correctly by some model it is rarely misclas-
sified after further training (see Suppl E), we conclude that
each architecture learns to classify each benchmark dataset
in a specific order, which can be seen in all its models. See
examples for CIFAR-100 and MNIST in Fig. 1.

The order in which a dataset is learned seems robust across
architectures. In §4 we train several commonly used archi-
tectures on the same dataset, resulting in a highly correlated
learning order, in spite of there being significant differences
in the final accuracy of the architectures. In fact, when
tracking the training process of different architectures, we
observe that the models of the stronger architecture first
learn the examples which have been learned by those the
weaker architecture, and only then continue to learn new
examples.

Is it possible that this robust similarity is an artifact of the
training procedure of NN, and specifically the use of SGD
optimization? In §5 we describe examples of hand-crafted
image datasets where these patterns of similarity disap-
pear, suggesting that this is not the case. In these synthetic
datasets, which NNs learn successfully, even models from
the same architecture seem to learn to classify examples in
a different order, depending on their random initialization
and mini-batch sampling. Moreover, when training NNs on
a dataset with randomly shuffled labels (Zhang et al., 2016),
in which no generalization is possible, we find that different
models memorize the data in a different order’.

Is it possible that this robust similarity is an artifact of the
structure of each dataset, and the way it is being discov-
ered? In other words, is it all about typical points being
learned before atypical points, regardless of the nature of
the classifier? We show that this is not the case, and that the
order by which benchmark datasets are learned is unique to
NNs. Specifically, in §6 we analyze the order in which a

1Compare with Morcos et al. (2018), where it is shown that
NN that generalize are more similar than those that memorize.

benchmark dataset is learned by an AdaBoost classifier that
employs weak linear classifiers. We show that this order
has a low correlation with the order observed when training
NN on the same dataset.

The empirical observations described above seem to echo
the interplay between how NN learn, and the complexity of
datasets which are used to evaluate these NNs. Possibly they
also reflect the way NN discover structure in a given dataset,
where learning order corresponds with data complexity. In
other words, some examples are consistently easier than
others for NNs to learn. (We discuss the relationship with
curriculum learning and hard data mining in §7.) Notably,
we failed to find a real dataset for which NN differ. This
may indicate the existence of a common structure in real
datasets, which our synthetic datasets do not exhibit.

1.1. Summary of Contribution

e We propose a direct way to compare between different
neural models using the Tp-agreement score (§2).

e We empirically show that models that share the same
architecture learn real datasets in the same order (§3),
and propose a measure to this effect termed Accessibil-
ity score (§2).

e We argue that the learning order emerges from the cou-
pling of neural architectures and benchmark datasets.
To support shis, we show that neural architectures can
learn synthetic datasets without any specific order (§5),
and likewise non-neural architectures can learn bench-
mark datasets without any specific order (§6).

e We show that models with different architectures can
learn benchmark datasets at a different pace and per-
formance, while still inducing a similar order (§4).
Specifically, we see that stronger architectures start off
by learning the same examples that weaker networks
learn, then move on to learning new examples.

2. Methodology and Notations

Consider some architecture f, and a labeled dataset X =
{(z;, yl)}fvil where x; € R? denotes a single example and
y; € [K]its corresponding label. We create a collection of
N models of f, denoted ¢ = {ff,..., f5}. Each model
f € F¢ is initialized independently using the same dis-
tribution”, then trained with SGD on randomly sampled
mini-batches for e € N epochs. Let Sg denote the set of
different extents (total epochs of X) used to train f.

We represent each model ff € F° by two binary classifi-
cation vectors that capture the accuracy per sample, com-
puted separately for the train and test sets. Each vector’s

2We observe similar results with various commonly used ini-
tialization methods, see Suppl D.
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Figure 2. Illustration of the Tp-agreement and Agreement scores.
Each row (a,b,c) corresponds to a model performing a binary clas-
sification task of classifying between images of trees and hamsters.
All models have % precision while performing the task, calculated
as the row-average of the correct classifications. However, exam-
ples show different Tp-agreement scores — which can be calculated
as the column-average of the correct classifications.

dimension corresponds to the size of the dataset (train or
test), where each element is assigned 1 if the NN classifies
the corresponding example correctly, and O otherwise. We
use these vector representations to define and analyze the
True-Positive agreement (Tp-agreement) of F, when each
model ff € F¢ is trained on X from scratch for e epochs.
We analyze the Tp-agreement throughout the entire learning
process, for different values of e € Sg.

More specifically, for each epoch e € Sg we define the
Tp-agreement of example (x,y) as follows:

N

1
NZlf(w) ]
=1

The Tp-agreement T Pa®(x,y) of example (x, y) measures
the average accuracy on (x, y) of N networks which were
trained for exactly e epochs each. Unlike precision, Tp-
agreement measures the average accuracy of a single exam-
ple over multiple models, as opposed to precision which
measures the average accuracy of a single model over multi-
ple examples (see illustration in Fig. 2).

TPa®(

Note that the Tp-agreement score does not take into ac-
count the classifiers’ consistency when they misclassify.
We, therefore, define a complementary Agreement score
that measures the agreement among the classifiers — the
largest fraction of classifiers that predict the same label for
T

ae(m *]?elaKX]NZ f(m

Fig. 2 illustrates these definitions. When all the classifiers
in F¢ are identical, the Tp-agreement of each example is
either 0 or 1, and its Agreement is 1. This results in a
perfect bi-modal distribution of the Tp-agreement scores
over the examples. On the other hand, if the identity of the

correctly classified examples per classifier is independent,
the distribution of both scores is expected to resemble a
Gaussian®. Its center is the average accuracy of the classi-
fiers in F°, in the case of the Tp-agreement, and a slightly
higher value for the Agreement score. It follows that the
higher the mean Agreement is, and the more bi-modal-like
the distribution of Tp-agreement is around O and 1, the
more similar the set of classifiers is. We measure the bi-
modality of random variable Z using the following score:
kurtosis(Z) — skewness®(Z) — 1 (Pearson, 1894); the
lower the score is, the more bi-modal the distribution of Z
is.

As shown in the next section, the distribution of Tp-
agreement over examples is mostly bi-modal during the
entire learning process. Specifically, for most examples the
Tp-agreement is 0 at the beginning of learning, and then
rapidly changes to 1 at some point during learning (see
Suppl E). This property suggests that data is learned in a
specific order. To measure how fast an example is learned by
some architecture f, we note that the faster the example is
learned, the higher its Tp-agreement for all epochs e € Sg
must be. Therefore, we define the Accessibility score of an
example to be its averaged Tp-agreement over all epochs,
formally given by Eccs,, [T Pa’(x,y)].

