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ABSTRACT

In this paper, we perform an in-depth study of the properties and applications of
aligned generative models. We refer to two models as aligned if they share the
same architecture, and one of them (the child) is obtained from the other (the par-
ent) via fine-tuning to another domain, a common practice in transfer learning.
Several works already utilize some basic properties of aligned StyleGAN models
to perform image-to-image translation. Here, we perform the first detailed explo-
ration of model alignment, also focusing on StyleGAN. First, we empirically an-
alyze aligned models and provide answers to important questions regarding their
nature. In particular, we find that the child model’s latent spaces are semantically
aligned with those of the parent, inheriting incredibly rich semantics, even for dis-
tant data domains such as human faces and churches. Second, equipped with this
better understanding, we leverage aligned models to solve a diverse set of tasks.
In addition to image translation, we demonstrate fully automatic cross-domain
image morphing. We further show that zero-shot vision tasks may be performed
in the child domain, while relying exclusively on supervision in the parent do-
main. We demonstrate qualitatively and quantitatively that our approach yields
state-of-the-art results, while requiring only simple fine-tuning and inversion.

1 INTRODUCTION

Transfer Learning (TL) refers to the process in which a parent model, pretrained for some source
domain/task, is used to improve the performance of a child model on a different target domain
and/or task (Pan & Yang, 2009). The assumption underlying TL is that some knowledge learnt by
the parent model is transferable to the new domain or task (Pan & Yang, 2009; Torrey & Shavlik,
2010; Yosinski et al., 2014). The most common TL approach is fine-tuning, where the parent’s
parameters are used to initialize those of the child. Next, the child’s parameters, or sometimes just
a subset of them, are trained on the target domain/task. Once TL is completed, the child posseses
some of the parent’s knowledge, despite the fact that the model parameters may have changed.

Existing TL literature typically examines the performance of the child model, e.g., in terms of classi-
fication accuracy (He et al., 2019), or FID score (Karras et al., 2020a), without paying much attention
to the relationship between parent and child models, induced by the transfer process. Typically, the
child model is simply applied to the task it was trained on, while the parent model is no longer used,
having fulfilled its purpose. In this work, we provide a complementary perspective, which focuses
on analyzing and leveraging the shared knowledge between the two models. Specifically, we con-
sider the case where the TL is performed by fine-tuning the same architecture. We refer to models
obtained in this manner as aligned models.

Several recent works (Pinkney & Adler, 2020; bryandlee, 2020; Huang et al., 2021; Song et al.,
2021; Gal et al., 2021) use aligned models in a novel manner. In all cases, an unconditional GAN,
specifically StyleGAN2 (Karras et al., 2020b) is fine-tuned from domain A to domain B. However,
instead of applying the child model as an unconditional generator, it is used in conjunction with the
parent model to form an image translation pipeline. First, an image from domain A is embedded
into the latent space of the parent StyleGAN2 model. The resulting latent code is then fed either into
the child model (bryandlee, 2020; Song et al., 2021; Gal et al., 2021), or into a hybrid model created
by layer swapping, i.e., by combining layers from the parent and the child (Pinkney & Adler, 2020;
Huang et al., 2021).
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These methods have achieved great results in image-to-image translation between several domains.
Most notably, translating real human face images to a variety of styles such as cartoons and oil
paintings (Pinkney & Adler, 2020; Huang et al., 2021; Song et al., 2021), but also translating humans
to dogs and cats to wildlife (bryandlee, 2020; Gal et al., 2021). However, they focus on a specific
application (image-to-image translation) and do not explore or leverage aligned models further. As
a result, many questions arise but remain unanswered. For example, which parts of the network
change in the TL process, and which knowledge is inherited by the child from its parent? To which
degree do the answers to these questions depend on the similarity between the parent and child
domains? And, is knowledge not used by the child model completely lost or could it be recovered?
Finally, what further applications, besides image-to-image translation, can be solved using aligned
models?

In this work, we delve deeper into model alignment. In light of previous works, we specifically
focus on the state-of-the-art unconditional GAN architecture, StyleGAN2 (Karras et al., 2020b).
The process of obtaining aligned models is incredibly simple: we start with a parent StyleGAN2
model trained on domain A and fine-tune it fully for domain B, yielding an aligned child model.

We divide the investigation of model alignment into two parts. First, in Section 3, we perform the
first empirical analysis of the phenomenon, answering the questions posed above, as well as others.
This analysis provides some surprising and novel insights that shed light on aligned StyleGAN2
models. For example, we discover that when fine tuning to a similar target domain, the parts of
the model that change the most are the feature convolution weights in the synthesis network. In
contrast, the changes in the mapping network and affine layers are negligible (see Figure 1). This
crucially implies that the learned latent spacesW and S are barely affected by the fine-tuning. This
explains our next discovery – that semantically meaningful directions in the latent space of the parent
model, retain the same (or similar) semantics in the child model (see Figure 2). As the data domains
become more distant, the mapping network and affine layers become more affected, which results in
a weaker degree of semantic alignment. However, even in extreme cases, such as human faces and
churches, some semantic alignment occurs. Another surprising discovery is that the semantic latent
controls that seemingly disappear after transfer to the child model, are in fact merely hidden, rather
than forgotten, and reappear if the child is retrained back to the parent’s domain.

Second, in Section 4, we use aligned models to solve several popular Computer Vision and Computer
Graphics tasks. We start with the aforementioned image-to-image translation task (Section 4.1), ex-
amine a number of alternatives, and show that aligned models obtain state-of-the-art results for a
variety of scenarios. This is especially impactful, as using aligned models for image translation is
incredibly simple compared to dedicated methods for the same task, each devising its custom archi-
tecture and losses. Next, we explore additional tasks, for which aligned models have not been used
before. In Section 4.2 we describe a simple method for fully automatic image morphing between
fairly dissimilar domains, such as human to dog faces, which previously necessitated sophisticated
methods (Aberman et al., 2018; Fish et al., 2020). Examples of smooth morphs are included in the
accompanying video. In Section 4.3, we use aligned models to solve zero-shot classification and
regression tasks in domain B, where the supervision is available strictly in domain A. Conceptually,
our method reduces a task in a zero-shot or few-shot setting to the same task in a different data
domain where supervision is plentiful.

In summary, while several previous works took advantage of aligned models implicitly, ours is the
first work to conduct a thorough empirical study of this phenomenon. Our study reveals various in-
teresting properties that we then use to further leverage aligned models for a variety of applications,
almost effortlessly achieving state-of-the-art performance.

2 RELATED WORK

Latent Space of GANs: With the rapid evolution of GANs (Goodfellow et al., 2014) in recent
years, understanding and controlling their latent representation has attracted considerable attention.
Specifically, it has been shown that the intermediate latent space of StyleGAN (Karras et al., 2019;
2020b;a) possesses appealing properties, such as being semantically rich, disentangled and smooth.
Many recent works have proposed methods to interpret the semantics encoded in that space and its
extensions and apply them to image editing (Jahanian et al., 2019; Shen et al., 2020a; Härkönen
et al., 2020; Tewari et al., 2020; Abdal et al., 2020; Wu et al., 2020; Patashnik et al., 2021).
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In order to benefit from these properties in real images, it is necessary to obtain the latent code from
which a pretrained GAN can reconstruct the original input image. This task, commonly referred
to as GAN Inversion, has been tackled by numerous recent works, either by using: (i) optimization
(Abdal et al., 2019; Karras et al., 2020b); or (ii) an encoder (Guan et al., 2020; Pidhorskyi et al.,
2020; Richardson et al., 2021; Tov et al., 2021); or (iii) a hybrid approach using both (Zhu et al.,
2016; Baylies, 2019; Zhu et al., 2020a). See Xia et al. (2021) for a more thorough review.

