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Figure 1: Pigment-based watercolor painting recoloring. Left: the original painting with an automatically extracted three-
color pigment-based palette (below). Center, Right: two recolored paintings using themodi�ed palettes shown below. Original
watercolor painting © Olya Kamieshkova.

ABSTRACT
The color palette used by an artist when creating a painting is an
important tool for expressing emotion, directing attention, and
more. However, choosing a palette is an intricate task that requires
considerable skill and experience. In this work, we introduce a new
tool designed to allow artists to experiment with alternative color
palettes for existing watercolor paintings. This could be useful for
generating alternative renditions for an existing painting, or for
aiding in the selection of a palette for a new painting, related to an
existing one. Our tool �rst estimates the original pigment-based
color palette used to create the painting, and then decomposes the
painting into a collection of pigment channels, each corresponding
to a single palette color. In both of these tasks, we employ a version
of the Kubelka-Munk model, which predicts the re�ectance of a
given mixture of pigments. Each channel in the decomposition is a
piecewise-smooth map that speci�es the concentration of one of
the colors in the palette across the image. Another estimated map
speci�es the total thickness of the pigments across the image. The
mixture of these pigment channels, also according to the Kubelka-
Munk model, reconstructs the original painting. The artist is then
able to manipulate the individual palette colors, obtaining results
by remixing the pigment channels at interactive rates.
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1 INTRODUCTION
“Getting to know as much as possible about pigments
and their personalities is important to any artist, and
even more so to a watercolorist.”

— Jeanne Dobie, Making Color Sing
Color is one of the most important elements available to artists

in order to express emotion and to convey mood. Selecting a color
palette is one of the very �rst steps in the process of creating a
painting, and has a huge impact over the result. Di�erent color
palettes could result in a di�erent atmosphere, tell a di�erent story,
change the focus of the painting, and more. Unfortunately, selecting
the proper palette requires considerable skill and experience, and
once the selection has been done and the painting has been created,
the result is impossible to change.

In particular, in watercolor paintings, color arises from light
re�ected from the paper and through the layers of pigments. Clear
and pure color pigments lead to transparent, light and vivid colors,
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while more opaque pigments and non-pure paint additives lead
to muddy results. MacKenzie [1999] provides a good overview of
the nature and characters of the di�erent pigments, and lays out a
number of rules for artists to follow when selecting a palette:

Vivid (Saturated) Colors have a powerful impact, catch the
attention and should be used for center of interest. Thus,
there should be a good balance between dulled and vivid
colors.

Temperature of color is a psychological interpretation of the
warmth or coolness of color as perceived by a human ob-
server. Warm hues, such as red and orange attract attention
and may be associated with a feeling of action, as opposed
to cool colors, such as green or blue.

Contrast of colors is relative to their environment. A color
may be emphasized by placing it next to a color with opposite
characteristics, such as hue, temperature, and/or purity.

Limited Palette is usually key to achieving a uni�ed result. It
is considered good practice to let colors appear at their purest
form, while letting them mix during the painting process to
create interesting transitions.

Color Harmony is an e�ect created by combining two or
more colors in a palette. A variety of interesting harmonies
may be achieved by using neighboring or contrasting colors.

As we can see from the above list, selecting the color palette is
indeed a crucial, yet intricate task. In this work, we introduce a new
tool designed to allow artists (and particularly watercolorists) to
explore alternative color palettes for paintings that have already
been created. This could be useful for creating a variety of di�erent
digital renditions for an existing painting (as shown in Figure 1), as
well as for selecting a color palette for a new painting related to an
existing one, as demonstrated in Figure 2.

A number of painterly rendering methods have been proposed
over the past two decades [Gooch and Gooch 2001], some of which
speci�cally target watercolor, e.g., [Curtis et al. 1997]. Most of these
methods, however, are designed to digitally create painterly images
from scratch, to render painterly images from 3D models, or to
create such images by processing existing photographs and videos.
Much less research has been done on re-editing and re-coloring
existing paintings.

There are also many techniques for manipulating color in gen-
eral images, including color transfer ([Reinhard et al. 2001] and
many follow ups) and interactive colorization [Levin et al. 2004].
Techniques have also been proposed speci�cally for manipulating
color schemes and palettes, e.g., [Chang et al. 2015; Shapira et al.
2009; Tan et al. 2016; Wang et al. 2010]. Although these tools may
provide good solutions for editing general images, as we show in
this work, they are less well suited for the task of color manipulation
in paintings, and particularly watercolor paintings.

When modifying the color palette of a watercolor painting, care
must be taken to ensure that the result still looks like a painting
consisting of spatially coherent brush strokes and color washes
created using colors from the palette. In this work, we achieve this
by �rst estimating the pigment-based color palette that was used
to create the painting, and then decomposing the painting into
a collection of pigment channels, each corresponding to a single
palette color. In both of these tasks, we employ a simpli�ed, but

(a) Original (b) Recolored (c) Reference

Figure 2: The palette of the oil painting in (a) is modi�ed,
using our tool, to create the recolored result in (b). The new
palette is designed using the advanced editing UI of our tool,
so as to match the reference painting in (c). Original oil
paintings © Michael Chesley Johnson; images used by per-
mission of The Artist’s Magazine, F+W Media.

