
Synthesizing Realistic Facial Expressions from Photographs

Fréd́eric Pighin Jamie Hecker Dani Lischinski† Richard Szeliski‡ David H. Salesin

University of Washington †The Hebrew University ‡Microsoft Research

Abstract

We present new techniques for creating photorealistic textured 3D
facial models from photographs of a human subject, and for creating
smooth transitions between different facial expressions by morphing
between these different models. Starting from several uncalibrated
views of a human subject, we employ a user-assisted technique to
recover the camera poses corresponding to the views as well as the
3D coordinates of a sparse set of chosen locations on the subject’s
face. A scattered data interpolation technique is then used to deform
a generic face mesh to fit the particular geometry of the subject’s
face. Having recovered the camera poses and the facial geometry,
we extract from the input images one or more texture maps for
the model. This process is repeated for several facial expressions
of a particular subject. To generate transitions between these facial
expressions we use 3D shape morphing between the corresponding
face models, while at the same time blending the corresponding
textures. Using our technique, we have been able to generate highly
realistic face models and natural looking animations.

CR Categories: I.2.10 [Artificial Intelligence]: Vision and Scene Un-
derstanding — Modeling and recovery of physical attributes; I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics — Animation; I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics — Color, shading, shadowing
and texture.

Additional Keywords: facial modeling, facial expression generation,
facial animation, photogrammetry, morphing, view-dependent texture-
mapping

1 Introduction

There is no landscape that we know as well as the human
face. The twenty-five-odd square inches containing the fea-
tures is the most intimately scrutinized piece of territory in
existence, examined constantly, and carefully, with far more
than an intellectual interest. Every detail of the nose, eyes,
and mouth, every regularity in proportion, every variation
from one individual to the next, are matters about which we
are all authorities.

— Gary Faigin [14],
from The Artist’s Complete Guide to Facial Expression

Realistic facial synthesis is one of the most fundamental prob-
lems in computer graphics — and one of the most difficult. Indeed,
attempts to model and animate realistic human faces date back to the
early 70’s [34], with many dozens of research papers published since.
The applications of facial animation include such diverse fields as

character animation for films and advertising, computer games [19],
video teleconferencing [7], user-interface agents and avatars [44],
and facial surgery planning [23, 45]. Yet no perfectly realistic facial
animation has ever been generated by computer: no “facial anima-
tion Turing test” has ever been passed.

There are several factors that make realistic facial animation so
elusive. First, the human face is an extremely complex geometric
form. For example, the human face models used in Pixar’sToy Story
had several thousand control points each [10]. Moreover, the face ex-
hibits countless tiny creases and wrinkles, as well as subtle variations
in color and texture — all of which are crucial for our comprehen-
sion and appreciation of facial expressions. As difficult as the face is
to model, it is even more problematic to animate, since facial move-
ment is a product of the underlying skeletal and muscular forms,
as well as the mechanical properties of the skin and sub-cutaneous
layers (which vary in thickness and composition in different parts
of the face). All of these problems are enormously magnified by the
fact that we as humans have an uncanny ability to read expressions
— an ability that is not merely a learned skill, but part of our deep-
rooted instincts. For facial expressions, the slightest deviation from
truth is something any person will immediately detect.

A number of approaches have been developed to model and ani-
mate realistic facial expressions in three dimensions. (The reader is
referred to the recent book by Parke and Waters [36] for an excel-
lent survey of this entire field.) Parke’s pioneering work introduced
simple geometric interpolation between face models that were dig-
itized by hand [34]. A radically different approach is performance-
based animation, in which measurements from real actors are used
to drive synthetic characters [4, 13, 47]. Today, face models can also
be obtained using laser-based cylindrical scanners, such as those
produced by Cyberware [8]. The resulting range and color data can
be fitted with a structured face mesh, augmented with a physically-
based model of skin and muscles [29, 30, 43, 46]. The animations
produced using these face models represent the state-of-the-art in
automatic physically-based facial animation.

For sheer photorealism, one of the most effective approaches to
date has been the use of 2D morphing between photographic im-
ages [3]. Indeed, some remarkable results have been achieved in
this way — most notably, perhaps, the Michael Jackson video pro-
duced by PDI, in which very different-looking actors are seemingly
transformed into one another as they dance. The production of this
video, however, required animators to painstakingly specify a few
dozen carefully chosen correspondences between physical features
of the actors in almost every frame. Another problem with 2D image
morphing is that it does not correctly account for changes in view-
point or object pose. Although this shortcoming has been recently
addressed by a technique called “view morphing” [39], 2D morphing
still lacks some of the advantages of a 3D model, such as the com-
plete freedom of viewpoint and the ability to composite the image
with other 3D graphics. Morphing has also been applied in 3D: Chen
et al. [6] applied Beier and Neely’s 2D morphing technique [3] to
morph between cylindrical laser scans of human heads. Still, even
in this case the animator must specify correspondences for every
pair of expressions in order to produce a transition between them.
More recently, Bregleret al. [5] used morphing of mouth regions to
lip-synch existing video to a novel sound-track.

In this paper, we show how 2D morphing techniques can be com-



bined with 3D transformations of a geometric model to automati-
cally produce 3D facial expressions with a high degree of realism.
Our process consists of several basic steps. First, we capture multi-
ple views of a human subject (with a given facial expression) using
cameras at arbitrary locations. Next, we digitize these photographs
and manually mark a small set of initial corresponding points on the
face in the different views (typically, corners of the eyes and mouth,
tip of the nose, etc.). These points are then used to automatically
recover the camera parameters (position, focal length, etc.) corre-
sponding to each photograph, as well as the 3D positions of the
marked points in space. The 3D positions are then used to deform
a generic 3D face mesh to fit the face of the particular human sub-
ject. At this stage, additional corresponding points may be marked
to refine the fit. Finally, we extract one or more texture maps for the
3D model from the photos. Either a single view-independent texture
map can be extracted, or the original images can be used to perform
view-dependent texture mapping. This whole process is repeated for
the same human subject, with several different facial expressions.
To produce facial animations, we interpolate between two or more
different 3D models constructed in this way, while at the same time
blending the textures. Since all the 3D models are constructed from
the same generic mesh, there is a natural correspondence between
all geometric points for performing the morph. Thus, transitions
between expressions can be produced entirely automatically once
the different face models have been constructed, without having to
specify pairwise correspondences between any of the expressions.

