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Abstract—We consider distributed estimation of the inverse
covariance matrix in Gaussian graphical models. These models
factorize the multivariate distribution and allow for efficient dis-
tributed signal processing methods such as belief propagation (BP).
The classical maximum likelihood approach to this covariance
estimation problem, or potential function estimation in BP ter-
minology, requires centralized computing and is computationally
intensive. This motivates suboptimal distributed alternatives that
tradeoff accuracy for communication cost. A natural solution is
for each node to perform estimation of its local covariance with
respect to its neighbors. The local maximum likelihood estimator is
asymptotically consistent but suboptimal, i.e., it does not minimize
mean squared estimation (MSE) error. We propose to improve the
MSE performance by introducing additional symmetry constraints
using averaging and pseudolikelihood estimation approaches. We
compute the proposed estimates using message passing protocols,
which can be efficiently implemented in large scale graphical
models with many nodes. We illustrate the advantages of our
proposed methods using numerical experiments with synthetic
data as well as real world data from a wireless sensor network.

Index Terms—Covariance estimation, distributed signal pro-
cessing, graphical models.

I. INTRODUCTION

C OVARIANCE estimation is a classical and fundamental
problem in statistical signal processing. Many applica-

tions, ranging from array processing to functional genomics,
rely on accurately estimated covariance matrices [1], [2]. Re-
cent interest in large scale inference of graphical models with
small sample sizes has caused the topic to rise to prominence
once again. A natural approach to this ”large small ” problem
is to incorporate additional prior knowledge on the structure,
patterning, and/or sparsity of the covariance matrix or its in-
verse. Graphical models provide such prior information by rep-
resenting conditional dependencies between variables by edges
in an undirected graph. When the graph is sparse and the vari-
ables are jointly Gaussian, the graphical model imposes sparsity
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on the inverse covariance, variously called the information, con-
centration or precision matrix. The resulting graphical model is
represented by a network called the concentration graph. Com-
putationally efficient implementation of statistical inference al-
gorithms, such as belief propagation (BP), can be implemented
on this network.

Graphical models are attractive since inference can be
performed as local decentralized computations with message
passing [3]–[5]. Decentralization of computation of an accurate
inverse covariance estimator can facilitate high dimensional
data analysis applications such as anomaly detection in wide
area sensor networks, spatial correlation in images, and anal-
ysis of high throughput gene expression arrays. When the
topology (local dependency) of the graphical model matches
the topology (local data passage) of internode communica-
tion, near optimal estimation performance can be achieved
at significantly reduced computational cost as compared to
the global centralized approach. In applications such as those
mentioned above, often there is a good match between local
dependency and local data passage, e.g., in geographically dis-
tributed networks of sensing devices. The premise of this paper
is that the model topology and communication topology are
matched. Such an assumption is common in other decentralized
formulations of networked estimation, e.g, BP via message
passing in imaging and networks. BP has been successfully
applied when the underlying graph is a tree and more recently
it has been applied to arbitrary topologies [6]–[10]. A crucial
step underlying Bayesian inference is to learn the parameters
of the distribution, also known as the potential functions. In the
Gaussian case, this step corresponds to covariance estimation,
or more precisely, inverse covariance estimation.

The time-tested approach to covariance estimation in
Gaussian graphical models (GGM) is maximum likelihood
(ML) [11]–[13]. This approach is consistent and asymptotically
optimal in terms of minimizing mean squared error (MSE).
When the underlying graph is a tree, the ML estimate has
a simple closed form solution which requires little commu-
nication between nodes. This closed form solution can also
be generalized to chordal graphs using junction trees. Low
complexity numerical solutions for near chordal graphs have
been recently proposed in [14]. In arbitrary topologies, finding
the ML estimate requires solving a difficult high dimensional
convex optimization problem. For small graphs, i.e., graphs
with few vertices, general purpose optimization toolboxes [15]
or iterative proportional fitting (IPF) [11] can be applied to
solve this optimization problem. While a distributed version of
IPF can be derived by implementing each of its iterations via
BP methods [16], [17], such approaches are too computation-
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ally intensive to be practical for large concentration graphs. In
some scenarios, approximate estimation may be accomplished
using low rank approximations [18]. In general, distributed
covariance estimation via message passing remains a difficult
task and suboptimal approaches are necessary.