(a) Original (b) Pigment channel 1 (c) Pigment channel 2

(d) Thickness map (e) Channel 1 weights (f) Channel 2 weights

(g) Rendition A (h) Rendition B (i) Rendition C

Figure 3: Decomposition and recomposition of a simple wa-
tercolor painting created with a bi-color palette. Top row:
original painting and the two extracted pigment channels,
rendered separately. Second row: the corresponding thick-
ness map andmixture weights. Bottom row: alternate rendi-
tions with modi�ed palettes. White colors typically decom-
pose arbitrarily, uniformly and with thickness 0. Original
watercolor painting © Liz Steel.

su�ciently powerful, version of the Kubelka-Munk model, which
predicts the re�ectance of a given mixture of pigments. Speci�-
cally, each of the palette colors is assumed to have been created by
mixing together a set of base pigments, whose spectral parameters
are known to us. Each pigment channel in the decomposition is a
piecewise-smooth map that speci�es the concentration of one of
the colors in the palette across the image (see Figure 3). A thickness
map is estimated as well, which speci�es the total thickness of the
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pigments across the image. The mixture of these pigment channels,
also according to the Kubelka-Munk model, reconstructs the orig-
inal painting. The artist is then able to manipulate the individual
palette colors, and see the result created by remixing the pigment
channels at interactive rates.

We compare our tool to a number of alternatives, and show its
e�ectiveness for editing the color palette of a watercolor painting.
Although we have not yet carried out a user study, we believe that
the resulting tool is useful even for novice users with little or no
experience in painting or knoweldge of pigments.

2 RELATEDWORK
2.1 Digital Simulation of Artistic Media
Much of the research in the area of non-photorealitic rendering has
focused on digitally simulating traditional artistic media, targeting
oil and watercolor paintings, as well as pen-and-ink and pencil
drawings [Gooch and Gooch 2001]. Models have been proposed
for paints, brushes, and substrates, as well as algorithms for the
artwork creation processes (drawing and painting).

Curtis et al. [1997] describe an elaborate system for computer
generated watercolor. They discuss a variety of watercolor e�ects
and introduce a physically-based model for simulating them. The
distribution of pigments across the paper is simulated using the
physics of shallowwater �uid �ows, while the resulting re�ectances
across the painting are predicted using the Kubelka-Munk (KM)
model [Kubelka 1948]. Their work focuses on creating watercolor-
like artwork from scratch, as well as “watercolorizing” existing
images. In contrast, the goal of our work is to decompose a wa-
tercolor painting in a manner that would enable experimenting
with its color palette. We also rely on the Kubelka-Munk model
for modeling the re�ectance of watercolor pigment mixtures, and
describe the relevant equations in Section 3.

Baxter et al. [2004] describe a viscous paint model targeting
interactive applications and painting in particular. Their work com-
plements [Curtis et al. 1997] by providing a complete pipeline for
viscous paints, such as acrylic and oil paints, as opposed to wa-
tercolor. Again, the focus here is on the interactive creation of
paintings, and on applying the Kubelka-Munk model in real-time
rendering. Painting decomposition is not addressed.

The Kubelka-Munk model has also been used in computer graph-
ics for modeling pigmented materials [Haase and Meyer 1992] and
metallic patinas [Dorsey and Hanrahan 1996].

2.2 Painting Decomposition
One of the use cases described in [Curtis et al. 1997] is an automatic
image “watercolorization”. Given an ordered set of pigments, they
compute the corresponding layer thicknesses that would repro-
duce the image according to the Kubelka-Munk layer compositing
model. The resulting thicknesses are then used to determine the
brushstrokes in each layer. Since our work does not involve gener-
ating and simulating brushstrokes, we use the simpler, single layer,
version of the Kubelka-Munk model, rather than their layer com-
positing model. However, we enforce piecwise smoothness when
performing our decomposition, and thus the resulting channels
appear similar to ones that might have been painted by an artist.

Tan et al. [2015] describe a full pipeline for decomposing a time-
lapse video of a painting process into a set of translucent strokes or
images applied at each step by utilizing time and space assumptions.
They also use the Kubelka-Munk model in order to recover the
layers corresponding to successive steps of the painting process.
Our approach does not assume that the creation history is available,
and attempts to compute a decomposition into pigments given only
the �nal painting.

Another recent work by Tan et al. [2016] presents a model for
decomposing digital paintings into layers via RGB-space geome-
try. Their method �rst recovers the palette of colors used in the
painting based on convex-hull analysis and assuming alpha blend-
ing of colors. Next, based on a user’s ordering of RGB colors, the
painting is decomposed into layers using optimization with spatial
constraints. This work targets digital paintings, which are indeed
created using blending, in contrast to paintings created using real
pigments. Furthermore, the spatial term they use penalizes edges
in the resulting layers, in contrast to the edge-aware spatial term
used in our approach. This allows the decomposition produced
by our approach to better capture brush strokes. We compare our
approach with alpha-based decomposition in Section 5.1.

