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Abstract

The reliable detection of speed of moving vehicles is con-
sidered key to traffic law enforcement in most countries, and
is seen by many as an important tool to reduce the number
of traffic accidents and fatalities. Many automatic systems
and different methods are employed in different countries,
but as a rule they tend to be expensive and/or labor inten-
sive, often employing outdated technology due to the long
development time. Here we describe a speed detection sys-
tem that relies on simple everyday equipment - a laptop and
a consumer web camera. Our method is based on tracking
the license plates of cars, which gives the relative movement
of the cars in the image. This image displacement is trans-
lated to actual motion by using the method of projection to a
reference plane, where the reference plane is the road itself.
However, since license plates do not touch the road, we must
compensate for the entailed distortion in speed measure-
ment. We show how to compute the compensation factor
using knowledge of the license plate standard dimensions.
Consequently our system computes the true speed of mov-
ing vehicles fast and accurately. We show promising results
on videos obtained in a number of scenes and with different
car models.

1. Introduction

With the ever increasing number of cars worldwide,
there is a growing need for cheaper and more efficient au-
tomated traffic control systems. One important feature of
such systems is the ability to detect speed reliably - research
seems to show that speed enforcement reduces the number
of accidents and the number of fatalities [4, 15], thus saving
lives. Traditional speed detection devices require specific
sensors like laser, radar, infrared or ground sensors such
as magnetic bars installed under the road, in addition to a
camera which is required in order to document offensive
vehicles (see e.g. [1, 2]). Recently computer vision tech-
nology has been used for the detection of speed based on

stereo vision [3] using multiple cameras.1 Our goal in this
work is to develop an automatic system that detects speed
efficiently and reliably with cheap equipment, based on a
low-end laptop and a single consumer camera as illustrated
in Fig. 1.

Figure 1. A snapshot of our speed detection system, mounted in
position to measure the speed of moving cars.

The most straightforward way to compute speed from a
single RGB or monochrome stationary camera would as-
sume that the camera is fully calibrated, and therefore one
can compute the 3D location of every point in the image.
This system will track each car along the video frames in
which the car is visible. It will recover the exact location of
the car when it had first appeared in the video, and the last
location before it had disappeared. It is now a simple mat-
ter to compute speed by computing the distance the car had
travelled, and dividing it by travel time which is determined
by the number of video frames between the end points.

The brute-force computation outlined above requires ac-
curate camera calibration, including the camera’s exact lo-
cation and orientation in 3D space, and its internal calibra-
tion parameters such as zoom and focus (see review of cal-
ibration methods in [16]). The accuracy of camera calibra-
tion, however, is hard to guarantee for an autonomous cam-
era [17], even a stationary one, and partially for this reason

1We do not consider as comparable systems which compute the average
speed traveled by a car between distant fixed sites.
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such a system is not in common use.
Our method is based on the observation that full cali-

bration is not necessary, given the constrained environment
under which the system needs to operate. In other words,
since the system is required to compute the speed of objects
moving on a flat surface, one can use shortcuts and rely only
on partial plane calibration, which is easy to maintain and
which is sufficient for the task. Such partial calibration is
sometimes called plane + parallax [8], or calibration to a
reference plane [9]. In Section 2.5 we show that for speed
computation it is sufficient to calibrate the road only, which
only guarantees the correct recovery of the 3D location of
points on the road.

Specifically, we assume that the road in the operational
area of the system lies on an approximately flat surface. We
call this surface the reference plane. In principle it is a sim-
ple matter to compute a 2D projective transformation from
the image plane to the reference plane, which will map ev-
ery point in the image which in the real world lies on the
road to its real location in 3D space [6]. In order to com-
pute this transformation, one needs to fix some visible cal-
ibration pattern on the road. The planar calibration pattern
should include at least 4 points. The larger it is, or the closer
the calibration points are to the end of the visible surface,
the more robust the computation is (see example in Fig. 3).