Image-to-Image translation: The seminal pix2pix work by Isola et al. (2017), first introduced the
use of conditional GANs to solve various supervised image-to-image translation tasks. Since then,
their work has been extended to allow image synthesis in various different settings: high-resolution
(Wang et al., 2018a), semantic image (Park et al., 2019; Zhu et al., 2020b; Liu et al., 2019b), multi-
domain (Choi et al., 2018), multimodal (Zhu et al., 2017b), and using a pre-trained generator (Nitzan
et al., 2020; Richardson et al., 2021; Luo et al., 2020). Another scenario that has received significant
attention is unsupervised image-to-image translation (Liu et al., 2017; Zhu et al., 2017a; Kim et al.,
2017; Choi et al., 2020; Lee et al., 2020b), where no paired data samples are given.

Regardless of the setting, all of the aforementioned works train an neural network, designed ex-
plicitly for the translation task. Recently, several works (Pinkney & Adler, 2020; bryandlee, 2020;
Huang et al., 2021; Song et al., 2021; Gal et al., 2021) have taken a different approach towards
image-to-image translation. They observe that significant correspondence between generated im-
ages in different domains exists when an unconditional generator, such as StyleGAN2 (Karras et al.,
2020b), is fine-tuned between the two domains. Accordingly, these works take a two-step approach
towards image-to-image translation. First, they invert a given image into the latent space of Style-
GAN in domain A and then forward the output latent code through a StyleGAN model for domain
B. The latter model is obtained either by directly fine-tuning from the former model (bryandlee,
2020; Song et al., 2021; Gal et al., 2021) or by layer swapping (Pinkney & Adler, 2020; Huang
et al., 2021), i.e., forming a model whose layers are partially those of the fine-tuned model and
partially those of the model for domain A.

In this work, we delve deeper into this phenomenon, which we refer to as model alignment, and go
beyond the image-to-image translation task. For example, we demonstrate that the alignment prop-
erty goes beyond high-level properties, such as pose, and that multiple fine-grained latent semantics
are also aligned. We leverage this property for tasks such as morphing and zero-shot classification.

Fine-tuning and Catastrophic Forgetting: Fine-tuning was proven advantageous across fields,
settings and tasks and therefore became a standard practice in the deep learning literature. Prominent
advantages of fine-tuning are enabling few-shot tasks such as classification (Chen et al., 2019) and
unconditional generation (Wang et al., 2018b; Mo et al., 2020; Wang et al., 2020; Li et al., 2020;
Ojha et al., 2021), improved performance in a wide variety of tasks (Devlin et al., 2018; Radford
et al., 2018; He et al., 2020) and faster training convergence (Wang et al., 2018b; He et al., 2019).

While fine-tuning can be an effective technique for solving a new task, it has been well known for
over 30 years (McCloskey & Cohen, 1989) that in the process the model “forgets” how to solve the
original task, a phenomenon referred to as Catastrophic Forgetting (CF). For example, once a GAN
for a certain domain A, is fine-tuned to another domain B, the resulting model can only generate
images in domain B (Seff et al., 2017; Zhai et al., 2019). In settings such as continual learning and
multi-task learning, CF is undesirable. In recent years, there has been progress in mitigating it using
dedicated methods (Kirkpatrick et al., 2017; Kemker et al., 2018). CF has been also studied in the
context of GANs (Liang et al., 2018; Li et al., 2020; Thanh-Tung & Tran, 2020).

Aforementioned previous works devised methods to obtain a better child model using fine-tuning.
From a fine-tuning perspective, this means the model would perform better on the new task. From
a CF perspective, this means the model’s performance on the previous task should not be impaired.
We differ from these works significantly, as we make no deliberate effort to affect what happens
during training of the child model. Instead, we investigate the relationship between the parent and
child models after naı̈ve fine-tuning, and then use it to solve a variety of applications.

3 ANALYSIS OF ALIGNED STYLEGAN MODELS

As explained earlier, several previous works observed that a significant correspondence exists be-
tween images in different domains, generated from the same latent code by a parent StyleGAN2

3



Published as a conference paper at ICLR 2022

full transfer reset mapping reset affine reset tRGB reset feat. conv

M
eg

a
D

og

Figure 1: Effect of reset-
ting the weights of different
components in child models
(Mega, Dog) to their initial
values, which come from the
parent model (FFHQ). Reset-
ting the feature convolution
weights causes the most dras-
tic changes. Also see Figure 8.

model and a child model obtained from it via fine tuning. Our goal is to further understand the
relation between the parent and the child models. Below, we explore several aspects.

Which parts of the network change during transfer? Recall that the StyleGAN2 model is com-
posed of a mapping function (Z toW), affine transformations (W to S), feature convolution layers,
and tRGB convolution layers that transform feature maps to RGB images. We transfer a parent
StyleGAN2 model pretrained on FFHQ to the Mega cartoon dataset (Pinkney & Adler, 2020) and
to AFHQ dog faces dataset (Choi et al., 2020), using ADA (Karras et al., 2020a). After the transfer,
we reset the weights of each of the above components in the child models (Mega, Dog) to their
initial values in the parent model. The results of this experiment are shown in Figure 1. We observe
that the greatest effect on the generated results is caused by resetting the feature convolution lay-
ers, which changes the content and structure. Resetting the weights of other components, results in
milder changes in both children. This implies that feature convolution layers change the most during
transfer. The results also suggest that for the dog model, the affine and tRGB layers have changed
significantly more than for the cartoon model. We attribute this difference to the distance between
the data domains, and additional experiments in the appendix (Figure 8) support this hypothesis.

While resetting the mapping network has a stronger effect on the dog model, note that the changes
are fairly subtle in both datasets, implying that the mapping network changes very little. Effectively,
this means that the same z ∈ Z is mapped to similar codes in the W spaces of the parent and the
child; in other words, the two W spaces are point-wise aligned. This is a crucial observation as
it explains the success of previous works (Pinkney & Adler, 2020; bryandlee, 2020; Huang et al.,
2021) in performing image translation based on aligned models. Simply put, the two latent spaces
may be viewed as a single shared latent space. Thus, inversion serves as an encoder from the source
domain to this latent space, and the generator is a decoder to the target domain. Viewed in this
light, alignment-based image translation resembles several previous image translation approaches
(Liu et al., 2017; Huang et al., 2018; Liu et al., 2019a), which are based on shared latent spaces.

Semantic alignment for similar domains. In addition to point-wise alignment, we find that the
W and S latent spaces of the child model are also semantically aligned with those of the parent
model. By semantic alignment, we refer to the property that latent space controls that affect various
semantic attributes of images generated by the parent, have the same (or analogous) effect in the
child model. This phenomenon is demonstrated below, both qualitatively and quantitatively.

We demonstrate alignment on closely related domains, by first fine-tuning a parent pretrained on
FFHQ (Karras et al., 2019) to the Mega cartoon face dataset (Pinkney & Adler, 2020) and the
Metface portrait dataset (Karras et al., 2020a). Next, we apply a variety of latent semantic controls
learnt by the parent to the child models. The controls are either individual channels in StyleSpace S,
identified by Wu et al. (2020), or directions inW space, from InterFaceGAN (Shen et al., 2020b).
We manipulate images using these controls “as is” in the parent and child models. The initial latent
code is obtained by inverting a real image with an e4e encoder (Tov et al., 2021). As may be seen
in Figures 2 and 9, regardless of the edited property, or the latent space used, the semantic controls
affect the parent and the child models in exactly the same manner. Also see Figures 10 and 11.

