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Abstract

We present a novel method to detect and assess the sever-
ity of Levodopa-Induced Dyskinesia (LID) in Parkinson’s
Disease (PD) patients, based on Microsoft Kinect record-
ings of the patients. Dyskinesia denotes involuntary move-
ments induced by chronic treatment with levodopa in pa-
tients with PD. Detection and objective quantification of
dyskinesia is essential for optimizing the medication regime
and developing novel treatments for PD. We used Microsoft
Kinect sensor to track limb and neck movements of a pa-
tient performing two motor tasks. Using a new motion
segmentation algorithm, kinematic features were extracted
from the videos and classified using Support Vector Ma-
chines (SVMs). The method was tested on 24 recordings
of 9 PD patients, and achieved sensitivity of 0.82 at EER
in overall dyskinesia detection. Moreover, it provided a nu-
merical overall score for the severity of dyskinesia, which
showed high correlation with the neurologist’s assessment
of the patient’s state. The study shows that depth camera
recordings can be used to monitor and grade the severity of
levodopa-induced dyskinesia, and therefore can potentially
provide valuable aid to clinicians and researchers.

1. Introduction
Parkinson’s disease is a neurodegenerative disorder that

manifests itself in various movement disorders, such as
bradykinesia, tremor and rigidity. It is most often treated
with dopamine precursor, levodopa; however, long-term
treatment by levodopa often results in involuntary move-
ments, called dyskinesia [15]. The pattern and severity level
of levodopa-induced dyskinesia (LID) vary between differ-
ent patients, and even for the same patient the severity of
dyskinesia fluctuates substantially both on short and long
timescale. Quantitative assessment of the dyskinetic condi-

tion will benefit diagnosis of the disease as well as treatment
evaluation. Most clinical scales used nowadays are based on
the patient’s self-assessment and home diaries, as well as a
clinician’s observations. However, due to the fluctuations of
LID in time, a single evaluation may not reflect the sever-
ity of LID experienced by the patient in everyday activities,
and self-evaluation of the condition by the patient may be
inaccurate. Therefore, an automated and objective proce-
dure to quantify the severity of LID that could be carried
out at home would aid the clinicians in monitoring and op-
timizing the patient’s treatment, and possibly in developing
new treatments for the disorder.

In recent years, several approaches have been tried to
quantify LID in an automatic way. Wearable technology,
such as gyroscopes and accelerometers have been used to
quantify the patients’ motion, both during performing of
specialized tasks [11, 17, 10] and in everyday life [9, 12].
Diagnostic potential of other medical equipment, such as
medical force plates [2], was also explored. Most of the
earlier attempts either require that the patient wear cumber-
some and expensive equipment or that dyskinesia assess-
ment is performed in laboratory conditions, making daily
monitoring of the patient’s state impossible. Newer gener-
ations of wearable technology enable home monitoring of
the patient; however, the amount and placement possibili-
ties of the sensors on the patient’s body are limited, which
affects the quality of detection and characterization of the
dyskinetic patterns. Furthermore, it was found that even
though older patients have positive attitude towards techno-
logical developments designed to improve their healthcare,
they are reluctant to use wearable technology [5].

Recent work of Rao et al. [13] proposed a vision-based
method of LID quantification. In [13], the researchers use
point distribution models (PDM) to track the face features
of PD-affected patients on standardized videos taken dur-
ing medical evaluation. A heuristic function is then devel-



oped based on the tracking data to quantify the severity of
the dyskinesia, based on the number of principal compo-
nents in the data and their relative weight. While providing
non-intrusive method of dyskinesia assessment, the method
requires standardized video recordings to function, mean-
ing that its application requires that the patients arrive to
the hospital for evaluation. Furthermore, this method uses
advanced and computationally expensive computer vision
techniques to acquire the raw data necessary for analysis,
which may hinder its practical application.

Recent advances in computer-vision based home appli-
ances allow us to acquire raw data of reasonable accuracy
using a popular device that can be stationed in every home.
Specifically, Microsoft Kinect is a motion-sensing device
used to directly control video games through body move-
ment. In addition to growing evidence of its potential in
physical rehabilitation through gaming and interactive train-
ing [4], its possible applications in posture [3] and gait [6]
analysis have also been subject to research in recent years.
A study by Galna et al. [7] shows that the device can ac-
curately measure the spatial characteristics of movement
symptoms in patients with PD. Recent studies offer Kinect-
based methods to detect and measure body tremor [16] and
freeze of gait [1]; however, to our knowledge, the problem
of LID has not been yet addressed.