3. Diversity in a Single Architecture

In this section, we investigate collections of classifiers ob-
tained from a single architecture f.

3.1. Same Training Set

We start with the simplest condition, where all models in col-
lection JF are obtained by training with the same training set
X, with different initial conditions and with independently
sampled mini-batches. When using common benchmark
datasets, the Tp-agreement distribution over both train and
test sets is bi-modal, see Figs. 3, 4 and Suppl D.

Upon initialization, all models are effectively i.i.d random
variables, and the distribution of Tp-agreement scores is
approximately Gaussian around random chance. After a
few epochs (in many cases a single epoch, see Suppl E), the
Tp-agreement distribution changes dramatically, becoming
bi-modal with peaks around 0 and 1. This abrupt distribu-
tion change is robust, and rather striking: from a state where
most of the examples are being classified correctly by %
of the models, now most of the examples are being mis-
classified by all the models, while a small fraction is being
correctly classified by all the models. When learning pro-
ceeds, the improvement in accuracy affects a shift of points
from the peak at 0 to the peak at 1 while the distribution
remains bi-modal, see Figs. 3, 4 and Suppl D.

3For large N this follows from the central limit theorem.
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Figure 3. The distribution of Tp-agreement scores throughout the entire learning process, for 27 models of ResNet-50 trained over
ImageNet. a) The distribution at specific epochs, where epochs 1,2, 5, 30, 40, 100 are shown respectively from left to right. In each plot,
the null hypothesis is shown in fading orange, describing the distribution of Tp-agreement scores using random classification vectors
with matching accuracy. Top: train data, bottom: validation data. b) Combined Tp-agreement distribution during the entire learning
process. The X -axis corresponds to epochs, while the Y -axis corresponds to the Tp-agreement score. Intensity depicts the corresponding
number of images achieving each score in each epoch. Top: combined distribution using the validation set of ImageNet, which illustrates
that the models learn in a similar order (see text). Bottom: combined distribution of the null hypothesis of independent models with
similar accuracy. Note the clear qualitative difference between the two cases: real classifiers (top) show a clear bi-modal behavior, while
independent classifiers (bottom) show a uni-modal behavior.
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Figure 4. The combined distribution of Tp-agreement scores during the entire learning process of both train (top) and test (bottom) datasets
with several architectures and datasets. As in Fig. 3, the X -axis corresponds to epochs and the Y -axis corresponds to the Tp-agreement
score, while intensity depicts the corresponding number of images achieving each score in each epoch. Cases shown: a) 100 attention
based BiLSTM models trained on text classification; b) 20 VGG-19 models trained on CIFAR-100; ¢) 100 models of st-VGG trained on
the Cats and Dogs dataset; d) 100 models of st-VGG trained on the small-mammals dataset; ) 100 models of a small architecture trained
on MNIST (see Suppl B,C for details of architectures and datasets). In all cases, clearly both the train and test datasets are learned in the
same order.

The data is learned in a specific order which is insensitive
to the initialization and the sampling of the mini-batches.
This is true for both the train and test sets. It indicates
that the models capture similar functions in corresponding
epochs: they classify correctly the same examples, and also
consistently misclassify the same examples. Had the learn-
ing of the different models progressed independently, we
would have seen a different dynamic. To rule the indepen-
dence assumption out, we evaluate the null hypothesis -
the independent progress of learning - by calculating the
Tp-agreement over a set of N independent random classi-
fication vectors, with specific accuracy as a baseline. As
seen in Figs. 3a,3b (in fading orange), the distribution of
Tp-agreement in this case remains Gaussian in all epochs,
where the Gaussian’s mean slowly shifts while tracking the
improved accuracy.

Tp-agreement is not affected by the consensus of the net-
works over the misclassified points, unlike the Agreement
score which measures agreement regardless of whether the
label is true or false. Thus an Agreement score of 1 indicates
that all models have classified the datapoint in the same
way, regardless of whether it is correct or incorrect. Fig. 5
(blue) shows the distribution of Agreement scores for the
cases depicted in Fig. 3, showing that indeed all the models
classify examples in almost the same way, even when they
misclassify. Had the learning of the different models pro-
gressed independently, the dynamic would have resembled
a moving Gaussian, as can be seen in Fig. 5 (faded orange).

Similar results are seen when analyzing a classification prob-
lem that involves text, see Fig. 4a. We applied a BILSTM
with attention using Glove (Pennington et al., 2014) over
39K training and 1K test questions from stack overflow
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Figure 5. The distribution of Agreement scores of 27 ResNet-50 models trained on ImageNet, in corresponding epochs as in Fig. 3a. In
each plot, the distribution of the null hypothesis is shown in fading orange, modeling the expected results for models that do not learn in a

similar order (see text for details).
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Figure 6. Analysis of 20 models of VGG-19 trained on CIFAR-100.
Examples are sorted by the Accessibility score (see §2), and each
box represents 5% of the examples with similar score. The orange
bar represents the median epoch in which each set of images is
learned, and each box represents the median’s confidence intervals.

The robust order of learning when training models from a
single architecture allows us to measure for each example
the epoch in which it is effectively learned. Specifically,
for each example and each model we define the epoch in
which an example is learned as the last epoch after which it
is being correctly classified. In Fig. 6 we plot the median
value (over all models) of this measure for small sets of
examples, where the examples are sorted based on their
Accessibility score. We note the relatively low variance in
learning epochs between different models in the collection.
This result illustrates the robustness of the order in which
examples are learned and the similarity between models
from the same architecture. Moreover, we were able to
reproduce these results for many datasets and architectures,
see the following section and Fig. 4.

3.2. Robustness

The results reported above are extremely robust, seen in all
the datasets and architectures that we have investigated,
except for the synthetic datasets we artificially created
specifically for this purpose (see §5). In addition to the

results shown above for ImageNet (Fig. 3), CIFAR-100
(Fig. 4) and a text classification task (Fig. 4), similar re-
sults were obtained for a wide range of additional image
datasets as shown in Suppl D, including: MNIST (LeCun
et al., 1998) — Figs. 4e,13, Fashion-MNIST (Xiao et al.,
2017) — Fig. 14, CIFAR-10 (Krizhevsky & Hinton, 2009)
and CIFAR-100 — Figs. 4b,6,17,19, tiny ImageNet (Public
domain dataset b) — Fig. 20, ImageNet — Figs. 3,28, VG-
Gfaces2 (Cao et al., 2018) — Fig. 18, and subsets of these
datasets — Figs. 4c,4d,15,16,24.