In this paper, we propose alternative distributed estimation
methods that approximate the global ML solution by trading
estimator accuracy for lower communication costs. All of the
proposed methods are based on aggregating local estimates of
parts of the inverse covariance matrix. The most natural ap-
proach to distributed estimation would have each node gen-
erate a local estimate of its covariance with its neighbors in the
graph. This simple approach yields a closed form solution which
requires no message passing. However, while such local ap-
proaches yield asymptotically consistent estimates, they suffer
from higher asymptotic MSE than the global ML estimator. In
fact, for finite samples the overall estimate is not symmetric.
The two distributed aggregation methods proposed in this paper
enforce symmetry via message passing and therefore reduce
MSE. The first method uses simple symmetric averaging of
the local estimates, whereas the second is based on a pseu-
dolikelihood technique [19]–[24]. We implement the latter via
an Alternating Direction Method of Multipliers that has shown
promising performance in similar distributed signal processing
problems [25]–[31]. We demonstrate the advantages of the pro-
posed methods using synthetic simulations as well as real world
data from a wireless sensor network [32], [33].

To avoid confusion, we emphasize that we consider the
problem of covariance estimation with a known graphical
model, i.e., the conditional independence graph topology is
known a priori. A related problem which recently attracted
considerable attention is covariance selection in which the
graphical model is unknown and is detected based on the
measurements. The latter is clearly a much more difficult task
aimed at different applications, e.g., topology discovery. More
details on covariance selection can be found in [12], [24],
[34]–[37], and references within.

The outline of the paper is as follows. In Section II we briefly
review the basics of GGM and formulate the distributed covari-
ance estimation problem. In Section III, we review the global
ML estimator and define the three distributed local ML estima-
tors. In Section IV we discuss the exact and asymptotic perfor-
mance analysis of the estimators. In Section V we demonstrate
the advantages of our proposed estimators using synthetic sim-
ulations and experiments with real world data. Concluding re-
marks are given in Section VI.

The following notation is used. Boldface upper case letters
denote matrices, boldface lower case letters denote column vec-
tors, and standard lower case letters denote scalars. We use in-
dices in the subscript or to denote subvectors or sub-
matrices, respectively, and denotes the submatrix formed
by the throws in . The superscripts and denote
the transpose and matrix inverse, respectively. For sets and ,
the set difference operator is denoted by , and cardinality is
denoted as . The operator denotes the Frobenius norm
of a matrix , namely , means that

is positive semidefinite and means that is positive
definite.

II. PROBLEM FORMULATION

In this section, we briefly review the formulation of the GGM.
For more details the reader is referred to [11]. We then formulate
the distributed covariance estimation problem addressed in this
paper.

Graphical models are intuitive characterizations of condi-
tional independence structures exhibited by variables with a
joint distribution . Specifically, define an undi-
rected graph with a set of nodes
connected by undirected edges ,
where we use the convention that each node is connected
to itself, i.e., for all . We define as
the set of neighbors of the th node, , i.e.,

.
Let be a length zero mean random vector, called the vector

of node states, whose elements are indexed by the nodes in .
The vector satisfies the Markov property with respect to ,
if for any pair of nonadjacent nodes the corresponding pair of
elements in are conditionally independent given the remaining
elements

(1)

This conditional factorization property induces simplifications
in optimal prediction over the nodes of the graph. For example,
the optimal minimum mean squared error (MMSE) predictor of

given reduces to the form

(2)

which is a low dimensional function of the vector of node states
when the number of neighbors of node is small.

The class of GGMs are graphical models over the multivariate
Gaussian distribution. This distribution is appealing due to the
fact that it is completely characterized by its mean and covari-
ance

(3)

and the fact that the optimal MMSE predictors are linear func-
tions of the vector of node states. In our context, it will be more
natural to use the canonical parameters and

which lead to the following representation

(4)

in which the exponent exhibits a linear dependency on the pa-
rameters and . This representation is natural since the graph

is directly related to the sparsity of . Indeed, simple algebraic
manipulations reveal that specializing the factorization property
(1) to this Gaussian case yields

(5)
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This sparsity of simplifies statistical inference. The MMSE
predictor in (2) has a simple linear form which depends only on
the neighboring nodes

(6)

This relation forms the main building block for Gaussian BP
methods.

