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Abstract

In this paper we propose a novel method for detecting and removing shadows from a single image thereby obtain-
ing a high-quality shadow-free image. With minimal user assistance, we first identify shadowed and lit areas on
the same surface in the scene using an illumination-invariant distance measure. These areas are used to estimate
the parameters of an affine shadow formation model. A novel pyramid-based restoration process is then applied
to produce a shadow-free image, while avoiding loss of texture contrast and introduction of noise. Unlike previous
approaches, we account for varying shadow intensity inside the shadowed region by processing it from the interior
towards the boundaries. Finally, to ensure a seamless transition between the original and the recovered regions we
apply image inpainting along a thin border. We demonstrate that our approach produces results that are in most
cases superior in quality to those of previous shadow removal methods. We also show that it is possible to easily
composite the extracted shadow onto a new background or modify its size and direction in the original image.

1. Introduction

The removal of shadows from a single image is an inter-
esting and important research problem. In computational
photography one may wish to remove shadows due to aes-
thetic reasons — for example, a shadow cast by the pho-
tographer onto the scene, or shadows added due to the use
of a flash. Shadows also often interfere with common com-
puter vision tasks, such as segmentation, tracking, and object
recognition [Ull96]. Thus, removing shadows as a prepro-
cess to these tasks could result in improved performance. In
addition, special effects often require removing objects, in
which case their shadows must be removed as well. Finally,
shadows provide important visual cues to our perception of
shape, occlusion, contact, etc. Thus, being able to remove,
add, and modify shadows in an image is an important image
manipulation tool.

The shadow removal process consists of two challenging
subtasks: detecting the shadowed region and restoring the il-
lumination in that region. The detection task involves some
degree of image understanding in order to determine whether
a pixel is dark due to a shadow or the reflectance at the
corresponding scene point. Accomplishing this task requires

making some assumptions about the shadowed surfaces in
the scene and/or asking the user for some hints. The restora-
tion task is also challenging, as it attempts to eliminate any
perceivable differences between the originally lit and the re-
stored parts of the image. In particular, it is difficult to avoid
differences in local contrast and in the amount of noise be-
tween the two regions. Another difficulty is presented by
shadowed regions where the intensity of the shadow is non-
uniform.

In this paper we propose new techniques addressing both
of the subtasks mentioned above. Our main technical con-
tributions are in the illumination restoration stage, consist-
ing of a novel pyramid-based restoration process that avoids
loss of texture contrast in the recovered regions by applying
an affine shadow recovery model at multiple scales. A more
detailed overview of our approach and contributions follows
the survey of related work below.

1.1. Related Work

Shadow detection and removal are closely related to the re-
covery of intrinsic images by separating an image to its re-
flectance and illumination components [BT78]. It is possible
to derive the reflectance component from a sequence of im-
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ages with varying illumination [MNIS04, Wei01]. However,
in this work we are interested in the case of a single image.

A method applicable to single images is described by Fin-
layson et al. [FDL04, FHD02]. In this approach, an illumi-
nant invariant image is obtained by projecting the colors
in an image onto a direction orthogonal to that of the in-
tensity and color change. The edges that are present in the
original image but absent in the invariant image are assumed
to lie on the boundaries of the shadows. Zeroing the corre-
sponding gradients and re-integrating yields a shadow-free
image. Re-integration may be done by solving the 2D Pois-
son equation [FDL04, FHD02], or by performing 1D inte-
gration along a Hamiltonian path that enters and exits each
shadow region exactly once [FF05]. A further simplification,
which replaces the integration by scaling the shadow with a
single constant factor (per color channel) has recently been
proposed [FF06].