Our modeling approach is based on photogrammetric techniques
in which images are used to create precise geometry [31, 40]. The
earliest such techniques applied to facial modeling and animation
employed grids that were drawn directly on the human subject’s
face [34, 35]. One consequence of these grids, however, is that the
images used to construct geometry can no longer be used as valid
texture maps for the subject. More recently, several methods have
been proposed for modeling the face photogrammetrically without
the use of grids [20, 24]. These modeling methods are similar in
concept to the modeling technique described in this paper. However,
these previous techniques use a small predetermined set of features
to deform the generic face mesh to the particular face being modeled,
and offer no mechanism to further improve the fit. Such an approach
may perform poorly on faces with unusual features or other signifi-
cant deviations from the normal. Our system, by contrast, gives the
user complete freedom in specifying the correspondences, and en-
ables the user to refine the initial fit as needed. Another advantage
of our technique is its ability to handle fairly arbitrary camera po-
sitions and lenses, rather than using a fixed pair that are precisely
oriented. Our method is similar, in concept, to the work done in
architectural modeling by Debevecet al. [9], where a set of anno-
tated photographs are used to model buildings starting from a rough
description of their shape. Compared to facial modeling methods
that utilize a laser scanner, our technique uses simpler acquisition
equipment (regular cameras), and it is capable of extracting texture
maps of higher resolution. (Cyberware scans typically produce a
cylindrical grid of 512 by 256 samples). The price we pay for these
advantages is the need for user intervention in the modeling process.

We employ our system not only for creating realistic face mod-
els, but also for performing realistic transitions between different
expressions. One advantage of our technique, compared to more
traditional animatable models with a single texture map, is that we
can capture the subtle changes in illumination and appearance (e.g.,
facial creases) that occur as the face is deformed. This degree of
realism is difficult to achieve even with physically-based models,
because of the complexity of skin folding and the difficulty of sim-
ulating interreflections and self-shadowing [18, 21, 32].

This paper also presents several new expression synthesis tech-
niques based on extensions to the idea of morphing. We develop a
morphing technique that allows for different regions of the face to

have different “percentages” or “mixing proportions” of facial ex-
pressions. We also introduce a painting interface, which allows users
to locally add in a little bit of an expression to an existing compos-
ite expression. We believe that these novel methods for expression
generation and animation may be more natural for the average user
than more traditional animation systems, which rely on the manual
adjustments of dozens or hundreds of control parameters.

The rest of this paper is organized as follows. Section 2 de-
scribes our method for fitting a generic face mesh to a collection
of simultaneous photographs of an individual’s head. Section 3 de-
scribes our technique for extracting both view-dependent and view-
independent texture maps for photorealistic rendering of the face.
Section 4 presents the face morphing algorithm that is used to an-
imate the face model. Section 5 describes the key aspects of our
system’s user interface. Section 6 presents the results of our experi-
ments with the proposed techniques, and Section 7 offers directions
for future research.

2 Model fitting

The task of the model-fitting process is to adapt a generic face model
to fit an individual’s face and facial expression. As input to this
process, we take several images of the face from different viewpoints
(Figure 1a) and a generic face model (we use the generic face model
created with Alias|Wavefront [2] shown in Figure 1c). A few features
points are chosen (13 in this case, shown in the frames of Figure 1a)
to recover the camera pose. These same points are also used to refine
the generic face model (Figure 1d). The model can be further refined
by drawing corresponding curves in the different views (Figure 1b).
The output of the process is a face model that has been adapted to
fit the face in the input images (Figure 1e), along with a precise
estimate of the camera pose corresponding to each input image.

The model-fitting process consists of three stages. In thepose
recoverystage, we apply computer vision techniques to estimate the
viewing parameters (position, orientation, and focal length) for each
of the input cameras. We simultaneously recover the 3D coordinates
of a set offeature pointson the face. These feature points are se-
lected interactively from among the face mesh vertices, and their
positions in each image (where visible) are specified by hand. The
scattered data interpolationstage uses the estimated 3D coordinates
of the feature points to compute the positions of the remaining face
mesh vertices. In theshape refinementstage, we specify additional
correspondences between facial vertices and image coordinates to
improve the estimated shape of the face (while keeping the camera
pose fixed).

2.1 Pose recovery

Starting with a rough knowledge of the camera positions (e.g., frontal
view, side view, etc.) and of the 3D shape (given by the generic
head model), we iteratively improve the pose and the 3D shape es-
timates in order to minimize the difference between the predicted
and observed feature point positions. Our formulation is based
on the non-linear least squares structure-from-motion algorithm in-
troduced by Szeliski and Kang [41]. However, unlike the method
they describe, which uses the Levenberg-Marquardt algorithm to
perform a complete iterative minimization over all of the unknowns
simultaneously, we break the problem down into a series of linear
least squares problems that can be solved using very simple and
numerically stable techniques [16, 37].

To formulate the pose recovery problem, we associate a rotation
matrixRk and a translation vectortk with each camera posek. (The
three rows ofRk are rk

x, rk
y, andrk

z, and the three entries intk are
tk
x , tk

y , tk
z .) We write each 3D feature point aspi , and its 2D screen

coordinates in thek-th image as (xk
i , yk

i ).



(a)

(b) (c) (d) (e)

Figure 1: Model-fitting process: (a) a set of input images with marked feature points, (b) facial features annotated using a set of curves, (c)
generic face geometry (shaded surface rendering), (d) face adapted to initial 13 feature points (after pose estimation) (e) face after 99 additional
correspondences have been given.

Assuming that the origin of the (x, y) image coordinate system
lies at the optical center of each image (i.e., where the optical axis
intersects the image plane), the traditional 3D projection equation
for a camera with a focal lengthf k (expressed in pixels) can be
written as

xk
i = f k rk

x · pi + tk
x

rk
z · pi + tk

z
yk

i = f k rk
y · pi + tk

y

rk
z · pi + tk

z
(1)

(This is just an explicit rewriting of the traditional projection equa-
tion xk

i ∝ Rkpi + tk wherexk
i = (xk

i , yk
i , f k).)