We investigated a variety of architectures, including AlexNet
(Krizhevsky et al., 2012), DenseNet (Huang et al., 2017)
and ResNet-50 (He et al., 2016) for ImageNet, VGG19
(Simonyan & Zisserman, 2014) and a stripped version of
VGG (denoted st-VGG) for CIFAR-10 and CIFAR-100, and
several different handcrafted architectures for other data sets
(see details in Suppl B). The results can be replicated when
changing various hyper-parameters, including the learning
rate, optimizer, batch size, dropout rate, weight decay, width,
length and depth of layers, number of layers, kernel size,
initialization, and activation functions. These Accessibility-
parameters differ across the experiments detailed both in the
main paper and in Suppl D.

3.3. Different Training Sets

The observed pattern of similarity, and the order in which
data is learned do not depend on the specific train set, but
rather on the distribution the train set is sampled from. To
see this, we randomly split the train set into several parti-
tions. We trained a different collection of N NNs on each
of the random partitions, and computed the distribution of
Tp-agreement scores according to each partition for both
the train set and the unmodified test set. Once again, all the
NN trained with the same partition showed a bi-modal dis-
tribution of Tp-agreement scores during the entire learning
process, over both their training partition and the common
test set. Interestingly, the order in which the common test
set was learned in each case was similar, depicting an almost
perfect correlation between Accessibility scores calculated
based on different partitions. Additional details are provided
in Suppl E and Fig. 24.
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Figure 7. The distribution of the Agreement score for 27 models of ResNet-50 trained on ImageNet. a) The Agreement distribution of
independent classifiers. (b-e) The Agreement distribution when the 27 models are used to classify the following test datasets: (b) images
generated by the random sampling of pixels from a normal distribution; (c) images generated by StyleGAN (Karras et al., 2019) trained
on ImageNet; (d) natural images from a different dataset — Indoor Scene Recognition (Quattoni & Torralba, 2009); (e) the imageNet test
set. Clearly, test datasets whose image statistics is more similar to the train data show a higher Agreement score.

3.4. Out of Sample Test Sets

Using the collection of ResNet-50 models whose analysis
is shown in Figs. 3,5, we further examined the Agreement4
of the collection on out of sample test sets as shown in
Fig. 7. We see that the Agreement is always higher than the
Agreement that would be achieved by a random assignment
of labels. Interestingly, the more natural the images are and
the more similar the distributions of the train and test images
are, the higher the Agreement is and the further away it gets
from the Agreement of random assignment of labels. This
property may be used as a tool for novelty detection, and
was left for future work.

4. Cross Architectures Diversity

We now extend the analysis of the previous section to in-
clude NN instances of different architectures. In §6 we
discuss comparisons with other learning paradigms.

4.1. Comparing Different Public Domain CNNs

We start by directly extending the previous analysis to two
collections generated by two different architectures. Each
architecture is characterized by its own learning pace, there-
fore it makes little sense to compare the Tp-agreement
scores across identical epochs. Instead, we compare collec-
tions in matching epochs with equivalent accuracy’. Given
specific accuracy, we compare the number of examples that
are classified correctly by both architectures, to the number
of examples which are classified correctly only by a single
architecture.

In Fig. 8a we show such comparative results using a collec-
tion of 27 models of ResNet-50 and 22 models of AlexNet
trained on ImageNet. We see that as the accuracy improves,
the number of examples classified correctly by both models

4Since the classes in the test sets are not present in the train,
only the Agreement remains relevant.

SEquivalence is determined up to a tolerance of +1%; results
are not sensitive to this value.

increases, while the number of examples classified correctly
by only a single model remains constant and low. Recall
that ResNet-50 reaches a much higher final accuracy on
ImageNet, as compared to AlexNet. In order to compare
the two architectures beyond the final accuracy of AlexNet,
subsequent epochs of ResNet-50 are compared to the fi-
nal epoch of AlexNet after convergence. This transition is
marked by a dashed vertical line in Fig. 8a. We see that
ResNet-50 first learns all the examples AlexNet was able to
learn, then continues to learn new examples.

The order in which different architectures learn the data is
highly correlated, as can be seen when correlating the Acces-
sibility score of two collections, where each collections is
generated by the same architecture. Thus, when comparing
two collections of ResNet-50, the correlation is almost 1
(r = 0.99, p < 107°%, Fig. 8b). The correlation remains
high when comparing two collections of two different archi-
tectures: ResNet-50 and AlexNet (r = 0.87, p < 1079,
Fig. 8c) or ResNet-50 and DenseNet (r = 0.97, p < 10759,
Fig. 8d). These results are surprising given how different
the error rates of the three architectures are: AlexNet with
Top-1 error of 0.45, ResNet-50 with Top-1 error of 0.24,
and DenseNet with Top-1 error of 0.27. Additional results,
comparing additional pairs of competitive ImageNet archi-
tectures, are shown in Suppl D Figs. 25,26. The results have
been replicated for other settings, including VGG19 and
st-VGG on CIFAR-10 and CIFAR-100 (see Fig. 27).

4.2. Linear Networks

Convolutional Neural Networks (CNN) where the internal
operations are limited to linear operators (Oja, 1992) de-
fine an important class of CNNSs, as their linearity is often
exploited in the theoretical investigation of deep learning.
We observe that the bi-modal behavior observed in general
CNNs also occurs in this case.

