
Natural sounds are complex phenomena
because they typically contain a mixture

of events localized in time and frequency. Moreover,
dependencies exist across different time scales and fre-
quency bands, which are important for proper sound
characterization. Historically, acoustical theorists have
represented sound in numerous ways. Our research has
focused on a granular method of sonic analysis, which
views sound as a series of short, distinct bursts of ener-
gy. Using that theory, this article presents a statistical
learning algorithm for synthesizing new random
instances of natual sounds.

Applying wavelet analysis, our algorithm captures the
joint statistics of the coefficients
across time and scale. We develop a
method for synthesizing new ran-
dom instances of a sound texture
given an example of such a texture as
input. We can describe sound tex-
tures as a set of repeating structural
elements (sound grains) subject to
some randomness in their time
appearance and relative ordering but
preserving certain essential tempo-
ral coherence and across-scale local-
ization. For a large class of natural
and artificial sounds such as rain, a

waterfall, traffic noises, people babble, machine noises,
and so on, we can assume that the sound signals are
approximately stationary at some scale.

More specifically, treating the input sound texture as
a sample of a stochastic process, we construct a tree rep-
resenting the signal’s hierarchical wavelet transform.
From this tree, we generate new random trees by learn-
ing and sampling the conditional probabilities of the
paths in the original tree. Transforming these random
trees back into signals results in new sound textures that
closely resemble the original sound source’s sonic
impression without exactly repeating it. Note that our
method generates the new tree down to the lowest detail
level without resorting to higher level atomic segmen-
tation, thus achieving a fine grained novel resynthesis.
Moreover, our method works equally well for both sto-

chastic and periodic sound textures.
Our method closely relates to several recent 2D tex-

ture synthesis techniques. We discuss this relation in
more detail in the sidebar “Relation to Earlier Work.”

Applications of our method are abundant and include,
for example, automatic generation of sound effects, cre-
ative musical and sonic manipulations, and virtual real-
ity sonification. We visually demonstrate the sound
synthesis examples in this article and acoustically
demonstrate them in an accompanying Web site (see
http://www.cs.huji.ac.il/~danix/texsyn/sound) and in
the CG&A CD-ROM supplement included with this issue.

Granular synthesis and sound textures
More than 50 years ago, Gabor1 formulated a theory

that sound is perceived as a series of short, discrete
bursts of energy. He suggested that within a short time
window (10 to 20 milliseconds) the ear could register
one event at a specific frequency. This approach has led
to the development of granular methods of sonic analy-
sis. Granular synthesis2-4 is one of the most appealing
models for sound texture synthesis. Creating a complex
sound requires combining thousands of brief acoustical
events (grains). These methods, although rooted in
time-domain manipulations, are closely linked to time-
frequency sound representation schemes such as the
wavelet or short-time Fourier transform, which provides
a local representation through waveforms or grains mul-
tiplied by coefficients independent of one another. Note
that granular synthesis is a generative technique that
lacks analysis methods. In this article, we suggest one
such method that lets us construct, in a principled man-
ner, a new desired sound according to statistics derived
from an existing natural sound example.

When considering sound models, we must distinguish
between quasiperiodic and stochastic signals. Existing
methods for sound processing or synthesis usually dif-
ferentiate between periodic and stochastic signals.
Applying these analysis and synthesis methods requires
some kind of preprocessing to separate the sound into
periodic and stochastic parts3 as well as determining
natural transition points for segmenting a sound into
atomic grains.4

0272-1716/02/$17.00 © 2002 IEEE

Virtual Worlds, Real Sounds

38 July/August 2002

We present a statistical

learning algorithm for

synthesizing random

instances of sound textures

from an existing natural

sound example.

Shlomo Dubnov
Ben-Gurion University, Isreal

Ziv Bar-Joseph
Massachusetts Institute of Technology

Ran El-Yaniv
Technion–Israel Institute of Technology

Dani Lischinski and Michael Werman
Hebrew University of Jerusalem, Israel

Synthesizing Sound
Textures through
Wavelet Tree
Learning



In our approach, we don’t assume any specific model
for the sound source. In this article, we focus on statistical
analysis and random resynthesis of a subclass of sounds
that we call textures. These types of sounds are amenable
to local stationary modeling. Thus, our only assumption is
that statistical characterization of the joint time-frequency
or time-scale relations of the signal is possible.