Automatic camera calibration is often assisted by a cali-
bration pattern presented to the camera. However, when cal-
ibration is restricted to a 2D reference plane rather than the
full 3D space, the calibration pattern can be planar rather
than 3-dimensional. In addition, the minimal number of re-
quired calibration points is smaller. Thus calibration to a
reference plane is more suitable for the task of detecting
speed of vehicles moving over a planar surface, and can be
achieved more readily.

Similar challenges were taken up in [13, 10], for exam-
ple, but there are many implementation and other differ-
ences as compared to our work. For one, in [13], there is
a need for a test drive with a known vehicle and speed in
order to evaluate the homography matrix. In [10], in or-
der to compute the homography one needs some previously
known distances on the road. This system requires some
very expensive equipment or the use of more than a single
camera, because of the distance between the camera posi-
tion and the moving vehicles. Finally, our system finds a
specific spot on the vehicle (the corner of the license plate),
while the system in [13] only evaluates the center of mass
of the moving object, and [10] uses a closing blob of the
object which is more error prone. Having said that, our sys-
tem requires some knowledge about standard dimensions
of license plates, which is more readily available in isolated
countries (such as Iceland or Israel).

Next, we describe our method in Section 2. Experimen-
tal results are shown in Section 3.

2. Method
Our task is to compute the speed of a car based on track-

ing its movement through a sequence of images. Since in
the end it is also necessary to identify the car, the natu-
ral choice of a target to track is the car license plate. Our
computation therefore starts by tracking the license plates
of moving cars, identifying the license number and its mo-
tion in image pixels. Subsequently it remains to compute
the real world motion of the car from its image motion.

Recall from the discussion in Section 1 that our method
is based on calibration to a reference plane. Suppose the
car has traveled from point p1 to point p2 in the image.
Since the image itself is a plane, it is possible to compute
a homography - a 3 × 3 projective transformation of the
2D projective plane to itself - from the image plane to any
other plane in 3D space. In order to do this, one need cor-
respondence between at least 4 marker points in the image
and their exact location on the real plane in 3D. Four corre-
sponding points define the homography uniquely, while ad-
ditional points can be used to make the computation more
robust [7].

Suppose that we can track interest points on the car
which touch the road, and that the road in the surveyed area
is planar. Now a natural choice for the real world target
plane is the plane on which the road lies (the road plane),
and the road becomes the reference plane. By aligning the
image plane with the reference plane and tracking points
on the image plane, the image distance traveled by points
on the road in the real world is equal to the actual distance
traveled by these points, with no need for any further cam-
era calibration.

Figure 2. Tracking the intersection of the wheel with the road can
be difficult to do reliably.

In practice, however, it is very difficult to track points
on the car which touch the road, see Fig. 2. The bottom
part of wheels often lies in shadow, and a wheel’s exact
intersection with the road is typically hard to locate con-
sistently. On the other hand, it is rather easy to track li-
cense plates, which have clear boundaries and often display
a unique color. While the license plate is also moving on a
plane, it is not the road plane; rather it is a virtual plane par-
allel to the road plane, whose distance from the road plane



corresponds to the height of the license plate over the road.
Thus, in order to compute the distance traveled in the real

world from the distance in the image plane projected to the
road plane, we need to compute a correction factor that de-
pends on the height of the license plate over the road. If we
know the car model, possibly by given access to a database
of all licensed cars via the license number, we can obtain
this correction factor directly. Otherwise, we describe in
Section 2.5 a method to compute this correction factor from
the distortion of the license plate itself, assuming that all
license plates adhere to some fixed standard size.

The final algorithm goes as follows:

• Pre-processing: Compute the homographyH between
the image plane and the road plane by identifying
known markers on the road which are visible to the
camera. We rely on the fact that the exact location of
the markers on the road is measured and known apriori
(Section 2.1).

• Segment and track the license plate of each car in the
image sequence for as long as possible (Section 2.2).

• Read the license number of the car from the license
plate (Section 2.3).