The global centralized GGM covariance estimation problem
can be formulated as follows. Let be a zero mean Gaussian
random vector, with inverse covariance matrix . Given
independent and identically distributed (i.i.d.) realizations of
node states , denoted by , and knowledge of the
conditional independence structure through the topology of

, the goal is to estimate the inverse covariance .
In this paper, we consider a distributed version of the covari-

ance estimation problem. Specifically, we associate with each
of the random variables a node in a network. We assume
that the topology of communications links between nodes and
their neighbors matches the topology of . Each node has ac-
cess only to . Using this data, along with message
passing with its neighbors, each node tries to estimate its local
information parameters defined as the submatrix of the
inverse covariance matrix .

Our definition of local information parameters stems from
the fact that, in view of (6), is all that is required
for minimum MSE prediction of the node state given all
other node states. Knowledge of the easier-to-estimate local
covariance matrix involves more parameters, yet
not enough to specify the predictor coefficients in (6). In BP
terminology, is more directly related to the Gaussian
potential functions.

Thus, in our framework each node tries to estimate its own
local information parameters with the help of its neigh-
bors. Notationally, we collect the local estimates in one global
matrix, namely , whose elements are the local esti-
mates in the th node. Note that and are both estimators
of but may be different since each is estimated by
a different node. Reduction of the effects of this asymmetry in
the local estimates is a principal contribution of this paper.

III. ESTIMATORS

A. Global ML

The classical approach to covariance estimation is based on
the ML principle. The estimate is chosen as the parameter that
maximizes the log-likelihood function. The ML estimator of the
inverse covariance matrix is [11]

(7)

where the feasible set is defined as

(8)

and the sample covariance is given by

(9)

The global ML optimization problem in (7) is a convex opti-
mization problem. It can be solved in a centralized manner but
does not lend itself to a natural distributed implementation.

B. Local Maximum Likelihood

A natural alternative to the global ML strategy is the local ML
method. This estimator, denoted by LOC, aggregates decou-
pled ML estimators implemented independently at each of the
nodes. Each node belongs to its local network of nodes.
The marginal local distribution is a Gaussian distribution

(10)

where the local information matrices are given by

(11)

where . In general, is not equivalent to
, but it is easy to see that its first row is exactly the

elements we are interested in, namely . Thus, a natural
approach to distributed covariance estimation is to let each node
independently estimate its own . Assuming that the nodes
generate local ML estimates independently we obtain

(12)

where is defined in (9) and we assume for all so
that the inverse exists with probability one. Given our definition
of local covariance information, the th node utilizes only the
first row of and defines

(13)

Together, is the matrix having the first rows of for
in its positions, and having zero padding

elsewhere. While is a more simply computed matrix than
, it is not necessarily symmetric or positive definite.

In the next sections, we consider distributed estimators which
provide an appealing tradeoff between LOC and ML. The goal
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is to improve estimator accuracy through message passing pro-
tocols between adjacent nodes, entailing only a small increase
in computation. The basic principle behind this improvement is
to exploit the known symmetry in the inverse covariance.

C. Average Estimator

The simplest method to enforce symmetry in the inverse co-
variance estimate is to perform collaborative local averaging.
Each pair of neighboring nodes exchange their values of

and and modify their estimate to the average value

(14)

This simple estimator, denoted by AVE, can be easily imple-
mented in a distributed manner by passing two messages per
edge.

D. Pseudolikelihood Estimator

While symmetrization by collaborative local averaging is
simple, better performance can be achieved by using pseu-
dolikelihood optimization with symmetry constraints. To
motivate this approach, we first re-derive the LOC estimator of
Section III-B as a solution to a convex optimization problem
and then propose to enhance its accuracy by imposing addi-
tional symmetry constraints.

The pseudolikelihood approximation to the ML estimator ap-
proximates the intractable likelihood using a surrogate func-
tion, called a pseudolikelihood or composite-likelihood function
[19]–[24]. Specifically, we define the conditional estimator of
the global information matrix as the solution to

(15)

where we have defined the log-pseudolikelihood as a weighted
sum of log-conditional likelihoods

(16)

where for are weight coefficients. By choosing
for all , (20) becomes a standard (unweighted) pseu-

dolikelihood estimator. The generalization allows the estimator
to taper the influence of different regions in the graph, for ex-
ample the weights can be functions of the number of neighbors
associated with each node. In Section V we provide a promising
data-dependent choice for these weights.