To perform a quantitative evaluation we measure the alignment by calculating the overlap between
semantic controls found independently in the parent and child models. Since latent directions inW
are affinely related to channels in S, we only examine overlap between style channels. Concretely,
we follow Wu et al. (2020) to discover localized channels in both models, and report the number of
localized channels for each semantic region in Table 1(a). As can be seen, there is consistently large
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Figure 2: Semantic
controls discovered
for a parent FFHQ
model retain their
function in the chil-
dren models (Mega
and Metface). This
holds for individ-
ual channels in
S (bangs, smile,
gaze), as well as
for directions inW
(pose, age, gender).

eyebrow eye ear nose mouth neck cloth hair
19 5 41 21 32 46 34 62

eyebrow 35 15
eye 51 4
ear 19 16

nose 39 14
mouth 14 6
neck 24 18
cloth 27 13
hair 10 10

(a) FFHQ2MetFace

eyebrow eye ear nose mouth neck cloth hair
19 5 41 21 32 46 34 62

torso 25 4
eye 3
ear 142 2 13

nose 81 4 10

(b) FFHQ2Dog

Table 1: Number of localized StyleSpace channels for various semantic regions. Each column
corresponds to a semantic region in parent model, and each row to a semantic region in child model.
The number of localized channels that are shared between parent and child are in the center (an
empty space denotes 0). (a) After transferring from natural face to portrait, a number of localized
channels retain their functions in the same areas (large values on the diagonal), rather than changing
their function to other areas (all zeros except diagonal). (b) Even when transferring between more
distant domains (human to dog face), we can see that multiple channels retain their function in the
same areas (nose, ear), or shift to semantically corresponding areas (from human clothes to a dog’s
torso, from human hair to dog’s ears). Note that the dog face segmentation have no mouth region.

amount of overlapping channels in the same semantic region. We verify that this overlap is not coin-
cidental: performing the same experiment for two unaligned FFHQ models (trained from different
random initializations) shows that they have much fewer overlapping channels (see Table 4).

To the best of our knowledge, we are the first to quantitatively measure the fine-grained seman-
tic alignment phenomenon. Our experiments indicate that aligned models for related domains are
indeed strongly semantically aligned. This phenomenon enables many applications based on trans-
ferring knowledge and supervision between aligned models. E.g., zero-shot editing as demonstrated
in Figure 2 and zero-shot classification/regression as discussed in Section 4.3.

Semantic alignment for more distant domains. To examine the degree of semantic alignment
across a wider domain gap, we consider StyleGAN2 models transferred from FFHQ to AFHQ dog
faces (Choi et al., 2020). Figure 3 demonstrates that, even in this case, there are still multiple
single-channel controls that retain their semantic meaning (e.g., big eyes, black hair, short hair).
Furthermore, there are also multi-channel editing directions in latent space that exhibit the same
behavior, such as curly hair or small face (from StyleCLIP (Patashnik et al., 2021)), as well as pose
(from InterFaceGAN (Shen et al., 2020b)). This appears to be the case for visual attributes that are
common to both domains, while controls for attributes that are not present in the target domain (such
as glasses, lipstick, or beard) seem to have no effect on the child model. However, as we discuss
later, the relevant knowledge is not lost; rather, it is only hidden.

The retained controls reflect some interesting analogies between the domains: for example, controls
for hair color and curliness in humans, control fur color and curliness in dogs, while hair length
translates to length of dog ears. Interestingly, psychologists have also observed a correlation between
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Figure 3: Semantic
alignment between
single-channel and
multi-channel con-
trols for more distant
domains (humans
and dogs). See
also Figure 12 and
supp. videos.
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Figure 4: A smooth transition in
images generated from the same
latent code z ∈ Z during fine-
tuning. The epoch number ap-
pears above each column. The
most significant visual changes
occur in early epochs (0–16).
Also see Figure 13 and supple-
mentary videos.

the hair length in women and the ear shape of their preferred dog breeds (Coren, 1999), which is
consistent with the folk belief that people look like their dogs. The gradual emergence of some of
these analogies is clearly revealed when examining the samples generated by the model as it evolves
during the transfer process. Figure 4 shows images obtained for the same latent vector z ∈ Z (in
each row), as the training progresses. In the top row, we can see how human hair gradually evolves
into dog ears, and the human nose and mouth gradually evolve into the dog’s nose and muzzle,
while the pose remains mostly unchanged. A similarly smooth transition may be observed when
transferring from AFHQ dogs to cats, as shown in the bottom row.

Using the same quantitative evaluation method as before, we further quantify the alignment between
a parent FFHQ model and a child AFHQ dogs model. Results are displayed in Table 1(b). As can
be seen, a smaller number of channels preserve their semantics when transferred to AFHQ dog as
compared to MetFace. Nevertheless, we still observe semantic alignment, albeit weaker, as human
ears and hair overlap with dog ears, human cloth control the dog torso, etc.

We next experiment with even farther domains, with barely any similarity between parent and child,
such as human faces and churches, which were also examined by Ojha et al. (2021). Despite lack of
commonality, the latent direction that controls face pose in the parent still controls the church pose
in the child model (see Figure 14). We further examine a double transfer, with FFHQ as parent,
AFHQ dog as child and LSUN bedroom as grandchild. The pose direction in FFHQ still controls
the pose in the grandchild bedroom model, as shown in Figure 14.

Are latent semantics forgotten or hidden? As shown in Table 1(b), when transferring between
distant domains, only a small portion of the localized controls retain a similar semantic function.
An interesting question that arises is: are the remaining controls completely “forgotten” during
the transfer learning, or do they simply become inactive? To examine this, we retrain the child
AFHQ dog model back to the FFHQ domain, thereby obtaining a grandchild model, and report the
alignment between the original parent and the grandchild models (both for FFHQ) in Table 3. It
may be seen that the effect of many of the localized controls are restored. For example, out of the
41 channels that control the ears in FFHQ, only 2 retain a similar function in AFHQ dogs, but 20
regain their function in the grandchild model. This implies that these channels were merely hidden,
but not forgotten, during the first transfer learning stage. It should be emphasized that there is barely
any such alignment between two unrelated models, even when they are trained on the same dataset,
as shown in Table 4. Thus, the significant alignment between parent and grandchild (in Table 3)
cannot be attributed to re-learning when fine tuning from the child to the grandchild.

Locality bias in semantics transfer. We explore this aspect and conclude that only some of the
semantic alignment can be attributed to locality bias (see the discussion in appendix Section A.3).
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Input Ours CUT F-LSeSim Input Ours CUT F-LSeSim

CUT F-LSeSim Ours (Zopt)
cat2dog 74.9 73.8 34.2

dog2wild 25.4 37.6 10.9

(a) FID

CUT F-LSeSim Ours (Zopt)
44.5 36.3 7.36
10.0 17.6 2.22

(b) KID×103

Figure 5: Comparison of I2I translation (cat2dog and dog2wild in the AFHQ dataset) with two state-
of-the-art methods. Our method generates realistic target domain images that capture the pose from
the source image. In contrast, both CUT and F-LSeSim fail to generate realistic images since they
follow the shape of the source domain image too closely. A quantitative comparison in the table
below indicates our method is superior by a wide margin, in both FID and KID.

4 APPLICATIONS

We next apply aligned models to solve three kinds of tasks: image-to-image translation (Sec. 4.1),
cross-domain image morphing (Sec. 4.2) and zero-shot classification and regression (Section 4.3).
Efficient training of generators for different resolutions is described in the appendix (Sec. A.4).