Instead of using (1) directly, we reformulate the problem to es-
timate inverse distances to the object [41]. Letηk = 1/tk

z be this
inverse distance andsk = f kηk be a world-to-image scale factor.
The advantage of this formulation is that the scale factorsk can be
reliably estimated even when the focal length is long, whereas the
original formulation has a strong coupling between thef k and tk

z

parameters.
Performing these substitution, we obtain

xk
i = sk rk

x · pi + tk
x

1 +ηkrk
z · pi

yk
i = sk rk

y · pi + tk
y

1 +ηkrk
z · pi

.

If we let wk
i = (1 + ηk(rk

z · pi ))
−1 be the inverse denominator, and

collect terms on the left-hand side, we get

wk
i

(
xk

i + xk
i η

k(rk
z · pi ) − sk(rk

x · pi + tk
x)
)

= 0 (2)

wk
i

(
yk

i + yk
i η

k(rk
z · pi ) − sk(rk

y · pi + tk
y)
)

= 0

Note that these equations are linear in each of the unknowns that
we wish to recover, i.e.,pi , tk

x , tk
y , ηk, sk, andRk, if we ignore the

variation ofwk
i with respect to these parameters. (The reason we keep

thewk
i term, rather than just dropping it from these equations, is so

that the linear equations being solved in the least squares step have

the same magnitude as the original measurements (xk
i , yk

i ). Hence,
least-squares will produce amaximum likelihoodestimate for the
unknown parameters [26].)

Given estimates for initial values, we can solve for different sub-
sets of the unknowns. In our current algorithm, we solve for the
unknowns in five steps: firstsk, thenpi , Rk, tk

x andtk
y , and finallyηk.

This order is chosen to provide maximum numerical stability given
the crude initial pose and shape estimates. For each parameter or set
of parameters chosen, we solve for the unknowns using linear least
squares (Appendix A). The simplicity of this approach is a result of
solving for the unknowns in five separate stages, so that the parame-
ters for a given camera or 3D point can be recovered independently
of the other parameters.

2.2 Scattered data interpolation

Once we have computed an initial set of coordinates for the feature
pointspi , we use these values to deform the remaining vertices on
the face mesh. We construct a smooth interpolation function that
gives the 3D displacements between the original point positions and
the new adapted positions for every vertex in the original generic
face mesh. Constructing such an interpolation function is a standard
problem in scattered data interpolation. Given a set of known dis-
placementsui = pi − p(0)

i away from the original positionsp(0)
i at

every constrained vertexi, construct a function that gives the dis-
placementuj for every unconstrained vertexj .

There are several considerations in choosing the particular data
interpolant [33]. The first consideration is the embedding space, that
is, the domain of the function being computed. In our case, we use the
original 3D coordinates of the points as the domain. (An alternative
would be to use some 2D parameterization of the surface mesh,
for instance, the cylindrical coordinates described in Section 3.) We
therefore attempt to find a smooth vector-valued functionf (p) fitted
to the known dataui = f (pi ), from which we can computeuj = f (pj ).

There are also several choices for how to construct the interpolat-
ing function [33]. We use a method based onradial basis functions,



that is, functions of the form

f (p) =
∑

i

ciφ(‖p − pi‖),

whereφ(r ) are radially symmetric basis functions. A more general
form of this interpolant also adds some low-order polynomial terms
to model global, e.g., affine, deformations [27, 28, 33]. In our system,
we use an affine basis as part of our interpolation algorithm, so that
our interpolant has the form:

f (p) =
∑

i

ciφ(‖p − pi‖) + Mp + t, (3)

To determine the coefficientsci and the affine componentsM andt,
we solve a set of linear equations that includes the interpolation
constraintsui = f (pi ), as well as the constraints

∑
i ci = 0 and∑

i cipi
T = 0, which remove affine contributions from the radial

basis functions.
Many different functions forφ(r ) have been proposed [33]. After

experimenting with a number of functions, we have chosen to use
φ(r ) = e−r/64, with units measured in inches.

Figure 1d shows the shape of the face model after having inter-
polated the set of computed 3D displacements at 13 feature points
shown in Figure 1 and applied them to the entire face.

2.3 Correspondence-based shape refinement

After warping the generic face model into its new shape, we can
further improve the shape by specifying additional correspondences.
Since these correspondences may not be as easy to locate correctly,
we do not use them to update the camera pose estimates. Instead,
we simply solve for the values of the new feature pointspi using
a simple least-squares fit, which corresponds to finding the point
nearest the intersection of the viewing rays in 3D. We can then re-run
the scattered data interpolation algorithm to update the vertices for
which no correspondences are given. This process can be repeated
until we are satisfied with the shape.

Figure 1e shows the shape of the face model after 99 additional
correspondences have been specified. To facilitate the annotation
process, we grouped vertices into polylines. Each polyline corre-
sponds to an easily identifiable facial feature such as the eyebrow,
eyelid, lips, chin, or hairline. The features can be annotated by outlin-
ing them with hand-drawn curves on each photograph where they are
visible. The curves are automatically converted into a set of feature
points by stepping along them using an arc-length parametrization.
Figure 1b shows annotated facial features using a set of curves on
the front view.

3 Texture extraction

In this section we describe the process of extracting the texture maps
necessary for rendering photorealistic images of a reconstructed face
model from various viewpoints.

The texture extraction problem can be defined as follows. Given
a collection of photographs, the recovered viewing parameters, and
the fitted face model, compute for each pointp on the face model its
texture colorT(p).

Each pointpmay be visible in one or more photographs; therefore,
we must identify the corresponding point in each photograph and
decide how these potentially different values should be combined
(blended) together. There are two principal ways to blend values
from different photographs:view-independent blending, resulting in
a texture map that can be used to render the face from any viewpoint;
andview-dependent blending, which adjusts the blending weights

kI

(x ,y )k k

(u,v)

p

Figure 2: Geometry for texture extraction

at each point based on the direction of the current viewpoint [9,
38]. Rendering takes longer with view-dependent blending, but the
resulting image is of slightly higher quality (see Figure 3).

3.1 Weight maps

As outlined above, the texture valueT(p) at each point on the face
model can be expressed as a convex combination of the correspond-
ing colors in the photographs:

T(p) =

∑
k mk(p) I k(xk, yk)∑

k mk(p)
.