It is easy to see why this approximate objective function has
attractive computational advantages as compared to the global
likelihood. Due to the structure of the GGM, we obtain

(17)

where we have invoked conditional independence to obtain the
first equality and the properties of the conditional Gaussian dis-
tribution to obtain the second equality. Note that the th condi-
tional distribution is fully characterized by , which is the
parameter of interest. Thus, the problem in (15) decouples into

independent problems

(18)

for . Each of these problems can be solved in closed
form. In fact, we obtain the following result.

Proposition 1: The local estimator in (13) and the con-
ditional estimator in (15) are identical.

Proof: We need to show that (13) is the solution to (18) for
each . The objective is a convex function of and can be
simplified to (19), shown at the bottom of the page. Solving for

yields

(20)

Plugging this into the objective and solving for results in

(21)

Using the matrix inversion formula for partitioned matrices, it
is easy to verify that (20)–(21) are exactly the first row of the
inverse of as expressed in (13).

Based on the optimization formulation of the local estimator,
we can enforce the known symmetry constraint on the inverse
covariance and define the pseudolikelihood maximization
(PML) estimator

(22)

which is identical to (15) except for the additional symmetry
conditions . The objective function in (22) is sep-
arable and the only thing that would prevent a straightforward
distributed implementation is the added complexity due to the

(19)
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constraints. We propose to decouple the symmetry constraints
in (22) using the Alternating Direction Method of Multipliers
[25]–[31]. We define the augmented Lagrangian1

(23)

where is the PML estimate (whose superscript is omitted for
clarity), is a symmetric auxiliary matrix, is a matrix of
dual multipliers and is a positive scalar parameter. In standard
dual decomposition methods, a saddle point of the augmented
Lagrangian is found by iteratively solving for the

primal variables and with fixed dual variables and then
updating . Due to the coupling in the quadratic term, solving
the primal problem is difficult. Remarkably, the method is guar-
anteed to converge to the global solution even if we update
with suboptimal primal values (see [25] and references within).
This leads to the following iterations:

(24)

(25)

(26)

for all and , where is defined in
(27) at the bottom of the page. This algorithm involves local
computations and message passing through the dual multipliers
in .

The most computationally intensive operations in the dis-
tributed algorithm (24)–(27) are the optimizations in (25). We
now show that each of these subproblems can be reduced to
a simple line search. For this purpose we first solve for .
Taking the derivative of (27) with respect to and equating
to zero yields

(28)

where

(29)

1For simplicity, we scale the original objective by a factor of .

Plugging back into the objective (27) yields a line search
with respect to

(30)
This line search is unimodal since the original problem was
jointly convex. Therefore, it can be efficiently solved using a bi-
section method. In the special case in which and ,
the line search has a simple closed form solution which coin-
cides with as given in (20)–(21).

E. Generalizations

PML exploits the known symmetry in but may produce an
estimator which is not positive definite. Performance can be im-
proved by adding the positive definite constraint to (22). How-
ever, we are not aware of simple distributed methods for en-
forcing it. Moreover, as detailed in Section IV, this modification
will not affect the asymptotic performance of PML.

Another interesting direction would be to try to improve the
summation aggregation of likelihoods. The pseudolikelihood is
a weighted sum of conditional distributions of . It can be im-
proved by summing over conditional distributions of where

are overlapping subsets of indices. For example, can be
chosen as the pairs of adjacent nodes. By appropriately choosing
the cardinalities of we can achieve a flexible accuracy vs.
complexity tradeoff. Similar extensions are discussed in [21].

IV. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the different
estimators discussed in Section III.

For notational convenience, we will parameterize the various
sparse matrices using vectors. We will use two different parame-
terizations: for the nonzero elements (associated with edges)
of a symmetric matrix , and for the nonzero elements of
a nonsymmetric matrix . The difference is that the symmetric
version models both and for using a single el-
ement in , whereas the nonsymmetric version models them
using two different elements in . These notations with ap-
propriate superscripts hold for both the true inverse covariance
and its estimates.

A. Global Maximum Likelihood

The global estimator is an ML estimator for a smooth regular
family and is therefore asymptotically consistent and efficient.
Using the symmetric vector parameterization, we obtain

(31)

(27)
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The consistency rate is weakly dependent on as long as the
number of maximal neighbors is small. When the topology
of the graph is unknown, the rate in the covariance selection
problem depends only logarithmically on [35]–[38]. Clearly,
the rate will be better or equal to logarithmic in the easier
covariance estimation problem treated here where the graph
topology is known.

