
6182 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 12, DECEMBER 2012

Geodesic Convexity and Covariance Estimation
Ami Wiesel, Member, IEEE

Abstract—Geodesic convexity is a generalization of classical con-
vexity which guarantees that all local minima of g-convex functions
are globally optimal. We consider g-convex functions with posi-
tive definite matrix variables, and prove that Kronecker products,
and logarithms of determinants are g-convex. We apply these re-
sults to two modern covariance estimation problems: robust esti-
mation in scaledGaussian distributions, andKronecker structured
models. Maximum likelihood estimation in these settings involves
non-convexminimizations.We show that these problems are in fact
g-convex. This leads to straight forward analysis, allows the use of
standard optimization methods and paves the road to various ex-
tensions via additional g-convex regularization.

Index Terms—Elliptical distributions, geodesic convexity, Kro-
necker models, log-sum-exp, martix variate models, robust covari-
ance estimation.

I. INTRODUCTION

C ONVEX optimization has emerged as a powerful signal
processing tool with a growing variety of applications.

Formulating an optimization problem in convex form is ad-
vantageous both from a theoretical perspective and from a
numerical perspective. Convex optimization methods can
efficiently find global solutions to large scale problems. These
problems can also be easily generalized by incorporating addi-
tional convex constraints. In order to enjoy these benefits, there
is an ongoing search for new classes of convex functions, and
an understanding of their modeling power. In this paper, we
consider a generalized form of convexity known as geodesic
convexity (g-convexity) which is associated with positive def-
inite matrix variables. Its main property is that local minimas
of g-convex functions are also globally optimal. We define new
classes of g-convex functions and consider their application to
modern covariance estimation problems.
Two fundamental functions in convex analysis are the expo-

nential and the logarithm of a sum of exponentials. These func-
tions are the core ingredient in geometric programming where
positive variables are modeled as exponentials, e.g., in power
control in communication theory [2], [3]. We extend these re-
sults and consider Kronecker products and logarithms of de-
terminants of positive definite matrices. We no longer use ex-
ponentials to model these matrices. Instead, we provide a brief

Manuscript received February 13, 2012; revised June 06, 2012; accepted Au-
gust 15, 2012. Date of publication September 11, 2012; date of current version
November 20, 2012. The associate editor coordinating the review of this man-
uscript and approving it for publication was Dr. Antonio De Maio. This work
was partially supported by the Israel Science Foundation Grant 786/11. Parts of
this material in this paper was presented in at IEEE Statistical Signal Processing
Conference, Ann Arbor, MI, August 2012.
The author is with the Selim and Rachel Benin School of Computer Science

and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
(e-mail: amiw@cs.huji.ac.il).
Digital Object Identifier 10.1109/TSP.2012.2218241

review to g-convexity [4]–[6], and prove that the functions are
convex in this generalized notion.
Our first application for the g-convexity results is in the

context of robust covariance estimation. We consider Tyler’s
method for scatter matrix estimation in scaled Gaussian models,
including Elliptical distributions, generalized Elliptical distri-
butions, spherically invariant random vectors and compound
Gaussian processes [7]–[13]. This method has been success-
fully applied to different practical applications ranging from
array processing to sensor networks. It has been generalized
to other settings involving regularization [14]–[18] and in-
complete data [19]. Additional recent contributions addressing
covariance estimation in non Gaussian conditions include [20].
Maximum likelihood (ML) covariance estimation in scaled