Statistical learning
One of the main tasks in statistical learning5 is esti-

mating an unknown stochastic source given one or more
training examples, which are samples from the source.
For instance, a sample can be a sequence of movie
frames, a texture image, a sound segment, and so on.
Statistical learning aims to construct a statistical model
of the source that fits the given sample(s) and general-
izes it to generate previously unseen samples. General-
ization is a key issue in learning. A model with good
generalization can generate new random samples with
a probability distribution that resembles that of the
unknown source. Generating such new random sam-
ples is referred to as sampling the model. Thus, our basic
assumption in this work is that the sound texture given
to us as input is a random sample of an unknown sto-
chastic source. Our goal is to faithfully learn a statistical
model of this source.

Because we developed our method as an extension of
a statistical learning technique for universal prediction
(and synthesis) of discrete sequences (consisting of dis-
crete symbols from a finite alphabet),6,7 we begin by
explaining the main idea behind the routine for pre-
dicting discrete sequences. Consider signal samples s1,
s2, …, sk where each of the signals si is assumed to
emerge from a stochastic source Si. Although the sources
Si are unknown, we assume that si is a typical example
conveying the essential statistics of its source. Our task
is to estimate the statistics of a hypothetical source Z =
Z(S1, …, Sk) called the mutual source of S1, …, Sk. Intu-
itively, the source Z is the closest (in a statistical sense)
to all the Si simultaneously. After learning the mutual
source Z, we can sample it to synthesize mixed signals
that are statistically similar to each of the sources Si (and
the examples si). In the special case where the samples
s1, …, sk originate from the same source S (that is,
S=S1=…=Sk), the mutual source Z is exactly S. When
we sample from Z, we synthesize new random examples
that resemble each of the given examples si.

The particular estimation algorithm for the sequences
we use extends the algorithm by El-Yaniv,7 which oper-
ates on sequences over a finite alphabet rather than on
real numbers. Given a sample sequence s, this algorithm
generates new random sequences that could have been
generated from the source of s. In other words, based only
on the evidence of s, each new random sequence is simul-
taneously statistically similar to s. The algorithm gener-
ates the new sequence without explicitly constructing a
statistical model for the source of s as follows. Suppose
we generated si, the first i symbols of the new sequence.
To choose the next (i + 1) symbol, the algorithm search-
es for the longest suffix of si in s. Among all the occur-
rences of this suffix in s, the algorithm chooses one such
occurrence x uniformly at random and chooses the next

symbol of si to be the symbol appearing immediately after
x in s. Figure 1 illustrates this process.

Assume that the sequence s4 has already been gener-
ated based on the input sample sequence s. To sample S
for the next symbol (to be concatenated to s4), we locate
all the occurrences of the longest suffix of s4 in s. In Fig-
ure 1, the longest suffix is 001 and its three occurrences
in s are underlined. We now randomly and uniformly
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Relation to Earlier Work
In previous work,1 we demonstrated the application of our

statistical learning algorithm to the task of synthesizing 2D textures
and texture movies. However, a significant difference exists
between synthesizing 2D texture images and sound textures. In
our sound-synthesis algorithm, we demand that the candidates “to
continue a node in the synthesized tree” come from nodes in the
input tree that have a similar set of ancestors and a similar set of
temporal predecessors. This additional constraint, which we used
for the first time in this work, comes from the nature of the sound
signal. There’s a clear and natural ordering of the values of such a
signal (along the temporal axis). Thus, we must consider the order
of the values when generating the new MRA tree. This distin-
guishes our method from statistical 2D texture synthesis methods
such as Bar-Joseph et al.1 and De Bonet,2 in which there’s no linear
ordering of values.

Another advantage of looking at the predecessors comes from
our algorithm’s tree nature. It’s possible for temporally adjacent
nodes in the tree to have paths with few common ancestors. Thus,
if predecessor similarity weren’t considered, then two such nodes
would be synthesized almost independently of each other. By
imposing predecessor similarity, we force our algorithm to consider
each node’s temporal neighborhood.