The asymptotic error covariance follows the well-known ML
analysis:

(32)

where is the Fisher Information Matrix (FIM). The element
of the FIM associated with the information between and

can be easily derived as [39]

(33)

B. Local Maximum Likelihood

The local estimator (13) is a simple aggregation of local ML
estimators. Each of these follows a scaled inverse Wishart dis-
tribution whose moments have expressions given in [40]. There-
fore, its exact nonasymptotic total MSE in terms of Frobenius
norm can be obtained in closed form:

(34)

Assuming that , the biases and the variances satisfy

(35)

(36)

As expected, these results show that the MSE goes to zero as
, i.e., the estimator is consistent, and that the bias and

variance will be small when for all .
The results above characterize the sum of mean squared er-

rors over all the elements in , but do not address the correla-
tion between these errors. For this purpose we turn to asymp-
totic error analysis. As proven in Prop. 1, the local estimator is
an M-estimator, i.e., a solution to a function maximization or

minimization problem, for which there are known asymptotic
analysis results. Using the nonsymmetric vector parameteriza-
tion, we rewrite (15) as

(37)

Under technical conditions, the asymptotic error covariance sat-
isfies Huber’s sandwich formula [41, Section 6.3]:

(38)
where

(39)

Due to space limitations, we omit the details on these straight
forward computations. We do note that the log-pseudolikeli-
hood is linear in the sample covariance so that and
are linear combinations of

(40)

and

.

(41)

C. Average Estimator

The AVE estimator in (14) is a simple linear transformation
of the LOC estimator. This transformation can only reduce the
mean squared Frobenius error. Indeed, due to the symmetry of

, we have

(42)

Summing over all , indices and adding the
diagonal errors leads to

(43)

This inequality can also be derived by noting that AVE is the or-
thogonal projection of LOC onto the convex set of symmetric
matrices, and using the projection onto convex sets theorem
(see [13] for more details). We emphasize that this result is
nonasymptotic and holds for finite samples.
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A more precise (yet asymptotic) characterization of the errors
of AVE can be obtained via those of LOC. Using their vector
parameterizations, the estimators are related as

(44)

where is a matrix that averages the elements in associ-
ated with the same off diagonal elements. The true inverse co-
variance is symmetric and also satisfies . Therefore,
the covariance of the error can be expressed as

(45)

where the limit of the inner covariance is provided in (38).

D. Pseudlikelihood Estimator

Asymptotic performance analysis of the PML in (22) is sim-
ilar to that of LOC. PML is an M-estimator defined as

(46)

where the only difference from (37) is that PML uses the
symmetric vector parameterization. Thus, similarly to (38), its
asymptotic error covariance is given by

(47)

where

(48)

Unlike AVE which never degrades the Frobenius MSE, for
PML this is not guaranteed. The reason is that the pseudolikeli-
hood and likelihood objectives are not directly related to MSE.
For large sample size, the global estimator is optimal in terms of
MSE and additional linear constraints can only lower the error2.
Unfortunately, this may not be true for PML which is subop-
timal even under asymptotic conditions. Numerical examples in
representative settings provided in the next section suggest that
PML is usually better than AVE both in terms of finite sample
performance as well as its asymptotic errors.

E. Positive Definiteness

As discussed in Section III-E, performance may be improved
by adding a positive definiteness constraint to (22). However,
assuming that the true inverse covariance is strictly positive def-
inite and in the interior of the feasible set, it is well known that

2Asymptotically, ML estimation attains the CRB whereas linearly con-
strained ML estimation attains the constrained CRB which is always lower or
equal to the CRB [42].

Fig. 1. Topology of the random network.

relaxing the inequality constraints cannot affect the asymptotic
performance of M-estimators (or the Cramer Rao performance
bound [42]). A similar phenomenon in the context of covariance
estimation was recently obtained in [43]. On the other hand, for
finite sample size, incorporation of positive definiteness con-
straints can likely improve performance. This is a worthwhile
goal for future study.

V. NUMERICAL RESULTS

In this section, we demonstrate the performance advantages
of the distributed estimators using synthetic simulations and an
experiment with real world data.

