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Abstract
The goal of example-based texture synthesis methods is to generate arbitrarily large textures from limited exem-
plars in order to fit the exact dimensions and resolution required for a specific modeling task. The challenge is to
faithfully capture all of the visual characteristics of the exemplar texture, without introducing obvious repetitions
or unnatural looking visual elements. While existing non-parametric synthesis methods have made remarkable
progress towards this goal, most such methods have been demonstrated only on relatively low-resolution exem-
plars. Real-world high resolution textures often contain texture details at multiple scales, which these methods
have difficulty reproducing faithfully. In this work, we present a new general-purpose and fully automatic self-
tuning non-parametric texture synthesis method that extends Texture Optimization by introducing several key im-
provements that result in superior synthesis ability. Our method is able to self-tune its various parameters and
weights and focuses on addressing three challenging aspects of texture synthesis: (i) irregular large scale struc-
tures are faithfully reproduced through the use of automatically generated and weighted guidance channels; (ii)
repetition and smoothing of texture patches is avoided by new spatial uniformity constraints; (iii) a smart initial-
ization strategy is used in order to improve the synthesis of regular and near-regular textures, without affecting
textures that do not exhibit regularities. We demonstrate the versatility and robustness of our completely automatic
approach on a variety of challenging high-resolution texture exemplars.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1 Introduction

Texture mapping is a fundamental technique in computer
graphics for augmenting coarse geometric models with fine
surface details, thus enabling the generation of photorealistic
imagery far more efficiently than can be done with geometry
alone. It can be difficult, however, to acquire a seamless tex-
ture that fits the exact dimensions and resolution required for
a specific modeling task. Thus, example-based texture syn-
thesis methods, which allow generating arbitrarily large tex-
tures from limited exemplars have been an area of intensive
research in the past two decades.

The fundamental goal of example-based texture synthesis
is to generate a texture that faithfully captures all the visual
characteristics of the exemplar, yet is neither identical to it,
nor exhibits obvious repetitions or other unnatural looking
artifacts.

Previous methods have made remarkable progress to-
wards this goal. The most successful methods to date are
based on non-parametric Markov Random Field formu-

lations [WLKT09], most importantly stitching-based ap-
proaches [KSE∗03] and texture optimization [KEBK05,
WSI07, DSB∗12].

Most previous methods have been demonstrated only on
low resolution exemplars (e.g., up to 1282 pixels). However,
hi-fidelity computer graphics imagery typically requires sig-
nificantly finer resolutions, as evidenced by the textures in
many commercial repositories (e.g., CGTextures† or Tex-
tureKing‡). These high resolution exemplars are challeng-
ing for existing algorithms because they often contain multi-
scale texture details, e.g., a rock texture might exhibit macro
scale structures such as large cracks on top of micro scale
surface details (Figure 1, left). Because state-of-the-art ap-
proaches generate a single scale at a time while using small
causal windows, they often have difficulties in preserving
large scale and near-regular features, and also suffer from

† http://www.cgtextures.com/
‡ http://www.textureking.com/
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Figure 1: Existing texture synthesis algorithms have problems dealing with certain large-scale and near-regular structures, and
sometimes suffer from repetition and smoothing artifacts. We present a new general and fully automatic algorithm that alleviates
all these problems.

repetitions and smoothing. For example, texture optimiza-
tion methods often converge to solutions where a smooth
patch is repeated over and over (e.g., rightmost example in
Figure 1).

In this paper we present a new general-purpose and fully
automatic self-tuning texture synthesis method that extends
Texture Optimization [KSE∗03, DSB∗12], by introducing
several key improvements that, for the most part, overcome
these problems. Our improvements result from a careful
analysis of the shortcomings of previous methods, in particu-
lar with respect to the required manual adjustment of param-
eters on a case-by-case basis, or the need for other user input.
In contrast, we pay particular attention to making the synthe-
sis process fully automatic and suitable for a wide variety of
high-resolution texture exemplars. This requires our method
to be able to self-tune its various parameters and weights.
Specifically, our method addresses the following three chal-
lenging aspects of texture synthesis:

Large-scale structures: One way to alleviate this prob-
lem is through the use of guidance channels (also known
as feature channels) that encode non-local information ex-
plicitly derived from large-scale structures [ZZV∗03,WY04,
LH06].