Our approach resembles the more recent independently
developed 2D texture synthesis technique of Wei and Levoy.3 Their
method fills in pixels in a synthesized texture based on the
similarity of the casual neighborhood of the pixel to be filled in to
neighborhoods in the original texture, as well as based on the
neighborhoods of the pixel’s ancestors. To our knowledge, Wei and
Levoy’s method hasn’t yet been applied to sound texture synthesis.
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1 A step in a model-estimation algorithm for
sequences over a two-letter alphabet.



choose one of these subsequence occurrences and take
the symbol immediately following the chosen occurrence.
Two of these occurrences are followed by 1 and one occur-
rence is followed by 0 (denoted by the down arrows).
Therefore, the probability of generating s5 =00011 is 2/3
and the probability of generating s5 = 00010 is 1/3.

In our case, the sequences correspond to paths in a
sound-texture wavelet tree. (We describe the construc-
tion of such trees in the next section.) Each tree node
contains a real number and not a discrete symbol. There-
fore, we must modify the sequence generation algo-
rithm to work on sequences of real numbers instead of
sequences over a finite alphabet. Accordingly, we replace
the exact suffix match in the original method by an
approximate match using the sum of the absolute dif-
ferences along the relevant paths. We describe the mod-
ified algorithm in the section “Synthesis algorithm.”

Wavelets
Wavelets have become the tool of choice in analyzing

single and multidimensional signals, especially if the
signal has information at different scales and times. The
fundamental idea behind wavelets is to analyze the sig-
nal’s local frequency at all scales and times, using a fast
invertible hierarchical transform. Researchers have
effectively used wavelets in many fields, including music
and voice coding, image and video compression and pro-
cessing, stochastic resonance, computer graphics and
geometric modeling, fast numerical algorithms, and
financial data analysis.

A wavelet representation is a multiscale decomposi-
tion of the signal. We can view it as a complete tree,
where each level stores the projections of the signal onto
the wavelet basis functions of a certain resolution. All
basis functions at a particular level are translated copies
of a single function. Thus, the wavelet transform is a
series of coefficients describing the behavior of the sig-
nal at dyadic scales and locations.

The wavelets we use in this work to analyze the input
signal and generate the corresponding multiresolution
analysis (MRA) tree are Daubechies wavelets8 with five
vanishing moments (see Figure 2). We compute the
wavelet transform using a cascade filter bank as follows.
Initially, we split the signal into low-pass or scaling coef-
ficients by convolving the original signal with a low-pass
or scaling filter and compute the wavelet and detail coef-

ficients by convolving the signal using a Daubechies
wavelet filter. We subsample both responses by a factor
of 2 and apply the same filters again on the scaling coef-
ficients, and so forth. Figure 3 illustrates this process.
The time to compute this transform is linear in the size
of the input signal.

We can also transform the wavelet coefficients back
into the original signal in linear time. The computation
proceeds from the root of the tree down to the leaves,
using filters complementary to those used in the wavelet
transform.

Figure 4 shows the wavelet analysis of a crying baby
sound, which contains sharp and continuous sound ele-
ments (coughing and crying). The detail coefficients at
the four finest levels (as well as the two levels in the
zoomed view) reveal a strong dependence between the
parent coefficients in one level and their corresponding
children coefficients in the next level. Furthermore, the
signal’s temporal structure at each level is far from ran-
dom. We can visually observe the rather regular alter-
nating sign (or a modulated sinusoidal-like) temporal
behavior of the coefficients at scale 14. We can’t preserve
this behavior in the resynthesis step from scale consid-
erations—it must be imposed over time. Achieving
appropriate temporal evolution avoids clicks or other
artifacts in the resynthesis.

In summary, each coefficient depends on its scale
ancestors (upper level) and temporal predecessors in
the same level (those to its left). Thus, in our approach
we model the statistics of every coefficient as dependent
on both its ancestors from coarser levels and its prede-
cessors in the same level.