In the first synthetic simulation, we randomly generate a net-
works of sensors whose locations are uniformly dis-
tributed over the unit square. We connect each sensor (node) to
its four nearest neighbors. We then compute the values of the
inverse covariance as follows: if nodes and are not
connected, and where is their distance, oth-
erwise. We add an arbitrary small value to the diagonal elements
in order to guarantee that the true covariance matrix be positive
definite. We keep the network fixed throughout the simulation.
The topology and its associated graphical model are illustrated
in Fig. 2. We then perform 200 experiments in which we gen-
erate independent realizations of with and esti-
mate using the four estimators. PML is implemented using
the message passing protocol described above with for
all , and 20 iterations of (24)–(26). We report the av-
erage performance using three performance measures:

• Fig. 2: normalized MSE in the inverse covariance:

(49)

• Fig. 3: normalized MSE in the covariance:

(50)
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Fig. 2. Normalized MSE in � as a function of � .

Fig. 3. Normalized MSE in � as a function of � .

• Fig. 4: normalized MSE in predicting given where
assuming the MMSE predictor in (6) and

replacing the unknown with its estimate

(51)

The graphs illustrate the advantages of the symmetry en-
forcing estimators which succeed in closing about half of the
performance gap between the local and global estimators.
As expected, the PML estimator outperforms the naive AVE
estimator.

In our next synthetic simulation, we demonstrate and verify
the asymptotic performance analysis presented in Section IV.
For this purpose, we choose a simple GGM which consists of
a four node loop, i.e., four nodes with edges

, , and . We let the diagonal elements in
be equal to 2.01 and let the nonzero off-diagonal elements

be equal to 1. We then simulate LOC, AVE, PML, and ML and

Fig. 4. Normalized MSE in � as a function of � .

Fig. 5. Normalized MSE in a simple four node loop GGM. The curves denote
the asymptotic limits, whereas the symbols present the estimated performance
in a Monte Carlo simulation.

compare their averages errors over 10 000 independent exper-
iments to the asymptotic errors given in (38), (45), (47), and
(32), respectively. The results of this simulation are presented
in Fig. 5 and demonstrate the tightness of the analysis in the
small error regime. As explained in Section IV, AVE is provably
better than LOC, and, while PML has no provable performance
improvement, it does perform even better in this specific setting
(and many other settings we have experimented with).

Next, we present numerical results obtained from real world
data. Following [32], [33], we use the Lab dataset. It contains
temperature information from a sensor network of 54 motes de-
ployed in the Intel Berkeley Research lab between February 28
and April 5, 2004. This dataset is known to be very difficult. It
has lots of missing data, noise and failed sensors. We prepro-
cess the data as follows: we use 1800 consecutive samples per
sensor, we interpolate missing readings (NaN) and we de-trend
the data using a local rectangular window of 10 samples. Next,
we compute the sample covariance and invert it to get the ground
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Fig. 6. Normalized MSE in � as a function of � in ‘Lab’ dataset. The curve
labeled PML corresponds to the weighted PML estimator.

truth inverse covariance matrix . We derive a graphical model
with a sparsity level of 70% by thresholding this matrix. Based
on this graphical model and repeated sampling of samples out
of the 1800, we try to estimate using the different proposed
estimators. In our first attempt, LOC, AVE, and ML performed
as expected. However, the PML method failed to improve the
performance of LOC and AVE. We suspected that the reason is
the inhomogeneous nature of the sensors. Thus, we repeated the

experiment again with a weighted PML using
for all . This resulted in significantly better performance of
PML. The average normalized squared Frobenius errors over
200 random resamplings are reported in Fig. 6. The errors sat-
isfy the expected order and illustrate the advantages of the pro-
posed techniques.

VI. CONCLUSION

In this paper, we considered the problem of distributed inverse
covariance estimation in GGM. For large dimensional problems
with many nodes in the graph, implementing the global ML es-
timator has high computation and communication costs. As a
lower cost alternative we proposed a natural local ML approach
that, while asymptotically consistent, produces inverse covari-
ance estimates that are not symmetric matrices. To overcome
this lack of symmetry we introduced two modified estimators
that enforce symmetry by averaging and by pseudolikelihood
optimization, respectively. These methods enforce the known
symmetry in the inverse covariance through simple message
passing protocols. We demonstrate their advantages using syn-
thetic simulations as well as real world data from a wireless
sensor network.
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