However, in most methods the guidance channels are
user-provided. For example, Zhang et al. [ZZV∗03] re-
quire the user to provide a texton map, while Lefebvre
and Hoppe [LH06] rely on user-drawn binary feature maps,
which can be tedious and stands in the way of fully auto-
matic texture synthesis. Although a few methods use color
segmentation or edge detection to automatically generate a
feature map, we are not aware of any generally applicable
recipe for generating a guidance channel for a given exem-
plar. In addition, the common way of using such channels
only helps to preserve the connectedness of features, but
does not improve their spatial distribution; the results might
still contain repetitions and overly smooth regions.

In our method, guidance channels are computed fully
automatically through a combination of contour detection,
thresholding, and distance transform (Section 3.1). We au-
tomatically determine a balanced weighting of the guidance
channel, by analyzing the texture’s color distribution. We en-
force the exemplar’s guidance channel histogram onto the
synthesized texture to preserve the spatial distribution of fea-
tures. We show that this automatic strategy is highly success-
ful for all kinds of irregular large-scale structures, ranging
from cellular (e.g., bricks) to line networks (e.g., cracks).

Repetitions and smoothing: Most existing methods en-
sure local similarity between the synthesized texture and
the exemplar, but neither prevent repetitions, nor guaran-
tee global appearance similarity. A notable exception is
the Bidirectional Similarity algorithm [SCSI08, WHZ∗08],
which effectively ensures that every part of the exemplar is
present in the synthesized result. However, even with this ap-
proach, excessive repetitions and smoothing can still occur.
We also show that the particular way in which bidirectional
similarity is implemented can sometimes stand in the way of
successfully synthesizing structured textures.

We present a new spatial uniformity constraint that en-
courages uniformly sampling all locations of the exemplar
(Section 3.2). It keeps track of and constrains the number
of occurrences of each exemplar pixel, thereby directly pre-
venting excessive repetitions and smoothing artifacts from
densely tiling low energy patches. It is also less computa-
tionally intensive than bidirectional similarity.

Near-regular structures: The synthesis process is typi-
cally initialized randomly. This can impede successful syn-
thesis of near-regular structures, because achieving a near-
regular configuration requires global coordination, while
most algorithms make only local updates to the texture. Pre-
vious works [DLTD08,RHDG10,MWT11] have shown that
a more sophisticated initialization strategy can lead to im-
proved synthesis results. We follow this route and propose
a new initialization strategy that bootstraps the synthesis us-
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ing random blocks from the exemplar, whose extents and
offsets are determined from a self-similarity analysis of the
exemplar [HS12, KLF12]. This smart initialization strategy
(described in Section 3.3) improves the synthesis of regular
and near-regular textures, without affecting textures that do
not exhibit regularity.

Together these improvements result in a method that sig-
nificantly outperforms previous state-of-the-art algorithms
on a wide variety of high-resolution exemplars, including
regular, near-regular, stochastic, and structured (small and
large scale features, cellular and curvilinear features). Note
that all parameters involved have either fixed settings or are
self-tuning based on automatic texture analysis, so we were
able to process a large number of textures from all these cat-
egories without any user interaction. The full test set is pro-
vided on our project page.

To make our algorithm fully reproducible we provide our
full implementation and data at this url:
http://w-x.ch/pub/self-tuning-texopt.

2 Previous Work

2.1 Texture Synthesis

A complete review of example-based texture synthesis meth-
ods is outside the scope of this paper, and we refer the reader
to the excellent survey by Wei et al. [WLKT09]. Specifically,
our method falls into the class of non-parametric texture syn-
thesis methods, which include pixel-based methods [EL99,
WL00], stitching-based methods [EF01, KSE∗03, LL12],
optimization-based methods [KEBK05, HZW∗06, WSI07],
and appearance-space texture synthesis [LH06]. Pixel- and
stitching-based methods are able to reproduce a wide vari-
ety of textures by growing the texture one pixel or a texture
patch at a time. Optimization-based methods evolve the tex-
ture as a whole, by minimizing a suitably defined objective
function. This typically improves the quality of the results
and also makes the synthesis more controllable.