Here,I k is the image function (color at each pixel of thek-th photo-
graph,) and (xk, yk) are the image coordinates of the projection ofp
onto thek-th image plane. Theweight map mk(p) is a function that
specifies the contribution of thek-th photograph to the texture at
each facial surface point.

The construction of these weight maps is probably the trickiest
and the most interesting component of our texture extraction tech-
nique. There are several important considerations that must be taken
into account when defining a weight map:
1. Self-occlusion: mk(p) should be zero unlessp is front-facing with

respect to thek-th image and visible in it.
2. Smoothness:the weight map should vary smoothly, in order to

ensure a seamless blend between different input images.
3. Positional certainty: mk(p) should depend on the “positional cer-

tainty” [24] of p with respect to thek-th image. The positional
certainty is defined as the dot product between the surface normal
atp and thek-th direction of projection.

4. View similarity:for view-dependent texture mapping, the weight
mk(p) should also depend on the angle between the direction of
projection ofp onto thej-th image and its direction of projection
in the new view.
Previous authors have taken only a subset of these considera-

tions into account when designing their weighting functions. For
example, Kurihara and Arai [24] use positional certainty as their
weighting function, but they do not account for self-occlusion. Aki-
moto et al. [1] and Ip and Yin [20] blend the images smoothly,
but address neither self-occlusion nor positional certainty. De-
bevecet al. [9], who describe a view-dependent texture mapping
technique for modeling and rendering buildings from photographs,
do address occlusion but do not account for positional certainty. (It
should be noted, however, that positional certainty is less critical in
photographs of buildings, since most buildings do not tend to curve
away from the camera.)

To facilitate fast visibility testing of points on the surface of the
face from a particular camera pose, we first render the face model
using the recovered viewing parameters and save the resulting depth
map from the Z-buffer. Then, with the aid of this depth map, we
can quickly classify the visibility of each facial point by applying



the viewing transformation and comparing the resulting depth to the
corresponding value in the depth map.

3.2 View-independent texture mapping

In order to support rapid display of the textured face model from
any viewpoint, it is desirable to blend the individual photographs
together into a single texture map. This texture map is constructed on
a virtual cylinder enclosing the face model. The mapping between
the 3D coordinates on the face mesh and the 2D texture space is
defined using a cylindrical projection, as in several previous papers
[6, 24, 29].

For view-independent texture mapping, we will index the weight
mapmk by the (u, v) coordinates of the texture being created. Each
weightmk(u, v) is determined by the following steps:
1. Construct a feathered visibility mapFk for each imagek. These

maps are defined in the same cylindrical coordinates as the tex-
ture map. We initially setFk(u, v) to 1 if the corresponding facial
pointp is visible in thek-th image, and to 0 otherwise. The result
is a binary visibility map, which is then smoothly ramped (feath-
ered) from 1 to 0 in the vicinity of the boundaries [42]. A cubic
polynomial is used as the ramping function.

2. Compute the 3D pointp on the surface of the face mesh whose
cylindrical projection is (u, v) (see Figure 2). This computation
is performed by casting a ray from (u, v) on the cylinder towards
the cylinder’s axis. The first intersection between this ray and the
face mesh is the pointp. (Note that there can be more than one
intersection for certain regions of the face, most notably the ears.
These special cases are discussed in Section 3.4.) LetPk(p) be
the positional certainty ofp with respect to thek-th image.

3. Set weightmk(u, v) to the productFk(u, v) Pk(p).
For view-independent texture mapping, we will compute each

pixel of the resulting textureT(u, v) as a weighted sum of the original
image functions, indexed by (u, v).

3.3 View-dependent texture mapping

The main disadvantage of the view-independent cylindrical texture
map described above is that its construction involves blending to-
gether resampled versions of the original images of the face. Because
of this resampling, and also because of slight registration errors, the
resulting texture is slightly blurry. This problem can be alleviated to a
large degree by using a view-dependent texture map [9] in which the
blending weights are adjusted dynamically, according to the current
view.

For view-dependent texture mapping, we render the model sev-
eral times, each time using a different input photograph as a texture
map, and blend the results. More specifically, for each input photo-
graph, we associate texture coordinates and a blending weight with
each vertex in the face mesh. (The rendering hardware performs
perspective-correct texture mapping along with linear interpolation
of the blending weights.)

Given a viewing directiond, we first select the subset of pho-
tographs used for the rendering and then assign blending weights to
each of these photographs. Pulliet al. [38] select three photographs
based on a Delaunay triangulation of a sphere surrounding the ob-
ject. Since our cameras were positioned roughly in the same plane,
we select just the two photographs whose view directionsd` and
d`+1 are the closest tod and blend between the two.

In choosing the view-dependent termVk(d) of the blending
weights, we wish to use just a single photo if that photo’s view
direction matches the current view direction precisely, and to blend
smoothly between the nearest two photos otherwise. We used the

Figure 3: Comparison between view-independent (left) and view-
dependent (right) texture mapping. Higher frequency details are vis-
ible in the view-dependent rendering.

simplest possible blending function having this effect:

Vk(d) =

{
d · dk − d` · d`+1 if ` ≤ k ≤ ` + 1

0 otherwise

For the final blending weightsmk(p, d), we then use the product
of all three termsFk(xk, yk) Pk(p) Vk(d).

View-dependent texture maps have several advantages over cylin-
drical texture maps. First, they can make up for some lack of detail
in the model. Second, whenever the model projects onto a cylinder
with overlap, a cylindrical texture map will not contain data for some
parts of the model. This problem does not arise with view-dependent
texture maps if the geometry of the mesh matches the photograph
properly. One disadvantage of the view-dependent approach is its
higher memory requirements and slower speed due to the multi-pass
rendering. Another drawback is that the resulting images are much
more sensitive to any variations in exposure or lighting conditions
in the original photographs.

3.4 Eyes, teeth, ears, and hair

The parts of the mesh that correspond to the eyes, teeth, ears, and
hair are textured in a separate process. The eyes and teeth are usually
partially occluded by the face; hence it is difficult to extract a tex-
ture map for these parts in every facial expression. The ears have an
intricate geometry with many folds and usually fail to project with-
out overlap on a cylinder. The hair has fine-detailed texture that is
difficult to register properly across facial expressions. For these rea-
sons, each of these facial elements is assigned an individual texture
map. The texture maps for the eyes, teeth, and ears are computed by
projecting the corresponding mesh part onto a selected input image
where that part is clearly visible (the front view for eyes and teeth,
side views for ears).