Specifically, we define a linear st-VGG by replacing all
the non-linear layers of st-VGG with their linear equiva-
lents (see Suppl B). We train 100 linear st-VGG on the
small-mammals dataset (see Suppl C). The performance
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Figure 8. Comparison of the learning order induced by models with different architectures — 27 models of ResNet-50, 22 of AlexNet, and
6 of DenseNet, all trained on ImageNet. a) The collections of ResNet and AlexNet are used to consturct a single ensemble classifier for
ResNet-50 and AlexNet respectively, using the majority vote. We calculate the number of examples from the validation set which are
classified correctly by either both ensembles (blue solid line), or only by a single ensemble (dotted green for ResNet and dashed red for
AlexNet). Comparison is done during learning in corresponding epochs, where both ensembles reach the same accuracy. Since ResNet-50
reaches 80% accuracy while AlexNet only reaches 60% accuracy, there are no corresponding epochs beyond 60%, an event marked by a
vertical dashed black line. Beyond this line, we compare ResNet-50 to the converged AlexNet. Before the convergence of AlexNet, both
architectures learn the same examples during training. After convergence, ResNet first learns those examples classified correctly only by
AlexNet, and then carries on to learn additional examples. (b-d) Correlation between the Accessibility score when using ImageNet train
set, and considering 3 pairs of architectures. The X -axis corresonds to the Accessibility score of the first architecture in the pair, while the
Y -axis corresponds to the second architecture in the pair. We considered the following pairs: (b) two disjoint collections of 13 ResNet-50
models; (c) 27 ResNet-50 models and 22 AlexNet models; (d) 27 ResNet-50 models and 6 DenseNet models. Overall, all the pairs show
high correlation between the Accessibility scores of the corresponding collections in the pair.
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Figure 9. Comparison of linear and non-linear networks trained on the small-mammals dataset. (a) The distribution of Tp-agreement
scores at specific epochs, where epochs 0, 10, 30, 90, 140 are shown respectively from left to right. Top — st-VGG, bottom — linear
st-VGG. (b) Similar analysis as in Fig. 8a, where solid blue denotes the number of examples classified correctly by both architectures,
dotted green denotes examples classified correctly only by st-VGG, and dashed red denotes examples classified correctly only by linear
st-VGG. We can see that linear networks converge very fast, while non-linear networks learn the same points that are learned by linear

networks, then carry on to learn more examples.

of these linear networks is weaker (0.43 average accuracy)
than the original non-linear networks (0.56 average accu-
racy), and they converge faster. Still, the distribution of
the Tp-agreement throughout the entire learning process is
bi-modal (maximum Pearson bi-modality: 0.06), and this bi-
modality is even more pronounced than the bi-modality in
the non-linear case (maximum Pearson bi-modality: 0.22).
The bi-modal dynamics of st-VGG can be seen in the top
row of Fig. 9a, compared to the dynamics of linear st-VGG
in similar epochs at the bottom row of Fig. 9a.

Linear networks converge in just a few epochs, which is too
fast for the meaningful evaluation of Accessibility scores.
Nevertheless, we still observe that non-linear networks learn
first the examples linear networks do, then continue to learn

new examples. In Fig. 9b, we plot for each accuracy the
number of images that are classified correctly by both linear
and non-linear models, and the number of images that have
been learned by a single model only. In the beginning,
the linear and non-linear variants learn roughly the same
examples, while in more advanced epochs the non-linear
networks continue to learn examples that remain hard for
the linear networks.

These results show that the order of learning is not a direct
result of using non-linear operations in neural architectures.
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Figure 10. Similarly to Fig. 4, we plot the distribution of Tp-agreement scores during the entire learning process of both train (top) and
test (bottom) datasets for several architectures and synthetic datasets. All the cases analyzed here show no common learning order, and
models seem to learn the data independently of each other. The cases include: a) 100 st-VGG models trained on the artificial Gabor
patches dataset (see §5.1); b) 100 st-VGG models trained on the small mammals dataset with shuffled labels (Zhang et al., 2016) (see
§5.2); ¢) 100 fully connected networks trained on a Gaussian classification task (see §5.1).

5. When Tp-agreement is Not Bi-Modal

In §3 we discussed the characteristic bi-modal distribution
of Tp-agreement scores, illustrated in Figs. 3,4, which has
appeared in all the experiments presented until now, in both
the train and test sets. In this section, we investigate the
circumstances under which the bi-modal distribution of 7p-
agreement is no longer seen.

5.1. Synthetic Datasets

The bi-modal distribution of Tp-agreement scores through
all stages of learning is not an inherent property of NNs. We
demonstrate this point using a dataset of artificial images,
consisting of Gabor patches: the dataset contains 12 over-
lapping classes that differ from each other in orientation
and color (see Suppl C). We trained a collection of 100 st-
VGG models on this data. The distribution of Tp-agreement
scores, shown in Fig. 10a, is no longer bi-modal. Rather, the
distribution is approximately normal. As learning proceeds,
the mean of the distribution slowly shifts towards 1, and the
width of the distribution seems to expand. At convergence,
the models have reached similar performance, and the bi-
modal characteristics partially re-appears on the test data.
These results suggest that networks in the collection have
learned the data in different orders.

For some datasets, the order in which NNs learn may be
completely independent. We train 100 models of a fully

connected architecture (see Suppl B). The NNs are trained
to discriminate points sampled from two largely overlapping
Gaussian distributions in high dimension. The dynamic
distribution of Tp-agreement scores is shown in Fig. 10c,
and resembles the distribution of Tp-agreement of the null
hypothesis of random classification vectors. These results
suggest that the order of learning in this case is independent
across different models.

5.2. Random Labels

The bi-modality of Tp-agreement seems to be associated
with successful generalization. To see this, we take the
small-mammals dataset, and reshuffle the labels such that
every image is assigned a random label (Zhang et al., 2016).
In this case, training accuracy reaches 100% while test ac-
curacy remains at chance level, which indicates that the
NNs can memorize the data. Interestingly, the distribution
of Tp-agreement scores is no longer bi-modal, with a mini-
mum Pearson bi-modality score of 1.07 on train set and 1.35
on the test set during the entire learning process. Rather,
the distribution in each epoch resembles a Gaussian cen-
tered around the mean accuracy of the NNs, see Fig. 10b.
These results are in agreement with the results of Arpit et al.
(2017); Morcos et al. (2018), which show different NN dy-
namics when NNs perform memorization or generalization.
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Figure 11. Correlations between the learning order of AdaBoost
with 100 linear classifiers and 100 models of st-VGG both trained
on CIFAR-10. Each value of AdaBoost Accessibility (see §6)
is matched with the average over the corresponding st-VGG Ac-
cessibility scores (see §2). Error bars show standard error. Left:
AdaBoost trained on pixel values. Right: AdaBoost trained on the
embedding obtained from the penultimate layer of Inception-V3
trained on ImageNet.

6. Learning Order With AdaBoost Classifier

Up to now, we investigated a variety of architectures, reveal-
ing a common learning order on benchmark datasets. This
order may be fully determined by the benchmark dataset,
in which case it should be replicated when inspecting other
learning paradigms. In this section, we show that this is
not the case. To this end, we consider boosting based on
linear classifiers as weak learners, since the training of both
neural models and AdaBoost share a dynamic aspect: in NN
training accuracy increases with time due to the use of SGD,
while in AdaBoost accuracy increases over time due to the
accumulation of weak learners.