In recent work, Darabi et al. [DSB∗12] present image
melding: a synthesis method that unifies and generalizes
patch-based synthesis and texture optimization, leverag-
ing PatchMatch, a fast randomized patch search algorithm
[BSFG09]. They have been able to demonstrate state-of-the-
art results in a variety of image editing and synthesis applica-
tions, including example-based texture synthesis and texture
interpolation. Our texture synthesis method builds on image
melding, but as mentioned earlier, we introduce a number of
important enhancements that enable us to significantly out-
perform the state-of-the-art on a wide variety of exemplars.

2.2 Guidance Channels

Non-parametric MRF-based methods, such as the ones listed
above, often encounter difficulties when attempting to syn-
thesize textures that feature large scale structures, such as

the network of cracks shown in Figure 1. It is often possi-
ble to cope with such textures by guiding the synthesis pro-
cess using extra channels, typically referred to as label maps
or feature channels, which encode the large scale variations
and the non-local features present in the exemplar (see, e.g.,
[HJO∗01, ZZV∗03, WY04, LH06, RCOL09, WWY14]).

Hertzmann et al. [HJO∗01] describe texture-by-numbers
synthesis: the input exemplar is augmented with a discrete
label map, where regions with distinct texture are assigned
different labels. A target label map is then also provided
for the output and used to drive the synthesis. Zhang et al.
[ZZV∗03] synthesize progressively-variant textures by aug-
menting the exemplar with user-provided texton mask, ori-
entation field, and a transition function. Wu and Yu [WY04]
match and align curvilinear features across patch bound-
aries. They only consider easy-to-detect features, such as
strong edges and ridges that remain after bilateral filtering,
and alignment is achieved by deforming the texture.

Lefebvre and Hoppe [LH06] also use a guidance channel:
a distance transform of a user-provided binary feature mask.
They use PCA to transform the exemplar texture along with
any additional channels into a new exemplar whose points
reside in a low-dimensional appearance space and encode
non-local information. However, using PCA is not effective
for high resolution textures and/or large scale structures.

Rosenberger et al. [RCOL09] proposes an example-based
2D binary shape synthesis algorithm for synthesizing a con-
trol map (label map) for natural highly inhomogeneous tex-
tures. They assume that the exemplar control map may be
obtained via color-based segmentation of the exemplar tex-
ture.

In summary, to our knowledge, all of the methods that use
guidance channels rely on these channels being provided as
input along with the exemplar, or available through a simple
edge-detection or segmentation process. We are not aware of
any method that produces such channels automatically for
general exemplars, as we do in this work.

3 Algorithm

We start with a brief description of the Texture Optimiza-
tion algorithm [KSE∗03] that our contributions are based on.
This algorithm optimizes an objective that measures how
similar the synthesized texture T is to the exemplar S over
a set of overlapping local patches. This objective takes the
form

min
{ti,si}

∑
i∈T

d
(
ti,si

)
, (1)

where ti refers to the square N×N patch in T with top-left
pixel i, and si refers to an approximate nearest neighbor of ti
in the exemplar S. N = 10 in our implementation. Distances
between patches are measured as the sum of squared color
distances, i.e.,

d
(
ti,si

)
=
∥∥ti− si

∥∥2
2. (2)
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Edge response Binarized Resulting guidance

Figure 2: Computing the guidance channel from edge re-
sponse maps.

This objective is optimized using an iterative strategy
alternating between minimizing with respect to {ti} or
{si}, while keeping the other set fixed. Minimizing {ti}
amounts to simply averaging the overlapping si assign-
ments [WSI07]. Minimizing {si} requires finding the near-
est neighbor for each synthesized patch ti, which we do us-
ing the PatchMatch algorithm [BSFG09]. We operate in the
CIELAB color space and run the algorithm in a coarse-to-
fine manner on a multi-resolution pyramid. The number of
scales is computed by enforcing a dimension ratio of 1.3 be-
tween two consecutive scales and a coarsest dimension of at
least 35 pixels. Please refer to the cited papers for further
details.

