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Abstract

We consider the problem of learning a sim-
ilarity function from a set of positive equiv-
alence constraints, i.e. ’similar’ point pairs.
We define the similarity in information theo-
retic terms, as the gain in coding length when
shifting from independent encoding of the
pair to joint encoding. Under simple Gaus-
sian assumptions, this formulation leads to
a non-Mahalanobis similarity function which
is efficient and simple to learn. This func-
tion can be viewed as a likelihood ratio test,
and we show that the optimal similarity-
preserving projection of the data is a variant
of Fisher Linear Discriminant. We also show
that under some naturally occurring sam-
pling conditions of equivalence constraints,
this function converges to a known Maha-
lanobis distance (RCA). The suggested simi-
larity function exhibits superior performance
over alternative Mahalanobis distances learnt
from the same data. Its superiority is demon-
strated in the context of image retrieval and
graph based clustering, using a large number
of data sets.

1. Introduction

Similarity functions play a key role in several learn-
ing and information processing tasks. One example is
data retrieval, where similarity is used to rank items
in the data base according to their similarity to some
query item. In unsupervised graph based clustering,
items are only known to the algorithm via the similar-
ities between them, and the quality of the similarity
function directly determines the quality of the cluster-
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ing results. Finally, similarity functions are employed
in several prominent techniques of supervised learn-
ing, from nearest neighbor classification to kernel ma-
chines. In the latter the similarity takes the form of a
kernel function, and its choice is known to be a major
design decision.

Good similarity functions can be designed by hand
(Belongie et al., 2002; Zhang et al., 2006) or learnt
from data (Shental et al., 2002; Cristianini et al.,
2002; Xing et al., 2002; Hertz et al., 2004; Bilenko
et al., 2004). As in other contexts, learning can help;
so far, the utility of distance function learning has
been demonstrated in the context of image retrieval
(Hertz et al., 2003; Chang & Yeung, 2005) and clus-
tering (Xing et al., 2002; Hertz et al., 2004; Bar-Hillel
et al., 2005). Since a similarity function operates on
pairs of points, the natural input to a distance learning
algorithm consists of equivalence constraints, which
are pairs of points labeled as ’similar’ or ’not-similar’
(henceforth called positive and negative equivalence
constraints respectively). Several scenarios have been
discussed in which constraints, which offer a relatively
weak form of supervision, are readily available, while
labels are much harder to achieve (Hertz et al., 2003).
For example, given temporal data such as video or
surveillance data, constraints may be automatically
obtained based on temporal coherence.

In this paper we derive a similarity measure from gen-
eral principles, and propose a simple and practical sim-
ilarity learning algorithm. In general the notion of sim-
ilarity is somewhat vague, involving possibly conflict-
ing intuitions. One intuition is that similarity should
be related to commonalities, i.e., two objects are simi-
lar when they share many features. This direction was
studied by (Lin, 1998), and is most applicable to items
described using discrete features, where the notion of
common features is natural. Another intuition, sug-
gested by (Kemp et al., 2005), measures similarity by
the plausibility of a common generative process. This
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notion draws attention to models of the hidden sources
and the processes generating the visible items, which
has two drawbacks: First, these models and processes
are relatively complex and hard to estimate from data.
Second, if such models are already known, clustering
and classification can be readily done using the models
directly, and so similarity judgments are not required.

Our approach focuses on the purposes of similarity
judgment, which is usually to decide whether two items
belong to the same class. Hence, like (Kemp et al.,
2005), we relate similarity to the probability of two
items belonging to the same cluster. However, unlike
(Kemp et al., 2005), we model the joint distribution
of ’pairs from the same cluster’ directly, and estimate
it from positive equivalence constraints. Given this
distribution, the notion of similarity is related to the
information one point conveys about the other as mea-
sured by coding length, see Section 2.1.