2.3 Color Transfer and Recoloring
Over the years, there has been much work on the transfer of color
from one image to another. The pioneering work of Reinhard et
al. [2001] transfers colors by globally matching color statistics,
an approach that was later improved by several follow-up works,
e.g., [Pitié et al. 2007]. However, global transfer of color statistics
may produce unexpected results and artifacts. HaCohen et al. [2011]
utilize dense correspondences between images to derive a paramet-
ric color transformation, based on content shared by the two images.
Yoo et al. [2013] �nd local region correspondences between two
images by exploiting their dominant colors in order to apply a sta-
tistical transfer. All of the these methods require a reference image
as input, in addition to the image being manipulated.

Various interactive techniques for recoloring were explored as
well. A number of methods allow users to recolor images via a
scribble-based interface, e.g., [An and Pellacini 2008; Chen et al.
2012; Levin et al. 2004; Qu et al. 2006; Xu et al. 2009]. These methods
focus on how to properly propagate the edits indicated by a set of
local scribbles to the entire image.

More closely related to this work is the palette-based recoloring
approach of Chang et al. [2015], which extracts a color palette from
an image using a variant of the k-means clustering algorithm. Given
a target color palette, the new luminance L and chroma ab of each
pixel are computed independently. The new chroma is obtained via
a linear blend of transfer functions, using radial basis functions in
the ab color plane. Although suitable for general images, we found
their method to be less well suited for watercolor paintings. Since
their approach uses linear blending of palette colors, rather than
the Kubelka-Munk model, their palette colors do not mix in the
same manner as real pigments. Consequently, regions in the image
often reach saturation when the palette is manipulated, which is
undesirable for painting recoloring. Also, their approach does not
compute a decomposition into piecewise smooth channels, as we do,
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which may result in noisy results when the palette is manipulated.
We demonstrate these di�erences in a comparison in Section 5.2.

3 THE KUBELKA-MUNK PIGMENT MODEL
The Kubelka-Munk theory of re�ectance is a commonly used model
that predicts the re�ectance of a homogeneous, isotropic pigment
layer on top of a substrate, whose re�ectance is known. It was �rst
introduced by Kubelka and Munk in their work [1931] in order
to predict the color of a painted substrate or predict a thickness
of paint needed to obscure the substance. Later, Kubelka [1948]
provided a simpli�ed analysis of the interaction of incoming light
with a layer of material such as a layer of paint under the following
conditions: the material is assumed to be uniform, isotropic, non-
�uorescent, non-glossy and the sample has to be illuminated by
di�use, monochromatic light.

The widely used and accepted method for estimating the re-
�ectance R of a pigment layer, introduced by Kubelka and Munk
[1948; 1931], is known as the Kubelka-Munk equation:

R = RKM (K , S, � ,h) =
1 � � (a � b coth(bSh))
a � � + b coth(bSh) , (1)

where a = 1 +
K

S

and b =
p
a

2 � 1.

Here K and S are the pigment’s absorbtion and scattering coef-
�cients, respectively, � is the substrate re�ectance, and h is the
thickness of the pigment layer. All quantities are per-wavelength,
therefore a pigment is modeled as pairs of absorbtion and scatter-
ing coe�cients over a set of wavelengths. Thus, to determine the
re�ectance of a pigment layer over a substrate with some known
re�ectance in the RGB color space, this model requires a total of 7
parameters (6 absorption and scattering coe�cients, as well as the
layer thickness h).

In this work, we use the Kubelka-Munk equation for predict-
ing the re�ectance of a mixture of pigments, rather than a single
pigment. In this case, the absorbtion and scattering coe�cients
of the mixed pigment layer can be obtained simply as the linear
combination of the corresponding coe�cients of the di�erent pig-
ments in the mixture [Duncan 1940; Glassner 1994]. We also use
this property later, when optimizing pigments and palette colors
mixture weights, in order to reproduce the RGB values observed in
the image.

In this work, our goal is to allow users to easily specify pigment-
based color palettes. Requiring users to directly specify the absorb-
tion and scattering coe�cients of each pigment is less intuitive than
asking them to perform a visual selection, e.g., using an RGB color
picker. Curtis et al. [1997] request the user to specify the K and S
coe�cients interactively, by picking two RGB colors: Rw , specify-
ing the appearance of a layer of the pigment over a white substrate,
and Rb , over a black substrate. The pigment layer is assumed to be
of unit thickness. Curtis et al. show that given Rw and Rb , the K
and S coe�cients can be obtained by inverting the Kubelka-Munk
equations, using the following equations:

S =
1
b

coth�1
 
b

2 � (a � Rw ) (a � 1)
b (1 � Rw )

!
(2)

K = S (a � 1) , (3)

h = 0.2

h = 0.5

h = 1.0

h = 4.0

Figure 4: Base pigments taken from [Curtis et al. 1997] are
rendered with di�erent thicknesses h = 0.2, 0.5, 1, 4. These
pigments are used to mix palette colors, which, in turn, are
used to mix and generate the painting’s colors.

where

a =
1
2

 
Rw +

Rb � Rw + 1
Rb

!
, b =

p
a

2 � 1 (4)

In the results shown in this paper, we use their set of 12 base
pigments, and the above method may be used to add additional
base pigments to this set. However, our user interface also allows
the user to indicate a pigment via a single RGB color selection, in
which case we approximate the selected RGB color by �tting to it a
mixture of base pigments, as described later in Section 4.1.