The eyes and the teeth are usually partially shadowed by the eye-
lids and the mouth respectively. We approximate this shadowing by
modulating the brightness of the eye and teeth texture maps accord-
ing to the size of the eyelid and mouth openings.

4 Expression morphing

A major goal of this work is the generation of continuous and realistic
transitions between different facial expressions. We achieve these
effects by morphing between corresponding face models.

In general the problem of morphing between arbitrary polygonal
meshes is a difficult one [22], since it requires a set of correspon-
dences between meshes with potentially different topology that can



Figure 4: A global blend between “surprised” (left) and “sad” (cen-
ter) produces a “worried” expression (right).

Figure 5: Combining the upper part of a “neutral” expression (left)
with the lower part of a “happy” expression (center) produces a
“fake smile” (right).

produce a reasonable set of intermediate shapes. In our case, how-
ever, the topology of all the face meshes is identical. Thus, there is
already a natural correspondence between vertices. Furthermore, in
creating the models we attempt to mark facial features consistently
across different facial expressions, so that the major facial features
correspond to the same vertices in all expressions. In this case, a sat-
isfactory 3D morphing sequence can be obtained using simple linear
interpolation between the geometric coordinates of corresponding
vertices in each of the two face meshes.

Together with the geometric interpolation, we need to blend
the associated textures. Again, in general, morphing between two
images requires pairwise correspondences between images fea-
tures [3]. In our case, however, correspondences between the two
textures are implicit in the texture coordinates of the two associ-
ated face meshes. Rather than warping the two textures to form an
intermediate one, the intermediate face model (obtained by geomet-
ric interpolation) is rendered once with the first texture, and again
with the second. The two resulting images are then blended together.
This approach is faster than warping the textures (which typically
have high resolution), and it avoids the resampling that is typically
performed during warping.

4.1 Multiway blend and localized blend

Given a set of facial expression meshes, we have explored ways to
enlarge this set by combining expressions. The simplest approach
is to use the morphing technique described above to create new
facial expressions, which can be added to the set. This idea can be
generalized to an arbitrary number of starting expressions by taking
convex combinations of them all, using weights that apply both to the
coordinates of the mesh vertices and to the values in the texture map.
(Extrapolation of expressions should also be possible by allowing
weights to have values outside of the interval [0, 1]; note, however,
that such weights might result in colors outside of the allowable
gamut.)

We can generate an even wider range of expressions using a lo-
calized blend of the facial expressions. Such a blend is specified by
a set of blend functions, one for each expression, defined over the
vertices of the mesh. These blend functions describe the contribution
of a given expression at a particular vertex.

Although it would be possible to compute a texture map for each
new expression, doing so would result in a loss of texture quality.
Instead, the weights for each new blended expression are always
factored into weights over the vertices of the original set of expres-
sions. Thus, each blended expression is rendered using the texture
map of an original expression, along with weights at each vertex,
which control the opacity of that texture. The opacities are linearly
interpolated over the face mesh using Gouraud shading.

4.2 Blend specification

In order to design new facial expressions easily, the user must be pro-
vided with useful tools for specifying the blending functions. These
tools should satisfy several requirements. First, it should be possible
to edit the blend at different resolutions. Moreover, we would like
the specification process to be continuous so that small changes in
the blend parameters do not trigger radical changes in the result-
ing expression. Finally, the tools should be intuitive to the user; it
should be easy to produce a particular target facial expression from
an existing set.

We explored several different ways of specifying the blending
weights:

• Global blend.The blending weights are constant over all vertices.
A set of sliders controls the mixing proportions of the contributing
expressions. Figure 4 shows two facial expressions blended in
equal proportions to produce a halfway blend.

• Regional blend.According to studies in psychology, the face can
be split into several regions that behave as coherent units [11].
Usually, three regions are considered: one for the forehead (in-
cluding the eyebrows), another for the eyes, and another for the
lower part of the face. Further splitting the face vertically down
the center results in six regions and allows for asymmetric ex-
pressions. We similarly partition the face mesh into several (softly
feathered) regions and assign weights so that vertices belonging
to the same region have the same weights. The mixing proportions
describing a selected region can be adjusted by manipulating a set
of sliders. Figure 5 illustrates the blend of two facial expressions
with two regions: the upper part of the face (including eyes and
forehead) and the lower part (including nose, mouth, and chin.)

• Painterly interface.The blending weights can be assigned to the
vertices using a 3D painting tool. This tool uses a palette in which
the “colors” are facial expressions (both geometry and color),
and the “opacity” of the brush controls how much the expression
contributes to the result. Once an expression is selected, a 3D brush
can be used to modify the blending weights in selected areas of the
mesh. The fraction painted has a gradual drop-off and is controlled
by the opacity of the brush. The strokes are applied directly on
the rendering of the current facial blend, which is updated in real-
time. To improve the rendering speed, only the portion of the mesh
that is being painted is re-rendered. Figure 7 illustrates the design
of a debauched smile: starting with a neutral expression, the face
is locally modified using three other expressions. Note that in the
last step, the use of a partially transparent brush with the “sleepy”
expression results in the actual geometry of the eyelids becoming
partially lowered.

Combining different original expressions enlarges the repertoire
of expressions obtained from a set of photographs. The expressions
in this repertoire can themselves be blended to create even more
expressions, with the resulting expression still being representable
as a (locally varying) linear combination of the original expressions.



Figure 6: Animation interface. On the left is the “expression gallery”;
on the right an expression is being designed. At the bottom expres-
sions and poses are scheduled on the timeline.

5 User interface

We designed an interactive tool to fit a 3D face mesh to a set of
images. This tool allows a user to select vertices on the mesh and
mark where these curves or vertices should project on the images.
After a first expression has been modeled, the set of annotations
can be used as an initial guess for subsequent expressions. These
guesses are automatically refined using standard correlation-based
search. Any resulting errors can be fixed up by hand. The extraction
of the texture map does not require user intervention, but is included
in the interface to provide feedback during the modeling phase.