The basic idea is that two objects should be judged
more similar the more we can ’compress’ one given the
information in the other. This idea is strongly related
to the notion of “information distance” presented in
(Bennett et al., 1998) (see also (Ziv & Merhav, 1993)),
and the bottleneck method presented in (Tishby et al.,
2000). As shown in Section 2.1, in addition to its cod-
ing length origin, our method can also be derived from
a statistical inference perspective (as a likelihood ra-
tio test). We regard the coding length interpretation
as more intuitive, because it relates similarity to the
simpler notion of predicting one point from the other
via linear regression.

The main contribution of this paper is the specific ap-
plication of the abstract similarity notion discussed
above to continuous variables. Specifically, in Sec-
tion 2.2 we develop this notion under Gaussian as-
sumptions, deriving a simple similarity formula which
is nevertheless different from a Mahalanobis metric.
Intuitively, in the Gaussian setting the similarity be-
tween two points x and x′ is computed by using x′ to
predict x via linear regression. The similarity is then
related to log p(x|x′), which encodes the error of the
prediction. Now learning the similarity requires only
the estimation of two correlation matrices, which can
be readily estimated from equivalence constraints.

The suggested similarity is strongly related to Fisher
Linear Discriminant (FLD). The matrices employed
in its computation are those involved in FLD, i.e., the
within-class and between-class scatter matrices (Duda
et al., 2001). In Section 3 we show that FLD can be de-
rived from our similarity as the optimal linear projec-
tion. Specifically, when coding similarity is regarded
as a likelihood ratio test, FLD is the projection maxi-

mizing the expected margin of the test. In addition, we
explore the connection between coding similarity and
the Mahalanobis metric. We show that in a certain
large sample limit, coding similarity converges to the
Mahalanobis metric estimated by the RCA algorithm
(Bar-Hillel et al., 2005).

To evaluate our method, in Section 4 we experimen-
tally explore two tasks: semi-supervised graph based
clustering, and retrieval from a facial image database.
Graph based clustering is evaluated using data sets
from the UCI repository (Blake & Merz, 1998), as
well as two harder data sets: the MNist data set
of hand-written digits (LeCun et al., 1998), and a
data set of animal images (Hertz et al., 2004). We
used the YaleB data set of facial images (Georghiades
et al., 2000) for face retrieval experiments. In both
tasks Gaussian Coding Similarity (GCS) usually out-
performs Mahalanobis metrics, learnt by three read-
ily available algorithms (Xing et al., 2002; Bar-Hillel
et al., 2005; De-Bie et al., 2003). In terms of computa-
tional complexity, the method of (Xing et al., 2002) is
relatively demanding, as it is based on iterative non-
linear optimization, while the two other methods of-
fer closed-form solutions based on positive constraints
alone. The computational cost of coding similarity
is low, similar to the methods of (Bar-Hillel et al.,
2005; De-Bie et al., 2003) and much smaller than in
the method of (Xing et al., 2002).

2. Similarity based on Coding Length

2.1. General definition

Intuitively, two items are similar if they share common
aspects, whereby one can be used to predict some de-
tails of the other. Learning similarity is learning what
aspects tend to be shared more than others, between
points which are equivalent w.r.t a certain goal. Such a
similarity notion is naturally related to the joint distri-
bution p(x, x′|H1), where H1 is the hypothesis stating
that the two points share the same label. We estimate
p(x, x′|H1), and define the similarity codsim(x, x′) be-
tween two items to be the information one conveys
about the other. We measure this information using
the coding length cl(x), i.e. the negative logarithm of
an event (Cover & Thomas, 1991). The similarity is
defined as the gain in coding length obtained by en-
coding x when x′ is known.

codsim(x, x′) = cl(x) − cl(x|x′, H1) (1)

= log p(x|x′, H1) − log p(x)

As stated in (Kemp et al., 2005), this measurement
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can be also viewed as a log-likelihood ratio statistic:

log p(x|x′, H1) − log p(x) (2)

= log
p(x, x′|H1)

p(x)p(x′)
= log

p(x, x′|H1)

p(x, x′|H0)

where H0 denotes the hypothesis stating independence
between the points. The coding similarity is there-
fore the optimal statistic for determining whether two
points are drawn from the same class or independently.
We can see from this last equation that it is a symmet-
ric function.

