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Abstract. In classical geometric modeling, the primary objects of in-
terest are geometric pointsets, the primary representation scheme for
which is the boundary representation (Brep). Modern geometric model-
ing focuses on parametric families of pointsets, defined using geometric
operation graphs (GOGs), features and constraints. During interactive
design of families of objects, users interact with an example object from
the family. The example object is a pointset, hence is usually modeled
using the Brep.

In this paper we study the issue of which modeling scheme is most appro-
priate for the example object. We identify two major operations which
such a modeling scheme must support: display and selection. Selection
can be further decomposed into picking, invariant naming, and persis-
tent naming. We introduce the term Displayable-Selectable Models (DS-
models) as a generic term for models providing display and selection
functionality. We discuss the suitability of Breps to serve as DS-models
and whether other, perhaps simpler, representations could also serve as
DS-models.

1 Introduction

Geometric modeling deals with the representation and manipulation of geometric
entities in a computer. The major classification of studies in geometric modeling
is according to the nature of the geometric entities being studied. In classical
geometric and solid modeling, the objects of interest were pointsets. Researchers
have focused upon seeking unambiguous representation schemes for various types
of pointsets [Requicha80].

In current geometric and solid modeling, the entities of interest are families
of geometric objects [Hoffmann96, Shapiro95, Rappoport96a]. Such families are
usually parametric (that is, members of the family are indexed using a set of
external parameters), and may be specified using construction steps, constraints,
and high-level application-dependent features [Hoffmann93a, Shah96]. Research
on issues related to modeling families of objects gradually receives greater at-
tention than research on the classical pointset topics.

Interactive design of geometric models is greatly aided by visualizing the
current state of the designed model. Visualization of a family of geometric objects



is extremely difficult. For that reason, interactive design of object families is
usually done by interacting with an example object which belongs to the modeled
family. Users express their intentions on top of the example object and use it to
reconstruct a mental image of the designed family.

The example object is an important participant in interactive design sys-
tems, hence the question of which modeling scheme to use for modeling it is
important. Since the example object is a pointset, in principle all modeling and
representation schemes designed for modeling pointsets can be used to model it.

The boundary representation (Brep) has been a major representation scheme
for pointset objects from the early history of solid modeling [Mäntylä88]. A large
number of research papers have been written about Breps. Most of these papers
have dealt with the design and analysis of specific Brep data structures [Woo85,
Mäntylä88, Alla91, Guibas85] and with algorithms operating on Breps, such as
Boolean operations [Requicha85, Hoffmann89]. The essence of a Brep is best
described as explicitly representing open, dimensionally uniform, connectivity
components of intersection entities generated by a set of geometric pointset car-
riers. This essence was formalized in the notion of a Selective Geometric Complex
(SGC) [Rossignac88]. It is generally felt that Breps are well-understood.

Current interactive design systems almost exclusively use the Brep to repre-
sent the example object. This choice has important implications on the archi-
tecture and performance of the system, because an accurate Brep is not easy to
compute robustly and efficiently.

In this paper we discuss the issue of modeling the example object in interac-
tive design systems. Using a geometric modeling framework we have previously
developed [Rappoport95], we analyze the requirements from a modeling scheme
for the example object, concluding that the two major queries which such a mod-
eling scheme must support are (1) displaying the object, and (2) selecting object
boundary entities in a persistent manner. The latter query is further decomposed
into three operations: picking, invariant naming, and persistent naming. Picking
identifies boundary entities of the example object. Invariant naming translates
picking results to an entity name which is identical to the name of that entity in
all members of the family and which depends only on the boundary (or SGC) of
members in the family. A persistent name is similar to an invariant name, but
it can also depend upon additional information, e.g. the design history of the
family.

We introduce the term Displayable-Selectable Model (DS-model) for a model
supporting the above queries. We then examine the suitability of the Brep to
serve as a DS-model, asking two complimentary questions: (1) does the Brep
support the two queries in an efficient manner, and (2) are there Brep character-
istics which are essential for any modeling scheme supporting the two queries (or
equivalently, are there modeling scheme which are better suited as DS-models).
We show that a complete Brep is an over-kill for display and picking, and that
it may be essential for invariant naming. Invariant naming is an important open
problem in geometric modeling which is not fully understood at present.

In summary, the main contributions of the paper are:



– Raising the issue of a modeling scheme for the example object in interactive
design of families of geometric objects;

– Introducing the term Displayable-Selectable Model (DS-model), encapsulat-
ing the requirements from such a modeling scheme;

– Examining the suitability of the Brep to serve as a DS-model.

The structure of the paper is as follows. In Section 2 we briefly review the geo-
metric modeling framework described in [Rappoport95]. In Section 3 we sketch a
particular class of representation schemes used to model families of geometric ob-
jects, which we refer to as Geometric Operation Graphs (GOGs). In Section 4 we
discuss interactive design of GOGs and introduce the term displayable-selectable
models.