These conceptually elegant methods have produced some
impressive results and represent the state-of-the-art in auto-
matic shadow removal from a single image. However, they
assume that within the shadow region the illumination is
constant and the gradients are entirely due to changes in
reflectance. Such an assumption does not account for the
self-shadowing caused by the small scale geometry on the
surface and for the changes in the amount of ambient illu-
mination that might occur across the shadowed region. Fur-
thermore, precise detection of shadow edges is a delicate
process, which requires careful parameter tuning. Small er-
rors in this process introduce visible errors in the images
reconstructed after these edges are removed. The methods
of Fredembach and Finlayson [FF05, FF06] further assume
that the shadow boundaries are rather sharp and that an en-
try point may be identified where the pixels on both sides
of the shadow boundary have the same reflectance (and thus
the gradient across the boundary is only due to the change in
illumination).

Mohan et al. [MTC07] describe a shadow editing tool that
does not assume sharp shadow edges. By fitting a gradient-
domain shadow edge model to the shadows they are able not
only to remove shadows, but also to perform a variety of
other shadow manipulations. However, in their system, the
user is asked to mark rough estimates of shadow edges and
to provide an initial estimate of the shadow sharpness, while
we are interested in a nearly-automatic approach.

Oh et al. [OCDD01] describe a “texture-illuminance de-
coupling filter”, which uses the bilateral filter to decouple
large and small-scale features thereby discounting the effect
of illumination on uniformly textured areas. This method as-
sumes that all large scale variations on such surfaces come
from changes in illumination and does not handle detailed
shadows of small objects correctly. Furthermore, the user is
required to specify the texture feature size.

Also related are methods for shadow matting, whose main
goal is to extract a matte for compositing a shadow onto

a new background. Chuang et al. [CGC∗03] introduce a
shadow compositing equation

I = βL+(1−β)S, (1)

which expresses the observed image I as a linear combina-
tion of a shadow-free image L and a (fully) shadowed image
S. They use a video sequence of the shadow-casting object
moving in front of a static background to extract the images
L and S, and then obtain the shadow matte β from eq. (1).
In contrast, we recover L from a single image, and use a
different (and more general) affine relationship between the
shadowed and the lit regions.

Wu et al. [WTBS07] extract both a shadow-free image
and a shadow matte from a single image. However, their
approach requires considerable user input: a quadmap in-
dicating shadowed and lit regions with similar textures, re-
gions of uncertainty, and regions to be excluded. As we shall
demonstrate, the approach presented in this paper is more
automated, while producing results of comparable or better
quality.

1.2. Overview

In this paper we propose a new method for shadow re-
moval from a single image. Our goal is a nearly-automatic
tool capable of producing high-quality shadow-free images.
Our method is applicable to cast shadows resulting from
the occlusion of a single primary light source (e.g., outdoor
scenes). We further assume that each shadow to be removed
is cast onto a scene surface (a region with coherent color
and texture) that has both shadowed and unshadowed (lit)
parts. The shadow may, however, cover additional adjacent
regions. It should be noted that, in practice, we have been
able to handle all of the test cases used in previous methods.

Our shadow removal process is depicted in Figure 1. It
begins with the user indicating the shadow to be removed by
a single mouse click in the interior of the shadowed region
(Figure 1a). From this minimal user input we automatically
compute a mask that indicates the lit part of the surface (Fig-
ure 1c), another mask that indicates the shadowed part (Fig-
ure 1d), and a mask for the entire shadowed area (Figure 1e).
This process is described in Section 2.

In Section 3, which contains the main technical contribu-
tions of our work, we present a novel pyramid-based restora-
tion process that is applied to produce the shadow-free image
without loss of texture contrast or introduction of noise. We
begin by deriving an affine relationship between the colors of
shadowed pixels in an image and their unshadowed colors.
The parameters of this affine model may be estimated for
different areas inside the shadowed region using the masks
obtained in the previous stage. Doing this at multiple scales
makes it possible to accurately reproduce the texture contrast
in the recovered areas. Furthermore, in contrast to previous
approaches, we account for varying shadow intensity inside
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Figure 1: Our shadow detection and removal process: (a) input image (the arrow points to the user-indicated shadowed pixel).
(b) shadow seed. (c) and (d) lit and shadowed areas on the same surface are detected. (e) a complete shadow mask is computed.
(f) the interior of the shadowed region is restored. (g) the removal process is completed by inpainting along the borders.

the shadowed region by processing it from the interior to-
wards the boundaries.