4 METHOD
The goal of the proposed approach is to decompose a watercolor
painting into several channels, each corresponding to a pigment
from a palette, in a manner that would enable an artist user to
experiment with di�erent palettes, as demonstrated in Figure 1.

The �rst challenge is, thus, to estimate the color palette used
in the original painting. This is done using an automatic method
described in Section 4.2. The next challenge is to use the estimated
palette colors in order to perform a decomposition of the painting
into a set of spatially smooth pigment channels, and a thicknessmap,
as described in Section 4.3. Figure 3 shows such a decomposition
for a simple watercolor painting created using a bi-color palette.

Although we do not explicitly recover the original brush strokes
used by the artist to create the painting, our decomposition attempts
to capture these brush strokes by including an edge-aware spatial
smoothness term into the optimization process described in Section
4.3. Once a decomposition into pigment channels is available, it is
possible to modify the palette colors and recompose the channels
to obtain an alternative rendition of the painting, as shown in the
bottom row of Figure 3.

The palette pigment estimation, as well as the pigment channel
decomposition and recomposition processes all use the well known
and time tested Kubelka-Munk equations, as described in Section
4.1. This is key in order for the recomposed results to retain the
appearance of a watercolor painting, and to remain faithful to the
painting’s original style, despite the change in palette.

In section 4.4 we combine the palette extraction and channel
decomposition into a single optimization in order to improve de-
composition and palette extraction accuracy. Finally, in Section 4.5,
we describe our interactive UI for palette manipulation.
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4.1 Pigment Mixture Model
When preparing a color palette for a painting, artists may use one
of a set of pure base pigments in their possession, or a mixture of
several of such base pigments. In this work, we use the Kubelka-
Munk mixture model, described earlier in Section 3. We assume
that the artist uses a set of 12 base pigments, shown in Figure 4,
whose absorbtion and scattering parameters are taken from Curtis
et al. [1997]. This is an arbitrarily chosen set of base pigments, and
any other set of pigments with a su�ciently wide gamut may be
used instead.

Thus, our approach assumes two levels of pigment mixtures.
First, each color in the artist’s palette is produced by a mixture
of the 12 base pigments, and next each color in the painting is
produced by a mixture of the palette colors. Below we describe how
the mixture weights w are determined to obtain K , S,h given an
RGB color.

Given a palette color c in the RGB color space, we compute
the corresponding K and S values by looking for a set of weights
w , such that a weighted linear mixture of our base pigments will
reproduce the target color c by applying a layer with an arbitrary
thickness over a substrate with re�ectance � = 1. Speci�cally, we
assume that the K and S coe�cients are given by

Kw =
NX

i=1
wiKi , Sw =

NX

i=1
wiSi , (5)

where the Ki and Si coe�cients describe the base pigments (N =
12). Modeling a mixture of pigments by a linear combination of
their spectral coe�cients was experimentally validated by Dun-
can [1940].

Finding the mixture that matches a target color c is done by
solving the following optimization problem:

argmin
w,t

��RKM (Kw , Sw , � = 1,h = t ) � c��,

subject to
NX

i=1
wi = 1,

(6)

where t is the thickness of the mixture applied, and equation (5) is
used to obtain the Kw and Sw values. We use L-BFGS-B [Nocedal
1980] in order to solve the optimization (as well as all subsequent
optimizations in our method).

We denote the set of optimized spectral properties of the palette
colors with K

⇤, S⇤ to distinguish them from the base pigments. For
the second mixture level we denote by L =

�
L1, . . . ,Lk

 
the set

of pigment channels and by T the thickness map used to produce
the painting given the K⇤, S⇤ values of the k palette colors. Each
channel Li is a mixture weight map for palette color i , and (L)p =
{w1, . . . ,wk } is an operator indicating the mixture weights for all
palette colors at pixel p. Tp indicates the total pigment thickness t
applied at pixel p.

4.2 Extracting a Color Palette
Our method supports either an automatic or a manual process of
palette extraction. We assume that for each color in the palette, the
painting contains at least one region, where this color appears in its
pure form, i.e., not mixed with any of the other colors in the palette.
To identify these pure palette colors automatically, we perform

convex hull optimization in the a⇤b⇤ plane of the CIE L

⇤
a

⇤
b

⇤ color
space. To avoid noise, we �rst discard the brightest and the darkest
colors, and compute the convex hull of the remaining colors in the
image. We then greedily iterate in order to simplify the convex hull
polygon by pruning its vertices until we are left with k vertices,
where k is the desired palette size. Pruning is done similarly to
the Douglas-Peucker algorithm [1973], where at each iteration
we remove the vertex whose distance from the line connecting
its neighbors is the smallest. We use the original L value of the
projected vertex in order to transform back to RGB color space.