In this paper we present a novel Kinect-based method to
detect dyskinesia in PD patients and rate it according to an
approved clinical scale. Ideally, our method will be used in
a vision-based system to be stationed in the patient’s home
and used to monitor the patient’s condition. Our method
is based on motion detection and machine learning tech-
niques, and therefore data is needed for the algorithm’s de-
sign. In Section 2 we describe the experimental setup which
was used for data collection. In Section 3 we describe our
method, including the motion detection algorithm and the
training of the final classifier and grader. In Section 4 we
describe the empirical evaluation of the method, showing
excellent agreement with the assessment provided by a clin-
ician.

2. Methods: experimental setup

2.1. Technology overview

Microsoft KinectTM was developed as a motion-sensing
attachment to the Xbox gaming console. It includes an RGB
camera, an IR emitter and sensor, and a microphone array.
Kinect produces a depth image using technology based on
structured light technology [14]: the depth map is created
by matching a pattern of laser IR dots to its projection on the
scene in front of the camera. The depth channel is used by
the sensor’s software to extract the virtual skeleton, which
consists of the positions of 20 anatomical landmarks of hu-
man body (which we will refer to as “joints” for simplicity)

Figure 1: Output of the Kinect sensor. Joint positions are used for motion
analysis, while the video recording serves for neurological diagnosis. The
dots marked green signify the joints that were chosen to be used in the
feature vector.

in three-dimensional space, at the rate of 30 fps and spa-
tial resolution of 640x480 pixels [18]. We used Microsoft
Kinect For Windows Standard Development Kit (SDK) to
interface with the sensor and acquire the skeletal tracking
data and video input. To reduce the noise in joint position
tracking, we used the following noise filtering parameters of
Kinect API: smoothing parameter 0.5, correction parameter
0.3, prediction parameter 0.5, jittering radius 0.01 and max-
imun deviation radius 0.04. Example of the Kinect output
is shown in Fig. 1.

2.2. Data collection protocol

Nine patients (ages 54 to 72, including 5 women and 4
men), who were affected by Parkinson’s disease with vary-
ing severity of LID (2 of the patients were not affected
by LID), were recruited for our study and data collection.
All of the subjects gave written informed consent for study
participation in accordance with the Helsinki Declaration.
Each of the patients was recorded 2 to 6 times, and for 5
patients, recordings in both dyskinetic and non-dyskinetic
states were obtained. Overall, 24 recording sessions were
collected and analyzed in this study. Each session included
two conditions (sitting and standing, see below), giving us
48 recordings for further analysis.

The subjects were recorded at home at various hours dur-
ing the day, and the recordings followed the protocol of Ab-
normal Involuntary Movement Scale (AIMS). During each
recording session, the patients were asked to perform two
motoric tasks, typically used during the standard Unified
Parkinson’s Disease Rating Scale (UDPRS) assessment: 1)
tapping the thumb with an index finger, and 2) opening and
closing the palm. In addition to recording the skeletal joint



positions as detected by Kinect, the RGB camera of the sen-
sor was used to perform a video recording for neurological
diagnosis.

Each of the movements was performed repeatedly with
each hand over a period of 15 seconds, first in a sitting and
then in a standing position, with at least 30 seconds lapse
between the tasks. In addition, each patient was recorded
while performing the activities required by the protocol of
AIMS [8]: sitting with legs slightly apart; getting up from
the chair; and walking a few steps. As assessing the sever-
ity of oral and facial movements was not part of the study,
procedures meant to check the dental and oral state of the
patient were omitted. The Kinect sensor was positioned at
a distance of ˜2.3 m from the patient and height of ˜40-50
cm from the floor. A researcher stood beside the Kinect
to demonstrate the movements and ensure the participant’s
safety.

Video recordings of tasks from each recording session
were grouped into a video sequence together with the videos
of the patient performing the additional tasks required by
the AIMS protocol. The sequences, provided in random
order, were then scored by a movement disorder neurolo-
gist using the AIMS grading system. Each video sequence
was given 4 integer grades in the 0-4 range, based on the
neurologist’s impression from the state of the patient in
the session. The grades quantified the severity of each of
4 categories of dyskinetic movement: upper limb move-
ment (including finger or arm jerking movements), lower
limb movement (including foot tapping or squirming), trunk
movement (including neck twisting and trunk rocking), and
overall movement. Note that only the recordings while per-
forming the tasks were used as input to the algorithm.