Finally, to ensure a seamless transition between the orig-
inal and the recovered regions we apply image inpainting
along a thin border (Section 4). In Section 5 we demonstrate
that our approach produces results that are generally superior
in quality to those of previous automatic shadow removal
methods. Furthermore, our results also compare favorably
with those of previous interactive methods, although we re-
quire only minimal user intervention. We also demonstrate
that it is possible to easily composite the shadows extracted
by our method onto a new background or modify their size
and direction in the original image.

2. Detection

The goal of the detection phase is to identify the shadowed
pixels to be recovered, as well as identify additional regions
that will be of use later in the recovery phase. More specif-
ically, the outcome of this phase is a collection of three
masks:

1. A mask Ms, which specifies an area that is entirely in-
side the shadow, with all of its pixels belonging to a single
surface (a region with roughly uniform color and texture).

2. A mask Ml , which specifies an area entirely outside the
shadow, with all of its pixels belonging to the same surface
as the previous mask.

3. A mask Mshadow, which specifies all of the pixels where
shadow removal is required.

The first two masks are used in the recovery phase to de-
rive the parameters of the shadow formation model. An ex-
ample of these three masks is shown in Figure 1(c–e). Note
that Ms is a proper subset of Mshadow, which may consist
of shadowed regions on several different surfaces (e.g., the
soccer ball in Fig. 1).

2.1. The shadow seed

To initiate the shadow removal process, the user indicates the
shadow to be removed. This may be done by a single mouse
click in the interior of the shadow, provided that the indicated
shadow location is on a surface that has both shadowed and
lit parts. For example, in Figure 1 the user should click on
the shadowed grass, rather than on the soccer ball. Next, an
iterative region growing process is applied that extends the
user-indicated point into a small patch inside the shadowed
portion of the surface. We refer to the resulting patch as the
shadow seed. An example is shown in Figure 1b.

More specifically, we perform a few (3–4) region growing
iterations, where in each iteration pixels that are adjacent to
the region are added to it, provided their colors lie within
a small tolerance from pixels already in the region, while
taking care not to cross strong edges in the image. This is
done on a filtered and downsampled version of the image in
order to reduce sensitivity to small variations in color across
a surface, as well as to speed up the process.

2.2. Computing Ms and Ml

We next extend the shadow seed to a complete mask Ms for
the shadowed portion of the surface and compute a mask
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Ml for the illuminated portion of the same surface. Our ap-
proach is to first identify all of the pixels in the image that
belong to the same surface as the shadow seed, either illu-
minated or shadowed, and then grow the shadow seed on
that surface until it contains the entire shadowed region. The
complementary part of the surface will be our illuminated
region. The image is filtered using a bilateral filter prior to
this stage, for the same reasons mentioned above.

To find other pixels (either shadowed or illuminated) on
the same surface as the shadow seed, we select pixels whose
distance from the color of the shadow seed is small under an
illumination invariant color distance measure. This is sim-
ilar in spirit to Finlayson’s idea of computing an invariant
image [FHD02]. Our invariant distance between two RGB
colors is defined as 1−|cosθ|, where θ is the angle between
their corresponding 3-vectors. Our intuition here is that the
RGB colors of points with similar reflectances in the scene
correspond to nearly collinear vectors, both when shadowed
and when illuminated. A related observation was also ex-
ploited by Omer and Werman [OW04]. This is a reason-
able approximation if the illuminant is roughly white (has
a roughly uniform spectrum). This assumption is only used
in the detection phase and will be relaxed in Section 3.

Using the above distance measure, we compute the dis-
tance between each pixel in the image and the median color
of the shadow seed. When examining the histogram of these
distances, one typically observes a large peak of pixels
whose distance from the seed is near zero. We therefore set
a threshold in the first valley in the histogram following this
initial peak. All of the pixels whose distance is below the
threshold are then classified as belonging to the same sur-
face as the seed.