A key issue when modeling, analyzing, and learning
signals is choosing how to represent them. For example,
we can represent a 1D signal with a sequence of values.
Alternatively, we can represent it in the frequency domain
via the Fourier transform. These two representations are
common for modeling 1D (and 2D) signals, and various
well-established approaches exist for estimating the
underlying unknown source with respect to such repre-
sentations (see, for example, Box et al.9 and Merhav and
Feder10). Although such representations have been suc-
cessfully used in many application domains, they aren’t
adequate for representing and analyzing textural signals
such as the ones we treat in this article. Such signals typ-
ically contain detail at different scales and locations.
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Many recent research efforts suggest
that better representations for such
signals are multiresolution struc-
tures, such as wavelet-based repre-
sentations (see, for example,
Basseville et al.11 and Wornell and
Oppenheim12). Basseville et al. pro-
vide a theoretical formulation of sta-
tistical modeling of signals by
multiresolution structures. These
results consider a generative sto-
chastic source that can randomly
generate multiresolution structures.
They show that stationary signals can
be represented and generated in a
hierarchical order, where first the
coarse, low-resolution details are
generated and then the finer details
are generated with the probability
that only depends on the already
given lower resolution details. We’ve
successfully applied hierarchical rep-
resentation to modeling the statistics
of 2D textures and 3D time-depen-
dent textures.13

The assumption that the signal is
emitted from a stationary source
entails that its tree representation
exhibits the following property: all
the paths from the root to all nodes
of the same level have the same dis-
tribution and any such path can be
effectively modeled via a finite-
order stochastic process. In the case
of audio signals, we must formulate
more sophisticated dependency structures to capture
the connection across time and scale simultaneously. In
this case, allowing arbitrary links might be too compli-

cated and unnecessary. We simplify the situation by
assuming that each wavelet sequence is stationary
across time. This lets us model the joint distribution as
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an innovation process—that is, the probability of an
error between its value and the expectation conditioned
on its past. Again, we can do this by using the model-
estimation algorithm.

We adopted this view and developed an algorithm
that learns a source’s conditional distributions. We
transform the sample to its multiresolution, tree repre-
sentation and learn the conditional probabilities along
the tree’s paths using an estimation method for linear
sequences. Once a candidate tree is generated according
to ancestor or child statistics, the algorithm performs a
second learning phase across time. This second search
is done along the predecessor nodes—neighboring
nodes appearing previously in time. (Note that these
nodes could be rather distant in terms of their tree graph
topology.) This step results in a reduced set of candidate

sequences that represent statistically significant depen-
dencies among wavelet coefficients of the original sig-
nal across scale and time.

Synthesis algorithm
Here we describe our algorithm for synthesizing a

new sound texture from an example. As we explained
earlier, the input signal is wavelet-transformed to an
MRA tree. From our synthesis algorithm’s point of view,
the input signal is now encoded as a collection of paths
from the root of the tree toward the leaves. We assume
each such path to be a realization of the same unknown
stochastic source. Our goal is to generate a new tree,
whose paths are typical sequences generated by the
same source. We construct a new signal from the result-
ing random MRA tree by applying the inverse wavelet
transform, as we described earlier.

Figure 5 shows the pseudocode of our tree synthesis
algorithm. The generation of the new tree proceeds in
breadth-first order (that is, level by level). First, the algo-
rithm copies the value of the root of the new tree T new

from the root value of the input tree T. The algorithm
copies the values of the nodes on level 1 as well. Now,
let’s assume that we’ve already generated the first i lev-
els of T new. To generate the next level, we must add two
children nodes to each node in level i (the MRA of a 1D
signal is a binary tree). Let vi be the value of such a node,
and denote vi−1, vi−2, …, v1 as the values of that node’s
ancestors along the path toward the tree’s root. Also,
denote p−1, p−2, …, p−k as the nodes that appear on the
same level in the MRA tree immediately preceding vi in
time—in other words, the k neighbors of vi from the left.
The algorithm searches among all the nodes in the ith
level of T for nodes wi with the maximal-length ε-similar
path suffixes wi−1, w i−2, …, wj, where ε is a user-specified
threshold. This search is performed in the first part of
the routine CandidateSet in Figure 5. For the nodes with
the maximal-length suffixes, we look for those nodes
whose k predecessors resemble those of vi (where k is a
user-defined value). The algorithm then randomly
chooses one of these candidate nodes and copies the
values of its children to the children of node vi. This
process forms a complete new tree.

Our algorithm constructs an output tree T new of the
same size as the input tree. In principle, it’s easy to con-
struct a larger (deeper) output tree. Let d be the input
tree’s depth. To construct an output tree of depth d + 1,
we first invoke our algorithm twice to compute two new
trees. We then feed the roots of these trees as a low-res-
olution version of the new signal to the MRA construc-
tion routine, which uses those values to construct the
new root and the first level of the new MRA hierarchy.
In this manner, we generate sound textures of arbitrary
length from a short input sample of the sound.