Alternatively, the user can indicate one or more of the pure
palette colors by clicking on the image, or by selecting a color using
a color picker.

After identifying the RGB colors of the palette, we represent
each palette color as a mixture of base pigments, as described in the
previous section. Later, in Section 4.4 we will show how the palette
extraction phase could be combined with the decomposition into
pigment channels in order to increase accuracy.

4.3 Painting Decomposition
Given the K⇤, S⇤ values for each of the k palette colors, we decom-
pose each pixel into a set of k mixture weights and a thickness
indicator scalar t . The result is a set of k + 1 scalars specifying mix-
ture and applied thickness per pixel. Separating between thickness
and mixture weights is helpful for maintaining local and global lu-
minance monotonicity, while manipulating the spectral coe�cients
of the palette’s pigments. This is similar to approaches such as
[Chang et al. 2015], which treat luminance and chroma separately.

In order to enforce spatial smoothness of each of the pigment
channels and exploit spatial cues, as in [An and Pellacini 2008;
Chen et al. 2012; Wang et al. 2010], our method incorporates an
edge-aware spatial term based on that of the WLS �lter [Farbman
et al. 2008]. Since our primary application is recoloring and color
transfer, we enforce the smoothness only for the mixture weight
maps and not for the thickness layer. The weight maps are thus
obtained by optimizing

argmin
L,T

⇣
Edata + �Espatial

⌘
(7)

The data term Edata ensures that the colors of the pixels Ip may
be reconstructed as a mixture of the pigments in the palette:

Edata =
X

p

✓
RKM (K⇤(L)p , S

⇤
(L)p
, � = 1,h = Tp ) � Ip

◆2
(8)

For each pixel this is the same optimization as equation (6), ex-
cept that here we use the K⇤, S⇤ coe�cients of the palette’s colors,
instead of those of the base pigments.

The spatial term enforces edge-aware smoothness of channels:

Espatial =
kX

i=1

*.
,
X

p

*
,ax (p)

 
@Li
@x

(p)

!2
+ a� (p)

 
@Li
@�

(p)

!2+
-
+/
-

ax (p) =

 �����
@`

@x
(p)

�����
�
+ �

!�1
, a� (p) =

 �����
@`

@�
(p)

�����
�
+ �

!�1
,

(9)

where Li is the i-th channel (mixture weights of the i-th palette
color), and ` is the log-luminance of the input painting. � and �
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are used in a similar manner to WLS to control sensitivity to local
edges and to balance between the data and smoothness terms.

Using the edge-aware spatial term above we are able to reduce
in-channel noise and to produce spatially coherent decompositions,
while capturing the signi�cant chroma gradients. Thus, although
we do not explicitly recover the individual brush strokes, the com-
bined e�ect of the strokes done using a particular palette color is
usually captured by the corresponding channel. The e�ect of the
spatial term is demonstrated in Figures 5 and 6. Without spatial
smoothing the decomposition is noisy, which may be visible af-
ter palette modi�cation. Non edge-aware smoothing suppresses
noise, but fails to separate the colors correctly, while edge-aware
smoothing achieves both of these objectives.

Figure 5: Decomposition to pigmentswith andwithout edge-
aware spatial smoothing. Each row shows the three pigment
channels on the left and the thickness map on the right, for
the painting in Figure 1. Top: no smoothing (� = 0); Middle:
using non edge-aware a�nities (� = 0, � = 0.5); Bottom: us-
ing edge-aware a�nities (� = 1.6, � = 0.5).

4.4 Joint Palette and Channel Optimization
If the palette extraction process described in Section 4.2 succeeds in
accurately estimating the palette’s colors, the process ends with the
channel decomposition described in the previous section. However,
this might not be the case, for example, when the individual palette
colors are never visible on their own in the painting. In this scenario,
the recomposition of the painting from the pigment channels may
fail to reproduce the original image.

In order to achieve low decomposition error when minimizing
equation (7), the derived spectral coe�cients for the selected color
palette must span the painting’s gamut well in K , S domain. In
cases where the painting’s gamut is not well spanned either due to
incorrect selection of the palette’s RGB colors, or their conversion
to the K , S parameters, we employ a joint optimization that adjusts
the mixture of palette colors from base pigments in order to achieve
a lower decomposition error. We feed the originally estimated spec-
tral values as an initial guess and allow the optimization process
to re�ne these values simultaneously with channel optimization.

(a) original (b) unsmoothed (c) non edge-aware (d) edge-aware

(e) no smoothing (f) non edge-aware (g) edge-aware

Figure 6: E�ect of di�erent smoothing methods on recolor-
ing. Top row shows the combined result of three channels,
while the bottom row shows only the blue pigment chan-
nel. Comparison includes: no smoothing, non edge-aware
smoothing, and edge-aware smoothing.Without smoothing,
the noise in the decomposition becomes visible after palette
modi�cation. Non edge-aware smoothing suppresses noise,
but fails to separate the colors correctly, while edge-aware
smoothing achieves both of these objectives.

