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Abstract—Phasor measurement units (PMUs) are time synchro-
nized sensors primarily used for power system state estimation.
Despite their increasing incorporation and the ongoing research
on state estimation using measurements from these sensors, es-
timation with imperfect phase synchronization has not been suf-
ficiently investigated. Inaccurate synchronization is an inevitable
problem that large scale deployment of PMUs has to face. In this
paper, we introduce a model for power system state estimation
using PMUs with phase mismatch. We propose alternating mini-
mization and parallel Kalman filtering for state estimation using
static and dynamic models, respectively, under different assump-
tions. Numerical examples demonstrate the improved accuracy of
our algorithms compared with traditional algorithms when im-
perfect synchronization is present. We conclude that when a suffi-
cient number of PMUs with small delays are employed, the imper-
fect synchronization can be largely compensated in the estimation
stage.

Index Terms—Alternating minimization (AM), bilinear model,
Kalman filtering, phase mismatch, phasor measurement unit
(PMU), state estimation, synchronization.

NOMENCLATURE:

PMU Phasor measurement unit.

SCADA Supervisory control and data acquisition.

GPS Global positioning system.

PTP Precision time protocol.

WWVB Time signal radio station located in Colorado,
USA.

DSE Dynamic state estimation.

SSE Static state estimation.

MAP Maximum a posteriori.

OKF Kalman filtering with perfect information of time
delay (the oracle case).
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OLF Least squares estimation with perfect information
of time delay (the oracle case).

PKF Parallel Kalman filtering.

STLS Structured total least squares.

SVD Singular value decomposition.

TLS Total least squares.

WLS Weighted least squares.

I. INTRODUCTION

I N recent years, phasor measurement units (PMUs) [1]
have become increasingly important in power system state

estimation [2]–[7]. The traditional supervisory control and
data acquisition (SCADA) system has a low reporting rate and
requires complex nonlinear state estimation, since the SCADA
measurements, e.g., the power flow and power injections,
are nonlinear functions of the system states (complex bus
voltages). PMUs provide synchronized phasor measurement,
which results in linear models for state estimation. Their
sampling rate is much higher, enabling real-time estimation of
the power system’s state and fast response to abnormalities.
There has been ongoing research on state estimation using
PMUs [8]–[13]. Most of the recent work directly combines
the SCADA data with data from PMUs and uses weighted
least-squares (WLS) estimation and similar methods. One
important issue with this approach is that the SCADA measure-
ments are not synchronized, and the sample rates of SCADA
and PMUs are different, causing the time skewness problem
[14].
Typically, PMUs use a global positioning system (GPS) radio

clock, which sends a one pulse per second (1 pps) synchroniza-
tion signal [15]. Currently, the deployment of PMUs is limited
due to various reasons. Optimal placement of PMUs has re-
cently been investigated to permit installation of a minimum
number of PMUs [16]–[18]. However, without enough PMUs,
their advantage in linear measurements and high reporting rate
cannot be fully exploited, and traditional low-sample-rate non-
linear measurements still have to be used for full system state
estimation.
Large-scale deployment of PMUs inevitably result in the

use of PMUs from multiple vendors. However, due to different
standards, protocols, and designs, the synchronization of PMUs
from different vendors is a problem. According to [19], the
clocks of PMUs need to be accurate to 500 ns to provide the
1-ms time standard needed by each device performing syn-
chrophasor measurement. The accurate and consistency of all
PMUs, regardless of their makes and models, is important for
large-scale PMU deployments [20]. However, a test shows that
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PMUs from multiple vendors can yield errors of about 47 ms
in time synchronization [21]. In addition, in large-scale deploy-
ments, PMUs with alternative but less accurate synchronization
mechanism may be used. These alternative synchronization
mechanisms may include the Precision Time Protocol (PTP)
as defined in IEEE-1588 standard [22]–[24], or time signal
radio stations, e.g., WWVB located in Colorado, U.S. [25].
According to the IEEE-1588 standard, instead of purely using
a GPS radio clock for each of the devices, only the “masters”
are equipped with global clocks. The “slaves” use local clocks,
and a sync message is transmitted from a “master” to its
“slaves” every few seconds. Alternatively, the WWVB radio
station uses a pulse amplitude modulated signal with a bit rate
of 1 b/s to synchronize widely separated clocks, with lower
accuracy compared with GPS radio clocks. As a general model,
in this paper, we consider different PMUs are synchronized
every seconds and use imperfect local clocks between
consecutive synchronizations.
When the PMUs are not perfectly synchronized, the tradi-

tional measurement model which considers the phase mismatch
resulting from dissynchronization as additive noise is no longer
accurate. In fact, as our numerical example suggests, if the
synchronization error and/or the time between consecutive
synchronizations increase, the traditional estimation methods
will deteriorate significantly. To mitigate this problem, we
introduce a new model for state estimation with consideration
of PMU phase mismatch. We propose estimation algorithms
based on alternating minimization (AM) and parallel Kalman
filtering (PKF) [26] for estimation using the static and dynamic
models, respectively. The estimation algorithm based on the
static model is simple and robust and does not require any
assumptions on the dynamics of the states and phase mismatch.
The filtering approach is preferable for tracking time-varying
phase mismatches under the standard dynamic state space
model, as it is less computationally intensive. Numerical
examples demonstrate that our proposed algorithms provide
more accurate state estimates when the PMUs are imperfectly
synchronized. The estimation performance remain satisfactory
when the synchronization error increases. We conclude that,
when a sufficient number of PMUs are employed and the
mismatches are small, our methods can largely compensate for
the errors resulting from imperfect time synchronization.
The remainder of this paper is organized as follows. In