Specifically, we trained AdaBoost with up to 100 linear
classifiers on the CIFAR-10 dataset. Each channel in each
image is normalized to 0 mean and 1 standard deviation
(similarly to the normalization for NNs). The image tensor
is then flattened to a vector. As can be seen in Suppl F, the
AdaBoost accuracy is increasing as a function of the number
of linear classifiers, and as expected, its final accuracy is
significantly lower than neural models.

While most of the examples successfully learned by Ad-
aBoost were also learned by the NN, the order in which the
examples were learned was different. Similarly to Fig. 8, we
compare the correlation between both learning orders (see
Fig. 11), showing a low correlation (r = 0.35, p < 10720)
between the orders. This result demonstrates that non-neural
paradigms may learn data in a different order.

Additionally, we trained AdaBoost using as features the
penultimate layer of Inception-V3 (Szegedy et al., 2015)
trained on ImageNet. In this case, the AdaBoost accuracy
increases dramatically (see Suppl F), while the correlation
between the learning order gets even lower (r = 0.05,p <
10729), see Fig. 11. This result shows that the learning order
of NN is not correlated with the learning order induced
by AdaBoost, even when Adaboost uses a representation
based on transfer learning, which shows that benchmark
datasets can be learned in different ways. These results were

replicated for other datasets, including subsets of CIFAR-
100 and ImageNet, see Suppl F.

7. Summary and Discussion

We empirically show that different neural models learn sim-
ilar classification functions. We also show that the learning
dynamics are similar, as they learn similar functions in all
intermediate stages of learning. This is true for a variety
of architectures, including different commonly used CNN
architectures and LSTMs trained on public domain datasets,
and irrespective of size and other hyper-parameters. This
pattern of similarity crosses architectural boundaries: while
different architectures may learn at a different speed, the
data is learned in the same order. Finally, we discuss cases
where this similarity breaks down, indicating that the ob-
served similarity is not an artifact of learning using SGD-
based algorithms.

While observing that some examples are learned faster than
others by almost all the networks from different architec-
tures, this observation does not explain why this happens,
or what makes a specific example "easier" to learn than
others. We have established that whatever property makes
an example "easy" depends on the task, not the image alone,
since a certain example in a certain dataset can be both easy
or hard, depending on the classification task that is being
learned. Further investigation of this fascinating question is
left for future work.

A somewhat related issue, the re-sampling of train points
during training based on some notion of point difficulty,
has been investigated in the context of curriculum learning
(Bengio et al., 2009), self-paced learning (Kumar et al.,
2010), hard example mining (Shrivastava et al., 2016), and
boosting (Hastie et al., 2009). Unlike this work, our measure
of difficulty depends on what a network learns most robustly,
as opposed to a supervised difficulty score. We note that
when using our scores to impose a learning order for the
purpose of curriculum learning as suggested in Hacohen &
Weinshall (2019), the resulting curriculum did not seem to
benefit the learning.
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Supplementary

A. Related work

How deep neural networks generalize is an open problem
(Kawaguchi et al., 2017). The expressiveness of NNs is
broad (Cybenko, 1989), and they can learn any arbitrary
complex function (Hornik et al., 1989). This extended ca-
pacity can indeed be reached, and neural networks can mem-
orize datasets with randomly assigned labels (Zhang et al.,
2016). Nevertheless, the dominant hypothesis today is that
in natural datasets they "prefer” to learn an easier hypoth-
esis that fits the data rather than memorize it all (Zhang
et al., 2016; Arpit et al., 2017). Our work is consistent
with a hypothesis which requires fewer assumptions, see
Section 7.

The direct comparison of neural representations is regarded
to be a hard problem, due to a large number of parameters
and the many underlying symmetries. Many non-direct ap-
proaches are available in the literature: Li et al. (2016);
Wang et al. (2018) compare subsets of similar features
across multiple networks, which span similar low dimen-
sional spaces, and show that while single neurons can vary
drastically, some features are reliably learned across net-
works. Raghu et al. (2017) proposed the SVCCA method,
which can compare layers and networks efficiently, with an
amalgamation of SVD and CCA. They showed that multiple
instances of the same converged network are similar to each
other and that networks converge in a bottom-up way, from
earlier layers to deeper ones. Morcos et al. (2018) builds
off the results of Raghu et al. (2017), further showing that
networks which generalize are more similar than ones which
memorize, and that similarity grows with the width of the
network. Other works has suggested various aspects of NN
similarities (Zhang et al., 2018; Saxe et al., 2018).

In various machine learning methods such as curriculum
learning (Bengio et al., 2009), self-paced learning (Kumar
et al., 2010) and active learning (Schein & Ungar, 2007),
examples are presented to the learner in a specific order
(Hacohen & Weinshall, 2019; Jiang et al., 2017). Although
conceptually similar, here we analyze the order in which
examples are learned, while the aforementioned methods
seek ways to alter it. Likewise, the design of effective
initialization methods is a striving research area (Erhan
et al., 2010; Glorot & Bengio, 2010; Rumelhart et al., 1988).
Here we do not seek to improve these methods, but rather
analyze the properties of a collection of network instances
generated by the same initialization methodology.

B. Architectures

In addition to the public domain architectures described
in §3.2, we also experimented with some handcrafted net-
works. Such networks are simpler and faster to train, and are
typically used to investigate the learning of less commonly
used datasets, such as the small-mammals dataset and tiny
ImageNet. Below we list all the architectures used in this

paper.

st-VGG. A stripped version of VGG which we used in
many experiments. It is a convolutional neural network, con-
taining 8 convolutional layers with 32, 32, 64, 64, 128, 128,
256, 256 filters respectively. The first 6 layers have filters
of size 3 x 3, and the last 2 layers have filters of size 2 x 2.
Every second layer there is followed by 2 x 2 max-pooling
layer and a 0.25 dropout layer. After the convolutional lay-
ers, the units are flattened, and there is a fully-connected
layer with 512 units followed by 0.5 dropout. When train-
ing with random labels, we removed both dropout layers to
enable proper training, as suggested in Krueger et al. (2017).
The batch size we used was 100. The output layer is a fully
connected layer with output units matching the number of
classes in the dataset, followed by a softmax layer. We
trained the network using the SGD optimizer, with cross-
entropy loss. When training st-VGG, we used a learning rate
of 0.05 which decayed by a factor of 1.8 every 20 epochs.