Speci�cally, we modify equation (7) to:

argmin
L,T ,W

⇣
Edata + �Espatial

⌘

s .t .
NX

i=1
Wi, j = 1, K

⇤
j =

NX

i=1
Wi, jKi , S

⇤
j =

NX

i=1
Wi, jSi .

(10)

Figure 7 shows examples where the decomposition error is re-
duced and the visual accuracy is increased, when using the joint
optimization above. In order to prevent the process from diverging,
we start with the palette pigment mixtures �xed to their initial
guess during the �rst c iterations (c = 20 in our current implemen-
tation), and then let the optimization modify the palette with a step
size attenuated by 0.99i�c , where i is the iteration number.

In practice, we use the joint optimization only if the decompo-
sition of the painting with the palette computed as described in
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(a) Original (b) RMSE 0.069 (c) RMSE 0.018

(d) Original (e) RMSE 0.044 (f) RMSE 0.011

(g) Original (h) RMSE 0.052 (i) RMSE 0.020

Figure 7: Automatic palette extraction with and without
joint palette and channel optimization. In each row from left
to right: original image, reconstructed image before palette
re�nement, reconstructed image after palette re�nement.
The reconstruction error is indicated under each image. In
this and the following �gures our pigment-based palettes
are visualized using 2 thicknesses corresponding to x1 and
x5 times the thickness estimated as described in Section 4.1.
Oil painting in 1st row © Christian Jequel; Watercolor paint-
ings in 2nd and 3rd rows © Olya Kamieshkova.

Section 4.2 fails to achieve a su�cientlyy low error (RMSE < 0.3).
This is so, since the joint optimization process is signi�cantly slower,
by a factor of x5–x10 for an image of size 400 ⇥ 400, and since it
does not guarantee that the selected paint in fact appears in the
painting in its pure form. We also found that the joint optimization
sometimes results in hue shifts (a change in hue as thickness in-
creases) when using only a small number of palette colors. This is
discussed further in Section 5.4.

4.5 Recomposition
Recompositing a recolored painting given a new palette of pigments
is straightforward. The result of the decomposition process, either if

done jointly or separately, are the base-pigments-to-palette mixture
weightsW , the per pixel palette-to-painting mixture weights L,
and the per pixel applied thicknesses T . For each pixel p, we use
equation (5) to calculate its K , S values and then its re�ectance,
using equation (1), by applying a layer with thickness Tp over a
substrate assumed to have re�ectance � = 1.

To provide an interactive experience we propose a user interface
shown in Figure 8 that allows basic and advanced palette editing.
Similar to other palette-based approaches, such as [Chang et al.
2015], our approach aspires for the same principles of simplicity,
expressiveness, intuitivity and responsiveness.

The UI works as follows: the user speci�es the number of colors
in the palette and a palette is automatically extracted from the input
painting. The user may then modify each of the palette’s colors
using several di�erent ways, such as:
• For the source (decomposition) palette, by clicking on the
original painting to indicate palette colors.
• For the target (recomposition) palette, by clicking on a refer-
ence painting to indicate palette colors. This mode is useful
for color transfer between paintings (see Figure 2).
• A standard color picker dialog through which the user may
indicate the re�ectance of an arbitrary thickness layer over
white background.
• By directly editing the spectral coe�cients of each palette
color (advanced mode).

Any change of pigment properties invokes a rendering operation
for palette visualization. For advanced editing the UI provides 7
sliders for the currently selected palette color (see Figure 8). The
�rst 6 are used to edit the K , S values, 2 per RGB channel. The
7th slider provides the ability to adjust the relative weight of the
corresponding pigment channel. The target palette in Figure 2 was
designed using this advanced editing UI.

5 RESULTS
We have implemented our method using Python and SciPy opti-
mization toolbox with UI implemented using PyQt. Decomposition
takes between 10 seconds and 1 minute, depending on the size of
the palette, for an image of size 400⇥ 400 (on a single core 4.00GHz
i7-4790K CPU), while recomposition takes approximately 1 sec-
ond using an unoptimized CPU implementation, which already
enables interactive palette exploration. A GPU implementation, as
in [Baxter et al. 2004], would enable real-time response.

Figure 9 shows several color palette manipulation results ob-
tained using our method.

We have also compared our method against several existing al-
ternatives, for which we were able to obtain or reproduce their
implementation. Speci�cally, we experimented with the alpha-
compositing based decomposition of Tan et al. [2016], and with
the palette-based recoloring of Chang et al. [2015]. We also experi-
mented with the scribble-based interactive recoloring approach of
Levin et al. [2004], and with the image appearance exploration tool
of Shapira et al. [2009]. Although the latter tool is able to suggest
a variety of alternative appearances for a given input image, we
found that the resulting alternative appearances did not look like
paintings produced using di�erent palettes, and failed to obtain the
results that we wanted in a controllable fashion.
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Figure 8: Advanced editing UI. Left: original image with the
decomposition palette. Right: recolored imagewith themod-
i�ed palette. The row of color patches below each image
shows the palette colors selected using an RGB color picker,
or using our automatic palette extraction. When a color is
selected, the 7 sliders below enable editing the 6 absorp-
tion and scattering coe�cients and the relative weight of
the channel. The two bottom rows of color patches visual-
ize the pigment layer at two di�erent thicknesses, after ma-
nipulating the coe�cients. Visualization of two thicknesses
allows better control and understanding. Watercolor paint-
ing © Olya Kamieshkova.