In Section 5 we examine the essence of the Brep by briefly describing a new
generalization of the selective geometric complex. In Sections 6, 7 and 8 the
display, picking, and invariant naming operations are studied in detail. For each
operation we discuss the amount of support given by the Brep to the operation
and the characteristics of Breps which are essential to support the operation.

Although this paper describes several new concepts, its goal is not to provide
a detailed report on research results but rather to sketch the larger picture and
guide future research. A deeper understanding of the issues brought forth in the
paper would perhaps enable us to finally design and utilize hybrid representa-
tions which combine the merits of Breps and other representation schemes while
masking their drawbacks.

2 Modeling and Representation Schemes

In this section we briefly review the geometric modeling framework presented in
[Rappoport95], upon which we base the analysis in this paper.

Requicha’s seminal paper [Requicha80] introduced terminology and defini-
tions for the concepts of a representation and a representation scheme, and
described several representation schemes for three-dimensional solids. A repre-
sentation was defined to be a structure of symbols from an alphabet, and a repre-
sentation scheme to be a relation between an abstract modeling space containing
the mathematical entities we want to model and the set of representations. This
‘symbol structure’ definition is based on the data contained in a representation.

Most modern approaches to system analysis and design in general and soft-
ware engineering in particular emphasize not the data contained in a represen-
tation but the capabilities that the data enables and the interface to them. Ab-
stract data types (ADTs), encapsulating data through usage of access functions,
have long been advocated as an elegant and practical design and implementa-
tion paradigm. Object-oriented analysis and design take this view further by
studying the inter-relationships between different object classes [Rumbaugh91].

In [Rappoport95], we presented a geometric modeling framework which en-
hances the symbol structure definition by combining operations and data. An
abstract modeling space contains the entities we want to model. An entity spec-
ifies a set of operations which it supports. There are two kinds of operations:



queries and synthesis operations. The queries are the operations for which the
entity is modeled in the first place; they provide the functionality of the model as
important to the external world. Synthesis operations are the operations using
which entities are created, modified, edited and combined. Synthesis operations
are not part of the external functional interface to the entity and are reflected
to the outside only as user interface operations or when they are mirrored in the
supported queries.

As in Requicha’s definitions, the data of each entity has a representation.
However, now the main concept is that of a model. A model is a representation
which supports the required queries and synthesis operations. A modeling scheme
is a concrete implementation of the models, including their queries and synthesis
operations.

In geometric modeling, as in any other system modeling discipline, models
are built and stored for the sake of doing something with them. It is important to
analyze clearly what our models should do (queries) and how we want to specify
them (synthesis operations) before choosing a specific modeling scheme.

3 Geometric Operation Graph Representations

By definition, a Brep can only represent knowledge about the pointset of a
geometric object. Using a selective geometric complex (SGC), internal structures
can be represented as well as the object’s boundary. However, clearly there are
plenty of applications in which we want to model more than the pointset of the
object. We would even say that this is the case in the majority of applications.

In design applications we want to document the history of the design and
explanations for design decisions. These are important when additional groups of
people are being made involved in some aspect of the model, for example when
a manufacturing team finds it necessary or economical to modify the design
and it needs to determine whether and which modifications are allowed. Such
documentations are important also in concurrent engineering. It is clear that a
Brep cannot be used to store such information.

Many applications which do not need history or versioning still need to be
capable of viewing the model as more than a pointset. Storage of application-
specific features is essential in many cases. Some features can be represented
by using attributes associated with entities of a Brep. However, it is not clear
whether this is always possible, since there are features which comprise com-
ponents not present in the Brep at all. For example, a slot can be created by
subtracting a rotating block whose axis of rotation is not part of the Brep. It is
possible that an SGC can be used to represent such features, but this has not
been shown yet.

Modeling spaces containing features, history, versioning, and general modi-
fying operations to geometric objects can be represented by a class of models
which we refer to as the Geometric Operation Graphs (GOG) [Rappoport96d].
Other tightly related terms are generative [Hoffmann96] and parametric [Shah96]
representations, as discussed below.



A GOG (see Figure 1) is a directed graph whose nodes contain arbitrary
operations (or functions), which are usually geometric in nature. An arc from
node A to node B denotes the fact that the corresponding output of the operation
in A serves as an input to the operation in B. Usually, but not always, one of the
outputs of an operation node is a geometric object. The GOG is almost always
used in order to represent a family of geometric objects rather than a single
object, and this family is usually parametric (that is, members of the family are
indexed through a parameter vector; see below).
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Fig. 1. A General Operation Graph (GOG).

The GOG is a generalization of several known representation schemes in ge-
ometric and solid modeling. Some procedural representations can be written as
GOGs. However, a GOG can in principle support operations which establish a
relation between two objects already present in the system. The semantics of
such an operation is that the relation, or constraint, should be maintained from
now on. Hence GOGs are more powerful than ordinary procedural representa-
tions. On the other hand, although a GOG can be enhanced to support control
constructs such as loops, this would take it a bit afar from its intended spirit.