Section II, we describe the measurement and system model
considering phase mismatch. In Section III, we introduce the
proposed algorithms for state estimation with phase mismatch.
We show numerical examples in Section IV and conclude the
paper in Section V.
Notations: we use superscript to denote continuous signals,
to denote the real part, to denote the imaginary part,

superscript to denote vector transpose, to denote the
cardinality of a set, and to denote the modulo operator.

Fig. 1. IEEE 14-bus system.

II. MEASUREMENT AND SYSTEM MODEL

A. Measurement Model

We consider a grid model with buses connected via
branches, e.g., the IEEE 14-bus model in Fig. 1. The continuous
voltage signal on bus at time instance is defined as

(1)

where is the frequency. The phasor representation of
is , where denotes the magnitude and
denotes the phase. For simplicity, we work with discrete phasor
time series

(2)

where is the PMU reporting period, which is typically around
tens of milliseconds, and . In Cartesian coordinates, this
translates to

(3)

(4)

We define the state of the power grid at time instance as a
length- real valued vector

(5)

The voltages on the buses are related to the currents through
the branches, as illustrated in Fig. 2. We denote the susceptance
at bus as and the admittance at branch as , with

(6)

where is the conductance and is the susceptance.
These parameters are assumed to be known and constant.
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Fig. 2. Bus branch model.

Consequently, the real and imaginary parts of the current on
branch are given by

(7)

(8)

To avoid the time skewness problems with traditional
SCADA estimation, in this paper, we consider state estimation
using only PMUs. An alternative approach is to incorporate
SCADA estimation as priors for the estimation based on PMU
data [16], which could be easily incorporated into our model. In
an ideal setting, the power system is monitored via a network
of perfectly synchronized PMUs measuring the voltages
and currents located in a set of buses at time stamps for

, where . The PMU installed on the th
bus measures noisy versions of

(9)

with

where are the indices of the neighboring buses to bus
. The matrix can be written as

...
...

. . .
...

(10)

where

(11)

(12)

Stacking the noisy versions of (9) for all into one large
model yields the traditional power grid observation model

(13)

where , , and are the appropriate subblocks of , ,
and corresponding to the PMU on the th bus, and de-
notes Gaussian measurement noise with . In
a common case where the noise is independent identically dis-
tributed (i.i.d.), .
We now propose a more realistic state space model which

takes into account the imperfect synchronization of the PMUs.
The PMU installed on the bus measures its th sample at

time , where is the time delay of the th PMU
at the th sample. Denote the delays of all PMUs as a vector

, where .
The voltage at bus at time instance is

where the approximation holds because (typically
tens of microseconds in comparison to tens of milliseconds).
Define the phase mismatch

(14)

and use the phasor notation for the complex voltage as
. The real and imaginary parts of this delayed

voltage can be expressed as

(15)

(16)

where we have used the standard approximations

(17)

which hold for small values of (typically less than 1 degree,
corresponding to 46.3 s delay at 60 Hz). The delayed
currents are detailed in

(18)

(19)

where we temporarily omitted the subscript for simplicity of
notation. Note that all of the measurements from the PMU in-
stalled on a particular bus, namely the voltage and the currents
on all of the adjacent branches, are associated with the same
phase mismatch , as they use the same time stamp. Thus, the
imperfectly synchronized version of (9) is given by

(20)

where is defined in (10) and is

...
...

. . .
...

(21)
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where

(22)

(23)

(24)

Stacking these observations together and padding zeros in
appropriate locations in corresponding matrices yields the fol-
lowing bilinear observation model:

(25)

where denotes Gaussian measurement noise following
. In some settings, can be replaced by

to account for time-varying system topology or parameters.
It is worth mentioning that, recently, bilinear state estima-
tion approach [27], [28] is also proposed as an alternative to
the conventional state estimation based on the well-known
Gauss–Newton iterative schemes, where the original nonlinear
measurement model is rephrased as two linear models, coupled
through a nonlinear change of variables.

B. Dynamic Models for System State and Time Delay

1) System State: Following [18], we adopt a state space
linear dynamic model for the system state

(26)

The matrix relates the state at the previous time step to
the state at the current time step. The matrix relates the
controls and other driving forces to the state. The random
vector is assumed to be multivariate Gaussian with

(27)

The covariance can incorporate additional prior informa-
tion from network topology or SCADA estimation, etc. In a dy-
namic state estimation scenario, the parameters , , and

are calculated online through the parameter identification
process [29].
2) Time Delay: We assume that the PMUs are jointly syn-

chronized every seconds. Immediately after the synchro-
nization, the delays follow a Gaussian distribution, with

(28)

where the covariance matrix depends on the synchroniza-
tion accuracy of the specific synchronization mechanism em-
ployed. Also, depending on the synchronization mechanism,
can follow different probability distributions. Between two syn-
chronizations, we assume follows the linear dynamic model

(29)

The control variable includes temperature and other control
dynamics which affect the time synchronization. The covari-
ance of , can be either white Gaussian assuming inde-
pendent time drifts of different sensors or having topologically

based structures associated with advanced distributed synchro-
nization mechanisms. It has been shown in [23] that the clock
state of an IEEE 1588 network satisfies a similar linear dynamic
model.