The exact nature of the distribution p(x, x′|H1) may
vary depending on the application and the oracle from
which the equivalence constraints are obtained. Con-
sider data sampled from several sources in Rd, i.e.
p(x) =

∑M

k=1 αkp(x|hi), where p(x|hi) denotes the
distribution of the i-th source. A simple form for
p(x, x′|H1) is obtained when the two points are condi-
tionally independent given the hidden source:

p(x, x′|H1) =

M
∑

k=1

αkp(x|hk)p(x′|hk) (3)

This distribution, defined over pairs, corresponds to
sampling pairs by first choosing the hidden source, fol-
lowed by the independent choice of two points from
this source. In section 3.1 we show that FLD is the
optimal similarity-preserving dimensionality reduction
when the equivalence constraints are sampled in this
manner. In Section 3.2 we discuss a common case
in which the conditional independence between the
points is violated.

2.2. Gaussian coding similarity

We now develop the coding similarity notion under
some simplifying Gaussian assumptions:

• p(x, x′|H1) is Gaussian (in R2d)

• p(x) =
∫

x

p(x, x′|H1) =
∫

x′

p(x, x′|H1)

The second assumption is the reasonable (though not
always trivially satisfied) demand that p(x) should be
the marginal distribution of p(x, x′|H1) w.r.t both ar-
guments. It is clearly satisfied for distribution (3).
It follows from the first assumption that p(x) is also
Gaussian (in Rd). The first assumption is clearly a
simplification of the true data density in all but the
most trivial cases. However, its value lies in its sim-
plicity, which leads to a coding scheme that is efficient
and easy to estimate. While clearly inaccurate, we
propose here that this model can be very useful.

We assume w.l.o.g that the data’s mean is 0 (other-
wise, we can subtract it from the data), and so we can
parameterize the two distributions using two matri-
ces. Denoting the Gaussian distribution by G(·|µ,Σ)
we have

p(x) = G(x|0,Σx) (4)

p(x, x′|H) = G(x, x′|0,Σ2x)

Σ2x =

(

Σx Σxx′

Σxx′ Σx

)

where Σx = E[xxt], Σxx′ = E[x(x′)t]. The conditional
density p(x|x′, H) is also Gaussian G(x|Mx′,Σx|x′),
with M,Σx|x′ given by

M = Σxx′Σ−1
x Σx|x′ = Σx − Σxx′Σ−1

x Σxx′ (5)

Plugging this into Eq. (1), we get the following expres-
sion for Gaussian coding similarity:

log p(x|x′, H1) − log p(x) = (6)

log G(x|Mx′,Σx|x′) − log G(x|0,Σx) =

1

2
[log

|Σx|

|Σx|x′ |
+ xtΣ−1

x x − (x − Mx′)tΣ−1
x|x′(x − Mx′)]

The Gaussian coding similarity can be easily and
almost instantaneously learnt from a set of posi-
tive equivalence constraints, as summarized in Algo-
rithm 1. Learning includes the estimation of several
statistics, mainly the matrices Σx,Σxx′ , from which
the matrices M,Σx|x′ are computed. Notice that
each constraint is considered twice, once as (x, x′) and
once as (x′, x), to ensure symmetry and to satisfy the
marginalization demand. Given those statistics, sim-
ilarity is computed using Eq. (8), which is based on
Eq. (6) but with the multiplicative and additive con-
stants removed.

3. Relation to other methods

In this section we provide some analysis connecting
Gaussian coding similarity as defined above to other
known learning techniques. In Section 3.1 we dis-
cuss the underlying connection between GCS and FLD
dimensionality reduction. In Section 3.2 we show
that under certain estimation conditions, the domi-
nant term in GCS behaves like a Mahalanobis metric,
and specifically that it converges to the RCA metric
(Bar-Hillel et al., 2005).

3.1. The optimality of FLD

As defined in Eqs. (5)-(8), the coding similarity de-
pends on two matrices only - the data covariance ma-
trix Σx and the covariance between pairs from the
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Algorithm 1 Gaussian coding similarity

Learning procedure:
Input: a set of equivalence constraints {xi, x

′
i}

N

i=1, and
optionally a dimension parameter k.