We also designed a keyframe animation system to generate facial
animations. Our animation system permits a user to blend facial
expressions and to control the transitions between these different
expressions (Figure 6). The expression gallery is a key component
of our system; it is used to select and display (as thumbnails) the
set of facial expressions currently available. The thumbnails can be
dragged and dropped onto the timeline (to set keyframes) or onto
the facial design interface (to select or add facial expressions). The
timeline is used to schedule the different expression blends and the
changes in viewing parameters (pose) during the animation. The
blends and poses have two distinct types of keyframes. Both types
of keyframes are linearly interpolated with user-controlled cubic
Bézier curves. The timeline can also be used to display intermediate
frames at low resolution to provide a quick feedback to the animator.
A second timeline can be displayed next to the composition timeline.
This feature is helpful for correctly synchronizing an animation with
live video or a soundtrack. The eyes are animated separately from
the rest of the face, with the gaze direction parameterized by two
Euler angles.

6 Results

In order to test our technique, we photographed both a man (J. R.)
and a woman (Karla) in a variety of facial expressions. The photogra-
phy was performed using five cameras simultaneously. The cameras
were not calibrated in any particular way, and the lenses had different
focal lengths. Since no special attempt was made to illuminate the
subject uniformly, the resulting photographs exhibited considerable
variation in both hue and brightness. The photographs were digitized
using the Kodak PhotoCD process. Five typical images (cropped to

Figure 7: Painterly interface: design of a debauched smile. The right
column shows the different stages of the design; the left column
shows the portions of the original expressions used in creating the
final expression. The “soft brush” used is shown at the bottom-right
corner of each contributing expression.



the size of the subject’s head) are shown in Figure 1a.
We used the interactive modeling system described in Sections 2

and 3 to create the same set of eight face models for each subject:
“happy,” “amused,” “angry,” “surprised,” “sad,” “sleepy,” “pained,”
and “neutral.”

Following the modeling stage, we generated a facial animation
for each of the individuals starting from the eight original expres-
sions. We first created an animation for J. R. We then applied the very
same morphs specified by this animation to the models created for
Karla. For most frames of the animation, the resulting expressions
were quite realistic. Figure 8 shows five frames from the animation
sequence for J. R. and the purely automatically generated frames
in the corresponding animation for Karla. With just a small amount
of additional retouching (using the blending tools described in Sec-
tion 4.2), this derivative animation can be made to look as good as
the original animation for J. R.

7 Future work

The work described in this paper is just the first step towards build-
ing a complete image-based facial modeling and animation system.
There are many ways to further enhance and extend the techniques
that we have described:

Color correction.For better color consistency in facial textures
extracted from photographs, color correction should be applied to
simultaneous photographs of each expression.

Improved registration.Some residual ghosting or blurring arti-
facts may occasionally be visible in the cylindrical texture map due
to small misregistrations between the images, which can occur if ge-
ometry is imperfectly modeled or not detailed enough. To improve
the quality of the composite textures, we could locally warp each
component texture (and weight) map before blending [42].

Texture relighting.Currently, extracted textures reflect the light-
ing conditions under which the photographs were taken. Relighting
techniques should be developed for seamless integration of our face
models with other elements.

Automatic modeling.Our ultimate goal, as far as the facial model-
ing part is concerned, is to construct a fully automated modeling sys-
tem, which would automatically find features and correspondences
with minimal user intervention. This is a challenging problem in-
deed, but recent results on 2D face modeling in computer vision [25]
give us cause for hope.

Modeling from video.We would like to be able to create face mod-
els from video or old movie footage. For this purpose, we would have
to improve the robustness of our techniques in order to synthesize
face meshes and texture maps from images that do not correspond
to different views of the same expression. Adding anthropomorphic
constraints to our face model might make up for the lack of coher-
ence in the data [48].

Complex animations.In order to create complex animations,
we must extend our vocabulary for describing facial movements
beyond blending between different expressions. There are several
potential ways to attack this problem. One would be to adopt an
action-unit-based system such as the Facial Action Coding System
(FACS) [12]. Another possibility would be to apply modal analysis
(principal component analysis) techniques to describe facial expres-
sion changes using a small number of motions [25]. Finding natural
control parameters to facilitate animation and developing realistic-
looking temporal profiles for such movements are also challenging
research problems.

Lip-synching.Generating speech animation with our keyframe
animation system would require a large number of keyframes. How-
ever, we could use a technique similar to that of Bregleret al. [5] to
automatically lip-synch an animation to a sound-track. This would
require the synthesis of face models for a wide range of visemes.

(a) (b)

Figure 8: On the left are frames from an original animation, which
we created for J. R. The morphs specified in these frames were then
directly used to create a derivative animation for Karla, shown on
the right.



For example, such database of models could be constructed using
video footage to reconstruct face models automatically [17].

Performance-driven animation.Ultimately, we would also like
to support performance-driven animation, i.e., the ability to auto-
matically track facial movements in a video sequence, and to auto-
matically translate these into animation control parameters. Our cur-
rent techniques for registering images and converting them into 3D
movements should provide a good start, although they will probably
need to be enhanced with feature-tracking techniques and some rudi-
mentary expression-recognition capabilities. Such a system would
enable not only very realistic facial animation, but also a new level of
video coding and compression techniques (since only the expression
parameters would need to be encoded), as well as real-time control
of avatars in 3D chat systems.

8 Acknowledgments

We would like to thank Katrin Petersen and Andrew Petty for model-
ing the generic face model, Cassidy Curtis for his invaluable advice
on animating faces, and Joel Auslander and Jason Griffith for early
contributions to this project. This work was supported by an NSF
Presidential Faculty Fellow award (CCR-9553199), an ONR Young
Investigator award (N00014-95-1-0728), and industrial gifts from
Microsoft and Pixar.

References
[1] Takaaki Akimoto, Yasuhito Suenaga, and Richard S. Wallace. Auto-

matic Creation of 3D Facial Models.IEEE Computer Graphics and
Applications, 13(5):16–22, September 1993.

[2] Alias |Wavefront, Toronto, Ontario.Alias V7.0, 1995.

[3] Thaddeus Beier and Shawn Neely. Feature-based Image Metamorpho-
sis. InSIGGRAPH 92 Conference Proceedings, pages 35–42. ACM
SIGGRAPH, July 1992.