III. STATE ESTIMATION CONSIDERING PHASE MISMATCH

In the previous section we formulated the power grid statis-
tical models. State estimation is the problem of recovering
given . The system state can be estimated using
two types of techniques—the static state estimation (SSE) and
the dynamic state estimation (DSE) [29]. The SSE estimates the
system state at time instant using measurements for the same
instant of time. The most commonly used method for SSE is the
weighted least-squares (WLS) method [7]. The DSE depends
on physical modeling of the time-varying nature of the power
system and employs dynamic state models, e.g., the model de-
fined in (26), where the model parameters are estimated on-
line. The estimation is traditionally obtained using Kalman fil-
tering (KF) [9], [30], [31]. In this paper, we will not discuss
system identification. Rather, we assume the system parameters
(structures) are known, and propose methods for state estima-
tion based on the static and the dynamic model considering syn-
chronization errors.
We consider a more realistic model defined in (25), (26), and

(29). This formulation involves additional nuisance parameters
which complicate the inference of . The optimal filter so-

lution requires the computation of the posterior distribution of
unknown state parameters marginalized over the nuisance pa-
rameters and is clearly intractable. Instead, we propose an ap-
proximate solution based on joint estimation of both and
via two parallel yet coupled Kalman filters under the dynamic
model. We also propose an alternating-minimization-based es-
timation approach under the static model, which is competitive
with dynamic filtering in some respects.

A. State Estimation Using Static Model

Static state estimation considers the estimation of given
. It does not exploit the previous measurements, nor does it

assume the dynamical models in (26) and (29). Instead of the
dynamic characterization, we assume the time dissynchroniza-
tions follow a Gaussian prior distribution

(30)

where is calculated based on (28) and (29) to yield

(31)

The covariance changes with because the time delay
evolves over time following (29), and is reset to imme-
diately after synchronization. Converting the units, we obtain
that the phase mismatch follows a simple Gaussian prior

.Wemodel the states as deterministic unknown vari-
ables without any prior distribution. The algorithm can be easily
modified to allow additional information, e.g., that provided by
existing SCADA estimation. The main advantage of these static
simplifications is the robustness to inaccurate state space mod-
eling or inaccurate system identification.
Static state estimation with nuisance phase mismatches is a

regularized structured total least squares (STLS) [32] problem,
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where errors not only exist in the observation vector, but also
exist in the data matrix. The errors in the data matrix also ex-
hibits certain structures, and in this case an affine function of
the matrices associated with each bus installed with PMUs. Es-
timating the system state is then a process of finding a solution
to the STLS problem, with regularization for the phase mis-
match prior. Total least squares (TLS) [33], [34] has a classical
closed-form solution based on the singular value decomposition
(SVD). However, STLS is an open problem which is still not
fully understood. Two possible approaches to STLS are an al-
ternating minimization (AM) method which sequentially solves
for the state or the phases independently or a low-rank relaxation
technique via nuclear norm minimization [35]. In our setting,
the number ofmeasurements is small compared with the number
of unknown variables, and the phase mismatch is also rela-
tively small. We found through exploratory experiments that, in
this case, the simple AM approach is more preferable than the
low-rank relaxation technique. Due to the bilinear structure of
(25), the optimal estimator for each of the unknown parameters
assuming the other is known has a simple closed-form solution.
Thus, we propose the following AM approach.
1) Estimate , Assuming Is Known: Assuming is

known, and denoting

(32)

we can then write (25) as

(33)

The maximum-likelihood estimator of is then obtained by
solving the weighted least-squares (WLS) problem

(34)

The closed-form solution to (34) is

(35)

In this step, it is also possible to include the state estimation
from the SCADA system, as prior information. Then, we can
assume a Gaussian prior distribution of the system state

(36)

where and denote the system state and covariance es-
timated using the SCADA system. With this prior information,
we can then replace the maximum-likelihood estimator (34)
with a maximum a posteriori (MAP) estimator to estimate
system state .
2) Estimate , Assuming Is Known: Assuming is

known from (34), we estimate the phase mismatch . Let
and , where

. We can then write (25) as

(37)

The MAP estimator of is then

(38)

and the closed-form solution is

(39)

3) Alternating Algorithm for Joint Estimation: The estima-
tion algorithm iterates between the two steps described above
and solves for the state of the system. The alternating algorithm
is described in Algorithm 1.

Algorithm 1 AM Approach for Static State Estimation
Considering PMU Phase Mismatch.

Data: observations .