Reducing the number of candidates
A naive implementation of our tree synthesis algo-

rithm requires examining all the nodes at level i in the
original tree to find the maximal ε-similar paths for
every node vi on level i in the new tree. Given a 2m input
signal, in the bottom level, our algorithm has to check
2m−1 nodes in the new tree, so applying the naive algo-
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Input: The MRA tree T of the input signal, threshold ε
Output: A new tree T new generated by 
the estimated stochastic source of T

Initialization:
Root(T new) := Root(T)
for j = 1 to 2

Childj(Tnew) := Childj(T)
endfor

Breadth-First Construction:
for i = 1 to d − 1 (where d is the depth of T):

foreach node vi on level i of T new

C := CandidateSet(T, i, vi, ε)
Randomly choose a node wi in the candidate set C
Copy the values of the children of wi to those of vi

endfor
endfor

procedure CandidateSet(T, i, vi, ε)
Let v1, v2,…,vi−1be the ancestors of vi

foreach node wi on level i of T
Let w1, w2,…,wi−1 be the ancestors of wi

L[wi] := 0, sum := 0
for l = i to 1

sum+ =|vl − wl|
if sum/(i−l+1) < ε then L[wi]++else break

endfor
endfor
M1 := maxwi L[wi]
Let p−1, p−2,…,p−k be the predecessors of vi

foreach node wi with L[wi] ==M1
Let q−1, q−2,…,q−k be the predecessors of wi

S[wi] := 0
for l = −1 to −k

if |pl − ql| < ε then S[wi]++else break
endfor

endfor
M2 := maxwi S[wi]
return the set of all nodes wi

such that L[wi] ==M1 and S[wi] ==M2

5 The tree synthesis algorithm.



rithm results in a quadratically growing number of
checks. Because we search for a path of length m −1 and
the k predecessors for each node, synthesizing long
sound signals becomes prohibitively slow. However, we
can avoid much of the search by inheriting the candi-
date sets from parents to their children in the tree. Thus,
while searching for maximal ε-similar paths of node vi,
the algorithm must only examine the children of the
nodes in the candidate sets that were found for vi−1 while
constructing the previous level. The result is a drastic
reduction in the number of candidates. Of course, the
actual number of candidates depends on the threshold,
but in almost all cases, we found that the number is
small (between 4 and 16).

Threshold selection
Our algorithm considers two paths similar when the

differences between their values fall below a certain
threshold. The threshold controls the amount of ran-
domness in the resulting signal and its similarity to the
input. In the extreme, too small a threshold might cause
the result to be an exact copy of the input. Thus, the
threshold’s value has a large impact on the outcome.

We can’t expect users to select an appropriate thresh-
old for the temporal dimension because it’s difficult to
assess the size of the temporal features in the sequence
simply by observing it. Our technique for choosing a
threshold for the temporal dimension is inspired by
wavelet compression methods for images.14 The idea
behind wavelet compression is to zero out coefficients
with an L1 norm less than some small number a. This
decimation of the coefficients results in little perceptu-
al effect on subjective image quality. By the same token,
we let our algorithm switch between coefficients whose
values are no more than 2a apart. Thus, we let users

specify a percentage P. We then compute the interval 
[−a, a] containing P percent of the signal coefficients
and set the temporal threshold value to 2a.

Results
Our results demonstrate a high-quality resynthesized

sound, with almost no artifacts due to the random gran-
ular recombination of different segments of the origi-
nal input sound. We used the Daubechies wavelet with
five vanishing moments to compute the MRA used by
our synthesis algorithm. We computed the threshold for
the learning algorithm with P usually set between 60 to
70 percent, and we checked five predecessors for each
node (k).

The results show that there’s a correct recreation of
the short (transient or percussive), noisy, and burst-like
parts as well as the more periodic or pitch parts. Apply-
ing our algorithm without learning the similarity of the
predecessors—that is, only checking the ancestors’
dependence—can still produce good results if the orig-
inal input is completely segmented (for example, a
sound that contains noise and transient or percussive
components only). It’s important to check the prede-
cessors whenever a signal contains a pitch or quasiperi-
odic component. Without such checking, the resulting
signal suffers from significant distortion. Grossly speak-
ing, imposing predecessor similarity ensures a smooth
interpolation between adjacent components in time,
which is necessary when periodicity exists in the input
signal.