Linear st-VGG. A linear version of st-VGG presented
above. In linear st-VGG, we change the activation function
to the id function, and replace all the max-pooling with
average pooling with similar stride. We used the same hyper-
parameters to train models of this architecture, although a
wide range of hyper-parameters will reach similar results.

Small st-VGG. To compare st-VGG with another archi-
tecture, we created a smaller version of it: we used another
convolutional neural network, containing 4 convolutional
layers with 32, 32, 64, 64 filters respectively, with filters of
size 3 x 3. Every second layer there is followed by 2 x 2 max-
pooling and a 0.25 dropout layer. After the convolutional
layers, the units are flattened, and there is a fully-connected
layer with 128 units followed by 0.5 dropout. The output
layer is a fully connected layer with output units matching
the number of classes in the dataset, followed by a softmax
layer. We trained the network using the SGD optimizer,
with cross-entropy loss. We trained this network with the
same learning rate and batch size as st-VGG.

MNIST architecture. When experimenting with the
MNIST dataset, we used some arbitrary small architecture
for simplicity, as most architectures are able to reach over
0.99 accuracy. The architecture we used had 2 convolutional
layers, with 32 and 64 filters respectively of size 3 x 3. After
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the convolutions, we used 2 x 2 max-pooling, followed by
0.25 dropout. Finally, we used a fully connected layer of
size 128 followed by 0.5 dropout and Softmax. We used a
learning rate of 1 for 12 epochs, using AdaDelta optimizer
and a batch size of 100.

Fully connected architecture. When experimenting with
fully connected networks, we used a 4 layers network, which
simply flattened the data, followed by 2 fully connected
layers with 1024 units, followed byn an output layer with
softmax. We used 0.5 dropout after each fully connected
layer. Since these networks converge fast, a wide range
of learning rates can be used. Specifically, we used 0.04.
We experimented with a wide range of numbers of fully
connected layers, reaching similar results.

BiLSTM with Attention. When experimenting on tex-
tual data we used a GloVe embeddings, a layer of BILSTM
of size 300, 0.25 dropout and recurrent dropout, an atten-
tion layer, a fully connected layer of size 256 with 0.25
dropout and a last fully connected layer to extract output.
The networks were optimized using Adam optimization
with a learning rate of 0.005 and a batch size of 256.

C. Datasets

Small Mammals. The small-mammals dataset used in the
paper is the relevant super-class of the CIFAR-100 dataset.
It contains 2500 train images divided into 5 classes equally,
and 500 test images. Each image is of size 32 x 32 x 3. This
dataset was chosen due to its small size, which allowed for
efficient experimentation. All the results observed in this
dataset were reproduced on large, public domain datasets,
such as CIFAR-100, CIFAR-10, and ImageNet.

Insect. Similarly to the small mammals dataset, the rele-
vant super-class of CIFAR-100.

Fish. Similarly to the small mammals dataset, the relevant
super-class of CIFAR-100.

Cats and Dogs. The cats and dogs dataset is a subset of
CIFAR-10. It uses only the 2 relevant classes, to create a
binary problem. Each image is of size 32 x 32 x 3. The
dataset is divided to 20000 train images (10000 per class)
and 2000 test images (1000 per class).

Gabor. The Gabor dataset used in the paper, is a dataset
we created which contains 12 classes of Gabor patches.
Each class contains 100 images of Gabor patches which
vary in size and orientation. Classes differ from each other
in 2 parameters: 1) RGB channel — each class depicts the
Gabor patch in a single RGB channel. 2) Orientation —
each class can have one of the following base orientations:

=

label =1

Iae 0

label = 0

e ik

b)

Figure 12. Visualization of synthetic datasets used thoughout the
paper. a) Gabor. b) Gaussian.

45°,90°,135°,180°. The orientation of each class varies
by £30°, making some of the classes non-separable, while
some classes are. The images within each class vary from
each other in the size of the Gabor patch, and its spatial
location across the images. See attached code for generating
the dataset. See Fig. 12 for visualization.

Gaussian. The Gaussian dataset used in the fully con-
nected case, is a 2-classes dataset. One class is sampled
from a multivariate Gaussian with mean O and ¥ = I, while
the other class is sampled from a multivariate Gaussian
with mean 0.1 and ¥ = I. Other choices for the mean and
variance yield similar results. Each sampled vector was
of dimension 3072, and then reshaped to 32 x 32 x 3 to
resemble the shape of CIFAR images. Each class contained
2500 train images and 500 test images. See attached code
for generating the dataset. See Fig. 12 for visualization.

VGGFace2 subset. We created a classification task for
face recognition, using a subset of 10 classes from VG-
GFace2. We chose the classes containing the largest number
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of images. We chose 600 images from each class arbitrarily
to be the train set, while the remaining points (between 89
and 243) served as the test set. Each image was resized to
64 x 64 x 3, using center cropping while maintaining aspect
ratio.

Stack Overflow. The data from Stack Overflow is pub-
licly shared and used for tutorials. It contains 39K training
samples and 1K test samples, each tagged with one of 20
programming languages as the language the question asks
about. Each question must be regarded more as a para-
graph than a sentence. Many words, terms and symbols
are expected to be domain-dependent, and therefore under-
represented in the embeddings.

ImageNet cats. This dataset is a subset of ImageNet
dataset ILSVRC 2012. We used 7 classes of cats, which
obtained all the hyponyms of the cat synset that appeared
in the data, following the work of Hacohen & Weinshall
(2019). The labels of the classes included wre *Egyptian
cat’, 'Persian cat’, ’Cougar, puma, catamount, mountaion
lion, painter, panther, Felis concolor’, *Tiger cat’, ’Siamese
cat, Siamese’, *Tabby, tabby cat’, ’Lynx, catamount’. Im-
ages were resized to 56 x 56 for faster preformance. Data
was normalized to 0 mean and standard variation of 1 in
each channel separately.

D. Robustness of results

Similar qualitative results were obtained in all the experi-
ments with natural datasets. To maintain a fair comparison
across epochs, the results for each shown epoch e (effec-
tively epoch extent) were obtained by independently training
a different set of NV networks from scratch for e epochs. The
specific set of epochs Sg, where |Sg| = 7, that was used in
each plot was determined arbitrarily, to evenly span all sec-
tions of learning. All the networks in all test cases converged
before the final epoch plotted.