A hierarchical assembly graph is a simple GOG in which operation nodes
contain affine operations. [Rappoport93] presented a scheme to directly store
information belonging to a single instance of a part in an assembly in a GOG
node.

The most obvious example for a GOG in geometric modeling is of course
CSG, in which the operations in the nodes of the graph are primitive instantia-
tions, affine operations, and Boolean operations. In CSG every node has a single
output, which is a geometric object. The GOG point of view is that it is the
operation graph which is the essence and not the specific operations used. CSG



is mostly associated with the Boolean operations (indeed, the affine operations
can be propagated into the leaves of the graph and factored out), while the GOG
emphasizes the algebraic structure of the resulting model.

Several specific GOG systems have been studied by Rossignac: offset and
blending nodes in CSG [Rossignac86a], constraints in CSG [Rossignac86b], and
operations as general procedures [Rossignac89]. A GOG with constraints be-
tween coordinate systems and an underlying procedural programming language
was described in [Emmerik90].

The GOG is an abstract generalization of what some people call ‘paramet-
ric’ representations. However, in practice, the term ‘parametric’ is defined today
by the architecture of a specific commercial product and combines two notions
which we feel are separate: (1) specifying the name of a member in a family of
represented geometric objects by a parameter vector [Rappoport96a], and (2) the
sequential solution of a system of constraints. We feel that the term ‘parametric’
is perfect for the first notion but is a poor choice for the second notion. Because
of the types of modeling spaces that the GOG will be used for, in most cases
it will support the first notion. However, the GOG can have operation nodes
which declaratively specify constraints without necessarily specifying a solution
sequence. For example, such an operation node may be implemented by a nu-
meric constraint solver (a scheme commonly referred to as ‘variational’, although
the word ‘variational’ is not appropriate since it implies a family of objects which
are all variations on the same theme rather than a specific method to specify
and compute such a family). Declarative constraints are actually present in some
‘parametric’ systems, but only at the bottom level of the graph in the form of
defining a 2-D sketch to be extruded later. Hoffmann’s Erep [Hoffmann93a] is
such a GOG. Note that the term ‘generative’ is sometimes used when refer-
ring to such architectures [Hoffmann96]; if desired, the acronym GOG can be
interpreted as ‘Generative Operational Geometry’.

We view the GOG as a representation for design intent and for the different
types of knowledge accumulated and specified during the various stages of the life
of a model. At present, the GOG concept is not completely understood, especially
the role of declarative constraints nodes. However, there is enough evidence to
support the view that the GOG is a major class of modeling schemes in modern
geometric modeling.

4 Displayable-Selectable Models

Breps are probably not suitable to serve as the main modeling scheme for entities
which are more than simple geometric pointsets. The class of geometric operation
graphs is an attractive modeling scheme for such entities. In this section we give
a general description of interactive applications involving operation graphs and
characterize the functionality required from the ‘example object’ used by such
systems.

One of the primary applications of geometric operation graphs is to represent
parametric families of objects. Thus, a major query for GOGs is the indexing



query: given a parameter vector, compute the corresponding object. This object
should itself be represented in some representation scheme. There are several
usages for such as object, two of which are the most common: visualization and
analysis. Since the Brep is considered to be an efficient representation for these
operations, it is natural to use Breps as the representation in which the output
of the indexing query will be represented. In this context a Brep is an ‘evaluated’
GOG, in the same way that the process of conversion from CSG (a specific GOG)
to a Brep is called ‘boundary evaluation’.

In this paper we are more interested in the specification and creation of GOGs
than in the queries they support. We assume the following scenario for interactive
applications used to define GOGs [Hoffmann93b] (see Figure 2). At any point in
time, the user is shown a visualization of the designed GOG through an example
object which belongs to the family represented by the GOG. The user is capable
of adding or deleting a new operation node, and sees the result of applying the
operation on the example object. By visualizing the result of the operation, the
user can determine whether the operation achieves the desired effect. The user
may also want to modify the example object by specifying different parameters.
These can be specified numerically, through direct manipulation on the graphical
view (shown as a dotted line in Figure 2), or using some other method.
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Fig. 2. The relationship between the GOG and the Display, Picking, and Invariant

Naming operations.

The first operation which the system must thus support in this kind of in-
teractive scenario is Display: given a GOG, a parameter vector, and display
parameters, display the resulting object. We deliberately do not say that the
system must support boundary evaluation, of course, since our goal in this pa-
per is to specify what needs to be done (here, visualization) rather than how to
do it (boundary evaluation). We discuss Display in Section 6.

The other operations which the system must support in the scenario de-
scribed above are related to the way in which the user specifies new operation
nodes. An operation node needs to know the type of the operation, which can be
easily specified by the user, and the arguments that the operation should receive.
There are two main types of arguments: numeric and symbolic data serving as



additional indexing parameters, and geometric data derived from the current
GOG. The former type is easy to specify. The latter arguments are specified
by selecting the relevant data from the current GOG. Depending of the actual
data, this selection can be done on the example object, directly on the operation
graph (perhaps using some form of graph visualization), or on other views of the
model [Emmerik93].