Figure 6 shows the application of our algorithm to the
task of synthesizing a crying baby’s sound. The input
sound contains short coughing sounds and longer
pitched crying sounds. To better observe the different
sound elements’ structure, we analyzed the same sound
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by short-time Fourier analysis (spectrogram). Figure 7
compares the resulting spectra.

Figure 8 shows another example that even better
demonstrates the algorithm’s capability to handle both
short and continuous sounds of a stochastic and peri-
odic nature. This example is a funny mixture of short
vocal expression such as bursts of laughter, shouts, and
exclamations. The mixing here is a reshuffling of the cor-
rect sound segments. The results show that the algo-

rithm arrives at almost perfect segmentation of the dif-
ferent sounds and creates a smooth recombination. This
is one of the best examples of the operation of our syn-
thesis method. Figure 9 shows the spectral images of the
same sounds.

Our third example is a traffic-jam sound recording
(see Figure 10). This is an example of a sound texture
that contains overlapping background noise of the street
noise and shorter duration harmonic events of the car
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horns. The resulting sound (Figure 11, next page) com-
bines all components, although in quite a different man-
ner than in the original excerpt.

A sound that seems to be difficult for our algorithm
is splashing water on a shore, shown in time and spec-
tral views in Figures 12 and 13 (next page), respectively.
This sound texture consists of a continuous background
texture overlaid by transient splashes. The resulting

synthesized sound reveals that the algorithm some-
times creates repetitions of short splashes that weren’t
apparent in the original sound. Because our ear is sen-
sitive to rhythmical patterns, these repetitions create
an impression of a more “nervous” splashing activity
than the original sound. Although it’s difficult to
observe this artifact, you’ll notice the fast repeating
shapes in the sound waveform (see Figure 12b) at
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around 2 to 3 seconds of the synthesized sound.
The last example is of a Formula 1 race (see Figure

14). Here the sound file contains the sounds of an accel-
erating engine, gear shifts, and another passing car. This
example demonstrates that our algorithm still has lim-
ited capabilities in terms of capturing long sound phe-
nomena, such as a sound of an accelerating car that
takes several seconds. The synthesized output sound
has much shorter segments of the same type (the accel-
erating car sound is nearly periodic sound with increas-

ing pitch and shortening period in time), but the algo-
rithm prefers to chop the segments by switching
between gear shifts, the acceleration sound, and the
sound of the second car rather than create a long accel-
erating segment of a realistic duration (see
http://www.cs.huji.ac.il/~danix/texsyn/sound or the
CD-ROM supplement with this issue). This is the ner-
vous gear-shifting effect that seems to repeat from the
previous washing shore example. We didn’t show the
waveform in this example because we can’t see the long-
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term increasing pitch structure from the signal, but it’s
evident in the spectral view.

Future directions
Our results suggest that a principled mathematical

approach to sound texture analysis and resynthesis is pos-
sible and beneficial, even for mixed periodic and sto-
chastic sounds. This is, to our knowledge, the first
approach to sound-texture analysis and resynthesis that
doesn’t assume an implicit sound model. Moreover, it
doesn’t require a separate treatment of periodic and sto-

chastic components. There are many open directions for
future research related to synthesis of sound textures. For
instance, we can use the algorithm described in the “Sta-
tistical learning” section to mix two different texture
sounds. It would be interesting to explore this possibility.

Also, we can use an extension of our algorithm for
additional texture and audio-processing tasks such as
classifying sounds. To do this requires first learning the
mutual source and then using some statistical similarity
measure to estimate how close an unseen example is to
a source in a given database of already learned sources.
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An important aspect of texture generation in sound is
the ability to control the generation process. For instance,
it’s interesting to explore a relation between possible per-
ceptual features and texture statistics and then ask the
machine to generate a sound according to user specifi-
cations such as, “More of this sound and less of that
sound.” For example, users might want to generate a qui-
eter, relaxing, and smoother washing shore or try to gen-
erate a storm, ask the thunder to occur at a specific time,
make the racing car accelerate for 3 seconds, calm down
the baby or annoy it, and so on. These and possible addi-
tional extensions are subject to future work. ■
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