3. Our method

We now describe our method, which included a number
of steps: First, using the Kinect recordings, we obtained
features based on the motion segmentation of each record-
ing (Section 3.1) followed by noise reduction (Section 3.2).
Next, we trained a classifier to detect LID (a binary task)
and evaluate its severity; this was done using machine learn-
ing techniques, including feature selection (Section 3.3) and
classifier training (Section 3.4).

3.1. Motion segmentation algorithm

The three-dimensional coordinates of 20 joints provided
by the Kinect SDK (see Fig. 1) during the recordings of the
2 tasks described above were used as raw data for the algo-
rithm. To analyze the motion of each joint, the time series of
joint positions were partitioned into motion segments. Let
(Xj

1 . . . X
j
n) denote the series of vector positions of joint j

in frames 1 . . . n. To partition the positions into segments
Sj1 . . . S

j
k, the following procedure was used:

Algorithm 1
Sj1 = [Xj

1 ] % initialize the first segment

k = 1
for i =1, . . . , (n− 1)
V j
i = Xj

i+1 −Xj
i

if ∠(V j
i , V

j
i−1) > π

2 , . . . ,∠(V j
i , V

j
i−d) >

π
2

d = min{5, |Sjk| − 1}
Sjk = Sjk ∪ [Xj

i+1] % add position to existing segment

else
Sjk+1 = [Xj

i+1] % start a new segment

k = k + 1

More specifically, the end of one motion segment and
the start of the other is determined by the angles between
the vector differences between adjacent points in the mo-
tion sequence. As long as the difference vector forms an
obtuse angle with d previous difference vectors in the joint
motion (we set d = 5), the points constituting it will belong
to the same motion segment. If an acute angle (less than π

2 )
occurs between the difference vectors, signifying a change
of direction, a new motion segment is started. This segmen-
tation method helps to detect twitching, jerking movements
with sudden change of directions that are typical in dyski-
netic condition. We define the length of the segment to be
the sum of the length of each vector difference between two
adjacent joint positions in the segment.

3.2. Noise Reduction

Kinect joint detection is characterized by varying
amounts of noise, mostly “jittering” noise. Even when
we used enhanced smoothing parameters implemented by
Kinect Software (described in technology overview), the
deviation between the positions of the same joint in adja-
cent frames (0.03 seconds apart) resulting from the noise
can sometimes reach a few centimeters. It was found that
several parameters affect the amount and amplitude of the
noise, such as:

• Lighting conditions - as natural light spectrum in-
cludes IR frequencies, daylight affects the quality of
joint detection as well as the amount of noise in joint
detection.

• Subject’s clothing color - it was found that dark cloth-
ing hinders detection of the relevant joints.

• Subject’s complexion and height can affect the quality
of detection.

• Subject’s posture - in general, most of the joints, espe-
cially spine and hip joints, are more noisy in sitting po-
sition, and the detection quality is worse than in stand-
ing position.



Figure 2: Choosing representative joints for movement representation: Normalized dis-
tributions of average motion lengths for (a) a representative joint (shoulder) (b) non-
representative joint (elbow). The feature distribution is plotted in green for dyskinetic
recordings and in blue for non-dyskinetic recordings.

Figure 3: PCA representation of the feature vectors rep-
resenting the chunks from dyskinetic (blue) and non-
dyskinetic (green) videos of the same patient.

To deal with the noise, a number of techniques were used.
Traditional jitter removal filtering techniques may introduce
new motion segments into the series, affecting the segment
length statistics, and we therefore sought another way to re-
duce noise. Jitter was removed by limiting the maximal dis-
tance between the joint positions in adjacent time frames.
To remove the noisy fragments, all adjacent frames with
difference above a threshold were marked as noisy frames,
and the frames in their immediate proximity were weighted
according to their distance to the noisy frames. All the
frames with distance proximity grade above some thresh-
old were deleted, and the edges of the removed fragments
were marked so that they could be recognized by the mo-
tion segmentation algorithm. The segmentation algorithm
was updated to end a motion segment and start a new one
whenever it encountered this mark in the time series of joint
positions.

3.3. Feature selection

Each video (450 frames long) was divided into 50-frame
long chunks with overlap of 25 frames. We began by an-
alyzing the movement of all joints except the 3 joints that
participated directly in the performance of the task (those
of the left or the right hand respectively). Thus the move-
ment of each joint was segmented according to Algorithm
1, and then quantified by the average characteristic of these
segments using 1 of 3 characterization methods. We use a
single representation for both cases, when the task was per-
formed by either the right or left hand. To accomplish this,
each feature in this representation was labeled relatively to
the hand that performed the task, such as ’same-side knee’,
’opposing elbow’ or ’opposing knee’.