Our implementation is based on the public source code of
Image Melding [DSB∗12] with several basic modifications
to make the algorithm more suitable for texture synthesis.
First, since texture exemplars are rectified and do not exhibit
perspective distortions, we disabled searching among rota-
tions and scale. Since they do not contain spatial lighting
variation we disabled gain and bias adjustments. We also
disable gradient channels and Poisson fusion, as these fea-
tures do not improve the results but introduce slight blurring
of details. Finally, we quantize the nearest neighbor field to
integer locations, which avoids loss of sharpness from re-
sampling the exemplar. Please note that these changes are
only recommended for texture synthesis and not for general
scene synthesis, e.g., image completion. All Image Melding
results shown in this paper are generated with this modified
version of the algorithm, while in the supplementary mate-
rial we also compare against the unmodified version of the
algorithm.

In the following sections we describe three major exten-
sions to this algorithm that form our main contributions:
Section 3.1 describes our automatic computation of guid-
ance channels; Section 3.2 introduces our spatial uniformity
constraint; and Section 3.3 discusses our smart initialization
strategy.

Fixed high guidance weights Adaptive guidance weights

Figure 3: Left: assigning a fixed weight to the guidance
channel can lead to poor results for textures that have differ-
ent color distributions on both sides of the edge. In the ex-
ample shown here tiles of different colors erroneously blend
together because the relative contribution of the color chan-
nels is too low compared to the guidance channel. Right: our
adaptive weighting alleviates this problem.

3.1 Automatic Guidance Channel

We improve our algorithm’s ability to deal with large-scale
structures by augmenting the color space with an addi-
tional guidance channel. It has been shown in previous work
[LH06] that an effective strategy is to store the distance to
the nearest “feature” (i.e., a visual contour) in the guidance
channel. In most previous work guidance channels are pro-
vided by the user, however, we are interested in an automatic
algorithm for computing the guidance channel using image
processing methods.

We start by extracting large-scale features using a modern
contour detector. Specifically, we use the Structured Edge
detector [DZ13], which is currently the best performing de-
tector on several established contour detection benchmarks.
This method has been trained with hand-labeled natural im-
ages to detect visually salient edges, including color and tex-
ture discontinuities.

Our next goal is to compute the distance transform of
the edge response map, however, a complication is that the
response map contains continuous values. Therefore, we
first binarize the map using Otsu’s automatic thresholding
method [Ots79]. Next, we compute the Euclidean distance
transform using MATLAB’s bwdist function. Since the
thresholded features have some finite thickness we compute
the distance transform both outside and inside the features,
and use negative values for the inner distances. Finally, we
normalize the resulting guidance channel so it takes the same
scalar value range as the L channel. The entire process is il-
lustrated in Figure 2.

As an alternative to thresholding we also considered the
generalized distance transform [CSRP10], which can be di-
rectly applied to the continuous edge response map. How-
ever, that method requires hand tuning a parameter that bal-
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ances between spatial and gray level distances. We could not
find a reasonable default for this parameter.

The last remaining issue is how to balance the relative
contribution of the guidance channel and the three color
channels, when doing pixel comparisons. Assigning too
strong a weight to the guidance channel can have a detri-
mental effect on the synthesis. This is in particular the case
for textures where a different color distribution is present on
each of the two sides of a feature. In this case a strongly
weighted guidance channel lessens the algorithm’s ability to
distinguish the two different materials. Figures 3 (left) illus-
trates this problem.

We perform a simple test to detect this situation. First,
we collect the pixel colors in the vicinity but not directly on
the features, i.e. in a distance range (0,τvic], where τvic is
set to 1% of the exemplar width. Next, we compute density
maps for the La, Lb, ab slices of the color space. Finally,
we check if at least one density map contains multiple peaks
or at least half of its area is non-zero. If none of these con-
ditions is true we consider it safe to use a strong guidance
weight (three times as high as the color channels), otherwise
we use a more conservative setting (same as the color chan-
nels). In Figure 3 we show an example of how adaptively
downweighting the feature channel can improve the synthe-
sis. The textures in Figure 7, on the other hand, all use a high
weight setting. About 70% of the textures we tried use a high
guidance channel weighting.