Next, in order to identify the shadowed part of the surface
we look for a connected region with a similar distribution
of values to that of the pixels inside the shadow seed. This
is done by another iterative region growing process starting
from the shadow seed and using only those pixels that we
classified as belonging to the surface containing the seed. Let
A denote this set of pixels on the surface. We initialize Ms to
contain the pixels of the shadow seed, and initialize Ml to
A−Ms. In each iteration some pixels in Ml that are spatially
adjacent and similar in color to pixels in Ms are moved from
Ml to Ms. In the course of this process the standard deviation
of the pixels in Ms increases, while that of Ml decreases. We
stop the process one iteration before the standard deviation
of the pixels in Ms exceeds that of Ml . The intuition behind
this heuristic is that the standard deviation among the shad-
owed pixels should not exceed that of the lit pixels on the
same surface, and we found it to work well in practice.

In the above process we use two different metrics to mea-
sure the proximity between colors. The first metric simply
looks at the Y (luma) channel, since the shadowed pixels
should have similar brightness to that of the shadow seed,
while the lit pixels should be brighter. However, in practice

Figure 2: The results of the shadow detection phase. Each
row shows from left to right: input image, the unshad-
owed pixels in Ml , the shadowed pixels in Ms, the complete
shadow mask Mshadow.

there are also cases (e.g., due to self-shadowing) where some
pixels in the unshadowed region are also quite dark. In such
cases we found it more effective to measure proximity be-
tween the pixels using their chroma (Cb,Cr) channels. We
therefore perform the region growing process twice, using
the two different metrics. Eventually, the process that in-
duces the smallest number of connected components in Ms
and Ml is used.

2.3. Computing Mshadow

To obtain a complete binary mask of the shadowed region
we use the alpha matting approach described by Levin et al.
[LLW06]. As input to the alpha matting algorithm we con-
struct a trimap, which indicates for each pixel whether it is
definitely inside the shadow, definitely outside the shadow,
or unknown. The matting algorithm produces a complete al-
pha channel for the image. This matte is then thresholded (at
α = 0.5) to produce the binary shadow mask Mshadow.

The trimap is constructed as follows: we start with the
Ms region obtained earlier in the process and augment this
region with adjacent regions that are also shadowed, but be-
long to a different surface in the scene (i.e., pixels which are
surrounded by Ms, but do not belong to Ml).

All of the pixels in this augmented region are considered
to be definitely in shadow. We then dilate this region and
complement it to obtain the pixels considered to be definitely
outside. The remaining pixels are considered unknown.

Figure 2 shows the three masks computed using the tech-
niques described in this section on two examples.

3. Illumination Recovery

We begin this section with the derivation of the affine
shadow formation model, which we use (after estimating its
parameters) in order to recover the illumination inside the
shadowed areas. The parameter estimation is described in
section 3.2. Section 3.3 includes the description of our multi-
resolution recovery procedure in which we match statistics
across multiple scales and section 3.4 describes how we han-
dle non-uniform shadows.
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3.1. Shadow formation model

We start with the familiar image formation equation [BT78],

I(x, λ) = L(x, λ)R(x, λ), (2)

where I(x,λ) is the intensity reflected from point x in the
scene at wavelength λ, while L and R are the illumination
and the reflectance at the same point and wavelength. As-
suming a scenario where the cast shadows are due to a single
primary source of illumination (such as the Sun in outdoor
scenes). If a point x in the scene is unshadowed (lit), we may
express the illumination there as a sum of two terms,

L(x, λ) = Ld(x, λ)+La(x, λ), (3)

where Ld is the direct illumination and La is the remaining
indirect (ambient) illumination. Thus,

Ilit(x, λ) = Ld(x, λ)R(x, λ)+La(x, λ)R(x, λ) (4)

Next, suppose that some object in the scene occludes the
primary light source, casting a shadow on point x. Note that
the same occluder would typically also block some of the
ambient illumination that would have otherwise arrived at x.
In this case, the reflected intensity is

Ishadow(x, λ) = a(x)La(x, λ)R(x, λ), (5)

where a(x) is a spatially variant factor that accounts for
the attenuation of the ambient illumination by the occluder
inside the shadowed area. Here we assume that the ambi-
ent illumination has roughly the same spectral distribution
from all incident directions, otherwise the attenuation factor
a should also depend on the wavelength λ.