As mentioned in §3.2, results were obtained on the follow-
ing combinations of datasets and architectures: ImageNet,
trained on ResNet-50, DenseNet and AlexNet (Figs. 3,28).
CIFAR-100 and CIFAR-10, both trained on VGG19 and
st-vgg (Figs. 6,17,19). MNIST trained on various small
architectures (see Suppl B and Fig. 13). Fashion-MNIST,
trained on the same architectures as MNIST (Fig. 14), Tiny
ImageNet, trained on VGG19 (Fig. 20). VggFaces2, trained
on st-VGG (Fig. 18). Small Mammals, Insect and Fish
datasets, all trained on st-VGG (Fig. 15), Cats and Dogs
dataset, trained on st-VGG (Fig. 16). For all datasets and
architectures, we used the hyper-parameters, augmentation
and initialization as suggested in their original papers if
available. In cases were such parameters were not avail-
able, we did some minimal parameter fine-tuning in order

to achieve competitive top-1 accuracy. It is important to
note, that the qualitative results remained the same for all
hyper-parameters values we tested, both before and after
fine-tuning.

We also reproduced our results while changing hyper-
parameters either directly and indirectly. The indirect hyper-
parameter change occurred as we tested different architec-
tures, which has different hyper-parameters by definition.
Hyper-parameters which were modified this way: i) Learn-
ing rate — a wide range of values across different archi-
tectures, both with and without decay over epochs (ranges
between 104 to 1). ii) Optimizers — SGD, Adam, AdaDelta
all with various ranges of decay and momentum. iii) Batch
size: wide range between 16 and 256. iv) Dropout: between
0 and 0.5. v) L2-regularization: between 0 and 5710, vi)
Width/length/depth/size of kernels: we checked both net-
works with few layers and deep networks such as ResNet50
and VGG19, which also included various types of layers.
vii) Initialization: Xavier. viii) Activations: Relu, Elu, Lin-
ear. In addition, we also added experiments which change
directly only specific hyper-parameters, on a toy problem of
training the small mammals dataset on st-VGG. All hyper-
parameter changes resulted in similar qualitative results,
and included: i) Activations: Relu, Elu, Linear, tanh. ii)
Initializations: Xavier, He normal, LeCun normal, truncated
normal. iii) Batch size: between 1 and 2500. iv) Learning
rate: between 1073 to 0.1. v) Dropout: 0 to 0.5.

E. Additional results

Induced class hierarchy. The ranking of training exam-
ples induced by the TP-agreement typically induces a hierar-
chical structure over the different classes as well. To see this,
we train 100 instances of st-VGG on the small-mammals
dataset, and calculate for each image the most frequent class
label assigned to it by the collection of networks. In Fig. 29
we plot the histogram of the TP-agreement (as in Fig. 3),
but this time each image is assigned a color, which identifies
its most frequent class label (1 of 5 colors). It can be readily
seen that at the beginning of learning, only images from 2
classes reach a TP-agreement of 1. As learning proceeds,
more class labels slowly emerge. This result suggests that
classes are learned in a specific order, across all networks.
Moreover, we can see a pattern in the erroneous label as-
signments, which suggests that the classifiers initially use
fewer class labels, and only become more specific later on
in the learning process.

Dynamics of individual image TP-agreement. We now
focus on TP-agreement scores of individual images, as they
evolve throughout the entire learning process. For the ma-
jority of examples, the score may climb up from random
(0.2) to 1 in 1 epoch, it may dip down to 0 and then go up to
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Figure 13. The distribution of TP-agreement scores during the learning process of 100 instances of small architecture (see Suppl B)
trained on MNIST. Epochs shown: 0,1, 2, 3,5, 10,20. We used a low learning rate (0.001) to avoid convergence after one epoch. a)

Train set; b) Test set.
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Figure 14. The distribution of TP-agreement scores during the learning process of 100 instances of st-VGG (see Suppl B) trained on
Fashion-MNIST. Epochs shown: 0, 1, 5,10, 15, 20, 25. a) Train set; b) Test set.

1 after a few epochs, or it may go rapidly down to 0. Either
way, the score remains 1 or 0 during most of the learning
procedure. This type of dynamic also suggests that once an
example is learned by most networks, it is rarely forgotten —
this observation allow us to analyze the order of learning of
specific architectures.

These patterns are shown in Fig. 30, and support the bi-
modality results we report above. The duration in which
a certain example maintains a TP-agreement O correlates
with the order of learning: the longer it has 0 TP-agreement,
the more difficult it is. A minority of the training examples
exhibit different patterns of learning. For example, a few
images (the green curve in Fig. 30) begin with a high TP-
agreement (near 1), but after a few epochs their score drops
to 0 and remains there. The amount of examples with this
type of dynamics is negligible.

Diversity in single architecture. The bi-modal phase we
report in §3, was seen in all unmodified datasets we tested,
across all architectures. Specifically, we’ve tested ImageNet
on AlexNet (N = 22), ResNet-50 (N = 27), DenseNet
(N = 7). Mnist on the Mnist architecture (see Suppl B)
with N = 100, CIFAR-10 and CIFAR-100 with VGG-16
(N = 20) and st-VGG (N = 100), tiny ImageNet with
st-VGG (/N = 100), small-mammals dataset with st-VGG
(N = 100) and small st-VGG (N = 100), and finally
randomly picked super-classes of CIFAR-100, specifically
"aquatic-mammals", "insects" and "household furniture"

with st-VGG (N = 100). The number of instances N is
chosen according to our computational capabilities. How-
ever, in all cases, picking much smaller N suffice to yield
the same qualitative results.

In addition to hyper-parameters which may differ between
various architectures, we also experimented with chang-
ing the hyper-parameters of st-VGG trained on the small-
mammals dataset, always observing the same qualitative
result. All experiments used N = 100 instances. Specifi-
cally, we tried a large range of learning rates, learning rate
decay, SGD and Adam optimizers, large range of batch
sizes, dropout and L2-regularization.

Cross architectures diversity. In addition to the results
in §4, the same qualitative results were obtained for all 2
architectures we trained on the same unmodified dataset.
We conducted the following experiments: ImageNet dataset:
ResNet-50 vs DenseNet, AlexNet vs DenseNet. Aquatic-
mammals and small-mammals super-classes of CIFAR-100:
st-VGG vs small st-VGG, Tiny ImageNet: st-VGG vs small
st-VGG, CIFAR-10 and CIFAR-100: VGG19 vs st-VGG.
All of which yielding similar results to the ones analyzed in
§4.