3.2 Global Appearance

Most previous methods optimize the local similarity be-
tween the result and exemplar, i.e. each local window in the
result is made to look similar to some local window in the ex-
emplar. This is not sufficient, however, to ensure a globally
similar appearance, as evidenced by the results in Figure 4
(left), which do not preserve the richness of the exemplar.

The bidirectional similarity constraint [SCSI08] has been
proposed to address this issue (Wei et al. [WHZ∗08] describe
a similar algorithm in a concurrent paper). The main idea
of bidirectional similarity is to also require that each exem-
plar window is represented in the result. Using this constraint
(Figure 4, middle) improves the synthesis, however, it is not
enough to completely alleviate the problems. There are still
excessive repetitions in the top row, and while in the sec-
ond row the constraint enforced some synthesized structures,
there are still many structural defects.

To improve on this situation, we propose a new strategy
for more faithfully capturing global appearance. First, we
present a new spatial uniformity constraint that encourages
sampling all areas of the exemplar in equal amounts and
directly prevents excessive repetitions by penalizing single
pixels from the exemplar from occurring too often in the re-
sult (Figure 4, right-top). Second, we enforce the histogram
constraint of Kopf et al. [KFCO∗07] on all channels (color
and guidance). Preserving the histogram of feature distances,

No completeness
constraints

Bidirectional
Similarity

Spatial uniformity
+ histogram
constraints

Figure 4: Completeness enforcement. Left: only enforcing
unidirectional similarity between result and exemplar is not
sufficient to achieve good results. Middle: using a bidirec-
tional similarity constraint improves, but there are still ex-
cessive repetitions and structural defects in the top and bot-
tom rows, respectively. Right: Encouraging spatially uni-
form exemplar sampling and preserving the color histograms
corrects both artifacts.

which are stored in the guidance channel, ensures a high
global structural similarity between the exemplar and the re-
sult and fixes, for the most part, the problems with the bricks
texture.

Spatial uniformity: Our goal is to prevent excessive rep-
etitions of single elements from the exemplar in the result.
To facilitate this task we keep track of an occurrence map

Ω(x,y) =
∣∣∣{si | (x,y) ∈N (si)

}∣∣∣, (3)

where N (si) denotes the set of pixels in the patch si. In other
words, the occurrence map stores how many times each ex-
emplar pixel is used in the patches that make up the result.
In a perfectly balanced result each exemplar pixel would be
used the same number of times,

ωbest =
|T |
|S|

N2, (4)

i.e., proportionally to the relative areas of the result T and
the exemplar S, and the number of pixels N2 in each patch.

To encourage a uniform occurance map we modify the
patch distance in Equation 2 to become

d
(
ti,si

)
=
∥∥ti− si

∥∥2
2 +λocc

Ω(si)

ωbest
, (5)

where Ω(si) refers to the average occurrence value of all pix-
els in a patch,

Ω(si) =
∑(x,y)∈si

Ω(x,y)

N2 . (6)
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Exemplars Offset kernel map Extracted lattice

Figure 5: Lattice extraction examples. In the top row, the
lattice corresponds to the hexagon bounds. The bottom row
is more suble as the exemplar contains a tileable pattern. It
exhibits a strong translational symmetry for the offset corre-
sponding to the tile size (visible in the corners of the density
map). Because the peaks offsets are above half the image
size, we use a block size that is half the maximum offset.

This new term penalizes pixels that are used often. λocc = 10
controls the relative contribution of uniformity enforcement.

In addition to changing the patch distance we also modify
the random search phase of the PatchMatch algorithm, to re-
ject every new patch candidate that has an occurence above
a threshold Ω(snew

i ) > 2ωbest, unless the patch that is cur-
rently in its position has an even worse score (i.e., we have
Ω(snew

i ) < Ω(scur
i ) so that the patch would improve spatial

uniformity).

Histogram enforcement: In addition to spatial unifor-
mity, we also use the histogram matching constraint pro-
posed by Kopf et al. [KFCO∗07]. This constraint modifies
weights in the “voting” stage of the PatchMatch algorithm.
Instead of using uniform weights it gives higher weights to
colors that bring the color channel histograms of the result
texture closer to the exemplar texture.