4.1 CROSS-DOMAIN IMAGE TRANSLATION

As demonstrated earlier, aligned models generate images with similar high-level semantic attributes,
given the same latent code. This makes it trivial to translate images between the domains of the
parent and the child models, even when these domains are more distant than realistic faces and
cartoons or paintings of human faces. For example, it is easy to translate between faces of different
species, which typically involves significant changes in both structure and appearance. Furthermore,
there’s no need for task-specific training or losses; all that is needed is a pair of aligned models and
an inversion method to embed real images into the latent space of the source domain StyleGAN.

In Section A.5 we perform a systematic study of which inversion methods (encoder or latent opti-
mization), and which latent spaces (W/W+/Z/Z+), are most effective for image translation. Some
previous works (Pinkney & Adler, 2020; Huang et al., 2021) that considered only similar domains
have used theW/W+ spaces. We find that Z space yields same level of results for similar domains,
but superior results for distant domains, qualitatively and quantitatively. This could be directly ex-
plained with a previous observation. For both settings the Z space is trivially shared, as it is a
non-learned space. However, only for similar domains are theW/W+ spaces aligned and shared.

In Figure 5 we compare our I2I results to two state-of-the-art methods, CUT (Park et al., 2020) and
F-LSeSim (Zheng et al., 2021). It may be seen that our method produces realistic and natural looking
results, while these two previous methods exhibit severe artifacts, and attempt to follow the shape in
the source image too closely, yielding unrealistic results. The table in Figure 5 provides quantitative
support for our qualitative observations, yielding significantly lower FID and KID scores for both
cat2dog and dog2wild translations. Figure 21 demonstrates our method’s ability to perform image
translation between dissimilar domains.

In addition to the I2I scenario examined above, aligned models are also able to perform reference-
based image translation, where the resulting image combines the content of a source image with the
style from a second (reference) image (Huang et al., 2018; Choi et al., 2020). StyleGAN inherently
supports content and style disentanglement through style mixing. Specifically, we combine the
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Source Reference Ours StarGAN2 OverLORD Source Reference Ours StarGAN2 OverLORD

StarGAN2 OverLORD Ours (Zopt)
dog2cat 15.6 22.1 9.22

wild2dog 37.4 32.7 27.4
cat2dog 44.0 32.2 30.4

dog2wild 17.2 10.5 9.65

(a) FID

StarGAN2 OverLORD Ours (Zopt)
12.7 19.2 3.44
21.5 17.1 14.8
25.6 16.8 17.1
11.8 5.1 3.64

(b) KID×103

Figure 6: Comparison of reference-based image translation with StarGAN2 and OverLORD. Our
method generates realistic target domain images that combine pose and structure from the source
image with texture and color from the reference. StarGAN2 follows the source shape too closely,
resulting in non-realistic animals (1st example in dog2cat, all examples in wild2dog). OverLORD’s
results preserve the appearance of the reference well, but sometimes fail to capture the pose and
structure (e.g., ear shape) from the source image (2nd and 3rd examples in wild2dog). A quantitative
comparison in the table below indicates superior performance of our method in both FID and KID.

early latent code (below 32 × 32 resolution) from a source image, with the late latent code (above
or equal to 32× 32 resolution) from a target domain reference image, and feed it to the target model
to generate the result, as demonstrated in Figure 22. Figure 23 and Table 6 show that here, as
well as for I2I, inversion via Zopt works better than other inversions/spaces for multi-modal image
translation. Figure 6 demonstrates that our results are better than those of current state-of-the-art
methods, StarGAN-v2 (Choi et al., 2020) and OverLORD (Gabbay & Hoshen, 2021).

4.2 CROSS-DOMAIN IMAGE MORPHING

Image morphing is a popular visual effect of smoothly transitioning between a pair of input images
(Wolberg, 1998), which typically requires either manual or automatic correspondences, in order to
define a warp field. Cross-domain morphing, where the two images are from different domains,
A and B, is particularly challenging (Aberman et al., 2018; Fish et al., 2020). However, using
a pair of aligned StyleGAN models for the two domains, it is possible to perform cross-domain
image morphing automatically without the need for correspondences, or any other input! The two
input images are first embedded into the W+ space of the corresponding generators, using e4e
encoders (Tov et al., 2021). Next, a smooth transition is obtained by linearly interpolating between
the resulting latent codes, while also interpolating between the model weights. Wang et al. (2019)
previously proposed interpolating model weights in order to obtain a smooth transition between the
“effects” of two different networks. We note that they do not discuss morphing real images, which
is a slightly different setting, and requires also interpolating latent codes as we propose here.

Layer swapping, proposed by Pinkney & Adler (2020), is an alternative approach to morph between
domains. We discuss the differences between the two approaches in Section A.7. Concisely, our pro-
posed method ensures a continuous smooth transition, while layer swapping performs the transition
as a series of discrete steps, rather than continuously.

We demonstrate automatic morphing between dog and cat faces in Figures 24 and 25, and dog and
human faces in Figures 26 and 27. Interpolating the model weights (along each column) yields
a smooth transition between domains (different species, but the same pose and fur color), while
interpolating theW+ latent codes (along each row) smoothly transitions inside each domain (same
species, varying pose and fur color). In fact, any trajectory in this 2D interpolation space yields
a smooth morph sequence between two input images. We simultaneously interpolate along both
dimensions to create the sequences shown in the supplementary video.
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Figure 7: Zero-shot dog attribute classification using aligned models (FFHQ and AFHQ dogs). In
the top row a human “black hair” classifier becomes a “black fur” classifier, a “curly hair” classifier
is able to classify “curly fur”, and a “long hair” classifier becomes a “down-pointing ears” classifier.
The neutral columns correspond to images whose prediction scores are close to the cutoff value.

4.3 KNOWLEDGE TRANSFER FROM PARENT TO CHILD DOMAIN

Vision tasks on human faces have been researched for years. Consequently, numerous datasets with
detailed annotations exist. For example, images in the CelebA dataset (Liu et al., 2015) are labeled
with 40 attributes such as “Young”, “Curly hair”, “Smiling”, etc. Such annotations are not available
for almost any other domain, such as animal faces, severely limiting the range of tasks that can be
solved. As discussed earlier, this issue is a prominent motivation for transfer learning. However,
common transfer learning approaches are not applicable in the “zero-shot” setting, where there is
abundant labeled data in the source domain, but strictly unlabeled data in the target domain.

We next show that this problem can be solved effectively for directly comparable attributes across
domains by leveraging aligned models. Consider the case of head pose (specifically, yaw): a clear
and comparable attribute for both humans and dogs, however for humans there is abundant labeled
data and for dogs there is none. As demonstrated earlier, the latent pose semantics are aligned in the
two models, and the parent’s yaw editing direction continues to edit yaw in the child. As shown ear-
lier, this holds for additional attributes. Thus, despite a major gap between the two domains in image
space, the gap in the latent space is considerably smaller, enabling transfer of knowledge between
these domains. While naı̈vely applying a model trained on the source images to the target images
would fail, this approach works well when applied on the latent representation. To demonstrate this
approach, we solve several zero-shot classification and regression tasks using models trained in the
latent space of the parent StyleGAN model.

For regression tasks, we use LARGE (Nitzan et al., 2021), which demonstrated that the distance
inW+ space to the decision hyperplane associated with a semantic property, gauges the degree of
that attribute in image space. See appendix (Section A.6) for more details. Zero-shot yaw regression
results are depicted in Figures 28 and 29. As evident, the estimated yaw not only captures the correct
tendency, but also produces a value that qualitatively seems reasonably close to actual yaw degree.

For classification tasks we take a similar approach. We simply replace the linear regression model
with a logistic regression model and use a cutoff value of 0.5. As shown in Figure 7, our method can
turn classifiers for human faces to classifiers for dog faces. These results also demonstrate that the
attributes are not required to be exactly identical (pose to pose) but could be comparable in a more
broad sense (long hair in humans to down-pointing ears in dogs).