Combining the last two equations we can express the lit
intensity at x as an affine function of the shadowed intensity
there:

Ilit(x, λ) = Ld(x, λ)R(x,λ)+
1

a(x)
Ishadow(x, λ). (6)

When a scene is photographed, the actual color at a pixel
p corresponding to point x in the scene is obtained by in-
tegrating I(x, λ) with the camera’s sensor spectral response
functions. This linear operation does not change the affine
nature of the relationship between the shadowed and illumi-
nated intensities, and we obtain

Ilit
k (p) = αk(p)+ γ(p) Ishadow

k (p), (7)

where αk, k ∈ {R,G,B}, is the response of the camera to the
reflected direct illumination in the three RGB color channels,
and γ(p) = 1/a(x) is the inverse of the ambient attenuation
factor, which, under our assumptions, does not depend on the
wavelength. Thus, the illuminated pixel color may be recov-
ered from its shadowed color by estimating those four affine
parameters.

It should be noted that while Chuang’s [CGC∗03] shadow
matting equation (1) also implies an affine relationship be-
tween the lit and the shadowed intensity at a pixel, their

Figure 3: The relation between the intensities of pixels in
a shadowed scene (top left) and their intensities in the same
scene without a shadow (bottom left), for each of the three
color channels. The horizontal axis corresponds to the shad-
owed intensity, and the vertical axis to the illuminated inten-
sity. The plotted pixels come from the window indicated in
blue.

derivation does not account for the variation in the attenu-
ation of ambient light inside the shadowed regions, and they
have not used it to recover the lit intensities from the shad-
owed ones.

A qualitative empirical demonstration of our affine model
is shown in Figure 3. Two photographs of the same outdoor
scene were taken in rapid succession with and without the
presence of an object casting a shadow on the floor. For each
pixel in the shadowed region we plot its shadowed inten-
sity (horizontal axis) versus its illuminated intensity (vertical
axis). Each of the three RGB color channels is plotted with
the corresponding color. Examining this plot one can indeed
observe a roughly affine relationship similar to that of equa-
tion (7): The relationships for the three color channels look
like straight lines with the same slope, but shifted by differ-
ent amounts from the origin. The fact the the lines are not
perfect may be attributed to the presence of noise, particu-
larly in the darker shadowed pixels, and to the variations in
the reflectance of the asphalt surface onto which the shadow
is cast.

3.2. Parameter estimation

As shown above, in order to recover the illuminated inten-
sity at a shadowed pixel we need to estimate the four pa-
rameters of the affine model (7). In order to estimate these
parameters we use two strips of pixels: one inside the shad-
owed region, and the other outside the region. The pixels
contained in these two strips may come from different sur-
faces in the scene. In order to make the parameter estimation
reliable we should use only pixels that come from the same
surface. Therefore, among all the pixels contained in each
strip we only use those with colors that appear with suffi-
cient frequency in the corresponding mask (Ms for the shad-
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owed strip and Ml for the strip outside the shadow). Let S
and L denote the two resulting sets of pixels (shadowed and
illuminated, respectively). We then estimate the four param-
eters αR,αG,αB and γ of eq. (7) based on the mean colors of
S and L and the standard deviations of their luminances.

More formally, let µ(S) and µ(L) denote the mean colors
of the pixels in S and L, and let σ(S) and σ(L) denote the
standard deviation of their luminances. Then we set

γ =
σ(L)
σ(S)

(8)

and

αk = µk(L)− γµk(S), k ∈ {R,G,B}. (9)

Obviously, after applying these parameters to the pixels in
S, the mean and the standard deviation of the resulting set
would match those of L.

It should be noted that the above approach resembles the
color transfer method of Reinhard et al. [RAGS01], which
was also used by Wu et al. [WTBS07] in order to compute a
rough approximation to the shadow-free image.