Result: state estimation .

begin

initialize ;

repeat

update using (35);

update using (39);

until convergence or max iterations achieved;

end

A possible drawback to Algorithm 1 is that multiple iterations
have to be executed for each estimation. However, under the
assumption that the phase mismatch changes slowly, the phase
mismatch from a previous time point can be used to “warm
start” the current estimation, thus reducing the number of itera-
tions.

B. State Estimation Using Dynamic Model

Here, we consider the case of state estimation using the dy-
namic models (26) and (29). Kalman filtering is widely used
in online state estimation and is employed for power system
state estimation problems [9], [30], [31]. For a perfectly syn-
chronized linear dynamic model with white Gaussian noise, the
Kalman filter is known to be optimal. Our mismatched model
is bilinear and more difficult. Two vectors of parameters has to
be estimated jointly, i.e., the phase mismatch and the system
state .
Based on the system dynamics and the measurement model,

different approximate methods could potentially be used to
dynamically estimate the state and phase mismatch , in-
cluding total Kalman filtering [36], recursive total least squares
[37], etc. Our experiments suggest that parallel Kalman filtering
(PKF) [26] is simple to use and produces accurate estimation
results.
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The idea of the PKF [26] was from the theory of two-player
dynamic game theory [38]. The solution of the game, i.e., the
equilibrium, is such that each player selects its best strategy cor-
responding to the other player’s strategy. In the context of our
problem, we can consider the bilinear state estimation problem
as two players, with strategy sets to be the estimate of the system
state and the estimate of the phase mismatch. The cost function
of each player is the estimation error. Therefore, the solution of
the game should satisfy

(40)

(41)

In practice, we use the “optimal predicted estimates” and

instead of and to parallel the two filters. In
this way, we reformulated the original problem into two inter-
laced estimation problems on two linear time-varying systems.
To simplify the notations, we define

(42)

where (43)

and therefore the original model (25) can be rewritten as

(44)

(45)

We then decompose the original system into two subsystems.
The subsystem for system state can then be characterized by
(26) and (44), whereas the subsystem for phase mismatch can be
characterized by (29) and (45). Note that the unit in (29) needs
to be converted into the unit of phase, and we use , and

to denote parameters and control variables corresponding
to the phase mismatch.
1) State and Phase Mismatch Estimation: Based on the two

subsystem models, we can couple two Kalman filters—one for
state estimation and one for phase mismatch estimation. First,
the predicted estimates and will be calculated.
When ameasurement is received, the two filters updates the esti-
mates accordingly in parallel. The updated estimate will be used
for prediction in the next time instant. The formulas for the pre-
dictions and updates are listed below, where we use superscripts
and to distinguish covariance matrices for the state and phase
mismatch, respectively.

Prediction:

Update:

2) Synchronization Model: Our proposed phase-mismatch
model assumes that the PMUs are synchronized every few sec-
onds. This needs to be taken into consideration when coupling
the two Kalman filters. For estimation of the phase mismatch,
the matrix has to be reset at the time of synchronization. In
addition, since we are coupling this Kalman filter with the filter
for state estimation, the state estimate also has to be changed
at the time of synchronization. A reasonable strategy is to as-
sume zero phase mismatch at the time of synchronization, as
the phase mismatch is often very small immediately after syn-
chronization. Then, we directly use the weighted least-squares
estimate without considering phase mismatch to reset the filter
for state estimation. Due to the Gaussian linear model, all of the
prediction and update steps are closed-form and computation-
ally efficient.

IV. NUMERICAL EXAMPLES

Here, we use numerical examples to illustrate the improve-
ment achieved by the proposed state estimation algorithms com-
pared with commonly used methods. We also illustrate the ef-
fect of the number of PMUs installed, the time synchronization
parameters, and the synchronization interval on the estimation
performance.

A. General Setup

We assume the PMUs reports 30 times per second and are
synchronized every second unless otherwise specified. At time
of synchronization, the time delay follows (28), and, between
consecutive synchronization, the time delay follows the linear
dynamic model (29). Without loss of generality, we assume the
synchronization of different PMUs are independent, and there-
fore and . This assumption is not nec-
essary and is only for ease and clarity of the performance eval-
uation. In the numerical examples, we set 5 s
except in the example where we illustrate the effect of synchro-
nization accuracy on the estimation performance.
The power system is quasi-static, and the change of states is

relatively slow comparing with the high PMU reporting rate.
Therefore, in the simulation, we select , with

10 p.u.[29]. We set to be identity matrix [18] and
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TABLE I
PMU LOCATIONS FOR DIFFERENT TEST SYSTEMS

to be zero matrix in the simulations. This specific choice
of parameter does not affect the generality of our algorithm. As
wementioned before, these system parameters are estimated on-
line through system identification in the dynamic state estima-
tion scenario. The initial state is defined via its magnitude
and angle and generated from the following distributions:

p.u.

rad (46)

These initial distributions are used for data generation purposes
only and are not exploited by the estimation methods. The mea-
surement noise is assumed to be i.i.d. Gaussian, with
, and 5 10 p.u.
We test the performance of our algorithms on the IEEE 14-,

30-, 57-, and 118-bus systems. For each test system, we con-
sider two scenarios—one with the minimum number of PMUs
installed for full (topological) observation and one with redun-
dant observations on selected buses. In this numerical example,
the placement of the minimum number of PMUs for the first
scenario is obtained using the method proposed in [17]. For the
second scenario, the buses with redundant observations are ran-
domly selected. In reality, we can assign more redundant obser-
vations on more important buses. We include the PMU place-
ment profile for different test cases and different scenarios in
Table I.
We use the root mean squared error (RMSE) as the perfor-

mance measure. For each time point, we calculate the RMSE of
the magnitude and angle of the bus voltages and then average
the RMSE over all the time points. In each test, we execute 20
Monte Carlo simulations with 600 data points (equivalent to 20
s of data).