5 CONCLUSION

In this work, we performed the first extensive investigation of the properties of aligned generative
models. We initially answered several open questions, crucial for their understanding. The find-
ings demonstrated impressive and surprising properties, such as semantic alignment across distant
domains and knowledge being “hidden” instead of being forgotten. We then leveraged our new
insights to apply aligned models for a multitude of tasks. Interestingly, we obtain state-of-the-art
results for those tasks with a single, simple fine-tuning based method. We hope that our work can
inspire others to consider aligned models as a simple paradigm for solving a wide range of tasks.
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6 ETHICS STATEMENT

This work performs an extensive study of the properties of aligned generative models and applies
such models for several computer vision tasks. In general, generative models and learning-based
algorithms raise several concerns. Notably, generative models may be used to produce deceiving
or offending content, e.g. deepfakes (Wikipedia, 2021), and data-driven algorithms may perpetuate
biases exiting in their training sets. However, these concerns are general to the entire fields and are
not amplified by this work.

7 REPRODUCIBILITY

Throughout the paper we provide detailed information facilitating reproduction of our results. For
example, in each experiment we specify the choices of latent space, specific layer and inversion
method (e.g., Sections 4.1, 4.2 and A.5). Similarly, when applying latent editing directions we spec-
ify with which method were they identified and in what space (e.g., Section 3, A.3). Additionally,
we provide in the appendix (Section A.8) the information required to reproduce the child models.
We expect these to be sufficient for independent replication of our main findings. Separately, source
code and pretrained models have been made available in the project’s repository.
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A APPENDIX

A.1 EFFECT OF TUNING ON INDIVIDUAL FEATURE CONVOLUTION LAYERS

As part of our investigation of which parts of the network change during fine-tuning, we also exam-
ine in more detail the effect of resetting the weights of individual feature convolution layers on the
generated images. We reset one layer at a time and measure the perceptual change in an image using
LPIPS. Results are displayed in Table 2. As may be seen, each layer has an effect on the image, but
resetting the middle resolution layers (32, 64, 128) induces the greatest LPIPS change.

A.2 FURTHER SEMANTIC ALIGNMENT ANALYSIS

Since many semantic attributes cannot be controlled by a single style channel, nor by a single ma-
nipulation direction inW , we also compare the effect of different semantic manipulation directions
in StyleSpace, which are discovered for the parent model using CLIP (Patashnik et al., 2021). Fig-
ures 10 and 11 demonstrate that these compound manipulations, e.g., expressions and hair styles,
also retain their semantics in the child models.
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A.3 LOCALITY BIAS IN SEMANTICS TRANSFER.

We have demonstrated that a variety of localized controls retain their function during transfer learn-
ing between FFHQ and AFHQ. However, since the faces in these two datasets are roughly aligned,
it is interesting to examine whether this occurs due to overlap between the corresponding seman-
tic regions. To examine this, we perform transfer learning from a model pretrained on FFHQ (at
256×256 resolution) to three different versions of the same dataset: (i) shifted 60 pixels to the right,
(ii) shifted 60 pixels downward, and (iii) flipped upside down. Figure 15 shows that the shifts, and
particularly the flip, affect the identity/appearance of the images generated from the same latent
codes in Z , however other high-level characteristics, such as gender, age, or hair length, remain
similar. We also show the effect of manipulating five different style channels across different layers
and different semantic regions. For the horizontally shifted dataset, all five channels retain their
function. For the vertical shift, four out of the five channels retain their function (channel 15 45 that
controls lipstick loses its effect). For the upside down flip, two out of five channels (9 409 for gaze
and 12 479 for blond hair) retain their function. In summary, for 11 out of 15 cases, the function
of a channel was transferred despite a significant change in the locality. Thus, locality bias cannot
explain all of the alignment that occurs.

There are, however, some interesting examples of strong locality bias. Channel 6 501 controls
smiling in the parent FFHQ model, but after an upside-down flip it controls receding hairline, this
implies locality bias does contribute to channel-wise semantics transfer, since the forehead of the
flipped faces overlaps the mouth location in the original images.

A.4 SEMANTIC ALIGNMENT BETWEEN DIFFERENT RESOLUTIONS

Given a high resolution StyleGAN2 model, an aligned lower resolution model may be easily ob-
tained by simply removing the high resolution layers, and fine-tuning to convergence. The fine-
tuning is necessary, as without it the model generates low-contrast images, as shown in Figure 30.
This works well because StyleGAN2 inherently supports multi-resolution synthesis, with the gener-
ator containing ToRGB layers and the discriminator containing corresponding FromRGB layers that
directly operate in image space for different resolutions. Assuming a high resolution (1024× 1024)
model is already available, creating a low-resolution model (512× 512) in this way is computation-
ally efficient, requiring less than 2 days of fine-tuning on a single GTX1080Ti GPU, compared to
more than one month of training from scratch. Figure 30 shows that the resulting low-resolution
model is highly aligned with the original: the same latent code z ∈ Z generates nearly the same
image, and the semantic controls in the parent model have the same effect in the child model. One
of the important consequences of such alignment is that there’s no need to spend weeks of GPU time
to re-discover the semantic StyleSpace controls (Wu et al., 2020). Furthermore, given an inversion
model (Tov et al., 2021) for the parent model, it may be fine-tuned for the child model within a few
GPU hours, instead of 2-3 days of training from scratch.

A.5 METHODS AND SPACES FOR IMAGE TRANSLATION

To determine which latent space and inversion method (encoder or optimization) is best suited
for translation of real images, we explore a number of alternatives. We modify the pSp encoder
(Richardson et al., 2021) to embed images intoW , Z , and Z+ (Song et al., 2021) spaces. ForW+
we use the e4e encoder (Tov et al., 2021), which is based on pSp, but generates W+ codes with
better alignment with the latent manifold. We also modify the latent optimization method from the
official StyleGAN2 implementation (Karras et al., 2020b) to embed into these different spaces. For
Z/Z+, it is crucial to use the truncation trick for both image inversion and generation, otherwise the
translation results might exhibit strong artifacts (we use a truncation coefficient of 0.7). Inversion
results corresponding to these different methods are shown in Figure 16 for AFHQ dogs and cats.

Examples of I2I translation (dog2wild and cat2dog) using these different inversion methods are
shown in Figure 17. While inversion of source domain images to W+ yields arguably the best
reconstructions, when translating to the target domain viaW orW+, the color palette of the results
seems wrong, especially for the dog2wild translation. We attribute this to the fact that the mapping
function (from Z to W) changes when fine tuning the parent to the child, which affects the color
palette, and translating using W/W+ latent codes ignores this change. Translations via Z+ or
Z+opt inversion also suffer from occasional color artifacts (mainly in the dog2wild examples).
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Both Z and Zopt, on the other hand, yield satisfactory translation results. We prefer Zopt because it
tends to produce a vivid color palette and to maintain a stronger resemblance of the source images,
in terms of pose, shape, and colors. Quantitatively, translating via Zopt inversion achieves best FID
and KID over the other plausible alternatives, as reported in Table 5. Therefore we use translation
via Zopt as our preferred method.

We perform similar study for translation between nearby domains (FFHQ and cartoon) in Figure 18,
19 and 20. In our subjective opinion, translation via Zopt still achieves the most cartoonish look.
However, translations via W bear closer resemblance to the input portrait, while still achieving
a satisfactory cartoonish look. As discussed in the text, this may be attributed to the fact that,
for similar domains, the mapping function changes little during fine-tuning, resulting in pointwise
alignment of theW spaces of the parent and child models.