1. Compute the mean Z = 1
2N

∑N

i=1[xi + x′
i] and

subtract it from the training data

2. Estimate Σx,Σxx′

Σx =
1

2N

N
∑

i=1

[xix
t
i + x′

ix
′
i

t
] (7)

Σxx′ =
1

2N

N
∑

i=1

[xix
′
i

t
+ x′

ix
t
i]

3. If dimensionality reduction is required, find the
k eigenvectors with the highest eigenvalues of
Σ−1

x Σxx′ and put them into A ∈ Md×k.

Let Σx = AtΣxA , Σxx′ = AtΣxx′A , Z = ZA

4. Compute M and Σx|x′ according to Eq. (5).

Return Z,M,Σ−1
x ,Σ−1

x|x′ and A (if computed).

Similarity computation for a pair (x, x′):

If A is defined x = xA − Z , x′ = x′A − Z
else x = x − Z , x′ = x′ − Z.

Return codsim(x, x′) =

xtΣ−1
x x − (x − Mx′)tΣ−1

x|x′(x − Mx′) (8)

same source Σxx′ . To establish the connection to FLD,
let us first consider the expected value of Σxx′ under
distribution (3):

Ep(x,x′|H1)[x(x′)t] = (9)
∫

x

∫

x′

M
∑

k=1

αkp(x|hk)p(x′|hk)x(x′)t =

M
∑

k=1

αkEp(x|hk)[x] · Ep(x′|hk)[(x
′)t] =

M
∑

k=1

αkmkmt
k

The expected value above, which gives the convergence
limit of Σxx′ as estimated in Eq. (7), is essentially the
between-class scatter matrix SB used in FLD (Duda
et al., 2001). The main difference between the estima-
tion of Σxx′ in Eq. (7) and the traditional estimation
of SB is the training data, equivalence constraints vs.
labels respectively. Also, while SB is always of rank
k−1 and so is its estimator based on labeled data, our

estimator from Eq. (7) is usually of full rank.

When the data distributions p(x, x′|H1) and p(x) lie
in high dimensional space, in many cases the pro-
jection into a lower dimensional space may increase
learning accuracy (by dropping irrelevant dimensions)
and computational efficiency. We now characterize
the notion of optimal dimensionality reduction based
on the ’natural margin’ of the likelihood ratio test.
This test gives the optimal rule (Cover & Thomas,
1991) for deciding between two hypotheses H0 and
H1, where the data comes from a mixture p(x) =
αp(x|H0) + (1 − α)p(x|H1):

decide H1 ⇐⇒ log
p(X|H1)

p(X|H0)
> log

1 − α

α
(10)

Hypothesis margin: Let the label of point x be
1 if hypothesis H1 is true, and −1 if H0 is true.
The natural margin of a point x can be defined as

yi(log
p(xi|h1)
p(xi|h0)

− log 1−α
α

).

Given this definition, the expected margin of the test
is

Ex[y(x)(log
p(x|h1)

p(x|h0)
− log

1 − α

α
)] (11)

= α

∫

x

p(x|h1)[ log
p(x|h1)

p(x|h0)
− log

1 − α

α
]dx

−(1 − α)

∫

x

p(x|h0)[ log
p(x|h1)

p(x|h0)
− log

1 − α

α
]dx

= αDkl[p(x|h1)||p(x|h0)]

+ (1 − α)Dkl[p(x|h0)||p(x|h1)]

+ (1 − 2α) log
1 − α

α

Optimal dimensionality reduction: A ∈ Md×k is
the optimal linear projection from dimension d to k if
it maximizes the expected margin defined above.

Theorem 1. Assume Gaussian distributions

p(x, x′|H1) in R2d and p(x) in Rd, and a linear

projection A ∈ Md×k where z = Atx. For all

0 ≤ α ≤ 1, the optimal A

A∗ = arg max
A∈Md×k

[ αDkl[p(z, z′|H1)||p(z, z′|H0)] + (12)

(1 − α)Dkl[p(z, z′|H0)||p(z, z′|H1)] ]

is the FLD transformation. Thus A is composed of the

k eigenvectors of Σ−1
x Σxx′ with the highest eigenvalues.