Operation nodes differ in the number and types of arguments they receive
as input. Some operations operate on a whole object as a single unit. Affine and
Boolean operations are such operations, which is the deep reason why CSG is so
simple to define and implement. However, some operations require as input sub-
parts of an object. A sub-part can be specified as the part lying in some spatial
location, or more commonly, as a Brep entity. That is, vertices, edges, faces and
cells of the example object can be specified as inputs to the new operation node.
Systems which support the specification of Brep entities as input to operation
nodes are much more powerful and allow a much greater amount of knowledge
on the model to be present. It is in this type of selection that we are interested.
It is convenient to think of such a selection as a GOG operation node, as shown
in Figure 1.

For technical reasons we divide the selection process into three stages, which
we regard as operations sufficiently different to deserve different names: picking,
invariant naming, and persistent naming. We collectively refer to picking and
invariant naming as selection, since the word ‘selection’ best describes how the
user thinks about the functionality of these operations.

In the first stage, the user identifies the desired entity of the example object.
The output of this operation is the name of this specific entity of the example
object; normally, this output would be represented as a pointer to the entity.
Respecting common computer graphics terminology, we call this the Picking

operation. We discuss Picking in Section 7.

The output of Picking is useful only in conjunction with the example object.
However, the user is allowed to arbitrarily modify the indexing parameters to
produce a different example object. The arguments given to any operation node
in the GOG should thus not be tied to a specific example object. Hence, we must
translate the output of Picking to a representation which depends only on the
properties which are present in all objects in the GOG family. Specifically, it
should not depend on the unique geometry of the example object.

The problem of storing arguments to operation nodes such that they will
be valid for every choice of parameter vector is usually called persistent naming
[Kripac95, Hoffmann93b, Lequette96]. The easier problem of giving Brep entities
names which are invariant under modifications to the geometry of the Brep
carriers is called invariant naming [Rappoport96b]. Persistent naming is strongly
tied to the semantics of the GOG operation nodes and to the specific application
for which the GOG is designed. Due to the inherent technical differences between
the two problems and to the difficulty of defining and solving them, they can be
discussed separately. In the Erep project [Hoffmann93a], the general persistent
naming mechanism is reported in [Chen95], while the issues related to invariant



naming (in the Erep context) are reported in [Capoyleas96].

Both invariant naming and persistent naming are difficult problems, but since
the scope of the former is more limited it is easier to study it mathematically.
In addition, once invariant naming is available, persistent naming can be imple-
mented as a post-process taking into account the intended semantics of GOG
operations. For these reasons we do not deal with persistent naming in this paper,
although in principle we should, since Breps may be strongly tied to any per-
sistent naming mechanism. The GOG operation Invariant Naming is discussed
in Section 8.

The functionality required from the example object is best encapsulated by
the term Displayable-Selectable Models (DS-models). A DS-model is a model (in
the sense of Section 2) which supports the ‘display’ and ‘selection’ queries in their
various manifestations. This term emphasizes the functionality required from the
model and is neutral regarding specific implementations of that functionality. In
the rest of this paper we examine the suitability of Breps as DS-models and
whether they possess characteristics which are essential for any DS-model.

5 The Essence of the Brep

The boundary representation is usually described as ‘representing the boundary
of the object using entities such as faces, edges and vertices’. This vague defini-
tion was made precise by Rossignac and O’Connor, who introduced the concept
of the Selective Geometric Complex (SGC) [Rossignac88]. In this section we give
an informal overview of the SGC, including a new relatively minor practical gen-
eralization. A major generalization of the SGC, the Generic Geometric Complex
(GGC) [Rappoport96b, Rappoport96a] is described in Section 8 in the context
of the invariant naming problem.

There are three major conceptual stages in the specification of an SGC:
carrier definition, intersections, and selection of active entities. Each stage is
briefly described below.

A selective geometric complex in Rn is defined using a set of carriers em-
bedded in Rn. A carrier is any pointset such that it is convenient for us to
think about it as a single unit. The two major types of carriers are implicit and
parametric hyper-surfaces. Implicitly defined surfaces, parametric curves, and
parametric surfaces are all carriers in R3. Even a well-defined fractal object may
be a carrier. It is mostly in the definition of a carrier that our version of the SGC
differs from the original one, in which only implicit half-spaces were allowed.

In general there are no special requirements from a carrier and every pointset
is qualified to serve as a carrier. However, there are certain properties and appli-
cations for which is would make real sense to limit the generality of the carriers
somewhat. To simplify the discussion, in the rest of this section we only deal with
2-D and 3-D SGCs. In practice, there are three major types of carriers: implicit
surfaces (defined by a single algebraic equation) spline (piecewise parametric
polynomial) curves, and spline surfaces.



The only requirement we impose upon these carrier curves and surfaces is
that they do not possess self-intersections. That is, in a parametric curve or
surface two different parameter values should not yield the same point, and in
an implicit surface there should not be singular points. In case a carrier violates
this requirement, it should be decomposed into parts each of which obeys the
requirement. The decomposition of the carrier should itself be represented in an
SGC.