Specifically, in each chunk each joint was assigned a list
of motion segments. Subsequently, its representation was
based on some average property of these segments, using

one of the following methods:

• Average motion length: average segment length in the
chunk.

• Average motion speed: average speed of the segment
in the chnunk (length/numof frames∗0.03 sec).

• Distribution of quantized motion lengths: the
lengths of motion segments for each joint were quan-
tized into three levels using k-means clustering. Each
discriminative joint was represented in the vector by
the normalized 3-bin distribution.

Next, we used the training data and discriminative fea-
ture selection in order to select the most discriminative
joints which will represent each motion chunk. Specif-
ically, for each joint we extracted the distribution of its
chunk value (as computed above) based on all the record-
ings. Two distributions, represented by 30-bin histograms,
were extracted, one for the dyskinetic state and one for the
normal state (see examples in Fig. 2). The discriminative
power of each joint was measured by the Earth Mover’s
Distance (EMD) between these two histograms. The pro-
cedure was performed separately for the two experimental
conditions (sitting and standing), and the EMD distances of
the histograms in the two conditions were added up to pro-
vide a discrimination grade per joint. Subsequently, the 10
joints with the highest discrimination grade were chosen as
shown by green dots in Fig. 1. Example of motion length
distribution in a discriminative joint vs. non-discriminative
is shown in Fig. 2.

The feature selection process resulted in a 10-
dimensional feature vector representing each chunk, where
each of the chosen 10 joints was represented by a single
number, calculated according to one of the three methods



listed above. Prior to classification, principal component
analysis (PCA) was applied to reduce the dimensionality of
the feature vector. To determine the number of dimensions,
variance accumulation was applied, and it was found that
in all cases 3 to 4 principal components accounted for 90%
of the data variance; therefore, 4-dimensional PCA repre-
sentations of the feature vectors described above were used
for subsequent classification and grading. The separability
of the PCA representations of chunks taken from dyskinetic
and non-dyskinetic sessions can be seen on Fig. 3.

Joint selection was only used to assess the overall dyski-
netic state of the patient. To assess the dyskinesia level in a
restricted area (upper limbs, lower limbs, and the trunk), all
the joints from the appropriate body part were used. For ex-
ample, both knee, ankle and foot joints were used for lower
limbs dyskinesia assessment, while the head, shoulders and
hips were used for assessing trunk dyskinesia. Therefore,
the classification and grading stages for the local dyskinesia
assessment analysis involved 6-dimensional (for lower limb
dyskinesia), 3-dimensional (for upper limb dyskinesia) and
7-dimensional (for trunk dyskinesia). Since the feature vec-
tors in the local dyskinesia analysis were of low dimension
to begin with, further dimensionality reduction by PCA was
not required.

3.4. Classification and grading

Algorithm 2
Input 1: p - set of chunks from a pair of 1 dyskinetic and 1
non-dyskinetic recordings of the same patient
Input 2: [r1 . . . rm] - sets of chunks from all other m record-
ings (m = 24 - 2n)
Output: grades = [g1...gm] for every recording in Input 2.
Train s = SVM RBF (p)
Do for j = 1, 2, . . .m

For each chunk c in rm:
Compute s(c)

End
gj = #{c|s(c)=True}

#c
End

At the training stage, feature vectors representing chunks
from recordings of the patients with both dyskinetic (with
AIMS dyskinesia grade at least 2) and non-dyskinetic
videos available were used for training a SVM classifier. We
used soft-margin SVM with RBF kernel to separate between
feature vectors representing recording chunks taken from
dyskinetic and non-dyskinetic clips. We used the MATLAB
Statistical toolbox to perform the classification.

The trained classifier was used to label the feature vec-
tors representing the chunks of every recording in the data
set not used for training. The grade of the recording was
determined by computing the fraction of chunks classified

as dyskinetic. The recording session received the average
grade of all the recordings that were included in it (see Sec-
tion 2.2 ). The computed grade was used for binary classi-
fication of the patient’s condition, as well as for multi-level
quantification of the dyskinesia severity.

4. Results
We used our data to test the ability of our method to ac-

complish one of two tasks: binary classification of the dysk-
inetic condition - present or not (Section 4.1), and quantified
assessment of dyskinesia severity and its agreement with the
clinician’s evaluation (Section 4.1.1).