B. Example Using Static Models

We first consider state estimation using static models, where
the state at time point is estimated based on measurements
at the same time point only and does not consider system dy-
namics. We compare our AM method with the traditional least-
squares (LS) estimation.
Under the general setup, we run Algorithm 1 for static state

estimation. The estimation error at one time point is shown in

Fig. 3. Comparison of state estimation results at one time point using AM, LS,
and OLS on the IEEE 57-bus system with 28 PMUs.

Fig. 4. Comparison of state estimation results for 5 s using AM, LS, and OLS
on IEEE 57-bus system with 28 PMUs.

Fig. 3, where we compare the absolute magnitude and angle dif-
ference for the estimation of each bus state with the actual ob-
served noise. We also include an “oracle case” (OLS) for com-
parison. The oracle estimatoin is obtained by assuming perfect
knowledge of the phase mismatch, and using a simple LS to es-
timate the states. Note that in the model we used real and imagi-
nary parts of the complex-valued states andmeasurements. Here
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TABLE II
RMSE OF ESTIMATION USING STATIC MODELS ON DIFFERENT TEST SYSTEMS USING LS, AM, AND OLS

Fig. 5. Comparison of state estimation results at one time point using KF, PKF,
and OPK on the IEEE 57-bus system with 28 PMUs.

we convert them into magnitudes and angles for easier compar-
ison. We also compare the magnitude and angle RMSE for five
consecutive seconds (150 samples) in Fig. 4. When considering
phasemismatch in the estimationmodel, and employing the AM
algorithm for state estimation, we observe that the estimation
errors in both magnitude and angle are reduced, and the errors
from AM are comparable to the oracle case.
We show the RMSE of LS, AM, and OLS in all the

test scenarios in Table II. The improvement is defined by
, which indicates the reduc-

tion in RMSE when using AM instead of LS. We observe that
in all the test scenarios, AM provides more accurate estimate
than LS. The improvement is more significant when there are
redundant observations provided by additional PMUs, as these
provide a more accurate estimate of PMU phase mismatch. We
also observe that when the number of PMUs increases, the AM
estimation is closer to the oracle case.

Fig. 6. Comparison of state estimation results for 5 s using KF, PKF, and OPK
on IEEE 57-bus system with 28 PMUs.

C. Example Using Dynamic Models

We then consider the state estimation using dynamic models,
where the state at time point is estimated using all of the
measurements until the th time point. We compare our PKF
method with the traditional KF and the oracle case (OKF). The
OKF assumes perfect knowledge of phase mismatch and em-
ploys Kalman filtering for state estimation.
The state estimation error at one time point is shown in Fig. 5

and for five consecutive seconds shown in Fig. 6. The figures in-
dicate that, by using PKF, we can accurately estimate the phase
mismatch, which significantly increase the estimation accuracy
of system state. Table III compares the RMSE using KF, PKF,
and OKF in different test scenarios. Similar to the static case,
the improvement is defined by

. We observe similar improvements as in the static case.

D. Comparison Between AM and PKF

In this subsection we compare the performance of AM and
PKF. The performance of these two algorithms can be compared
using Tables II and III, as the two methods were tested using the
same setup and data. We also show a comparison of the RMSE
of the two methods in five consecutive seconds in Fig. 7. As can
be seen from the tables and the figure, generally PKF provides
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TABLE III
RMSE OF ESTIMATION USING DYNAMIC MODELS ON DIFFERENT TEST SYSTEMS USING TRADITIONAL KF, PKF, AND OKF

Fig. 7. Comparison of estimation results using AM and PKF on IEEE 57-bus
system with 28 PMUs.

slightly better estimation results than the AM, as it employs the
dynamic models of the system. In addition, PKF is computa-
tionally more efficient than AM, as it does not require iterative
methods for the estimation at each time point. However, the AM
does not make assumptions on the dynamics of the system or the
phase mismatch, and does not rely on an accurate system identi-
fication process. Therefore, the AM is more robust to inaccurate
system identification than the PKF.