A.6 ZERO-SHOT REGRESSION

To leverage aligned models for regression tasks, we use LARGE (Nitzan et al., 2021), which demon-
strated that the distance inW+ space to the decision hyperplane associated with a semantic property,
gauges the degree of that attribute in image space. As their method is designed for a few-shot setting,
we simplify it slightly for our setting where the training data in the source domain is abundant. Con-
cisely, we simply use the distances calculated in specific layers known to control certain attributes as
the input features for the regression model. We demonstrate this approach for head pose regression
and use the first four layers, which are known to control the pose in StyleGAN (Karras et al., 2019;
Nitzan et al., 2021). At inference time, we use e4e (Tov et al., 2021) to encode images of the target
domain into the W+ space of the child model, compute the distances of the first four layers from
the decision hyperplane, and input them to the human face yaw estimation model.

The zero-shot yaw regression results for AFHQ dogs and cats are depicted in Figures 28 and 29. As
can be seen, the estimated yaw not only captures the correct tendency, but also produces a value that
qualitatively seems reasonably close to actual yaw degree.

A.7 METHODS TO BLEND ALIGNED MODELS

Layer swapping was introduced by Pinkney & Adler (2020) as a method to generate images of a
new domain by “blending” together two existing data domains. It does that by creating a hybrid
model contains layers from two aligned models. Specifically, the first (coarse) layers are taken from
one model and the last (fine) layers are taken from another. We note that this method blends the
two data domains in a specific manner. Thanks to the hierarchical structure of StyleGAN (Karras
et al., 2019), the created model inherits the structure (coarse layers) from one model and texture
from another (fine layers). Pinkney & Adler (2020) also mentioned that the fine layers could be
interpolated between the models, however this idea wasn’t applied in practice.

The layer swapping method was shown to produce visually pleasing results on the task of stylizing
human portraits (Pinkney & Adler, 2020; Song et al., 2021). However, there are a few disadvantages
to this method. First, when domains are more distant (e.g. faces of humans and dogs), the results
obtained by this approach are less intuitive and visually pleasing (see Figures 31 to 33). This coin-
cides well with our observation from Figure 8. Since the feature convolution layers change much
more significantly when transferring to a distant domain, the layers of a layer-swapped model are
more alien to each other. Second, the number of intermediate steps is limited by the number of con-
volution layers in the generator, which is at most 18. This prevents the application of layer swapping
for creating a smooth transition between images from different domains.

In our morphing application (Section 4.2), we present an alternative method to blend two aligned
models. There we propose to perform a simple linear interpolation of all model weights to achieve a
gradual transition. We compare the results of this approach with layer swapping in Figures 31 to 33.
Please note that our proposed method is able to obtain “blended” images that seem more smooth
and natural.
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A.8 FINE-TUNING IMPLEMENTATION DETAILS

Given a model pretrained on the parent domain, we fine-tune it on the child domain. Specifically,
we use model config-f and the default hyper-parameters from the official Nvidia StyleGAN2 and
StyleGAN2-ADA implementations in tensorflow. We use the augmentations of StyleGAN2-ADA
only when the child domain is AFHQ or Metface.

Note that StyleGAN2-ADA implementation chooses the config based on input image resolution.
It uses config-f for image resolution above 512 × 512, and config-e for other resolutions. To use
config-f without worrying about image resolution, one can specify the flag --cfg stylegan2
when using tran.py, and change line 179 in train.py from spec.fmaps = 1 if res >= 512
else 0.5 to spec.fmaps = 1.

A.9 DETECTING LOCALIZED CHANNELS

We follow Wu et al. (2020) to discover localized channels in the StyleGAN model. To reduce noise,
we only consider channels to be localized if they have the strongest gradient in the same semantic
region over 75% of sampling images, rather than 50% used in the original paper. For FFHQ and
Metface models, we use the semantic segmentation maps from BiSeNet (Yu et al., 2018) pretrained
on CelebAMask-HQ (Lee et al., 2020a). For AFHQ dogs, we using the semantic segmentation maps
from a unified parsing network (Xiao et al., 2018) pretrained on Broden+ (Bau et al., 2017).
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Figure 8: We reset the weights of different components in child models (Mega, dog, church) to
their initial values, which come from the parent model (FFHQ). When resetting the weights in
feature convolution layers, the output images change more drastically (content, structure), while
resetting the weights of other components causes milder effects. This implies feature convolution
layers contain most of new learned knowledge.
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Resolution 4 8 16 32 64 128 256 512
LPIPS 0.156 0.385 0.390 0.432 0.440 0.405 0.369 0.355

Table 2: We measure the extent to which the change in each feature convolution layer (during fine-
tuning) affects the generated images. Given a parent FFHQ model and a child AFHQ dog model, we
reset the feature convolution weights for each resolution of the child model to their original values
in the parent model, and measure the LPIPS distance between the images generated by child model
before and after resetting the weights. A higher LPIPS score indicates a more significant change in
image space. It may be seen that the greatest change is caused by resetting the middle resolution
layers (32, 64, 128).

eyebrow eye ear nose mouth neck cloth hair
19 5 41 21 32 46 34 62

eyebrow 29 8 1 1
eye 9 3
ear 45 20

nose 23 8
mouth 55 11
neck 61 1 15
cloth 65 19
hair 70 33

Table 3: The number of localized StyleSpace controls for various semantic regions for an FFHQ
parent model and an FFHQ grandchild model, with training flow from FFHQ (parent) to AFHQ dog
(child) then back to FFHQ (grandchild). Each column corresponds to a semantic region for parent
and each row to a semantic region for grandchild. The number of localized channels shared between
two models is indicated for each pair of semantic regions.

eyebrow eye ear nose mouth neck cloth hair
19 5 41 21 32 46 34 62

eyebrow 22 1 1
eye 5 1
ear 44 1 1 1

nose 19
mouth 28 1 1 1
neck 43 1 1 1 1
cloth 32 2 1 1
hair 85 1 2 2

Table 4: The number of localized StyleSpace controls for various semantic regions for two randomly
initialized FFHQ models. Each column corresponds to a semantic region in one model and each
row to a semantic region in the other model. The number of localized channels shared between two
models is indicated for each pair of semantic regions. It is evident that the two models only have
a small number of overlap channels across unrelated semantic regions (for example, hair and eye).
This experiment serves as a negative control to show that a large number of overlap channels only
occurs when the two models have parent and child relation, as is the case in Table 1
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Figure 9: Semantic alignment: semantic controls discovered for the parent model (FFHQ) retain
their function in the children models (Mega and Metface). This holds for individual channels in S
(bangs, smile, gaze), where the layer and channel number is indicated under each column. Semantic
alignment is also observed for manipulation directions inW (pose, age, gender).
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Figure 10: Semantic alignment of multiple channels: semantically meaningful directions in
StyleSpace discovered in the parent model (FFHQ), detected using StyleCLIP (Patashnik et al.,
2021), still control the same attributes in children models (Mega and Metface).
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Figure 11: Semantic alignment of multiple channels: semantically meaningful directions in
StyleSpace discovered in the parent model (FFHQ), detected using StyleCLIP (Patashnik et al.,
2021), still control the same attributes in children models (Mega and Metface).
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Figure 12: Examples of semantic alignment between single-channel, as well as multi-channel con-
trols discovered for the parent model (StyleGAN2 trained on FFHQ) and a child model (AFHQ
dogs). While the analogy between hair in humans and fur in dogs seems intuitive, there are also
some less obvious analogies, such as hair length and ear length.
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Figure 13: During transfer learning between domains, we can observe a smooth transition in images
generated from the same latent code z ∈ Z . The top row demonstrates this for transfer from FFHQ
to AFHQ dogs, while the bottom rows shows this for transfer from AFHQ dogs to cats. The number
of epochs is indicated above each column. The most significant visual changes occur in early epochs
(0–16), while later epochs mainly improve image quality and realism without significant changes in
semantic attributes.
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Figure 14: Some degree of semantic alignment is present even when the source and target domains
are very dissimilar. In the top two rows, we show that the latent direction that controls pose in the
parent FFHQ model still controls pose in the child LSUN church model. In the bottom two rows,
we examine a double transfer, with FFHQ as parent, AFHQ dog as child and LSUN bedroom as
grandchild. The pose direction in FFHQ still controls the pose in the grandchild bedroom model.
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FF
H