This is particularly effective in conjunction with our guid-
ance channels that include the distances to the nearest fea-
tures, since preserving the histogram of the guidance channel
has the effect of preserving the distribution and arrangement
of features on a global scale. This is crucial for textures that
have large-scale features, such as the bottom row in Figure 4
or the bottom row in Figure 7.

Stability: In practice, bidirectional similarity works well.
However it renders the synthesis unstable by forcing new
patches to appear in regions with non-matching colors, fur-
ther leading to broken features (bottom row of Figure 4).
While histogram enforcement suffers from a similar issue,
our spatial uniformity term is more stable. Therefore we use
the spatial uniformity at each scale, and only use the his-
togram enforcement for the first half of the scale pyramid
(i.e., we allow feature changes only in the early stages of the
synthesis).

Random initialization Our method

Figure 6: Semi-regular textures as well as textures including
translational symmetries both benefit from our smart initial-
ization method.

3.3 Initialization

Most previous algorithms initialize the target texture with
random scrambling of exemplar pixels. While this ensures
that the synthesis process starts with the exemplar’s color
distribution, it reflects none of the exemplar’s global struc-
tures. Due to the local nature of the synthesis process, this
actually reduces the chances that any regular or near-regular
patterns will be correctly reproduced, because such patterns
are of a highly global nature. Some more sophisticated tech-
niques have been proposed in previous work.

Liu et al. [LLH04] rely on user assisted lattice extraction
to assist in near-regular texture synthesis.

Dong et al. [DLTD08] propose a strategy for initializing
solid texture optimization by essentially tiling a small ex-
emplar neighborhood (see their paper for details). However,
this might lead to repetition artifacts with high resolution
textures.

Risser et al. [RHDG10] synthesize variations of a set of
exemplars that are structurally compatible and have the same
size. Their synthesis is initialized with at a coarse level with
a jittered combination from several exemplars. Since the jit-
ter is only slight they preserve global features, however, they
cannot synthesize entirely new structures or go beyond the
size of the exemplars.

Ma et al. [MWT11] describe a patch-based initialization
strategy that works well for discrete element texture synthe-
sis (i.e., the unit of synthesis are fully connected small parti-
cles). They cut the exemplar into patches of a user-provided

c© 2015 The Author(s)
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size and randomly copy these patches into the output do-
main. In the context of standard 2D image synthesis, how-
ever, features in the exemplars are not annotated and might
be of a global nature. Therefore, a simple random-patch ini-
tialization might lead to poor results with disconnected fea-
tures.

We build on the aforementioned works and propose a new
fully automatic initialization strategy that preserves a near-
regular configuration if it is present in the exemplar. We first
find the dominant translational symmetry in the exemplar,
represented by a pair of linearly independent 2D translation
vectors, also known as lattice generating vectors. Next, we
initialize the target texture using larger blocks whose offset
is a random integer multiple of the detected lattice genera-
tors. This yields a randomized initialization, which neverthe-
less preserves translational regularity in the exemplar. If the
exemplar does not exhibit such regularity, the strategy has
no adverse effect on the synthesis.

To find the best lattice generators we follow recent work
on image completion [HS12, HKAK14] and consider patch
offset statistics. We begin with detecting standard Difference
of Gaussian feature points and compute the SIFT descriptors
for each feature point [Low04]. Next, we compute the near-
est neighbor for each feature using a kd-tree and retain only
those matches whose L2 feature distances are below half the
mean distance. To account for noise and deal with slight vari-
ation in near-regular cases we treat the retained 2D offsets as
probability distributions and compute a kernel density map
φ(~x) by splatting a Gaussian kernel (σ = 3) for every offset
(Figure 5).