5.1 Comparison with �-based decomposition
As described in Section 2.2, Tan et al. [2016] perform convex hull
simpli�cation in 3D RGB color space to select a decomposition
palette and decompose the image into layers that are composited
using alpha blending. We found that the resulting decompositions
typically do not resemble a decomposition into pigment layers, as
demonstrated below.

Figure 10 shows two simple examples where two overlapping
watercolor strokes are decomposed using our method and that
of Tan et al. [2016] (using their implementation). These examples
clearly demonstrate that our pigment-based decomposition is more
faithful to the underlying stroke structure of the paintings. Our
method is also able to more accurately reconstruct the original
paintings than Tan et al. There are visible di�erences between the
originals and the �-recomposed results (g,q), and the RMSE errors
are higher for Tan et al. [2016] than they are for our method.

Figure 11 shows several comparisons of painting recoloring using
our method vs. those of Chang et al. [2015] and Tan et al. [2016].
We discuss this comparison in more detail in the next section.

5.2 Comparison with palette-based recoloring
We also compare our method against the palette-based recoloring
approach of Chang et al. [2015]. Compared to our method, theirs
provides a fully interactive process, since their palette creation takes
place in real-time. In order to ensure that the white background

Figure 9: Examples of pigment-based palette manipulation
results, demonstrating the ability of our method to pro-
duce alternative renditions of watercolor paintings. In each
row the original image (along with the extracted palette)
is on the left, followed by two palette manipulation re-
sults. Watercolor paintings in 1st, 2nd and 3rd rows © Olya
Kamieshkova; Watercolor painting in 4th row © Maria
Stezhko.

remains white when using their method, we add white as an extra
color to their palette.

We found that when applying the method of Chang et al. to paint-
ings, their automatic palette rarely corresponds to the pigments
present in the painting. Manipulating the palette entries with the
intent to modify a particular color often introduces unexpected ef-
fects on other colors in the painting, making recoloring of painting
less intuitive. Signi�cant color changes often result in an image
that no longer looks like a watercolor painting.

In Figure 11 we show several examples of painting recoloring
using our method as well as those of Chang et al. [2015] and Tan et
al. [2016]. In the top three rows the goal is to recolor an original
painting (leftmost column) to a color scheme of a reference painting
(rightmost color). Despite our best e�orts, the results we were able
to achieve with the other two methods are typically muddier and
less vibrant than our results, and the colors often reach saturation,
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(a) Original (b) Recomp.
RMSE 0.020

(c) Pigment 1 (d) Pigment 2 (e) Thickness

(f) Original (g) � -comp.
RMSE 0.047

(h) Layer 1 (i) Layer 2 (j) Black layer

(k) Original (l) Recomp.
RMSE 0.017

(m) Pigment 1 (n) Pigment 2 (o) Thickness

(p) Original (q) � -comp.
RMSE 0.0359

(r) Layer 1 (s) Layer 2 (t) Black layer

Figure 10: Comparison of pigment-based decomposition
(our method, top and 3rd rows) vs. alpha-based decomposi-
tion [Tan et al. 2016] in 2nd and 4th rows. Our method uses
two pigment channels and a thickness map, while alpha-
based decomposition uses the same two-color decomposi-
tion palette along with a black layer. Watercolor paintings
in 1st row © Liz Steel; Watercolor painting in 3rd row © Jane
Blundell.

thereby eliminating the delicate watercolor textures. In the bottom
row, we simply swap the two palette entries of the original painting.
Again, the colors, the transitions between them, and the textures
are less well preserved with the methods of Chang et al. and Tan et
al. Thus, we conclude that these two methods are not well-suited
for recoloring watercolor paintings.

5.3 Comparison with edit propagation
Interactive editing methods such as [An and Pellacini 2008; Chen
et al. 2012; Levin et al. 2004] propagate edits from a set of sparse
scribbles to the entire image. We compare our approach to the
method of Levin et al. [2004], since implementations of other meth-
ods are not available. A comparison is shown in Figure 12, where
we show the scribbles that were used to recolor the painting. The
di�usion of colors between the user’s scribbles results in a di�erent
color transition than the one that may be observed in the original
painting. This color transition is better captured by our method.