3.3. Pyramid-based restoration

Simply applying the estimated affine parameters to each
pixel inside the shadowed region yields results that some-
times exhibit two artifacts, which may also be observed in
the results of previous methods.

The first artifact is that the texture in the recovered region
has less contrast than in the originally lit areas. One reason
for this is that the directional direct illumination in unshad-
owed regions yields higher contrast than the hemispherical
indirect illumination in shadowed regions. Moreover, neither
our affine model, nor any of the previous shadow formation
models, account for the fact that textured regions often ex-
hibit some fine scale self-shadowing even in the lit regions.
The second artifact is that the recovered region might exhibit
more noise than the surrounding lit areas. This is particularly
noticeable when the removed shadow was cast on a smooth
or a dark surface in the scene.

In order to overcome these problems and match the tex-
ture appearance of the restored shadow region to the origi-
nally illuminated region, we perform the parameter estima-
tion and the shadow removal using a Laplacian pyramid rep-
resentation of the image. The intuition behind this scheme is
that the texture in the recovered region will match better that
of the illuminated region, if we match the color statistics of
the pixels in S and L at a variety of spatial scales. A similar
idea was previously used in Heeger and Bergen’s seminal
texture synthesis work [HB95], and recently, in a different
context, by [ND06] for reconstruction of BTFs from sparse
measurements.

More specifically, we compute the Laplacian pyramid of
the image and also generate downsampled versions of the

Figure 4: Shadow restoration using the Laplacian pyramid.
Left column: the Laplacian pyramid of the input image. In
each level the affine model is applied in the areas under
Mshadow. The resulting modified pyramid (right column) is
flattened to obtain a restored image.

masks (Mshadow, Ms, and Ml) corresponding to each level
in the pyramid. At each level we estimate the parameters of
the affine model, as described in the previous section, and
apply these parameters to obtain a restored level. Finally, the
modified pyramid is flattened to obtain the restored image.
This process is illustrated in Figure 4. Figure 5 compares
the results obtained with pyramid-based restoration to those
obtained using a single (original) resolution. It may be seen
that texture is preserved better and the amount of introduced
noise is smaller.

To conclude, by matching the texture appearance across
multiple scales both artifacts mentioned above are reduced.
On the one hand, in textured shadow regions, the contrast
of the recovered texture is increased by matching its statis-
tics to those of the illuminated texture. On the other hand,
in textureless areas, matching the statistics with those in the
smooth illuminated region, tends to reduce the amplitude of
noise.

3.4. Non-uniform shadows

Another problem we would like to deal with is the fact that
in some scenes, the shadow intensity is not uniform across
the shadowed region. Typically, cast shadows become darker
closer to the occluding object (see Figure 8, rows 5 and 10,
column a). One explanation for this is that more of the in-

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



Y. Shor & D. Lischinski / Pyramid-Based Shadow Removal

Figure 5: Multi-resolution vs. single resolution shadow
restoration. Top row: the texture in the restored area (above
the black border) exhibits more contrast and looks more sim-
ilar to the original texture (under the black border) when re-
stored using the pyramid-based method. Middle and bottom
rows: the texture inside the restored area is smoother and
looks more similar to the original when restored using the
pyramid-based method. In contrast, the results in the right
column exhibit some noise amplified by the restoration.

direct illumination (e.g., sky light) is being blocked. Obvi-
ously, in this case the shadow cannot be completely removed
by applying a single set of parameters to the entire shadowed
region.

We address this problem by estimating a different set of
affine parameters for different areas inside the shadowed re-
gions. We generate a sequence of strips inside the shadowed
region, expanding from the interior of the region towards
its boundary (see Figure 6), and compute a different set of
affine parameters for each strip. Note, that as mentioned pre-
viously, the parameters are computed only using the subset
of pixels on the strip whose colors appear (with a sufficient
frequency) in the corresponding mask (Ms or Ml). These pa-
rameters are then only used to recover the intensities of the
pixels in the same strip. This process is only applied at the
coarsest level of the pyramid (the DC component of the im-
age), since we did not find this to be necessary at the other
(band-pass) levels. The effectiveness of this approach may
be seen in Figure 8 (rows 5 and 10, column b).