The two lattice generating vectors ~g1, ~g2 can now be ob-
tained by maximizing the Fβ -measure [VR79], a tool from
statistical analysis that we use to find the optimal lattice
considering both the precision P (do the lattice points coin-
side with density peaks?) and recall R (are we covering all
peaks?). We maximize

Fβ (~g1, ~g2) = (1+β
2)

P(~g1, ~g2) ·R(~g1, ~g2)

β 2P(~g1, ~g2)+R(~g1, ~g2)
, (7)

where β = 0.1 balances between precision and recall. Let

X (~g1, ~g2) = {k1~g1 + k2~g2 ∈ B | k1,k2 ∈ Z} (8)

denote the set of lattice points given two generators (within
the bounding box of all offsets B). We define the precision P
as the average density of the lattice points,

P(~g1, ~g2) = ∑
~x∈X(~g1,~g2)

φ(~x)
|X(~g1, ~g2)|

, (9)

and the recall R as the fraction of total density we are cover-
ing with the lattice,

R(~g1, ~g2) =
∑~x∈X(~g1,~g2) φ(~x)

∑~y∈B φ(~y)
. (10)

Figure 5 visualizes some lattices detected in this manner.

Having found the lattice we first cut the exemplar into
non-overlapping rectangular blocks whose size is equal to
the bounding box of one lattice cell. We use these blocks
to initialize our target texture by placing them successively
in scanline order, and allowing every block to shift slightly
to provide for better alignment (we maximize the cross cor-
relation in a small overlap area). Note that we perform all
these computations at full resolution but then downscale the
resulting initialization to the coarse scale that the synthesis
begins with.

Figure 6 shows the results of synthesizing a near-regular
texture (top) and a texture with translational symmetry (bot-
tom) without and with our novel strategy. Note that perform-
ing this initialization does not have a significant effect on
the synthesis of textures that do not exhibit any regularity. In
fact, for such textures, the recall term dominates Equation 7
with small ~g1 and ~g2, and the initialization becomes similar
to random patch scrambling. All textures we show, regular
or not, are produced with this strategy.

4 Results

We implemented our algorithm in MATLAB with C++ Mex
files for time critical sections. The source code for our im-
plementation is available online§. The performance of our
algorithm depends on the exemplar and on the size of the
synthesized texture. The following table summarizes perfor-
mance statistics gathered from the 33 exemplars in our sup-
plementary material for a target texture of size 10242. They
were computed on a 2.93GHz Intel Core i7 870. Our imple-
mentation runs single-threaded.

Median Average Min Max
Smart initialization 233s 312s 119s 898s
Guidance channel 6s 6s 2s 10s
Texture optimization 386s 438s 204s 1019s
Total 625s 756s 340s 1927s

All parameters of our algorithm are self-tuning or have
fixed default values that are provided in the paper. All tex-
tures shown anywhere in the paper or supplementary mate-
rial are computed with these same fixed parameters (except
where noted). The pseudo-random number generator used in
the algorithm can be initialized with different seed values to
generate several variations of a texture. In the supplementary
material we provide a page with results generated for three
different seed values to demonstrate the consistent quality of
our results. All other textures shown in the paper and supple-
mentary material are generated with the default seed value
(i.e., we didn’t cherry pick).

We applied our algorithm to a wide variety of textures
including regular, near-regular, and irregular ones; textures
that exhibit structures at various spatial scales, cellular tex-
tures, textures with linear features, and stochastic textures.

§ http://w-x.ch/pub/self-tuning-texopt
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Exemplar
(structured) Image Melding Graphcut Textures Resynthesizer Our result

Exemplar
(regular) Image Melding Graphcut Textures Resynthesizer Our result

Exemplar
(cellular) Image Melding Graphcut Textures Resynthesizer Our result

Exemplar
(semi-structured /

stochastic) Image Melding Graphcut Textures Resynthesizer Our result

Exemplar
(large features) Image Melding Graphcut Textures Resynthesizer Our result

Exemplar
(linear features) Image Melding Graphcut Textures Resynthesizer Our result

Figure 7: Representative synthesis results for various texture categories. For Image Melding we disabled searching in rotation
and scale space. Please zoom into the PDF to see details. In the supplementary material we compare against more methods on
a wider set of exemplars.
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Figure 8: Stress testing texture synthesis algorithms with “texture sequences”. Each iteration uses the synthesized output of the
previous iteration as its input exemplar. In the supplementary material we show sequences for 33 different textures.