E. Effect of Number of PMUs

The number of installed PMUs affect the estimation perfor-
mance. In this experiment, we use a numerical example to show
how the estimation errors depends on the number of PMUs.
Here, we compare AM and LS. The results using KF and PKF
are similar.
We assume the installed PMUs have the same synchroniza-

tion accuracy, with 5 s. The optimal PMU placement
involves minimizing the estimation error and other cost func-
tions, and is beyond the scope of this paper. We will investigate
this problem in our next work. In this work, we employ an ad
hoc approach to determine PMU placement for illustration pur-
poses. Let denote the set of buses with PMUs. We first select

Fig. 8. RMSE as a function of number of PMUs installed on IEEE 57-bus
system.

the minimum set of PMUs for full observation using the method
from [17], and assign this minimum set to . Then, we rank the
remaining buses in decreasing order according to the number of
their adjacent buses and add new buses to following this
order. In this way, buses with more adjacent buses have higher
priority of being selected for PMU installation.
In Fig. 8, we plot the estimation error as a function of the

number of PMUs installed.We observe that the performance im-
proves as more PMUs are installed. The improvement is more
significant when more PMUs are installed, in which case the
difference between our method and the oracle also decreases.
This observation provides an intuition for optimal placement of
PMUs, which we will analyze in our future work. Note that, in
this example, we set the PMU time synchronization specifica-
tions to be the same for all PMUs. In practice, these speci-
fications can be different, adding another design variable to the
optimal PMU placement problem.

F. Effect of Synchronization Specifications

We finally illustrate the effect of PMU synchronization
specifications on the estimation results. The synchronization
specifications includes two aspects—the synchronization ac-
curacy , and the time interval between two consecutive
synchronization.
In Fig. 9, we plot the estimation error as a function of on

the IEEE 57-bus system with 28 PMUs installed. We observe
that, as increases, the error also increases. However, since
in our proposed methods we estimate the phase mismatch, the
error of our proposed method is always lower than that of the
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Fig. 9. RMSE as a function of on IEEE 57-bus system with 28 PMUs.

Fig. 10. RMSE as a function of the time interval between consecutive synchro-
nization on IEEE 57-bus system.

LS approach. The improvement is more significant when is
large. The error of the oracle case does not change as the perfect
phase mismatch is always assumed known.
Finally, we illustrate the impact of synchronization intervals

on the estimation performance. Different synchronization
mechanism has different synchronization intervals. For ex-
ample, PMUs using a GPS clock are synchronized every 1
s, whereas, according to the IEEE 1588 standard, the clocks
are synchronized every few seconds. In Fig. 10, we show the
estimation performance when the synchronization interval
changes. We observe that, as the time interval between con-
secutive synchronization increases, the estimation error also
increases. However, using our methods, the increase in RMSE
is much slower. We also performed experiments using KF and
PKF, and the results are similar.

V. CONCLUSION

In this paper, we proposed a model for power system state
estimation using PMUs with imperfect synchronization. We
then proposed estimation algorithms using the static and
dynamic models, with different assumptions. For estimation
using the static models, we proposed to use AM to jointly
estimate the phase mismatch of PMUs and the state of the
power system. This approach does not rely on an accurate
dynamic model for the state and phase mismatch, which is the
main advantage of this approach over the dynamic counterpart.
For estimation using the dynamic models, we proposed to

couple two Kalman filters to estimate the phase mismatch and
system state in parallel. Given a proper dynamic model for the
system, this approach is more preferable as no iterations are
required. Numerical examples showed that our methods sig-
nificantly improve the estimation performance compared with
traditional least-squares and Kalman filtering methods when
the PMUs are not perfectly synchronized. The PKF in general
performs slightly better then the AM. We also illustrated the
effect of PMU numbers and PMU synchronization on state
estimation, and showed that when a sufficient number of PMUs
are installed, the phase mismatch can be largely compensated
using signal processing techniques, which encourages large
scale deployment of imperfect PMUs. In addition, we showed
that the estimation accuracy degrades slowly when the time
interval between two synchronization increases when using
our methods, which potentially encourages the use of alterna-
tive synchronization mechanism with longer synchronization
intervals.
In our future work, we will derive analytical performance

bounds on the estimation errors, and consider optimal PMU
placement problems based on our proposed phase mismatch
model. In addition, we will continue to investigate and develop
robust algorithms for power system state estimation.

ACKNOWLEDGMENT

The authors would like to thank Prof. D. Dolev and Dr. T.
Anker for introducing them to the IEEE 1588 standard.

REFERENCES
[1] J. D. L. Ree, V. Centeno, J. Thorp, and A. Phadke, “Synchronized

phasor measurement applications in power systems,” IEEE Trans.
Smart Grid, vol. 1, no. 1, pp. 20–27, Jun. 2010.

[2] F. Schweppe and E. Handschin, “Static state estimation in electric
power systems,” Proc. IEEE, vol. 62, no. 7, pp. 972–982, Aug. 1974.

[3] O. Smith, “Power system state estimation,” IEEE Trans. Power App.
Syst., vol. PAS-89, no. 3, pp. 363–379, Mar. 1970.

[4] A. Debs and R. Larson, “A dynamic estimator for tracking the state of
a power system,” IEEE Trans. Power App. Syst., vol. PAS-89, no. 7,
pp. 1670–1678, Sep. 1970.

[5] A. Monticelli, State Estimation in Electric Power Systems: A General-
ized Approach. New York, NY, USA: Springer, 1999.

[6] K.-R. Shih and S.-J. Huang, “Application of a robust algorithm for
dynamic state estimation of a power system,” IEEE Trans. Power Syst.,
vol. 17, no. 1, pp. 141–147, Feb. 2002.