4.1. Binary classification of dyskinetic condition

The ability of our method to detect dyskinesia in a pa-
tient was checked by turning the neurologist grade into a
binary grade - all recording sessions with grade above zero
were assigned a value of 1. The procedure outlined in Sec-
tion 3.4 was then executed to train the desired classifier. We
used the 3 methods to characterize each movement segment
as described in Section 3.3, and for comparison plotted the
respective Receiver Operator Characteristics (ROC) curve.
The Area Under the Curve (AUC) was used to measure the
effectiveness of each method.

Specifically, to test our method’s ability to detect dysk-
inesia in a patient (overall dyskinesia grade above 0), the
algorithm was trained on recordings of a single patient, and
then used to grade all the recordings in the database not
used for training. We repeated this procedure for every pa-
tient for whom we had both dyskinetic and non-dyskinetic
recordings available (resulting in 5 train-test sessions in to-
tal), each time using the data of a different patient to train
the classifier. We then calculated the average AUC for each
of the remaining recordings.

The results of the tests (averaged over the 5 repetitions)
are shown in Table 1. The ROC curves of classifying the
patient’s state in 48 recordings (24 recording sessions with
2 postures each) using the three methods are presented in
Fig. 4. These curves show nice agreement between the al-
gorithm’s classification decisions and the clinician’s assess-
ment. All 3 methods used to evaluate a movements segment
show similar performance (with the Motion length distri-
bution method performing slightly worse), achieving up to
0.85 sensitivity at Equal Error Rate point (EER).

Average AUC Average GCC
Average motion length 0.882 0.805

Motion length distribution 0.862 0.703
Average motion speed 0.906 0.789

Table 1: Average performance of the chosen features in as-
sessing the overall classification success.



Figure 4: The ROC curves of dyskinesia detection using av-
erage motion length (blue), motion length bag of words (red)
and average motion speed (black).

Figure 5: The correlation between the algorithm-produced grades and the
grades given by the neurologist. The bars show the mean grade given by the
algorithm to recordings with the appropriate AIMS grade, while the error bars
show the variance.

4.1.1 Quantified assessment of dyskinesia severity

Since our method provides a quantitative measure of dysk-
inesia, we can use it to grade the severity of dyskinesia
in each session. Fig. 5 shows the excellent qualitative
agreement between the algorithm grades and the neurolo-
gist grades. We compared our measure to the grades given
by the neurologist using the general correlation coefficient
(GCC): Let ai denote the grade assigned by the algorithm
to session i, and let bi denote the grade assigned by the neu-
rologist. The general correlation coefficient (GCC) between
the two grading scores is given by:

Γ =

∑n
i,j=1(ai − aj)(bi − bj)∑n

i,j=1(ai − aj)2
∑n
i,j=1(bi − bj)2

(1)

The average GCC scores for the three tested methods are
presented in Table 1. Due to the limited amount of avail-
able representatives of each dyskinesia severity class, fur-
ther analysis of the grading process is left for future work.

4.1.2 Detection of dyskinesia in different parts of the
body:

The ROC was calculated for every grade of the four grades
of the AIMS protocol described in the previous section. For
each grade, we chose the patients that displayed dyskinesia
in the relevant region (with a grade of at least 2) for clas-
sifier training, and the classifier was then used to test all
the recordings in the data set. 5 training sets of different
patients were run to test lower limb and trunk dyskinesia
detection; only 2 sets of training data showing patients with
significant upper limb dyskinesia were available. The com-
parative results of using average motion length features to

detect dyskinesia in upper limbs, lower limbs, and trunk,
are presented in Fig. 6. Similar results were obtained for
average motion speed features.

As can be seen in Fig. 6, the algorithm performs well in
detecting trunk, shoulders and neck dyskinesia (sensitivity
of 0.82 at EER), and slightly worse in detecting dyskinesia
in lower limbs (sensitivity of 0.75 at EER). The algorithm’s
performance in detecting dyskinesia in upper limbs is much
worse. This result may be expected, as hand joints detec-
tion was noted to be especially noisy during the recordings,
mostly due to proximity of the hand to the body/chair which
encumbered proper detection. In addition, as we examine
only the motion of joints that do not participate in the tasks,
which are performed by a hand, fewer joints are available
for analysis in the case of the upper limbs.