Gaussian models involves a non-convex minimization.
Nonetheless, different works proved that the global solu-
tion can be efficiently found via simple fixed point iterations
[7], [10]. Analysis of regularized solutions has been addressed
in [16]. Recently, [17], [21] proved that the negative-log-likeli-
hood is g-convex in the unknown covariance. Following these
works, we show that the problem is in fact jointly g-convex
in both the covariance and the scaling factors. These results
provide more insight on the analysis and design of robust
covariance estimation methods, and pave the road to numerous
extensions. As an example, we demonstrate how additional
prior knowledge on the covariance or the scaling can be ex-
ploited via g-convex regularization.
Our second application is in the context of structured co-

variance estimation. A standard approach to high dimensional
covariance estimation is based on low order parametric models
which may be easier to estimate. In particular, Kronecker
structures, also known as separable models, transposable
covariances models, or matrix-variate-normal models are
typically used when dealing with random matrices (rather
than random vectors) [22]–[33]. They have been successfully
applied to different applications including wireless communi-
cation, bioinformatics and computer vision. ML estimation in
Kronecker structures involves a non-convex optimization. It is
usually addressed using the iterative Flip-Flop solution [28].
Uniqueness of the solution has been recently analyzed in [29],
[32]. Based on our g-convexity results, we show that the nega-
tive-log-likelihood is in fact g-convex. This result complements
the known uniqueness results and extends them to more general
scenarios as multi-way Kronecker models. It allows the use
of efficient numerical methods, and suggests straightforward
extensions via additional g-convex regularization.
An interesting observation in our work concerns the rela-

tion between the robust and the Kronecker covariance estima-
tion problems. These two problems originate in different appli-
cations with different goals and by different researchers. Both
problems are traditionally solved by simple iterations, and sat-
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isfy surprising uniqueness results. Our results show that the
problems are in fact g-convex minimizations. Furthermore, the
derivation suggests that the models themselves are actually sim-
ilar. Both use product structures for the unknown covariance.
The difference is that robust methods use independent scalar
scalings, whereas Kronecker techniques turn to constant matrix
factors. Armed with this understanding, we propose a hybrid
class of robust Kronecker models which enjoy the best of both
worlds.
The paper is organized as follows. In Section II, we review

and provide new results on g-convexity. In Section III, we
demonstrate the use of these results in the context of robust
covariance estimation. In Section IV, we consider their appli-
cation to Kronecker structured covariance estimation. Next,
in Section V we address hybrid robust Kronecker models.
G-convex regularization schemes are discussed in Section VI,
and optimization details are briefly reviewed in Section VII.
Finally, simulations results are presented in Section VIII, and
concluding remarks are offered in Section IX.
The following notation is used. The sets and
denote the set of length vectors, the set of size

matrices, the set of length vectors with positive elements and
the set of symmetric positive definite matrices, respectively. The
operator denotes the norm. The superscripts and

denote the transpose and inverse operations. The super-
script where outputs a matrix with the same eigen-
vectors as and eigenvalues to the power of . The operator
with domain denotes the determinant. The vector
is the all ones vector. The matrix is diagonal with the
elements , and is a diagonal matrix with the diag-
onal elements of . For a vector , we use and
to denote vectors with the elements and , re-
spectively. The operators and denote the Hadamard el-
ement wise product, the Kronecker product and the set product,
respectively. By we denote the vector with the stacked
columns of the matrix . We denote the zero mean multivariate
Gaussian distribution by where is the covariance
matrix. Throughout the paper, will denote a generic constant
which does not depend on the unknowns.

II. GEODESIC CONVEXITY

A. G-Convexity on

We begin with a brief review on general g-convexity on an
arbitrary manifold . More details are available in [4]. Similar
results can be found in [5], [34], [35].
Definition 1: For each pair we define a geodesic1

for . For simplicity, we will omit the super-
scripts and assume and are understood from the context.
Definition 2: A real valued function with domain is

g-convex if for any
and . Equivalently, it is g-convex if is convex in

for any .
Proposition 1: Any local minima of a g-convex function over
is a global minima.

1The exact definition of a geodesic is given in [4]. See also [5], [34], [35] for
similar approaches known as super-convexity or arcwise connectivity.