• Compute the actual distance traveled by the license
plate in the real world, following these steps:

1. Track the corner of the license plate through a
sequence of frames, and identify its locations in
each frame. Project the locations onto the road
plane using H2 in order to obtain an estimate
for the real world locations of the corner. For
each pair of frames in the sequence, calculate the
difference between the locations of the projected
points and divide it by the time that passed be-
tween the frames, in order to obtain several re-
sults for the estimation of the projected speed s
of the vehicle (Section 2.4). To achieve robust-
ness, return the median of the set of estimated
speeds as the final estimate for the motion of the
license plate.

2. Since the license plate is not located on the road
in the real world, its projected estimated speed
s is not its actual speed as explained above. In
Section 2.5 we describe how to compute the cor-
rection factor ρ which transforms s to the license
plane’s (and therefore the car’s) actual speed v =
ρs.

2If necessary and if the markers are clearly visible, update the homogra-
phy H computed in the pre-processing step. Currently H is updated every
hour, although we have not observed any significant changes in H in our
experiments.

• Report the speed of the car as v. Identify the car by its
license number.

2.1. Computing the 2D calibration homography

The projection of the 3D world to a 2D image via
a pinhole camera can be elegantly expressed in homoge-
neous coordinates as a linear transformation from 3D pro-
jective space to 2D projective space. Specifically, let P =
[X,Y, Z, 1] denote the homogeneous coordinates of a point
in 3D projective space, and let p = [x, y, 1] denote the im-
age homogeneous coordinates of the same point viewed by
a pinhole camera. Then there exists a 3 × 4 matrix P such
that p ∝ PP. P is the calibration matrix of the pinhole
camera.

If all the points in space Pi lie on some 3D plane, we
can represent these points by their relative 2D coordinates
on the plane on which they lie qi, where qi are vectors in
the 2D projective space. It now follows that there exists a
homography 3× 3 matrixH such that

pi ∝ Hqi ∀i (1)

where ∝ denotes equality up to multiplication by a single
scale factor. In (1) there are 8 unknowns to recover (the el-
ements ofH up to a scaling factor) and each point provides
2 independent constraints on these unknowns. ThereforeH
can be recovered from at least 4 corresponding points be-
tween the two planes, and specifically the correspondence
{pi} to {qi}. In order for the computation to be robust, it is
desirable that the points which are used for obtaining H lie
as far as possible from each other towards the edges of the
calibration plane, see [7].

The calibration procedure is illustrated in Fig. 3. Note
that whenH is applied to the image, it transforms the image
such that all the points on the reference plane are brought
to their correct position in space, while the mapping of
other points depends on their height relative to the reference
plane.

Figure 3. Left: a view of the road, with zoom-in on the 4 calibra-
tion markers. The markers are identified and used to compute the
calibration homography H. Right: after H is applied to the part
of the image surrounded by a square in the left panel, one gets a
bird’s eye view of this part of the road.



2.2. Image motion computation

Here our task is to isolate the location of the license plate
in each video frame, and track it across numerous frames.
This is done in a few steps:

Removal of empty frames: we avoid heavy processing of
empty video frames by using background subtraction [12],
as illustrated in Fig. 4. Frames that are judged to resemble
the background too much are removed from further process-
ing.

Figure 4. Example of background subtraction: the frame on the
right is compared to the background (frame on the left), and the
difference is encircled by a red contour.

License plate segmentation: Segmentation follows a se-
quence of steps as illustrated in Fig. 5. First, we note that
license plates are often characterized by some unique and
easy to detect color, and segmentation based on this unique
color can be done rather reliably. We therefore transform
the images to HSV color space (Fig. 5b), learn the appear-
ance of a standard license plate in this space, and use this to
detect areas of the same color in all active frames. The im-
age is then binarized to remove all pixels of different color
(Fig. 5c). Subsequently, morphological operators - dilation
and erosion - are used to unite close connected components
and reduce noise (Fig. 5d). Finally, the occluding rectangu-
lar contour of the license plate is obtained in the surround-
ing of the boundary of the segmented shape (Fig. 5e).