The next stage in the definition of an SGC is the computation of all mutual
intersections of the carriers and splitting of the carriers accordingly into open,
dimensionally uniform connectivity components. In general, the intersection be-
tween a curve and another curve or surface is a set of curve segments and points;
the intersection between two surfaces is a set of surface patches, curve segments,
and points. Points which are isolated carriers or intersection results are called
vertices; maximal curve segments which are isolated carriers, intersection results
or split carriers are called edges; maximal surface patches of isolated or split car-
riers are called faces; and maximal connectivity components of space are called
cells1.

We now have a set of entities: vertices, edges, faces and cells. The importance
of the intersection process is that all points in an entity possess the same char-
acteristic function with respect to the carriers (that is, they belong to exactly
the same set of carriers). In a sense, all points in an entity thus possess the same
‘name’. We immediately emphasize that entities are not necessarily distinguish-
able according to these names. Points in different entities could end up with the
same characteristic function.

As an example for an SGC, consider Figure 3. There are two carriers (the
ellipses), four vertices, eight edges, and six cells. Note that the vertices cannot be
distinguished by carrier identities, since they all possess the same classification
with respect to the carriers. The edges are different connectivity components
of split carriers and hence are indistinguishable by carrier identity as well. In
Section 8 we will see that this figure demonstrates a fundamental difficulty with
generic geometric complexes.

The final stage in the definition of an SGC is a selection of ‘active’ entities.
The union of the pointsets of the active entities comprises the pointset of the ob-
ject which the SGC represents. The subset of the active entities whose points lie
on the boundary of that object is the Brep of the object. Note that the SGC can
thus represent objects with internal structures and with mixed dimensionalities.
We call the objects represented by SGCs ‘decomposed pointsets’. The selection
process can be guided by a graph of Boolean operations defined over the carriers,
as is the case when the SGC is used to represent the result of boundary evalu-
ation of a CSG graph, or simply be guided by a Boolean operation performed
between two SGCs. There are many additional topics related to SGC’s which we
do not discuss here. For a deeper study, the reader should consult [Rossignac88].

From an operational interface point of view, a Brep supports the queries

1 In [Rossignac88], the term ‘cell’ was used for what we call here an ‘entity’, because
we wanted to endow the word ‘cell’ with its common interpretation in R

3.
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Fig. 3. A selective geometric complex (SGC) presenting fundamental invariant naming
difficulties.

listed below. We do not enumerate the synthesis operations through which a
Brep can be constructed and edited, since the reason of being of a model is
defined only by the queries it supports.

– What types of carriers are present?
– What are the geometries of the carriers?
– What are the entities defined by the spatial inter-relationships of the carri-

ers?
– What are the geometries of the entities?
– What are the adjacencies between the entities?
– What are the local relative orientations between the carriers in an entity?

A concrete model which can answer these queries is called a complete Brep in this
paper. Naturally, implementations of a complete Brep should address efficiency
issues, such as which adjacency relations are explicitly stored, should entities be
sorted along each other when possible (for more efficient traversal) etc.

To summarize, the essential ingredient of the boundary representation as it
is commonly understood is the explicit subdivision of space induced by a set of
pointset carriers. Issues related to time and space efficiency are not considered
to be essential ingredients.

6 The Display Operation

The most common operation in geometric modeling, an operation which is an
inherent necessity in interactive design applications, is display of the designed
object. In any interactive design application we need to see the object we design.
Visualization is such an important requirement that is it useful even when the
designed system or object do not possess an immediate geometric form. In this
section we study the relationship between the Display operation in GOGs and
the Brep.

Recall that Display receives three input arguments: a GOG, a parameter
vector, and various parameters related to the desired visualization (camera pa-
rameters, display style etc). Display has three variants, depending upon which



of the three arguments was modified by the user (obviously, if no argument was
modified then there is no need to recompute Display). The variants have differ-
ent implications on the performance required from the Display operation. In the
first variant, the GOG defining the family was modified, by adding or deleting an
operation node. In this case the user is willing to wait for the computation of the
Display operation a few seconds or even more than that if the changes made to
the GOG are substantial. In the second variant, the parameter vector indexing
the family was modified. For this variant to be useful and to truly support rapid
navigation in the modeled family, it is desired that the computation takes less
than a second. That is, navigation (or ‘re-generation’) requires Display to be at
least an order of magnitude faster than GOG modification. Current parametric
systems are very far from this goal: re-generation is usually not done interac-
tively. In the third variant only the visualization parameters were modified, in
which case it is certainly plausible to require interactive computation.