[4] Philippe Bergeron and Pierre Lachapelle. Controlling Facial Expres-
sions and Body Movements in the Computer-Generated Animated
Short “Tony De Peltrie”. InSIGGRAPH 85 Advanced Computer Ani-
mation seminar notes. July 1985.

[5] Christoph Bregler, Michele Covell, and Malcolm Slaney. Video
Rewrite: Driving Visual Speech with Audio. InSIGGRAPH 97 Confer-
ence Proceedings, pages 353–360. ACM SIGGRAPH, August 1997.

[6] David T. Chen, Andrei State, and David Banks. Interactive Shape
Metamorphosis. In1995 Symposium on Interactive 3D Graphics, pages
43–44. ACM SIGGRAPH, April 1995.

[7] Chang S. Choi, Kiyoharu, Hiroshi Harashima, and Tsuyoshi Takebe.
Analysis and Synthesis of Facial Image Sequences in Model-Based
Image Coding. InIEEE Transactions on Circuits and Systems for
Video Technology, volume 4, pages 257 – 275. June 1994.

[8] Cyberware Laboratory, Inc, Monterey, California.4020/RGB 3D Scan-
ner with Color Digitizer, 1990.

[9] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and
Rendering Architecture from Photographs: A Hybrid Geometry- and
Image-Based Approach. InSIGGRAPH 96 Conference Proceedings,
pages 11–20. ACM SIGGRAPH, August 1996.

[10] Eben Ostby, Pixar Animation Studios. Personal communication, Jan-
uary 1997.

[11] Paul Ekman and Wallace V. Friesen.Unmasking the Face. A guide to
recognizing emotions fron facial clues. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1975.

[12] Paul Ekman and Wallace V. Friesen.Manual for the Facial Action Cod-
ing System. Consulting Psychologists Press, Inc., Palo Alto, California,
1978.

[13] Irfan Essa, Sumit Basu, Trevor Darrell, and Alex Pentland. Modeling,
Tracking and Interactive Animation of Faces and Heads Using Input
from Video. InComputer Animation Conference, pages 68–79. June
1996.

[14] Gary Faigin. The Artist’s Complete Guide to Facial Expression.
Watson-Guptill Publications, New York, 1990.

[15] Olivier Faugeras.Three-Dimensional Computer Vision: A Geometric
Viewpoint. MIT Press, Cambridge, Massachusetts, 1993.

[16] G. Golub and C. F. Van Loan.Matrix Computation, third edition. The
John Hopkins University Press, Baltimore and London, 1996.

[17] Brian Guenter, Cindy Grimm, Daniel Wood, Henrique Malvar, and
Fréd́eric Pighin. Making Faces. InSIGGRAPH 98 Conference Pro-
ceedings. ACM SIGGRAPH, July 1998.

[18] Pat Hanrahan and Wolfgang Krueger. Reflection from Layered Sur-
faces Due to Subsurface Scattering. InSIGGRAPH 93 Conference
Proceedings, volume 27, pages 165–174. ACM SIGGRAPH, August
1993.

[19] Bright Star Technologies Inc.Beginning Reading Software. Sierra
On-Line, Inc., 1993.

[20] Horace H. S. Ip and Lijun Yin. Constructing a 3D Individualized Head
Model from Two Orthogonal Views.The Visual Computer, 12:254–
266, 1996.

[21] Gregory Ward J., Francis M. Rubinstein, and Robert D. Clear. A Ray
Tracing Solution for Diffuse Interreflection. InSIGGRAPH 88 Con-
ference Proceedings, volume 22, pages 85–92. August 1988.

[22] James R. Kent, Wayne E. Carlson, and Richard E. Parent. Shape Trans-
formation for Polyhedral Objects. InSIGGRAPH 92 Proceedings Con-
ference, volume 26, pages 47–54. ACM SIGGRAPH, July 1992.

[23] Rolf M. Koch, Markus H. Gross, Friedrich R. Carls, Daniel F. von
Büren, George Fankhauser, and Yoav I. H. Parish. Simulating Facial
Surgery Using Finite Element Methods. InSIGGRAPH 96 Conference
Proceedings, pages 421–428. ACM SIGGRAPH, August 1996.

[24] Tsuneya Kurihara and Kiyoshi Arai. A Transformation Method for
Modeling and Animation of the Human Face from Photographs. In
Nadia Magnenat Thalmann and Daniel Thalmann, editors,Computer
Animation 91, pages 45–58. Springer-Verlag, Tokyo, 1991.

[25] A. Lanitis, C. J. Taylor, and T. F. Cootes. A Unified Approach for
Coding and Interpreting Face Images. InFifth International Con-
ference on Computer Vision (ICCV 95), pages 368–373. Cambridge,
Massachusetts, June 1995.

[26] C. L. Lawson and R. J. Hansen.Solving Least Squares Problems.
Prentice-Hall, Englewood Cliffs, 1974.

[27] Seung-Yong Lee, Kyung-Yong Chwa, Sung Yong Shin, and George
Wolberg. Image Metamorphosis Using Snakes and Free-Form Defor-
mations. InSIGGRAPH 95 Conference Proceedings, pages 439–448.
ACM SIGGRAPH, August 1995.

[28] Seung-Yong Lee, George Wolberg, Kyung-Yong Chwa, and Sung Yong
Shin. Image Metamorphosis with Scattered Feature Constraints.IEEE
Transactions on Visualization and Computer Graphics, 2(4), December
1996.

[29] Yuencheng Lee, Demetri Terzopoulos, and Keith Waters. Realistic
Modeling for Facial Animation. InSIGGRAPH 95 Conference Pro-
ceedings, pages 55–62. ACM SIGGRAPH, August 1995.

[30] Yuencheng C. Lee, Demetri Terzopoulos, and Keith Waters. Con-
structing Physics-Based Facial Models of Individuals. InProceedings
of Graphics Interface 93, pages 1–8. May 1993.

[31] Francis H. Moffitt and Edward M. Mikhail.Photogrammetry. Harper
& Row, New York, 3 edition, 1980.

[32] Shree K. Nayar, Katsushi Ikeuchi, and Takeo Kanade. Shape from
Interreflections.International Journal of Computer Vision, 6:173–195,
1991.

[33] Gregory M. Nielson. Scattered Data Modeling.IEEE Computer
Graphics and Applications, 13(1):60–70, January 1993.