Q
Sh

if
tD

ow
n

Sh
if

tR
ig

ht
up

-d
ow

n
fli

p
FF

H
Q

Sh
if

tD
ow

n
Sh

if
tR

ig
ht

up
-d

ow
n

fli
p

Figure 15: To understand whether locality bias contributes to semantics transfer, we fine-tune a
pretrained FFHQ model in 256×256 resolution, to (i) a FFHQ dataset shifted 60 pixels to the right,
(ii) a FFHQ dataset shifted 60 pixels downward, and (iii) a FFHQ dataset flipped upside-down. We
examine the semantics transfer for 5 channels across different layers and different semantic regions.
For the shift right case, all 5 channels retain their function. For the shift down case, 4 out of 5
channels retain their function (channel 15 45 loses its function for lipstick). For the upside-down
flip, 2 out of 5 (9 409 gaze and 12 479 blond hair) retain their function. In summary, for 11 out of
15 cases, the semantic function of channels is transferred even if we break the locality bias. These
results imply that the transfer of semantics cannot be fully attributed to locality bias.
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Original W W+ Z Z+ Zopt Z+opt

Figure 16: To invert real images of animal faces to different latent spaces, we examine both encoders
and latent optimization based methods. We use the pSp encoder (Richardson et al., 2021) as a
backbone and modify it to embed into W , Z , and Z+ (Song et al., 2021) spaces. For the W+
space, we use e4e (Tov et al., 2021), which also uses pSp (Richardson et al., 2021) as backbone.
For optimization based inversion, we modify the optimization code from StyleGAN2 (Karras et al.,
2020b) to Z or Z+ space (two rightmost columns). All of the inversion methods yield reasonably
faithful reconstructions, with occasional artifacts in the Z and Z+opt reconstructions. Note that, as
we show below, that better reconstruction does not necessarily yield the best image translation.
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Original W W+ Z Z+ Zopt Z+opt

Figure 17: Comparison of I2I results (dog2wild in the top four rows, cat2dog in the four bottom
ones) for the different inversions shown in Figure 16. The color palette appears to be wrong for
both W+ and W encoding, especially for the dog to wildlife translation. This is not surprising,
since the mapping function changes during fine tuning (see Figure 1), affecting the color palette,
and inverting into theW orW+ spaces ignores the difference between the mapping functions of the
parent and child. Translations via Z+ or Z+opt inversion also suffer from occasional color artifacts
(mainly in the dog2wild examples). Translations via either Z or Zopt provide satisfactory results.
We prefer Zopt because it typically yields a more vivid color palette, while slightly better capturing
the characteristics of the source images (especially in the dog2wild examples).

25



Published as a conference paper at ICLR 2022

Original W W+ Wopt W+opt Zopt Z+opt

Figure 18: To invert real images of human faces to different latent spaces, we examine both encoders
and latent optimization based methods. We use the pSp encoder (Richardson et al., 2021) as a
backbone and modify it to embed intoW space. For theW+ space, we use e4e (Tov et al., 2021),
which also uses pSp (Richardson et al., 2021) as backbone. We also experimented with using the
pSp encoder to Z , and Z+ (Song et al., 2021) spaces, but training does not converge and results are
unrealistic. For optimization-based inversion, we modify the optimization code from StyleGAN2
(Karras et al., 2020b) to W , W+, Z or Z+ spaces. In terms of reconstruction quality alone, W+
typically yields the best inversions; however, as we show below, better reconstruction does not
necessarily yield the best image translation.
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Original W W+ Wopt W+opt Zopt Z+opt

Figure 19: Comparison of I2I results (for real faces to cartoon-like, using FFHQ parent and Mega
child) for the different inversions shown in Figure 18. Translation results via Wopt and W+opt

contain strong artifacts. In our subjective opinion, translation via Zopt achieves the most cartoonish
look. However, translations viaW bear closer resemblance to the input portrait, while still achieving
a satisfactory cartoonish look. As discussed in the text, this may be attributed to the fact that,
for similar domains, the mapping function changes little during fine-tuning, resulting in pointwise
alignment of theW spaces of the parent and child models.
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Zenc Z+enc Zopt

cat2dog 48.8 68.5 34.2
dog2wild 22.1 24.8 10.9
wild2dog 60.0 62.5 34.7
dog2cat 30.4 21.1 17.9

(a) FID

Zenc Z+enc Zopt

16.1 34.8 7.36
10.9 12.2 2.19
15.5 22.7 5.98
14.5 5.49 3.79

(b) KID×103

Table 5: A quantitative comparison of I2I translation via different latent spaces and inversion meth-
ods. Based on the qualitative results shown in Figure 17, we consider encoder-based inversion for Z
and Z+ spaces, and latent optimization method for Z space, to be promising methods and further
examine them using FID and KID scores. Our results indicate that inversion Z using latent opti-
mization achieves the best FID and KID for I2I translation tasks.

Original Translated Original Translated Original Translated Original Translated

Figure 20: Image Toonification using our Zopt method.

Original Translated Original Translated Original Translated Original Translated

Figure 21: Aligned models enable effective image translation between dissimilar domains (human
face and dog face). Some interesting analogies emerge in these translations. For example, as the
human hair becomes longer, so does the dog’s fur, while the dog’s ears change from “candle flame”
ears, to “bat” ears, and finally to folded (“down-pointing”) ears. The fur color is mainly determined
by the human hair color, and the dog pose mimics that of the human.
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Source Reference 0 3 6 9 12 15 18 21 23

Figure 22: Reference-based image translation. Given a real dog image as source and a real cat
image as reference, we aim to obtain a cat image that keeps the content (mainly pose) from the
source and the style (fur texture and color) from the reference. We first invert the input real images
to latent space of StyleGAN, then take style codes for all layers below n (low resolution) from the
source, and style codes for layers above or equal to n (high resolution) from the reference. The
layer index n is indicated above each column. Thus, index 0 represents the inverted reference, and
index 23 represents the translation of the source to the target domain (cats), while the other indices
correspond to standard style mixing in StyleGAN. We can see that when n is around 6, the images
combine the pose of the source with the style of the reference.

w+ enc Z+ enc Z enc z opts
dog2cat 10.3 11.2 13.7 9.22
wild2dog 44.5 37.6 36.6 27.4
cat2dog 42.1 44.3 40.7 30.4
dog2wild 37.9 28.3 18.5 9.65

(a) FID

w+ enc Z+ enc Z enc z opts
4.87 4.85 6.56 3.43
27.2 21.1 18.8 14.8
27.6 28.2 27.0 17.0
21.5 16.2 12.5 3.64

(b) KID×103

Table 6: A quantitative comparison of reference-based image translation using different inversion
methods and latent spaces. It may be seen that the latent optimization method for Z achieves the
best FID and KID for such translation tasks.
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Source Reference W+ Z+ Z Zopt