The proof of this theorem is relatively complex and
we only describe here a very general sketch. Since the
distributions involved in Eq. (12) are Gaussian, the
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Dkl[·||·] can be written in closed-form. We can upper
bound these terms by using AtΣx|x′A to approximate
Σz|z′ . The approximate bound, for fixed α, can be
shown to obtain its maximal value at the k eigenvec-
tors of Σ−1

x|x′Σx with the highest eigenvalues. These

vectors, in turn, are identical to the highest eigenvec-
tors of Σ−1

x Σxx′ . Finally, it is shown that the optimum
of the upper bound is also obtained by the original ex-
pression, using the same matrix A.

3.2. The Mahalanobis limit

Above we have considered specifically coding similar-
ity with pairs distribution of the form (3). However,
in practice the source of equivalence constraints often
does not produce an unbiased sample from this distri-
bution. Specifically, equivalence constraints which are
obtained automatically, e.g. from a surveillance cam-
era, are often biased and tend to include only very sim-
ilar (close in the Euclidean sense) points in each pair.
This happens since constraints are extracted based on
temporal proximity, and hence include highly depen-
dent points. When the points in all pairs are very close
to each other, the best regression from one to the other
is close to the identity matrix. The following theorem
states that under these conditions, coding similarity
converges to a Mahalanobis metric.

Theorem 2. Assume that equivalence constraints are

generated by sampling the first point x from p(x) and

then x′ from a small neighborhood of x. Denote ∆ =
(x − x′)/2. Assume that the covariance matrix Σ∆ <
εΣx, where ε > 0 and A ≤ B stands for ”B − A is a

p.s.d matrix”. Then

codsim(x, x′) →
ε→0

− (x − x′)t(4Σ∆)−1(x − x′) (13)

where the limit g(x) → f(x) means g(x)/f(x) → 1.

Proof. We concentrate on approximating the second
term in Eq. (8), which involves both x and x′. Denote
x̄ = (x + x′)/2, so x = x̄ + ∆ , x′ = x̄−∆. We get the
following estimates for Σx , Σxx′ :

Σx =
1

2
E(x̄ − ∆)(x̄ − ∆)t +

1

2
E(x̄ + ∆)(x̄ + ∆)t

= Σx̄ + Σ∆

Σxx′ = E(x̄ + ∆)(x̄ − ∆)t = Σx̄ − Σ∆

We therefore see that Σxx′ = Σx − 2Σ∆, and obtain
the following approximations for M ,Σx|x′ :

M = Σxx′Σ−1
x = (Σx − 2Σ∆)Σ−1

x

= I − 2Σ∆Σ−1
x ≥ I − 2ε

Σx|x′ = Σx − (I − 2Σ∆Σ−1
x )(Σx − 2Σ∆)

= 4Σ∆ − 4Σ∆Σ−1
x Σ∆ ≥ 4Σ∆(I − ε)

These inequalities lower bound M and Σx|x′ , and since
Σ∆Σ−1

x is p.s.d it is clear from the equalities above that
M ≤ I, Σx|x′ ≤ 4Σ∆. We hence get that M = I+O(ε)
and Σx|x′ = 4Σ∆(I + O(ε)).

Returning to Eq. (8), we note that the first term 0 <
xtΣ−1

x x < εxtΣ−1
∆ x is negligible w.r.t the second in the

limit of ε → 0. Therefore this term can be rigorously
omitted, and we get:

codsim(x, x′) ≈ −(x − [I + O(ε)]x′)t ·

[4Σ∆(I + O(ε))]−1 · (x − [I + O(ε)]x′)

→
ε→0

− (x − x′)t(4Σ∆)−1(x − x′)

Note that codsim(x, x′) is negative as appropriate,
since it measures similarity rather than distance.

The Mahalanobis matrix Σ∆ = Ep(x,x′|H1)[x − (x +
x′)/2] is actually the inner chunklet covariance matrix,
as defined in (Bar-Hillel et al., 2005). It is therefore the
RCA transformation, estimated from the population of
’near’ point pairs.