Due to practical considerations we would strongly prefer to utilize standard
graphics display APIs such as OpenGL for the computation of Display. In
such APIs the basic primitive rendered is the planar polygon. They support
modeling and display transformations, rasterization (computation of the pixels
covered by a polygon), hidden surface removal (usually using a z-buffer), masking
operations on the image and z-buffers, texture mapping, and more. For higher-
quality shading, normals to polygons and polygon vertices are needed as well.
For optimization purposes, it helps if the polygons given to the graphics system
are triangles, or better, triangular meshes in which the triangles are traversed
such that triangles which share an edge are given to the system consecutively.

To see how the Brep relates to the Display operation, we will ask two ques-
tions: first, how much support is given by the Brep to the operation; and second,
can the Display operation be supported as well by other representations (or
equivalently, are there characteristics of the Brep which are not needed by the
Display operation).

6.1 Brep’s support for Display

The primary advantage of the Brep for the Display operation is that all the
polygons which we want to see lie on Brep faces. That is, the boundary rep-
resentation is attractive not only because it suffices to represent the boundary
in order to represent the object uniquely, but also because the boundary is the
only thing we are interested in for the purposes of the Display operation. Note
that when we are interested in seeing internal structures of the object, they are
explicitly represented by the Brep’s SGC as well.

Given a Brep, the Display operation can be implemented by triangulating
or polygonalizing the Brep faces and sending them to the graphics system. In
addition, it is easy to compute the normals of polygons and polygon vertices.
Thus, Brep’s support for Display is strong but not immediate.



6.2 Display’s need of the Brep

As noted earlier, the essence of a complete Brep is that intersections between
carriers are computed and represented explicitly. Following are several indica-
tions that this may not be necessary for Display. Most of these are relevant for
the relationship of Breps and visualization in general, not only in the context of
general operation graphs.

Edges and vertices. When the display style is with hidden surfaces re-
moved, Display does not need to display the intersection edges and vertices.
They are implicitly visualized by the fact that faces are full. When the display
style is wire-frame, the edges need to be shown, but this effect can be achieved
using the z-buffer without actually computing the edges [Emmerik93]. Even if
the edges are displayed after computing them explicitly, this computation is only
needed to be carried to the resolution of the display device, which is normally
orders of magnitude larger than the resolution of floating point computations.

Face interpenetration. Small inter-penetrations of faces into each other,
which are avoided using great efforts by algorithms which compute complete
Breps, do not harm visualization.

Curved face tessellations. Visualization of a curved face is done by tessel-
lating it into polygons, and this has to be done even if the intersection of the face
with other faces was computed exactly. This observation suggests an approach in
which the order of operations is reversed or at least adaptively combined. Since
Display needs an order of magnitude less accuracy than boundary evaluation,
this approach is potentially more efficient.

Union. The result of the ‘union’ operation between two objects can be dis-
played by simply displaying the objects one after the other. The z-buffer ensures
that the resulting image is correct. In this case no computation of geometric
intersections is needed.

Fast display of Booleans. Algorithms for rapid visualization of CSG ob-
jects on standard platforms are beginning to appear. For example, [Rappoport96c]
describes an algorithm which combines graph re-writing, hierarchical convex dif-
ferences and efficient geometric algorithms (based on convex hulls of 3-D points)
to visualize non-trivial CSG models interactively , using the standard graphics
pipeline with a z-buffer and a stencil bit plane.

To summarize, complete Breps are not essential for performing the Display

operation correctly; in some (perhaps even most) situations, computation of a
complete Brep with all adjacency information is an over-kill. In applications pro-
viding interactive, high-level manipulation, model visualization can be achieved
by computing crude linear approximations. This is especially true when the dis-
play mode is with hidden surfaces removed, but may also be true for wire-frame
displays.

7 The Picking Operation

Recall that Picking refers to identification of Brep entities of the example object
through graphical interaction, without persistent storage of the result.



7.1 Brep’s support for Picking

There are two main methods to implement Picking in graphics systems: a
graphics-based method and a geometric method. The latter is simply done by
intersecting the scene with a ray from the eye to the mouse location, computing
the nearest object. The former uses the graphics system in order to detect the
identity of the visible polygon closest to the mouse. Which method is faster de-
pends upon the relative performance of the graphics system and the CPU. The
graphics-based method is probably easier to implement.

Since the mouse location is discrete, it cannot be expected to fall exactly on
an edge or a vertex even if the user intends their selection. Therefore, in both
methods, we should first identify faces and then infer selected edges or vertices
from them. The alternative, computing the distance from the eye-mouse ray
to every edge and vertex, is probably not practical. The Brep supports both
methods since all faces are explicitly available and it can be inferred whether
or not a ray intersects the face. Actually, Breps support Picking even more
than they support Display since they give the information needed for Picking
explicitly, while Brep faces need to be further polygonalized or triangulated.

7.2 Picking’s need of the Brep

It may seem that by definition a complete Brep of the example object must be
computed in order to support Picking. However, this is not the case.

Following is a sketch of a possible algorithm which does not need a complete
Brep a-priori. Let us assume that the Display operation is executed correctly.
As a result, a graphics-based method can be used to select the visible face(s)
nearest the mouse location. It should not be too difficult to identify whether or
not the user has meant to select a face, an edge or a vertex by analyzing the
number of faces visible in the vicinity of the mouse. Thus, even if Brep entities
are not explicitly represented, they can be computed on-demand by this ‘discrete
local boundary evaluation’ algorithm.