4. Border Handling

The borders of the shadow require special treatment since:
(i) the shadow mask Mshadow typically has some inaccura-

Figure 6: Using different strips when dealing with a non-
uniform shadow. Each strip of shadowed pixels is restored
using its own set of affine parameters estimated with respect
to the same strip of illuminated pixels just outside the shad-
owed region.

Figure 7: Left: An input image with a shadow. Middle: The
same scene without the shadow (ground truth). Right: A
shadow-free image produced with our method.

cies along its boundaries, and (ii) the shadow borders typ-
ically correspond to a penumbral region where the shadow
intensity is changing more rapidly than in the interior of the
shadow.

By processing the shadowed areas using thin strips, and
fixing each strip using the affine model as described in Sec-
tion 3 the problem area is typically reduced to a very thin
strip of pixels along the boundary of the shadow mask which
we then inpaint, as described below. Actually, we only in-
paint those parts of the border strip that separate the shad-
owed area from the illuminated area on the same surface (as
opposed to parts that separate the shadowed area from an-
other object). These parts are easily identified by checking
that pixels on one side of the border belong to Ms, while
those on the other side belong to Ml .

For the inpainting task we have experimented with a num-
ber of existing approaches (e.g., [CPT04]), but eventually
obtained the best results with a greedy approach that uses
graph-cut texture synthesis [KSE∗03].

The inpainting process is quite straightforward since the
region to be inpainted forms a very narrow curve. The idea is
to pick uniformly spaced points along the curve, consider a
window around each point and look for the closest matching
window in the close vicinity of the point. To measure dis-
tances between windows we use SSD, but exclude the pixels
to be inpainted. Once such a window is found it replaces the
window around the point, using min-cuts to find the optimal
seams, as described by Kwatra et al. [KSE∗03].
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(a) (b) (c) (d) (e) (f)

Figure 8: Comparison of our results with state-of-the-art shadow removal methods. (a) Input images. (b) Shadow removed
with our method. (c) Results from Finlayson et al. [FDL04]. (d) Results from Finlayson et al. [FHLD06]. (e) Results from
Hamiltonian path based shadow removal [FF05]. (f) Results from Wu et al. [WTBS07]. Please see the text for a detailed
discussion of the differences.
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5. Results

Our shadow removal technique was implemented in Mat-
lab. On a 300x400 image the shadow detection stage takes
6 to 40 seconds, the recovery stage 9 to 18 seconds, and the
border inpainting takes between 12 and 80 seconds. These
timings were measured on a 3.0GHz CPU with 2GB RAM.
The restoration process is demonstrated in the accompany-
ing video.

In order to validate our method, we photographed the
same scene, once with a shadow cast on it and once without,
to serve as the ground truth shadow-free image. The two im-
ages are shown in Figure 7 (left and middle, respectively).
The result of removing the shadow with our method is also
shown (on the right). Visually, our result is practically indis-
tinguishable from the ground truth image. In order to quanti-
tatively assess our method’s accuracy we also computed the
relative L1 error between our result and the ground truth im-
age. The error, computed only for those pixels whose values
were adjusted by our algorithm, was under 4 percent, on av-
erage. For comparison, the magnitude of noise in the ground
truth image is between 0.5 and 1 percent (the noise mag-
nitude was estimated from four images without the shadow,
taken in rapid succession). Thus, the inaccuracies introduced
by our method are larger than noise by only a small factor.