4. Experimental validation

We first present several experiments with synthetic
data sets in section 4.1, testing the potential value of
GCS under controlled conditions. In Section 4.2 we
compare several methods in a semi-supervised cluster-
ing task, where the data is augmented by equivalence
constraints. Finally, in Section 4.3 we test Gaussian
coding similarity and other methods in a face retrieval
task.

Data sets In Section 4.2 we have experimented with
nine data sets from the UCI repository (Blake & Merz,
1998) and added two harder data sets, with 10 classes
each: A subset of the MNist digits data set (LeCun
et al., 1998), and a data set of animals images (Hertz
et al., 2004). For MNist, we randomly chose 50 in-
stances from each digit, and represented the data us-
ing 50 PCA dimensions. The animals data set includes
565 images taken from a commercial CD. As in (Hertz
et al., 2004) we represent the images using Color Co-
herence Histograms (CCV) (Pass et al., 1996), con-
taining information about color distribution and color
continuity in the image. The vectors were then re-
duced to 100 PCA dimensions. For the evaluation of
retrieval performance in section 4.3 we used the YaleB
data set (Georghiades et al., 2000). The variability
in this data set is mainly due to change of illumina-
tion. Images were aligned using optical flow, and then
reduced to 60 PCA dimensions.

Constraint oracle Following (Hertz et al., 2003),
we obtained equivalence constraints by simulating a
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Figure 1. Top 3 of the 4 synthetic data sets used (the forth data set (number 2) is the analog of data 1 in R
5). Bottom

Cumulative neighbor purity curves for the 4 synthetic data sets. The Y axis shows the percentage of correct neighbors
vs. the number of neighbors considered (the X axis). In each graph we compare Gaussian coding similarity, RCA and the
Euclidean metric. Coding similarity has a considerable edge when the data contains several Gaussian classes. For many
small classes (Data 3) GCS approaches RCA, and for the non-convex rings data it fails. Results were averaged over 50
realizations. The figure is best seen in color.

distributed learning scenario, in which small subsets
of labels are provided by a number of uncoordinated
teachers. Accordingly, we randomly chose small sub-
sets of data points from the dataset, and partitioned
each subset into equivalence classes. The constraints
obtained from all the subsets are gathered and used for
learning. In all the experiments we chose the size of
each subset to be S = 2M , where M is the number of
classes in the data. In each experiment we used N/S
subsets, where N is the total number of points in the
data. While the number of constraints thus provided
is linear in the sample size N , notice that it is a small
fraction of all possible pairs of data points, which is
O(N2). Whenever tested, the method of (Xing et al.,
2002) is given both the positive and the negative con-
straints, while the other tested methods use only the
positive constraints.

Compared methods We compare the Gaussian
coding similarity to 3 learning techniques which learn
a Mahalanobis metric. The method presented in (Xing
et al., 2002) learns the metric by non-linear optimiza-
tion, using iterative projections. The RCA metric,
suggested in (Bar-Hillel et al., 2005), is essentially the
inverse of the inner class covariance matrix, as esti-
mated from the equivalence constraints. The method
of (De-Bie et al., 2003) learns a low-rank Mahalanobis
metric based on the FLD dimensionality reduction.
The Mahalanobis matrix is AtA where A is the es-
timated FLD matrix.

4.1. Synthetic data

We conducted a series of experiments on synthetic
data, comparing the performance of GCS to RCA
and the Euclidean metric in several interesting con-
ditions. The first three data sets were generated by
choosing class centers from a Gaussian distribution
G1(M |0,Σ1), then selecting class points from Gaus-
sians around those centers G2(x|M,Σ2). When the
number of classes is large, p(x) is Gaussian as the con-
volution of G1 and G2, and the GCS assumptions are
fully met. The first data set was generated by sam-
pling 400 two-dimensional points in four classes using
this protocol. A second data set was produced in a
similar manner, but with points in R5. The third data
set includes 600 points in 30 classes with relatively
small variance, thus approaching the limit discussed is
Theorem 2. Finally we produced a data set of con-
centric rings, which critically violates class convexity.
The data sets are shown in the top row of Figure 1.