License plate classification: In order to decide whether
the area segmented in the previous step is indeed a license
plate, we trained an SVM classifier using positive and neg-
ative samples obtained from video clips we had collected
as described in [5]. The samples were obtained using the
following procedure:

• Rotate the image in order to compensate for the rota-
tion angle of the region’s occluding rectangle.

• Crop the rectangular region and resize it to 33 × 144
greylevel pixels.

• Apply histogram equalization.

a)

b)

c)

d)

e)

f)

Figure 5. License plate segmentation. a) The original frame. b)
The frame transformed to HSV color space. c) Pixels displaying
the license plate color are isolated. d) Morphological operators are
used to generate a clean segmented region. e) The position of the
plate’s bounding rectangle is sought around the boundary of the
segmented area. f) The segmented area has been identified as a
license plate by the SVM classifier.

• Vectorize the region and use it as a sample for the SVM
classifier.

Some of the training examples are shown in Fig. 6. We
divided the sample of 850 examples into two parts, one for
training and one for testing. Classification results, in trying
to distinguish regions which contain a license plate from
other regions, had 0.45% miss rate. Example for positive
identification is shown in Fig. 5f.



Figure 6. Left: negative examples used to train an SVM classifier
which decides whether a cropped region contains a license plate
or not. Right: positive examples.

2.3. Reading the license number

Our task here is to read the license number from the im-
age segment obtained in the previous step of the algorithm,
which has segmented the license plate from the rest of the
image. OCR (optical character recognition) has been the
subject of much research in the last 40 years or so, where
Artificial Neural Networks (ANN) have emerged as one of
the most effective methods for this task (e.g. [11]). For our
purpose we trained an ANN with 3 layers and a Sigmoidal
activation function as described in [5] chapter 5. For train-
ing we used characters that have been cropped from license
plates we recognized in the videos we have collected (see
Fig. 7-left). The trained ANN classifier first segments the
image of the license plate into individual characters, and
then recognizes each character based on its pre-training (see
Fig. 7-right).

Figure 7. Left: cropped characters used for training the ANN clas-
sifier. Right: illustration of the outcome of classification with the
trained ANN.

2.4. Speed detection

We start by tracking an interest point on the license plate
for as long as possible. To this end we use the corner detec-
tion algorithm described in [14] to accurately find the corner
of the plate as illustrated in Fig. 8.

Speed detection proceeds as follows: Denote by p1 and
p2 the image locations of a pair of points in the tracking
sequence. Project these points onto the road plane using
homography H, to obtain points Hp1 and Hp2 on the ac-
tual road plane. Scale these projective coordinates to obtain

Figure 8. Illustration of candidates for the upper right corner of the
license plate; the green point is eventually selected as the position
of the corner.

the corresponding Euclidean coordinates, and compute the
distance between the locations in order to estimate the pro-
jected Euclidean distance traveled by the interest point. Us-
ing the known time that had passed between the frames in
the tracking sequence, divide the projected travel distance
by the travel time to obtain an estimate for the speed of the
license plate. This speed is not the true speed of the license
plate, because the interest point does not move on the road
plane but rather on a plane parallel to the road plane.

2.5. Speed correction factor

Recall that H defines the transformation (or homogra-
phy) in 2D projective space between the image plane and
a real plane in the world (the reference plane on which the
road lies. When H is applied to the image, it transforms all
the points which actually lie on the reference plane to their
true location on this plane. But what happens to other points
which do not lie on the reference plane?

After applyingH to the image, the combined image for-
mation process can be imagined to be as follows: the cen-
ter of the pinhole camera remains as it has been, but the
world in now projected through this center onto a different
plane, the reference plane, which is identical to the image
plane. This geometry is illustrated in Fig. 9, which demon-
strates what the homography H does to 3D points that do
not lie on the reference plane: each such point is effectively
projected to the reference plane via the camera’s projection
center, as if the reference plane is itself the imaging surface
of the camera.