[34] Frederic I. Parke. Computer Generated Animation of Faces.Proceed-
ings ACM annual conference., August 1972.

[35] Frederic I. Parke. A Parametric Model for Human Faces. PhD thesis,
University of Utah, Salt Lake City, Utah, December 1974. UTEC-CSc-
75-047.



[36] Frederic I. Parke and Keith Waters.Computer Facial Animation. A K
Peters, Wellesley, Massachusetts, 1996.

[37] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling.
Numerical Recipes in C: The Art of Scientific Computing. Cambridge
University Press, Cambridge, England, second edition, 1992.

[38] Kari Pulli, Michael Cohen, Tom Duchamp, Hugues Hoppe, Linda
Shapiro, and Werner Stuetzle. View-based rendering: Visualizing real
objects from scanned range and color data. InProc. 8th Eurographics
Workshop on Rendering. June 1997.

[39] Steven M. Seitz and Charles R. Dyer. View Morphing. InSIGGRAPH
96 Conference Proceedings, Annual Conference Series, pages 21–30.
ACM SIGGRAPH, August 1996.

[40] Chester C. Slama, editor.Manual of Photogrammetry. American So-
ciety of Photogrammetry, Falls Church, Virginia, fourth edition, 1980.

[41] Richard Szeliski and Sing Bing Kang. Recovering 3D Shape and Mo-
tion from Image Streams using Nonlinear Least Squares.Journal of
Visual Communication and Image Representation, 5(1):10–28, March
1994.

[42] Richard Szeliski and Heung-Yeung Shum. Creating Full View
Panoramic Image Mosaics and Texture-Mapped Models. InSIG-
GRAPH 97 Conference Proceedings, pages 251–258. ACM SIG-
GRAPH, August 1997.

[43] Demetri Terzopoulos and Keith Waters. Physically-based Facial Mod-
eling, Analysis, and Animation.Journal of Visualization and Computer
Animation, 1(4):73–80, March 1990.

[44] Kristinn R. Th́orisson. Gandalf: An Embodied Humanoid Capable of
Real-Time Multimodal Dialogue with People. InFirst ACM Interna-
tional Conference on Autonomous Agents. 1997.

[45] Michael W. Vannier, Jeffrey F. Marsh, and James O. Warren. Three-
dimentional Computer Graphics for Craniofacial Surgical Planning and
Evaluation. InSIGGRAPH 83 Conference Proceedings, volume 17,
pages 263–273. ACM SIGGRAPH, August 1983.

[46] Keith Waters. A Muscle Model for Animating Three-Dimensional
Facial Expression. InSIGGRAPH 87 Conference Proceedings), vol-
ume 21, pages 17–24. ACM SIGGRAPH, July 1987.

[47] Lance Williams. Performance-Driven Facial Animation. InSIG-
GRAPH 90 Conference Proceedings, volume 24, pages 235–242. Au-
gust 1990.

[48] Z. Zhang, K. Isono, and S. Akamatsu. Euclidean Structure from Un-
calibrated Images Using Fuzzy Domain Knowledge: Application to
Facial Images Synthesis. InProc. International Conference on Com-
puter Vision (ICCV’98). January 1998.

A Least squares for pose recovery
To solve for a subset of the parameters given in Equation (2), we use linear
least squares. In general, given a set of linear equations of the form

aj · x− bj = 0, (4)

we solve for the vectorx by minimizing∑
j

(aj · x− bj )
2. (5)

Setting the partial derivative of this sum with respect tox to zero, we obtain∑
j

(aj a
T
j )x− bj aj = 0, (6)

i.e., we solve the set ofnormal equations[16](∑
j

aj a
T
j

)
x =
∑

j

bj aj . (7)

More numerically stable methods such asQR decomposition or Singular
Value Decomposition [16] can also be used to solve the least squares problem,
but we have not found them to be necessary for our application.

To update one of the parameters, we simply pull out the relevant linear
coefficientaj and scalar valuebj from Equation (2). For example, to solve
for pi , we set

a2k+0 = wk
i (xk

i η
krk

z − skrk
x), b2k+0 = wk

i (sktkx − xk
i )

a2k+1 = wk
i (yk

i η
krk

z − skrk
y), b2k+1 = wk

i (sktky − yk
i ).

For a scalar variable likesk, we obtain scalar equations

a2k+0 = wk
i (rk

x · pi + tkx ), b2k+0 = wk
i

(
xk

i + xk
i η

k(rk
z · pi )

)
a2k+1 = wk

i (rk
y · pi + tky ), b2k+1 = wk

i

(
yk

i + yk
i η

k(rk
z · pi )

)
.

Similar equations foraj andbj can be derived for the other parameterstkx , tky ,

andηk. Note that the parameters for a given camerak or 3D pointi can be
recovered independently of the other parameters.

Solving for rotation is a little trickier than for the other parameters, since
R must be a valid rotation matrix. Instead of updating the elements inRk
directly, we replace the rotation matrixRk with R̃Rk [42], whereR̃ is given
by Rodriguez’s formula [15]:

R̃(n̂, θ) = I + sinθX(n̂) + (1− cosθ)X2(n̂), (8)

whereθ is an incremental rotation angle,n̂ is a rotation axis, andX(v) is the
cross product operator

X(v) =

[
0 −vz vy
vz 0 −vx
−vy vx 0

]
. (9)

A first order expansion of̃R in terms of the entries inv = θn̂ = (vx, vy, vz) is
given byI + X(v).

Substituting into Equation (2) and lettingqi = Rkpi , we obtain

wk
i

(
xk

i + xk
i η

k(r̃k
z · qi )− sk(r̃k

x · qi + tkx )
)

= 0 (10)

wk
i

(
yk

i + yk
i η

k(r̃k
z · qi )− sk(r̃k

y · qi + tky )
)

= 0,

where r̃k
x = (1,−vz, vy), r̃k

y = (vz, 1,−vx), r̃k
z = (−vy, vx, 1), are the rows

of [I + X(v)]. This expression is linear in (vx, vy, vz), and hence leads to a
3×3 set of normal equations in (vx, vy, vz). Once the elements ofvhave been
estimated, we can computeθ andn̂, and update the rotation matrix using

Rk ← R̃(n̂k, θk)Rk.