[7] A. Abur and A. G. Expósito, Power System State Estimation: Theory
and Implementation. New York, NY, USA: Marcel Dekker, 2004.

[8] M. Zhou, V. Centeno, J. Thorp, and A. Phadke, “An alternative for in-
cluding phasor measurements in state estimators,” IEEE Trans. Power
Syst., vol. 21, no. 4, pp. 1930–1937, Nov. 2006.

[9] A. Jain and N. Shivakumar, “Impact of PMU in dynamic state estima-
tion of power systems,” in Proc. 40th North Amer. Power Symp., Sep.
2008, pp. 1–8.

[10] S. Chakrabarti and E. Kyriakides, “PMU measurement uncertainty
considerations in WLS state estimation,” IEEE Trans. Power Syst.,
vol. 24, no. 2, pp. 1062–1071, Apr. 2012.

[11] E. Farantatos, G. Stefopoulos, G. Cokkinides, and A. Meliopoulos,
“Pmu-based dynamic state estimation for electric power systems,” in
Proc. Power Energy Soc. General Meeting, Jul. 2009, pp. 1–8.

[12] L. Vanfretti, J. H. Chow, S. Sarawgi, and B. Fardanesh, “A phasor-
data based state estimation incorporating phase bias correction,” IEEE
Trans. Power Syst., vol. 26, no. 1, pp. 111–119, Feb. 2011.

[13] V. Kekatos and G. B. Giannakis, “Distributed robust power system
state estimation,” IEEE Trans. Power Syst., vol. 28, no. 2, pp.
1617–1626, May 2013.

[14] Y.-F. Huang, S. Werner, J. Huang, N. Kashyap, and V. Gupta, “State
estimation in electric power grids: Meeting new challenges presented
by the requirements of the future grid,” IEEE Signal Process. Mag.,
vol. 29, no. 5, pp. 33–43, Sep. 2012.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YANG et al.: POWER SYSTEM STATE ESTIMATION USING PMUS WITH IMPERFECT SYNCHRONIZATION 11

[15] D. G. Hart, D. Uy, V. Gharpure, D. Novosel, D. Karlsson, andM. Kaba,
“PMUs—A new approach to power network monitoring.” ABB, 2001.

[16] V. Kekatos, G. B. Giannakis, and B. Wollenberg, “Optimal placement
of phasor measurement units via convex relaxation,” IEEE trans.
Power Syst., vol. 27, no. 3, pp. 1521–1530, Aug. 2012.

[17] B. Gou, “Generalized integer linear programming formulation for op-
timal PMU placement,” IEEE Trans. Power Syst., vol. 23, no. 3, pp.
1099–1104, Aug. 2008.

[18] J. Zhang, G. Welch, and G. Bishop, “Observability and estimation un-
certainty analysis for PMU placement alternatives,” in Proc. North
Amer. Power Symp., Sep. 2010, pp. 1–8.

[19] KEMA, Inc., United Telecom Council, , “Substation Communications:
Enabler of automation/an assessment of communications technolo-
gies,” 2006.

[20] M. Begovic, D. Novosel, and B. Djokic, “Issues related to the im-
plementation of synchrophasor measurements,” in Proc. 41st Annu.
Hawaii Int. Conf. Syst Sci., 2008, p. 164.

[21] A. P. Meliopoulos et al., “Synchrophasor measurement accuracy char-
acterization,” North Amer. SynchroPhasor Initiative Performance &
Standards Task Team, , 2007.

[22] C. Na, D. Obradovic, and R. Scheiterer, “A probabilistic approach
to clock synchronization of cascaded network elements,” in Proc.
ICASSP, Apr. 2009, pp. 1793–1796.

[23] G. Giorgi and C. Narduzzi, “Performance analysis of Kalman-filter-
based clock synchronization in IEEE 1588 networks,” IEEE Trans. In-
strum. Meas., vol. 60, no. 8, pp. 2902–2909, Aug. 2011.

[24] M. Kezunovic, A. Sprintson, J. Ren, and Y. Guan, “Signal processing,
communication, and networking requirements for synchrophasor sys-
tems,” in Proc. 13th Int. Workshop on Signal Processing Advances in
Wireless Commun., Jun. 2012, pp. 464–468.

[25] P. Top, M. Bell, E. Coyle, and O. Wasynczuk, “Observing the power
grid: Working toward a more intelligent, efficient, and reliable smart
grid with increasing user visibility,” IEEE Signal Process. Mag., vol.
29, no. 5, pp. 24–32, Sep. 2012.

[26] L. Glielmo, P. Marino, R. Setola, and F. Vasca, “Parallel Kalman filter
algorithm for state estimation in bilinear systems,” in Proc. 33rd Conf.
Decision and Control, Dec. 1994, pp. 1228–1229.

[27] A. Gomez-Exposito, C. Gomez-Quiles, and A. d. l. V. Jaen, “Bilinear
power system state estimation,” IEEE Trans. Plasma Sci., vol. 27, no.
1, pp. 493–501, Feb. 2012.

[28] C. Gomez-Quiles, H. Gil, A. de la Villa Jaen, and A. Gomez-Exposito,
“Equality-constrained bilinear state estimation,” IEEE Trans. Plasma
Sci., vol. 28, no. 2, pp. 902–910, Apr. 2013.