All these textures are “real-world” high-resolution textures
downloaded from CGTextures†. Since there are no good
quantitative metrics for evaluating the results of texture syn-
thesis, we provide extensive comparative results in the sup-
plementary material. Figure 7 shows some representative ex-
amples.

We compare our method against several state-of-the-art
algorithms. In Figure 7 we show comparisons against Image
Melding (our modified version, see Section 3), and Graph-
cut Textures [KSE∗03] (using the version implemented in
the GIMP Texturizer plugin¶). In the supplementary mate-
rial we also show comparisons against the original Image
Melding implementation, Image Quilting [EF01], and GIMP
Resynthesizer‖.

We also performed a new kind of analysis we call “texture
sequences”, where we run a synthesis algorithm iteratively,
using the output of one iteration as the input exemplar for
the next one. This provides an interesting “stress test” for
the ability of a texture synthesis algorithm to preserve tex-
ture statistics and structures, generate variations, as well as
demonstrate how quickly errors accumulate. We show one
example of a texture sequence in Figure 8. In the supplemen-
tary material we provide sequence results for all 33 other ex-

¶ http://gimp-texturize.sourceforge.net
‖ http://www.logarithmic.net/pfh/resynthesizer

Exemplar & feature Our result

Figure 9: Limitation: contour detection can fail with tex-
tures containing large but unpronounced features

emplars we have tried. These texture sequences reveal that
our method succeeds in preserving the original exemplar’s
appearance for more iterations. For example, features stay
connected, and their overall spatial distribution is better pre-
served. Of course, eventually, deviations in appearance creep
into our results as well, but this happens after a significantly
larger number of iterations.

5 Limitations and Conclusions

We have presented a new automatic optimization-based tex-
ture synthesis method that makes key improvements to sev-
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Exemplar & feature Our result

(a) High resolution: 907×589 exemplar, 1024×1024 target

Exemplar & feature Our result

(b) Low resolution: 256×170 exemplar, 1024×1024 target. The result
is cropped to compare with the high resolution version.

Figure 10: Limitation: contour detection can fail with low resolution exemplars that exhibit dense structures.

eral problems that are common to many previous algo-
rithms. We increased the ability to successfully synthesize
textures with large-scale structures with automatically com-
puted guidance channel. We proposed a new strategy for en-
forcing the global appearance of the exemplar onto the syn-
thesized texture through a new formulation that directly pe-
nalizes excessive repetitions and by enforcing the global dis-
tribution of large-scale features using histogram matching.
Finally, we improved the ability to handle regular and near-
regular textures using a new smart initialization strategy that
is randomized, but preserves the regularity of the exemplar,
if it is present. Each of these techniques is carefully designed
to be suitable for general-purpose texture synthesis. All pa-
rameters are self-tuning or have fixed default values, so we
were able to process a wide variety of different textures with
the same parameters.

Even though these new contributions together signifi-
cantly improve the state-of-the art in textures synthesis there
is still considerable room for improvement. Many of our re-
sults still contain small artifacts such as broken structures
etc. that may be examined by carefully inspecting our re-
sults. In particular, our algorithm does not always perform
fully satisfactory with multi-class cellular textures (e.g. the
white and gray tiles in Figure 3). Then, while the chosen con-
tour detector [DZ13] performs very well with our original
exemplars, it fails with textures that contain large but unpro-
nounced features as in Figure 9. We also found that it does
badly with low-resolution textures (especially downsampled
versions of our exemplars as shown in Figure 10). This might
be alleviated with a better edge model using training data at
various resolutions instead of the default trained model. As
for our smart initialization, it is currently limited to a single
layer of translational symmetry, although it could principally
be extended to detect and handle a wider range of configu-
rations. Finally, our algorithm is potentially more difficult
to parallelize than other synthesis algorithms, as the book-
keeping for the spatial uniformity constraint can lead to race
conditions.

We believe the before mentioned limitations provide in-
teresting avenues for future work, and our texture sequences
could be a basis for investigating synthesis quality which is
of importance given the lack of meaningful metrics in tex-
ture synthesis.
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