(a) Original (b) Our result (c) Chang2015 (d) Tan2016 (e) Reference

(f) Original (g) Our result (h) Chang2015 (i) Tan2016 (j) Reference

(k) Original (l) Our result (m) Chang2015 (n) Tan2016 (o) Reference

(p) Original (q) Our result (r) Chang2015 (s) Tan2016

Figure 11: A comparison of palette manipulation results.
From left to right, the columns correspond to: original paint-
ing, recolored using our method, recolored using Chang et
al. [2015], recolored using Tan et al. [2016]. Tan’s method
does not use a palette; the palette shown under the Tan2016
results demonstrates the transformation that our palette col-
ors undergo using theirmanipulation.Watercolor paintings
in 1st and 2nd rows © Olya Kamieshkova; Watercolor paint-
ing in 3rd row © Jane Blundell; Watercolor painting in 4th
row © Liz Steel.

5.4 Limitations
The ability of a pigment-based palette to express dark colors is
dependent on having a black palette color, or at least one pigment
that becomes very dark (nearly black) as thickness increases; this
requirement is similar to the alpha-blending based decomposition
of Tan et al. [2016], which requires a black channel. Another non
intuitive property of pigments (and the Kubelka-Munk model) is a
change of hue as a function of thickness (hue shift).

These limitations are demonstrated in Figure 13. The top row
shows that not having a dark color in the automaically extracted
palette results in poor reconstruction and artifacts when the palette’s
pigments are darkened or lightened.

In the second row of Figure 13, a similar palette is used, but
the green pigment was replaced with black. Although this palette
yields a much more accurate reconstruction (f), attempts to make
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(a) Original (b) Our result (c) Scribbles (d) Levin et al.

(e) Original (f) Our result (g) Scribbles (h) Levin et al.

Figure 12: Comparison with Levin et al. [2004]. Watercolor
painting © Liz Steel.

the painting lighter, either by manipulating only the non-black
pigments (g), or the black pigment as well (h), result in hue changes,
which may be undesirable.

The third row uses a palette obtained by the joint optimization
of Section 4.4, which has two pigments that signi�cantly darken
with thickness (second and third pigments in the palette). The re-
construction is almost perfect visually (i). Replacing these pigments
with ones that do not become su�ciently darker might result in
failure to reproduce the contrast of the original painting, obtain-
ing saturated non-black areas in regions that were near black in
the original painting (j). Manipulating this palette can yield more
satisfactory lightened (k) and recolored (l) versions of the original.

5.5 Photo Recoloring
Figure 14 and 15 show examples of pigment-based photo recoloring.
Although we did not design our tool for photo recoloring, Figure 14
demonstrates that it can achieve satisfactory results (comparable to
ones obtained using Chang et al.’s method). The manipulation was
done using automatic palette extraction with 4 colors plus an added
black color (a total of 5 colors). The target colors were obtained
by clicking the target image to identify target colors, followed by
�ne tuning these colors via advanced editing of K and S values.
For photo editing one might consider to modify the set of base
pigments in order better to match real life colors.

Figure 15 shows an example where our method is more e�ective
for recoloring a photo than Chang et al. [2015]. One of the colors in
our palette successfully captures the color of the man’s shirt, while
another captures the color of the hat, allowing their manipulation
without obvious artifacts. In contrast, we could not manipulate
these colors using Chang’s method without introducing artifacts.

6 CONCLUSION
We introduced a new tool designed to allow artists to experiment
with alternative color palettes for watercolor paintings. By using
the Kubelka-Munk pigment theory along with edge-aware spatial
smoothness constraints, we are able to decompose the painting
into a set of pigment mixture weight channels, which enable the
user to manipulate the color palette while remaining faithful to the
original character of color transitions in the painting.

(a) Orig. no dark (b) Recomposed (c) Darkening (d) Lightening

(e) Orig. w/ black (f) Recomposed (g) Lighter Colors (h) Lighter Black

(i) Orig/Recomp (j) Contrast Loss (k) Lightened (l) Recolored

Figure 13: Top row: palette without su�ciently dark pig-
ments su�ers from poor reconstruction and unsatisfactory
recoloring results. Middle row: replacing one of the pig-
ments with black improves reconstruction, but can create
undesirable hue shifts (g) and (h). Bottom row: a better
palettewith dark but non-black pigments can yieldmore sat-
isfactory recoloring results (k) and (l). Watercolor painting
©Misulbu Atelier.

Possible enhancements left for future work include adding sup-
port for the Kubleka-Munk layer composition model. This would
increase the ability of our approach to handle e�ects such as water-
color glazing, and would enable users to modify not only the color
palette, but also the ordering of the pigment layers at each pixel.
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(a) Original (b) Recolored (c) Target

(d) Original (e) Recolored (f) Target

(g) Original (h) Recolored (i) Target

Figure 14: Examples of pigment-based photo recoloring us-
ing original and target photos from a user study conducted
by Chang et al. [2015] and the recoloring results achieved
using our method. All source palettes except for (a) were au-
tomatically extracted.

(a) Orig. + our palette (b) Our recoloring (c) Our recoloring

(d) Chang’s palette (e) Chang’s recoloring (f) Chang’s recoloring

Figure 15: More pigment-based photo recoloring. Our auto-
matically extracted color palette (a) enables artifact-free re-
coloring of the man’s shirt and hat (b,c). We were not able to
achieve such a recoloring with neither the automatic palette
of Chang et al. (d), nor a manually selected one.
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