Figure 23: A qualitative comparison of reference-based image translation for different methods and
spaces. Since here the colors are determined by the higher layers of the generator, whose style
parameters come from the inversion of the reference image, the translation viaW+ does not suffer
from color palette issues. Thus, both translations viaW+ and via Zopt look satisfactory.
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Figure 24: Given a pair of real images from domain A (top-left) and B (bottom-right), we smoothly
transition between them by interpolating their latent codes inW+, as well as the model weights. t1
is the interpolation coefficient for the latent codes, while t2 is the coefficient for the model weights.
In the same column (fixed t1), we obtain a smooth transition between the domains (different species,
but the same pose and fur color). In the same row (fixed t2), we have a smooth transition inside the
same domain (same species, varying pose and fur color). Any trajectory between the top-left and
bottom-right corners yields a smooth morph sequence between two input images. See the accompa-
nying video, which progresses along the diagonal t1 = t2.
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Figure 25: Given a pair of real images from domain A (top-left) and B (bottom-right), we smoothly
transition between them by interpolating their latent codes inW+, as well as the model weights. t1
is the interpolation coefficient for the latent codes, while t2 is the coefficient for the model weights.
In the same column (fixed t1), we obtain a smooth transition between the domains (different species,
but the same pose and fur color). In the same row (fixed t2), we have a smooth transition inside the
same domain (same species, varying pose and fur color). Any trajectory between the top-left and
bottom-right corners yields a smooth morph sequence between two input images. See the accompa-
nying video, which progresses along the diagonal t1 = t2.
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Figure 26: Given a pair of real images from domain A (top-left) and B (bottom-right), we smoothly
transition between them by interpolating their latent codes inW+, as well as the model weights. t1
is the interpolation coefficient for the latent codes, while t2 is the coefficient for the model weights.
In the same column (fixed t1), we obtain a smooth transition between the domains (different species,
but the same pose and similar fur/hair color). In the same row (fixed t2), we have a smooth transition
inside the same domain (same species, varying pose and color). Any trajectory between the top-
left and bottom-right corners yields a smooth morph sequence between two input images. See the
accompanying video, which progresses along the diagonal t1 = t2.
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Figure 27: Given a pair of real images from domain A (top-left) and B (bottom-right), we smoothly
transition between them by interpolating their latent codes inW+, as well as the model weights. t1
is the interpolation coefficient for the latent codes, while t2 is the coefficient for the model weights.
In the same column (fixed t1), we obtain a smooth transition between the domains (different species,
but the same pose and similar fur/hair color). In the same row (fixed t2), we have a smooth transition
inside the same domain (same species, varying pose and color). Any trajectory between the top-
left and bottom-right corners yields a smooth morph sequence between two input images. See the
accompanying video, which progresses along the diagonal t1 = t2.
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Figure 28: Demonstration of our zero-shot dog yaw regression model. The images are from AFHQ
dog dataset, split into several bins (rows), based on the regressed yaw values. The images shown are
randomly picked from each bin (no cherry picking). The estimated yaw values capture the correct
tendency (right facing to left facing), and in most cases appear to be close to the actual yaw degree.
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Figure 29: Demonstration of our zero-shot cat yaw regression model. The images are from AFHQ
cat dataset, split into several bins (rows), based on the regressed yaw values. The images shown are
randomly picked from each bin (no cherry picking). The estimated yaw values capture the correct
tendency (right facing to left facing), and in most cases appear to be close to the actual yaw degree.
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Figure 30: Starting from a pretrained StyleGAN2 model for FFHQ 1024×1024 resolution as parent,
we use its weights to initialize models for 512 × 512 or 256 × 256 resolution. Before fine tuning
(FT), it only generates low contrast images. After fine tuning (“Original” column), similar images
with the same attributes (identity, hair length, gender, etc.) as parent model are generated given the
same code z ∈ Z . Note that the generated images are not pixel-wise identical, but the different style
channels retain their semantic function, as demonstrated by the four rightmost columns.
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Figure 31: A comparison between layer swapping and model weight interpolation. We demonstrate
transitioning between FFHQ and Mega using three different ways. Layer swapping:AB means using
a hybrid model whose low resolution layers come from model A, and high resolution layers from
model B, while Layer swapping:BA means the opposite roles (low from B, high from A). The reso-
lution at which the switching occurs is shown above each result. The swapping resolution used by
Toonify (Pinkney & Adler, 2020) is either 16× 16 or 32× 32. Weight interpolation instead linearly
interpolates the weights of all layers between model A and B. The interpolation ratio is shown shown
above each result.
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Figure 32: A comparison between layer swapping and model weight interpolation. Here we demon-
strate transitioning between AFHQ dog and cat. Refer to Figure 31 for more details.
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Figure 33: A comparison between layer swapping and model weight interpolation. Here we demon-
strate transitioning between FFHQ and AFHQ dog. Refer to Figure 31 for more details.
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FFHQ Church gFFHQ FFHQ Church gFFHQ

Figure 34: Generative image translation from parent FFHQ model to child LSUN church model
and grandchild FFHQ using the same latent code z. Since the domain gap between FFHQ and
LSUN church is too large, we can barely see any correspondence. But the parent FFHQ model and
grandchild FFHQ models generate faces with highly similar attributes and identity. This implies
that knowledge that was not transferred from task A (FFHQ generation) to task B (LSUN church
generation), is only hidden in the latter model’s latent space, rather than forgotten.
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Original Beard Black Hair

Figure 35: Applying the “Beard” and “Black hair” manipulation directions from parent FFHQ model
to a child LSUN church model. The manipulation directions are discovered by StyleCLIP (Patashnik
et al., 2021). Most manipulation directions from the FFHQ parent do not change anything in the
child church model. Surprisingly, the beard direction from FFHQ appear to control the amount of
trees in the church model to some extent, and the black hair direction from FFHQ makes the church
building darker in the child model.
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Figure 36: Semantic alignment between parent and grandchild model. We first train a StyleGAN
model on FFHQ (parent), then fine tune on LSUN church (child), and finally fine tune back to FFHQ
(grandchild). We can see that the same channel still controls the same attribute between parent and
grandchild model. Interestingly, channel 15 45 controls lipstick in the parent model, but makes
the face slightly pink in the grandchild model. Although the exact function has changed after fine
tuning, it is still semantically related to the original function.
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Figure 37: We demonstrate the ability of our method to perform I2I tasks that only change texture,
while preserving the structure. Although this dataset has paired edge maps and shoe images, the
pairing information is not used by our method. We slightly blur the edge maps to make the images
more continuous. We first train a StyleGAN model on the shoes dataset (parent), then fine tune
on edge maps dataset (child). Since edge maps mostly represent the structure of objects, and do
not contain color or texture, we train an e4e encoder to W+ from whose output we only use the
parts that control generator resolutions below 32 × 32 (same as was done for multi-modal image
translation). The parts that control higher-resolution layers are sampled, yielding multiple possible
shoe images (sharing the same structure) for each edge map.
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Mega Metface Dog Cat Wild Unrelated FFHQ
L1 inW 0.033 0.057 0.162 0.172 0.141 0.391

Table 7: Average L1 distance between w ∈ W vectors mapped from the same latent code z ∈ Z
for different pairs of models. Using a pretrained FFHQ model as parent, it is fine-tuned on different
datasets separately. We sample 100K random z vectors and compute the corresponding w for each
model. The mean change (per coordinate of w) is reported for each child model. It may be clearly
seen that in models fine-tuned to nearby domains (Mega, Metface) the change in w is much smaller
than to more distant domains (Dog, Cat, Wild), and an order of magnitude smaller than the difference
to another FFHQ model, trained independently. These results quantitatively demonstrate that the
change in the mapping function is very small for similar domains, larger for more distant domains,
but even for distant domains the mapping functions are more closely related than those of two
separately trained models.
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