B. G-Convexity on

Throughout this paper, we will be interested in matrix vari-
ables, but it is instructive to first address the easier case of
vectors.
Classical convexity is a special case of g-convexity when

and the geodesics are defined as [36]

(1)

It is well known that

are convex (2)

Another well known property is

is convex in

(3)

Alternatively, we can rewrite (1)–(3) in terms of g-convexity.
For this purpose, we define with the geodesics

(4)

which is identical to (1) via a simple change of variables

(5)

The analog of (2) is therefore

are g-convex (6)

Whereas (3) is equivalent to

is g-convex in is g-convex in (7)

In this case, a simple change of variables transforms g-con-
vexity into convexity. The advantage of g-convexity is that it
can be applied in more complicated cases where no such change
of variables is known. In particular, we now show how to gen-
eralize these properties to .

C. G-Convexity on

Consider the manifold of positive definite matrices .
With each we associate the following geodesic2

[37]–[39]

(8)

Note that (8) reduces to (4) in the scalar case and in the diagonal
case where .
The matrix versions of (6) are provided in the following two

lemmas.
Lemma 1: Let and . The function

(9)

is g-convex in .

2This geodesic is defined in page 4 of [37] using the notation
where expm and logm are the matrix exponential and

logarithm functions. Similarly, [38], [39] characterize this geodesic using only
and a direction parameter.
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Proof: Consider the eigenvalue decomposition

(10)

where is an orthogonal matrix and . Substituting
for yields

(11)

which is convex in .
Lemma 2: Let and for be a

set of matrices whose columns span . The function

(12)

is g-convex in .
Proof: Consider the eigenvalue decomposition in (10).

Then,

(13)

where

(14)

The result then follows by noting that the log determinant of
exponentially weighted positive definite matrices is convex [40]
(see also the Appendix).
Next, we generalize the setting and consider the manifold

(15)

Each point in is a J-tuple of positive definite ma-
trices . The geodesic between any two -tuples

is the -tuple
where

(16)

and . In order to emphasize the use of multiple
variables, we say that a function is jointly g-convex in
when it satisfies Definition 2 over these joint geodesics.
The following lemma is a generalization of (7) to the matrix

case.

Lemma 3: Let be a real valued and g-convex function on
with . Then,

(17)

is jointly g-convex in .
Proof: We have

(18)

where is just a definition of and is due to g-con-
vexity of , and is based on the properties

(19)

for conforming matrices, and

(20)

for positive definite matrices, e.g.,[41, (9.9) and Theorem 9.1].

III. ROBUST MODEL

In this section, we apply the results in Section II to covariance
estimation in scaled Gaussian distributions [7]–[19]. We model
the statistically independent observations as

(21)

for , where is the unknown covariance
matrix, and are deterministic factors. We assume

and that span . The nuisance factors allow small
variations in the distributions of and provide a robust statis-
tical model. The negative-log-likelihood is

(22)

This objective is non-convex in the classical definitions. How-
ever, straight forward application of Lemmas 1–3 yields the fol-
lowing result.
Theorem 1: The function in (22) is jointly

g-convex and .
Previous works using model (21) simplified the problem and

eliminated the unknown [9], [11]. This can be done by mini-
mizing (22) with respect to

(23)

and plugging it back into (22). Alternatively, the measurements
can be normalized as [42]

(24)
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so that they will not depend on the unknown . In both cases, the
concentrated negative-log-likelihood of or the negative-log-
likelihood of , result in the following objective parameterized
by :

(25)

It was recently shown that this function is also g-convex.
Theorem 2 ([21]): The function in (25) is

g-convex in .
We now take an opposite approach and concentrate (22) with

respect to . The optimal solution is

(26)

Plugging this solution back into (22) yields

(27)

Direct application of Lemma 2 yields the following result.
Theorem 3: The function in (27) is g-convex in
.
In fact, using (5) the objective can be expressed as