Recall that in the previous step of the algorithm, we com-
puted the projected distance traveled by some interest point
on the license plate. This quantity is denoted in Fig. 9 by D.
The real distance traveled by the interest point is d. There-
fore the correction coefficient ρ, which brings the projected
traveled distance of an interest point to the actual distance
traveled by this point, is

ρ =
d

D
=

H− h

H
(2)

where h now denotes the height of the interest point over
the road.

If using interest points which lie on the corners of the li-
cense plate, we can stop here when the height of the license
plate of the tracked car is known. This is the case when the



Figure 10. Snapshots from several scenes used in our experiments.

Figure 9. The geometry of image formation after transforming the
image by the homography which maps the image plane to the ref-
erence plane (which is the road plane). D denotes the distance
traveled by some point on the license plate after being projected
to the reference plane. d denotes the real distance traveled by this
point. H denotes the height of the camera’s center of projection
above the road. h denotes the height of the tracked point on the
license plate above the road.

system has access to a database of all licensed cars, which
includes each car’s license plate number and car model.

If this is not the case, we can take advantage of the fact
that license plates follow a standardized size and have a
fixed length. Consequently the real length of any horizontal
edge on the license plate is known. In addition, these edges
are parallel to the road plane, and therefore the distortion in
their size when measured on the reference plane is identical
to the distortion of the travelled distance, see Fig. 11.

It therefore follows that3.

ρ =
l

L
=

standard license plate length

measured license plate length
(3)

where by “measured license plate length” we refer to the
length of a horizontal edge on the license plate which passes
through the interest point.

3Errors may arise when the license plate is not mounted horizontally,
and due to the difference between the projection of the top and bottom
edges of the license plate. We tested robustness to these sources of error in
our experiments.

Figure 11. Same geometry as Fig. 9, where L denotes the projected
length of the license plate on the reference plane, and l denotes its
fixed standard length.

3. Experiments

The components of the system we have built include a
consumer camera and a laptop, see Fig. 1. Specifically,
the camera is Logitech Webcam C920. The laptop is Acer
Timeline U M5-481TG (Intel Core i5 3317U Processor
1.7GHz (3MB Cache) and 4 GB SDRAM RAM). The sys-
tem was tested with several cars driven in various speeds on
different city roads. For illustration, Fig. 10 shows pictures
from 3 of the scenes. In the supplementary material we
include movies showing license plates being detected and
tracked in the corresponding scenes. Ground-truth speed
was measured by a GPS speedometer, due to the fact that
most cars’ speedometers are intentionally biased by manu-
factures.

The algorithm was implemented as described in Sec-
tion 2; for each vehicle we measured the correction factor ρ
from many frames, and took the median of the results.

As explained in Section 2.5, we used two method to com-
pute the final speed of the car’s license plate. Method 1 com-
putes the correction factor ρ while assuming that the car’s
model, and consequently the height of the license plate, is
known. Method 2 computes the correction factor ρ directly
from the foreshortening of the license plate caused by its
projection onto the reference plane. Figs. 12-13 show the
collected results of the ground speed estimation in all the
different conditions based on the different methods.



Figure 12. The measured ground speed is plotted as a function of
the actual GPS-measured ground speed, using method 1 (top) and
method 2 (bottom). The solid line indicates the correct answer.

4. Summary and discussion

We described a system that computes the speed of mov-
ing vehicles from videos taken by a consumer camera reli-
ably and effectively. Our method is based on two assump-
tions: First, the existence of some calibration markings on
the road that are visible to the camera on occasion. Second,
cars are assumed to carry standard license plates mounted
on the front of the car. In our future work we will try to re-
lax some of these assumptions, deal with a larger variety of
license plates, improve the OCR performance and achieve
real-time performance.
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