The bottom row of Figure 1 shows commulative purity
graphs of GCS, RCA and the Euclidean metric on the
synthetic data sets. These results give an overview of
the strength and weaknesses of GCS. When the data
contains several Gaussian data sets (Data 1), GCS has
a clear advantage over RCA and the Euclidean metric.
This advantage is more pronounced in higher dimen-
sion (Data 2). In the case of many small classes with
shared covariance (Data 3) the performance of GCS
becomes closer to the performance of RCA, as pre-
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Figure 2. Clustering performance with the average linkage clustering algorithm, using several similarity functions. Per-
formance is measured using the F 1

2

= 2PR

R+P
score, where P denotes precision rate and R denotes recall rate. The results

are averaged over 50 constraint realizations. The figure is best seen in color.

dicted by Theorem 2. Finally, in data 4 the Gaussian
assumptions are severely violated, as class centers are
all identical to each other and classes are non convex.
In this case, GCS totally fails as expected.

4.2. Clustering with equivalence constraints

Graph based clustering includes a rich family of al-
gorithms, among them are the relatively simple ag-
glomerative linkage algorithms used here (Duda et al.,
2001). In graph based clustering, pairwise similarity
is the sole source of information regarding the clus-
tered data. Given equivalence constraints, one can
adapt the similarity function to the specific problem,
and improve clustering results considerably. In our
experiments, we have evaluated clustering results ob-
tained using several distance functions: The Euclidean
metric, the Mahalanobis metrics learnt using the al-
gorithms mentioned above, and the Gaussian coding
similarity. The distance functions were evaluated by
applying the agglomerative average linkage algorithm
to the similarity graphs produced. Clustering perfor-
mance was assessed by computing the match between
clustering results and the real (known) data labels.

We tested the different similarities in the original space
first, and after reducing the data dimension to the
number of classes using constrained-based FLD. The
results after FLD, which are usually better, are sum-
marized in Figure 2. The ranking of the different al-

gorithms has a large variance, but Coding similarity
(rightmost bar, in brown) gives the best average per-
formance, with 5 cases in which it outperforms all the
other metrics and 3 cases of being second best. The
results in the original space show a similar trend.

4.3. Facial image retrieval

The YaleB data set (Georghiades et al., 2000) con-
tains 64 images per person of 30 people. From each
class, we randomly chose 48 images to be part of the
’data base’, and used the remaining 16 as queries pre-
sented to the data base. We learned the three Ma-
halanobis distances and coding similarity using con-
straints obtained from 25 of the 30 classes, and then
evaluated retrieval performance for images from both
constrained and unconstrained classes. Notice that for
unconstrained classes the task is much harder, and any
success shows inter-class generalization, since images
from these classes were not used during training.

The performance of the four learning methods and the
Euclidean metric in the original 60 dimensional space
are shown in Figure 3. We can see that coding similar-
ity is clearly superior to other methods in the retrieval
of faces from known classes. In contrast to other meth-
ods, it operates well even in the original 60 dimensional
space. It also has a small advantage in the ’learning-
to-learn’ scenario, i.e., in the retrieval of faces from
unconstrained classes.
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Figure 3. ROC curves for several methods in a face retrieval task. Left: Retrieval of test images from constrained classes
using 60 PCA dimensions. Middle: Retrieval of images from constrained classes using 18 FLD dimensions. Right:

Retrieval of test queries from unconstrained classes using 18 FLD dimensions. Results were averaged over 20 constraints
realizations. The figure is best seen in color.

5. Summary

We described a new measure of similarity between two
datapoints, based on the gain in coding length of one
point when the other is known. This similarity mea-
sure can be efficiently computed from positive equiva-
lence constraints. We showed the relation of this mea-
sure to Fisher Linear Discriminant (FLD), and to rel-
evant component analysis (RCA). We demonstrated
overall superior performance of the suggested similar-
ity in clustering and retrieval, using a large number of
datasets.
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