F. Other learning paradigms

Boosting linear classifiers. We used AdaBoost (Hastie
et al., 2009) with k up to 100 weak linear classifiers. We
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Figure 15. The distribution of TP-agreement scores during the learning process of 100 instances of st-VGG (see Suppl B) on super-classes
of CIFAR-100. Epochs shown: 0, 10, 30, 60, 90, 120, 140. a-b) Train and test sets of the fish dataset respectively; c-d) train and test sets

of the insect dataset respectively; e-f) train and test sets of the small mammals dataset respectively.

trained the AdaBoost over CIFAR-10, where each channel
in each image was normalized to 0 mean and 1 standard
deviation. Then, each image tensor was flattened into a
vector. The accuracy of AdaBoost increased as we added
more linear classifiers, as can be seen in Fig. 31. In ad-
dition to the results presented in §6, we also repeated the
experiments for the small-mammals, fish, insect, cats and
dogs, and the ImageNet cats dataset, all depicting similar
results. Datasets with more classes (such as CIFAR-100 or
the entire ImageNet) were ruled out, as the basic AdaBoost
do not reach suffiecnt accuracy on them in order to compare
them to neural networks.
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Figure 16. The distribution of TP-agreement scores during the learning process of 100 instances of st-VGG (see Suppl B) trained on the
cats and dogs binary dataset. Epochs shown: 0, 10, 30, 60, 90, 120, 140. a) Train set; b) Test set.
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Figure 17. The distribution of TP-agreement scores during the learning process of 19 instances of VGG19, trained on CIFAR-10. Epochs
shown: 0, 1, 10, 30, 60, 80, 100. a) Train set; b) Test set.
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Figure 18. The distribution of TP-agreement scores during the learning process of 20 instances of st-VGG (see Suppl B) trained on the
face classification task (see Suppl C). Epochs shown: 0, 1, 10, 20, 30, 40, 60. a) Train set; b) Test set.
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Figure 19. The distribution of TP-agreement scores during the learning process of 100 instances of st-VGG (see Suppl B) trained on
CIFAR-10 and CIFAR-100. Epochs shown: 0, 1,2, 5, 10, 20, 40. a-b) Train and test sets of CIFAR-10 respectively; c-d) train and test sets
of CIFAR-100 respectively.
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Figure 20. The distribution of TP-agreement scores during the learning process of 100 instances of st-VGG (see Suppl B) trained on Tiny
ImageNet. Epochs shown: 0, 1, 5, 10, 20, 50, 70. a) Train set; b) Test set.
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Figure 21. The distribution of TP-agreement scores during the learning process of 100 instances of small st-VGG (see Suppl B) trained on
the small-mammals dataset (see Suppl C). Epochs shown: 0, 10, 30, 60, 90, 120, 140. a) Train set; b) Test set.
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Figure 22. The distribution of TP-agreement scores during the learning process of 100 instances of st-VGG (see Suppl B) trained on the
small-mammals dataset (see Suppl C), where labels were assigned randomly to images, as done in Zhang et al. (2016). Epochs shown:
0, 10, 30, 60, 90, 120, 140. a) Train set; b) Test set.

100

50

% of data

a)

0 1

0 0.5
TP-agreement

00 0.5

. 1
TP-agreement

100

50

0

i

-

0 .
TP-agreement

™

TP-agreement

TP-agreement

100 100 100
50 l 50 I 50
0 0.5 1 0 0 0.5 1 0

o
o
n

TP-agreement

1

. 1
TP-agreement

% of data
@
g

b)

TP-agreement

TP-agreement

TP-agreement

TP-agreement

TP-agreement

TP-agreement

100 100 100 100 100 100
50 50 50 50 I 50 I 50 I
0 0.5 1 0 0 0.5 1 0 0 0.5 1 0 0 0.5 1 0 0 0.5 1 0 0 0.5 1 0 0 0.5 1

TP-agreement

Figure 23. The distribution of TP-agreement scores during the learning process of 100 instances of linear st-VGG (see Suppl B) trained
on the small-mammals dataset (see Suppl C). Epochs shown: 0, 10, 30, 60, 90, 120, 140. a) Train set; b) Test set.
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Figure 24. The distribution of TP-agreement scores during the learning process of 100 instances of st-VGG (see Suppl B) trained on the
parts of Fashion-Mnist. We divided the train set of Fashion-Mnist into 60 parts of 1000 images. Epochs shown: 0, 1,5, 10, 20, 30, 40.
a-b) Train and test sets of 100 instances trained on a random part of Fashion-Mnist; c-d) train and test sets of 100 instances trained on
another random part of Fashion-Mnist. e) The average distribution of all 60 collections on the Fashion-Mnist test set. The bi-modality
presented here indicates that although learned on different training sets, all collections have similar learning order.
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Figure 25. Averaged TP-agreement dynamics of pairs of collections of ImageNet architectures. a) 6 DenseNet instances with 22 AlexNet
instances, plotted on accuracies of 26%, 33%, 38%, 67%. b) 27 ResNet-50 instances with 22 AlexNet instances, plotted on accuracies of
28%, 33%, 38%, 70%. ¢) 27 ResNet-50 instances with 6 DenseNet, plotted on accuracies of 35%, 39%, 40%, 83%. These results follow
the same protocol described in Fig. 8.
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Figure 26. The accessibility score in 2 pairs of collections of different architectures trained on ImageNet. Left: 27 instances of ResNet-50
and 6 instances of DenseNet, 7 = 0.97, p < 1075°, Right: 22 instances of AlexNet and 6 instances of DenseNet r = 0.87,p < 107°°.

These results follow the same protocol described in Fig. 8.
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Figure 27. The accessibility score of different architectures train on the same dataset. a) 100 instances of st-VGG and 19 instances of
VGG19 trained on CIFAR-10. r = 0.83,p < 107, b) 100 instances of st-VGG and 20 instances of VGG19 trained on CIFAR-100.
r =0.78,p < 107, ¢) 100 instances of st-VGG and 100 instances of small st-VGG on the samll-mammals dataset r = 0.82,p < 107°°.
These results follow the same protocol described in Fig. 8.
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These results follow the same protocol described in Fig. 3.
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Figure 31. Accuracy of AdaBoost trained on CIFAR-10 as a func-
tion of number of weak classifiers. a) AdaBoost trained on grey-
levels. b) AdaBoost trained on the Inception-V3 trained on Ima-
geNet penultimate representation of the CIFAR-10