(28)

which is classically convex in (see Lemma 4 in the Appendix).
Theorems 1–3 complement known results on robust covari-

ance estimation in (21). Beginning with the seminal work of [7]
and its numerous extensions, it was proved that the non-convex
ML problem can be efficiently solved using simple fixed point
iterations starting at any initial point. Next, [21] proved the con-
centrated negative-log-likelihood is g-convex in the covariance.
Our new contributions are that the negative-log-likelihood is ac-
tually jointly g-convex in both the covariance and the scalings,
and that it can be concentrated to a g-convex minimization in the
scalings. Hence, the global solutions to these three problems can
be easily found via simple descent algorithms. Furthermore, ad-
ditional prior knowledge on both the covariance and the scalings
can be exploited via g-convex regularization as will be detailed
in Section VI.

IV. KRONECKER MODEL

In this section, we apply the results in Section II to ML
estimation in Kronecker structured covariances [22]–[33].
We model the independent and identically distributed (i.i.d.)
observations as

(29)

for , where and . Typically,
this model arises when

(30)

where . In matrix terms, the distribution in (29) can
be expressed as

(31)

where is a matrix of i.i.d., zero mean and unit vari-
ance Gaussian random variables. The negative-log-likelihood
for estimating and is

(32)

This objective is non-convex in the classical definitions. Straight
forward application of Lemmas 1–3 yields the following obser-
vation.
Theorem 4: The function in (32) is jointly

g-convex in and .
Thus, the global ML estimate can be found using standard

descent methods starting at any starting point. Additional prior
information on or can be exploited via g-convex regu-
larization as will be detailed in Section VI.
For simplicity, we have considered the Kronecker product

of two positive definite matrices but g-convexity holds in the
general case of multi-way Kronecker models where [43]

(33)

V. HYBRID ROBUST KRONECKER MODEL

An interesting byproduct of our analyses concerns the rela-
tion between the robust and the Kronecker covariance estima-
tion problems. These originate in different applications with dif-
ferent goals and by different researchers. However, our deriva-
tion suggests that models (21) and (29), as well as their solu-
tions, are actually very similar. The only difference is that (21)
uses independent scalar weights, whereas (29) turns to equal
matrix weights . This naturally suggests a hybrid model which
we now explore.
The hybrid robust-Kronecker covariance model is

(34)

for , where and .
The model can also be written in matrix notations as

(35)

where are matrices of i.i.d., zero mean and unit
variance random variables. The negative-log-likelihood for es-
timating and is

(36)

As before, this function is non-convex, but straight forward ap-
plication of Lemmas 1–3 yields the following observation.
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Theorem 5: The function in (36) is
jointly g-convex in and .
Thus, the global ML solution to the hybrid model can be

found using standard descent methods.

VI. G-CONVEX REGULARIZATION

In the previous sections we showed that the robust, Kronecker
and hybrid models lead to g-convex negative-log-likelihoods
which can be easily minimized. These results allow straight
forward generalizations via additional g-convex regularization
functions. Indeed, a common approach in statistics is to regu-
larize ML and solve

(37)

where in (22), (32), or (36) is the appropriate negative-log-
likelihood function, is a penalty function and is a regu-
larization parameter. The penalties shrink the solution towards
some low order parametric model in order to allow for bias-
variance tradeoff. Alternatively, the penalties can exploit prior
knowledge of the unknown parameters as in maximum-a-pos-
teriori estimation. Theorems 1–5 motivate the use of g-convex
penalties. These will guarantee that any local regularized ML
estimate will be globally optimal.
We now list a few promising g-convex penalties:
• Scalar penalties:

(38)

G-convexity of these penalties can be observed by
changing variables to and noting their classical
convexity in . Such penalties are appropriate when the
scalings, also known as texture, originate from a known
underlying distribution as in [44], [45]. Depending on the
distribution, these penalties can be used to constrain the
empirical first, second and absolute moments.

• Smoothness:

(39)

This penalty is appropriate when the scalings originate
from a correlated time series, e.g., [46].