[29] N. Shivakumar and A. Jain, “A review of power system dynamic state
estimation techniques,” in Proc. Joint Int. Conf. Power Syst. Technol./
IEEE Power India Conf., Oct. 2008, pp. 1–6.

[30] H. Beides and G. Heydt, “Dynamic state estimation of power system
harmonics using Kalman filter methodology,” IEEE Trans. Power Del.,
vol. 6, no. 4, pp. 1663–1670, Oct. 1991.

[31] G. Valverde and V. Terzija, “Unscented Kalman filter for power system
dynamic state estimation,” IET Gen., Transm. Distrib., vol. 5, no. 1, pp.
29–37, Jan. 2011.

[32] B. D.Moor, “Structured total least squares and approximation prob-
lems,” Linear Algebra Applicat., vol. 188-189, no. 0, pp. 163–205,
1993.

[33] G. H. Golub and C. F. v. Loan, “An analysis of the total least squares
problem,” SIAM J. Numer. Anal., vol. 17, no. 6, pp. 883–893, 1980.

[34] A. Wiesel, Y. Eldar, and A. Yeredor, “Linear regression with Gaussian
model uncertainty: Algorithms and bounds,” IEEE Trans. Signal
Process., vol. 56, no. 6, pp. 2194–2205, Jun. 2008.

[35] B. Recht, M. Fazel, and P. Parrilo, “Guaranteed minimum-rank solu-
tions of linear matrix equations via nuclear norm minimization,” SIAM
Rev., vol. 52, no. 3, pp. 471–501, 2010.

[36] B. Schaffrin and H. B. Iz, “Towards total Kalman filtering for mobile
mapping,” in 5th Int. Symp. on Mobile Mapping Technol., Padua, Italy,
Dec. 2007.

[37] C. E. Davila, “Recursive total least squares algorithms for adaptive
filtering,” in Proc. Int. Conf. Acoust., Speech, Signal Process., Apr.
1991, pp. 1853–1856.

[38] T. Basar and G. J. Oldser, Dynamic Noncooperative Game Theory.
London, U.K.: Academic, 1989.

Peng Yang (S’11) received the B.Sc. degree from
the University of Science and Technology of China,
Hefei, China, in 2009, and the M.Sc. degree from
Washington University in St. Louis, St. Louis, MO,
USA, in 2011, both in electrical engineering. He
is currently working toward the Ph.D. degree in
electrical engineering at Washington University in
St. Louis under the guidance of Dr. A. Nehorai.
His research interests include statistical signal

processing, optimization, machine learning, and
compressive sensing, with applications to smart grid.

Zhao Tan (S’12) received the B.Sc. degree in
electronic information science and technology from
Fudan University of China in 2010. He is currently
working towards a Ph.D. degree with the Preston
M. Green Department of Electrical and Systems
Engineering at Washington University in St. Louis,
under the guidance of Dr. Arye Nehorai. His research
interests are mainly in the areas of statistical signal
processing, radar signal processing, sparse signal
reconstruction, optimization theory and smart grid.

AmiWiesel (M’07) received the B.Sc. andM.Sc. de-
grees from Tel-Aviv University, Tel Aviv, Israel, in
2000 and 2002, respectively, and the Ph.D. degree
from the Technion—Israel Institute of Technology,
Haifa, Israel, in 2007, all in electrical engineering.
He was a Postdoctoral Fellow with the Department

of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI, USA, from
2007 to 2009. Since Jan. 2010, he has been a Faculty
Member with the Rachel and Selim Benin School
of Computer Science and Engineering, Hebrew

University of Jerusalem, Jerusalem, Israel.
Dr. Wiesel was a recipient of the Young Author Best Paper Award for a 2006

paper in the IEEE Transactions on Signal Processing and a Student Paper Award
for a 2005 Workshop on Signal Processing Advances in Wireless Communica-
tions (SPAWC) paper. He was awarded the Weinstein Study Prize in 2002, the
Intel Award in 2005, the Viterbi Fellowship in 2005 and 2007, and the Marie
Curie Fellowship in 2008.

Arye Nehorai (S’80–M’83–SM’90–F’94) received
the B.Sc. and M.Sc. degrees from the Technion,
Haifa, Israel, and the Ph.D. degree from Stanford
University, Stanford, CA, USA.
He is the Eugene and Martha Lohman Professor

and Chair of the Preston M. Green Department of
Electrical and Systems Engineering, Washington
University in St. Louis, St. Louis, MO, USA. Earlier,
he was a faculty member with Yale University and
the University of Illinois at Chicago.
Dr. Nehorai is a Fellow of the Royal Statistical So-

ciety and the AAAS. He served as editor-in-chief of the IEEE TRANSACTIONS
ON SIGNAL PROCESSING from 2000 to 2002. From 2003 to 2005 he was the Vice
President of the IEEE Signal Processing Society, the Chair of the Publications
Board, and a member of the Executive Committee of this Society. He was the
founding editor of the special columns on Leadership Reflections in the IEEE
Signal Processing Magazine from 2003 to 2006.