4.1.3 Monitoring the state of a single patient:

To monitor the dyskinesia severity of a patient during the
day, 6 recordings of the same patient were used. This pa-
tient showed a constant pattern of dyskinesia severity, with
dyskinesia starting in the late morning hours, intensifying
during the afternoon, and weakening towards the evening.
The algorithm was trained on two training sets: the first set
included two recordings of the patient - one taken in the
morning, before the patient took the first medication of the
day, and the other taken in the middle of the day, when the
severity of dyskinesia was at its highest. The second set
consisted of dyskinetic and non-dyskinetic recordings of 5
different patients. The algorithm was then used to grade all
6 recordings of the patient (for the recordings used in train-
ing, half of the recording was used for training and the other
half for testing).



Figure 6: The ROC curves of dyskinesia detection in upper
limbs (red), lower limbs (blue) and trunk (green), using aver-
age motion length feature.

Figure 7: Results of monitoring the state of a single patient. The points represent the
grades given by the algorithm to recordings of the patient taken during the day; the
numbers near the points are the grades given by the neurologist

The grades of the recording given by the algorithm, com-
pared to the grades given by the neurologist are presented in
Fig. 7. The algorithm’s grades presented in the figure show
not only good correlation with the neurologist’s grades, but
also agree with the subjective perception of the patient re-
garding the severity of dyskinesia during the day. In addi-
tion, the recordings were ranked by the neurologist in pair-
wise comparisons of every two clips. Kendall’s tau between
the algorithm’s ranking and the neurologist’s ranking of the
video is 0.6

5. Discussion
The results of the study show the ability of our method to

accurately detect dykinesia in patients, and to give a sever-
ity assessment that correlates well with the assessment of
a trained neurologist. Remarkably, the algorithm performs
well even when trained on a very small set of one or two pa-
tients. Dyskinesia binary detection accuracy shown by the
algorithm is similar to the accuracy of methods involving
wearable accelerometers (for example, [10] reports reach-
ing sensitivity of 0.73 with specificity of 1.0, as opposed to
sensitivity 0.76 with specificity 1.0 reached in this study).
However, in our case, the assessment procedure does not re-
quire the patient to use wearable devices, which may cause
discomfort for the patient. On the other hand, using a cam-
era for medical diagnosis can provide inaccurate results
due to changes in the patient’s movement pattern when ob-
served. The ability of the algorithm to detect dyskinesia in
various body parts varies according to the amount of noise
affecting the Kinect’s detection of those parts.

Still, the algorithm faces several challenges in achieving
a reliable assessment of the patient’s condition. The basic

limitation of the system is the quality of joint detection by
the Kinect camera and SDK. The Kinect sensor we used
has limited efficiency in detecting small body movements,
such as slight twitches and tremors, as well as finger move-
ments, and can easily be mislead when the body parts are
too close to each other. In addition, its facial tracking ca-
pabilities are currently very poor, so that it cannot currently
be used to detect or rate dyskinetic condition of the face,
mouth or teeth, even though they constitute an important
part of the patient’s state assessment. Newer generations
of Kinect, which are becoming available, will likely enable
more accurate and less noisy tracking of the patient’s move-
ment. The quality of dyskinesia detection and quantification
using the next generation of Kinect is left for future work.

Though using motion segmentation and SVM classifica-
tion yielded reasonably good performance, additional fea-
ture selection and classification techniques can be employed
to improve the detection and quantification accuracy, as
well as provide additional insights into the dyskinetic pa-
tients behavior. For example, using whole-body bag-of-
words dictionary to detect more complex motion features
can be used to detect more distinct features of the patient’s
movement, and therefore provide valuable insights for the
treating physician. In addition, analyzing the visual and
depth data acquired from the camera in conjunction with
the skeletal data can significantly improve the assessment
accuracy. A previous study showed the efficiency of neural
networks [9] in assessing dyskinesia severity based on data
acquired by accelerometers worn by the patient; a similar
algorithm can be tested using our movement representation.
These techniques may be experimented with in the future,
as more data becomes available.



6. Summary
We have successfully showed that Microsoft Kinect can

be used to detect dyskinesia and assess its severity of pa-
tients with Parkinson’s disease, using very short assessment
sessions which last around a minute long. We developed
a machine learning algorithm that was able to grade the
dyskinetic behavior both when trained on recordings by the
same patient it was grading, or when trained on recordings
of other patients. The algorithm achieved binary classifica-
tion sensitivity of 0.82 at EER, and its severity grades were
in good correlation with the clinician’s assessments (corre-
lation 0.8). Furthermore, we showed that the algorithm can
be used to monitor the condition of PD patient during the
day.
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