Note also that the performance required from Picking is probably slower
than that required from Display. Since the Picking operation identifies an ar-
gument to another operation, it is a discrete decision in the design process which
does not involve numerical parameters. Usually, the numerical parameters are
the ones which we want to be capable of modifying interactively. For example,
we want to modify affine operations and visualize interactively the results of
Boolean operations defined on the object [Rappoport96c], or we modify con-
straint parameters and want to see the geometric and physical behavior of the
object. As a result, a slower, incremental on-demand computation of Picking
is acceptable. If the user does not demand highlighting of Brep entities while
moving the mouse (which is a nice aid to Picking) then the computation of
Picking is allowed a few seconds.

In summary, it is likely that Picking does not need the full power of a
complete Brep, although a complete Brep supports it more efficiently.



8 Invariant Naming and the Generic Geometric Complex

After obtaining the concrete names of the entities of the example object which
were specified by the Picking operation, they have to be transformed to a repre-
sentation in which they are invariant under parameter modifications. The general
problem is called ‘persistent naming’.

Technically, it is convenient to consider two types of parameter modifications,
both of which preserve certain entities of the SGC representing the example ob-
ject. The first type assumes only knowledge about the SGC of the example ob-
ject; the second type assumes knowledge about the whole GOG. The Invariant
Naming operation maps concrete entity names into generic entity names assum-
ing parameter modifications of the first kind. For modifications of the second
kind a more elaborate naming scheme is needed. Such a naming scheme typi-
cally must consider the intended semantics of GOG operations and is difficult to
specify mathematically. Hence in this paper we only discuss invariant naming.

In order to precisely define the invariant naming problem, we briefly describe
the Generic Geometric Complex (GGC) [Rappoport96b]. The GGC is a model
for a family of decomposed pointsets, each modeled by an SGC, supporting the
following queries:

1. Entity-to-name: given an SGC whose carriers possess generic names having
equal status and an entity in it, return a unique generic name for the entity,
guaranteed to be identical to that returned for the corresponding entity in
all members of the given SGC’s family.

2. Name-to-entity: given an SGC in the modeled family and a generic name
previously returned by entity-to-name, return the entity having that name.

3. Membership classification: given an SGC, determine whether or not it be-
longs to the modeled family.

4. Example (optional): return a member of the modeled family.

The GGC can be viewed as the family ‘spanned’ by an example member.
That is, the family of SGCs obtained by modifying the geometries of the carriers
of a concrete SGC while preserving the existence of generically named entities
designated as essential.

A distinction is made between the nature of a carrier and its geometry. The
nature of a carrier is the representation scheme used for its pointset plus symbolic
and integer parameters used in that representation. For example, an implicit
surface and a parametric surface are of different natures, as are two parametric
surfaces of different degrees.

The geometry of the carriers is allowed to change without changing properties
which were defined to be required. Such properties may include the number of the
carriers2, the nature of each carrier, geometric properties of carriers, geometric
relationships between the carriers, the existence of certain entities, geometric

2 Actually, there are applications for which the number of carriers should be allowed to
change as well, e.g. when the number of holes in an object is an external parameter.
Discussion of such GGCs will take us too far from our present focus.



properties of entities, symbolic properties of entities, etc. The names of required
entities are specified in a way which makes them independent of things which
are allowed to change. Carrier geometry modifications are valid as long as they
preserve the above properties, including the names of the required entities.

There are several ingredients from which names of required entities in a GGC
can be composed. The major ones are:

– Carrier identities: as noted earlier, all points in an entity have the same
classification with respect to the carriers. The name of an entity can utilize
the names of the carriers to which all of its points belong.

– Invariant geometric properties, such as convexity, tangency etc.
– Classification with respect to carrier signs (separation): some of the carriers

induce a singed function on space; all points in an entity have the same sign
vector with respect to these carriers. [Shapiro93] can be viewed as studying
the possibility of unique naming using this ingredient alone.

– Adjacencies: the name of an entity can recursively utilize the names of ad-
jacent entities. It is preferable to keep the depth of the recursion as small as
possible.

– Ordered adjacency and ordered usage: the name of an entity can utilize the
relative local orientations of its carriers and carriers of adjacent entities.

– Local ordering: ordering along parametric entities whose parameter space
can be ordered.

– Local naming: a recursive invocation of the invariant naming process on a
single carrier.

– Arbitrary naming of an entity. This ingredient is needed when there is no
other way to distinguish between several entities having the same invariant
name. Once an entity has been arbitrarily named, names of other entities can
depend upon this name through other adjacency and ordering ingredients.