Figure 8 shows some of the shadow removal results ob-
tained with our technique (in each image we dealt with one
component of the shadow) and compares them to the re-
sults reported in previous works [FDL04, FHLD06, FF05,
WTBS07], which represent the state-of-the-art in shadow
removal from a single image. While all of these methods
are able to effectively remove shadows, a close examina-
tion of the results reveals certain artifacts present in previous
methods, but not in our results. In the results of Finlayson
et al. [FDL04, FHLD06] (columns c and d) exhibit some
smoothing artifacts along the removed shadow boundaries.
The reason is that along shadow boundaries the gradients
are typically only in part due to the shadow boundary, and in
part due to changes in reflectance (texture). Thus, completely
suppressing these gradients leads to smoothing errors in the
re-integrated image. For example, in the top row, artifacts
may be seen where the shadow boundary crosses the vertical
dark edges between the planks of wood (easier to see in the
second row, which shows a magnified portion of the images).

The Hamiltonian path based technique [FF05] (column e)
does not suffer from such artifacts on the border, but one
can still observe that the areas from which the shadow was
removed are somewhat darker than the surrounding origi-
nal illuminated areas (may be seen in rows 1–2 and 8–9).
The same artifact is also present in the results of Finlayson
et al. [FDL04, FHLD06] (particularly noticeable in rows 5
and 10). Our results do not exhibit such darkening because
of our explicit handling of shadow non-uniformity.

The results reported by Wu et al. [WTBS07] (column f)

Figure 9: Top: extracted shadows may be composited onto
a new background. Bottom: Warping the shadow mask and
compositing may be used to fake changes in the direction of
illumination.

Figure 10: Some failure examples. The input is on the left
and the output is on the right (without border inpainting in
the bottom example).

do not exhibit the same artifacts, but under closer examina-
tion it may be seen that there is noise and some loss of color
in the reconstructed areas. For example, in the result in the
top row, the colors on the ball are faded and resemble those
of the surrounding wood, while the result in the rows 8–9
exhibits some noise (may be seen better when the image is
magnified). Furthermore, each of these results were obtained
with user interaction, where the user was required to indicate
the shadowed region, the corresponding illuminated region,
regions to be excluded, and the region of uncertainty (along
the shadow border). In contrast, the results produced with
our method were obtained from minimal user input, and ex-
hibit none of the aforementioned artifacts.

Shadow compositing: Once the shadow mask has been
obtained and the affine shadow formation parameters have
been estimated for the pixels inside the shadow mask, the
shadow may be easily composited onto a novel background
image. Several such composites are shown in Figure 9.
By warping the shadow mask and compositing the warped
shadow back onto the shadow-free image (or onto a new
image) it is also possible to plausibly fake changes in the
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direction of the illumination. This is demonstrated by the se-
quence of images in the bottom row of Figure 9.

Failure cases: When the assumptions of our method are
strongly violated, the method may fail to produce a high
quality shadow-free image. Two failure examples are shown
in Figure 10. In the top example, the shadow is cast onto
a surface consisting of large pebbles with very strong self-
shadowing effects, and strong variations in color. Although
the shadow is detected accurately, no single set of affine pa-
rameters (for the entire shadowed region, or for entire strips
inside the region) is able to remove the shadow in a satisfac-
tory manner.

The bottom example in Figure 10 features a shadow cast,
in part, by a colorful semi-transparent beach ball, and in
part by an opaque object. Thus, the shadow consists of parts
formed by two different processes, and when it is removed
by our method, some residue of its color remains in the
shadow-free image.

6. Conclusions

We have described a new nearly-automatic method for pro-
ducing a high-quality shadow-free image from a single input
image. The main contributions of our work is a new multi-
resolution restoration routine, and the ability to handle shad-
ows of non-uniform intensity, by recovering the parameters
of an affine shadow model at multiple scales and locations
inside the shadowed regions. We have demonstrated that we
are able to faithfully reconstruct the color and texture in-
side the shadowed regions without the artifacts that may be
observed in the results of previous techniques and without
significant user interaction.

In the future we plan to work on lifting, as much as possi-
ble, the current limitations of our method. For example, we
believe our method could be extended to work on a multi-
colored shadowed surface by employing a more sophisti-
cated local parameter estimation strategy. The handling of
non-uniform shadows can also be improved by analyzing
the actual low-frequency changes in shadow intensity, rather
than simply assuming that the shadow becomes darker away
from the boundaries.
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