Figure 4 is a simple example that shows why several ingredients are needed.
On the left, the two vertices have the same carrier identities but a different local
orientation of the line with respect to the circle (denoted by the dotted curves).
On the right, the two marked cells have the same classification with respect to
all carriers, but they can be distinguished according to the vertices they are
adjacent to. The vertices can in turn be distinguished by carrier identities since
they are the result of intersecting different lines.

Figure 3 is a very simple example that shows that there are situations in
which all ingredients (but arbitrary naming) are not sufficient. All four vertices in
the figure have the same carrier identities. Applying the orientation ingredients,
they can further be divided into two sets of a pair of vertices each. However, the
adjacency ingredient cannot be applied because no edge or cell can be named
without naming the vertices or cells first. This SGC does not possess a unique
answer to name-to-entity queries.

In [Rappoport96b] we give an algorithm based on equivalence classes and se-
quential introduction of name ingredients to induce invariant naming on entities
in a GGC. The algorithm is very general, and always finds a unique naming if
one exists.



Fig. 4. Examples for the need of several ingredients in invariant entity names in generic
geometric complexes.

Certain situations always admit a unique naming. For example, in [Rap-
poport96b] we proved that a necessary and sufficient condition for naming a
connectivity component of a 2-D complex is that a name exists for a single
entity in it.

The situation in 3-D is not fully understood at present. The naming scheme
in [Capoyleas96] can be viewed as a scheme which utilizes some of the above
ingredients in the context of a specific system, and even there it does not solve
the problem completely. In some restricted (but useful) cases the problem is
easy to solve. For example, if all the carriers are linear half-spaces then each
pair can have at most a single intersection entity of each dimension, hence the
carrier identity ingredient suffices for naming. Carrier signs are sufficient when
all entities are separated by carriers, as studied in [Shapiro93].

8.1 Brep’s support for Invariant Naming

In light of the discussion above, it is clear that the Brep provides substantial
support for Invariant Naming. The information present in a Brep about adja-
cencies, and information easily derived from it about relative local orientations,
are of great assistance to any invariant naming scheme. However, we must keep
in mind that a Brep alone does not suffice to solve the problem in all cases.

8.2 Invariant Naming’s need of the Brep

With Invariant Naming we are in a different situation from the former two
operations. Display and Selection are well supported by Breps, and the only
issue was whether or not they actually need the full power of a complete Brep.
Here, we do not know at this stage even if a complete Brep suffices to solve the
invariant naming problem.

Carrier identity, which is probably the important of the three naming in-
gredients given above, can be computed adaptively in an on-demand basis. The
complete adjacency structure of the Brep is not essential in the case of linear
half-spaces and separated entities. Perhaps these observations serve as indica-
tions that it would be possible to find naming schemes which would not require
a complete Brep.

In summary, both invariant naming and persistent naming are fundamental
operations in geometric and solid modeling. Both are not well understood at



present. Finding a satisfactory and efficient naming scheme which does not need
the full adjacency structure of an SGC is an extremely important open problem
in geometric and solid modeling.

9 Discussion

Two important operations which we have not discussed in this paper are col-
lision detection and meshing for finite element simulations. Many applications
need to detect collisions between moving objects and act accordingly. Data struc-
tures supporting efficient collision detection should probably contain (hierarchi-
cal) spatial information not present in Breps. It is not clear whether complete
Breps are essential for this application. For example, obviously penetration of
one boundary surface into another in the same object does not harm collision
detection.

Regarding meshing, we should note that mesh generators are usually inter-
ested in a simplified Brep and not necessarily in a complete Brep. For example,
the primitive geometric operation in the paving family of meshing algorithm is
the projection of an arbitrary spatial point on a surface. This primitive can per-
haps be better implemented in an incremental, adaptive manner on the GOG
model itself or on some partially evaluated version of it.

The reason we have not discussed collision detection and meshing is that at
present they are considered as post-processes and are not well integrated with
the design process. Clearly, this situation should be changed in the future to
support effective optimizations and full product models.

In this paper we have also not discussed object and shape analysis applica-
tions. Breps are certainly needed by a large number of such applications.

In summary, we feel that complete Breps, that is, SGC-like Breps explicitly
storing all topological entities and their (ordered) adjacency relationships, are
probably an over-kill for two important queries required from the example object
in interactive design of families of geometric objects. Both Display and Picking

can be supported directly by a GOG model or by a partial Brep derived from
it adaptively on-demand. On the other hand, valid and efficient support for
Invariant Naming (and for persistent naming) is an important open problem
in geometric and solid modeling for which a complete Brep may be essential.

Breps are perceived today as essential, or at least as very practical, for solid
modeling. This is evidenced by the success enjoyed by the Acis Brep modeler.
Modern modeling schemes supporting high-level knowledge, well-defined stor-
age of design intent, features, parameterizations, constraints and history mostly
use Breps because they need support for visualization of the model and selec-
tion of entities from it. These requirements are best encapsulated by the term
Displayable-Selectable Model (DS-model), which emphasizes the functional na-
ture of the desired representation rather than its data and implementation. The
discovery of DS-models different from Breps may improve the efficiency and
sophistication of solid modeling systems.
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