• Matrix penalties:

(40)

These g-convex penalties allow improved accuracy by
shrinking the covariance estimate towards a known target,
typically the scaled identity matrix. Proofs and more
details on matrix valued g-convex regularization are avail-
able in [17].

VII. OPTIMIZATION DETAILS

The main message in this paper is that the robust and the
Kronecker negative-log-likelihoods are g-convex. Hence, each
of their local minimas is also globally optimal. These objectives
are smooth and well behaved. Thus, there are many numerical

methods for efficiently finding their local solutions. The details
of these specific implementations are outside the scope of this
paper, but we do briefly discuss them for completeness.
Efficient solutions to g-convex minimizations over the

positive definite set can be obtained via optimization on
manifold techniques [6]. Our experience suggests that there
is no need for such sophisticated methods and that standard
off-the-shelves smooth optimization packages, as Matlab’s
built-in fmincon function, are sufficient. When possible, we
recommend changing variables and transforming the problem
into a standard convex minimization as in (28). In many cases,
simple approaches based on alternating minimizations also
perform well. For example, the hybrid objective in (36) can
be minimized by the classical Flip-Flop method which alter-
natively solves for or while fixing the other two
variables. Another promising approach relies on the majoriza-
tion-minimization technique which iteratively linearizes the
concave terms in the non-convex (yet g-convex) objectives as
proposed in [1], [17].
Uniqueness and lack of identifiability are important issues

which should be considered in the optimization. It is well
known that our parametric models lack uniqueness. For ex-
ample, in (21) can be replaced by for any

. Theoretically, this is not important as both solutions are
equally optimal. However, this may cause numerical stability
problems, as well as issues with the choice of regularization
parameters in (37). For this purpose it is recommended to use
normalization methods as in [14], [16], to use scale invariant
penalty functions as in [17], or to impose additional constraints
which will promise uniqueness as in [29]. For example, it is
easy to see that (27) is invariant to a scalar multiplication of
. Thus, without loss of generality, we recommend adding the
g-convex constraint

(41)

VIII. SIMULATIONS

In this section, we provide a few numerical examples using
Monte Carlo simulations. The purpose of these examples is to
demonstrate the high level ideas in this paper, rather than a de-
tailed practical application which is beyond the scope and will
be pursued elsewhere.
In the first example, we considered robust covariance estima-

tion with correlated scaling factors. We defined the unknown
covariance matrix as a size Toeplitz matrix with
the elements . In each experiment, we generated
i.i.d. realizations of a zero mean multivariate normal of co-

variance with i.i.d. Chi-squared distribution with 3 degrees
of freedom scaling factors. We then correlated these factors
using a length 2 uniform moving average window. These re-
alizations were used to estimate the unknown covariance. We
compared the naive sample covariance, Tyler’s original fixed
point iteration, and our newly proposed estimator assuming cor-
related scaling factors. Specifically, we changed variables and
used Matlab’s fmincon subroutine to minimize (27) penalized
by (39) with subject to the constraints in (41). Due to the
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Fig. 1. Robust covariance estimation with correlated scalings.

Fig. 2. Hybrid estimation in a non-Gaussian setting.

scaling ambiguity, we normalized the true covariance and its es-
timates by their traces before computing the errors. In Fig. 1, we
provide the average normalized squared Frobenius norm error
over 1000 independent experiments. It is easy to see the per-
formance gain of the robust estimators, and the advantage of
exploiting the additional prior knowledge. Similar results (not
shown) with different values of suggest that the solution is not
too sensitive to its exact value.
In the second example, we considered the hybrid covariance

model. The scalings were i.i.d. scaling factors generated ac-
cording to a Chi-squared distribution with 3 degrees of freedom.
We defined the unknown covariance matrices and of re-
spective sizes and as Toeplitz matrices with the

elements . We compared the naive sample covari-
ance, the Flip-Flop method and the hybrid ML estimator. The
latter was implemented in a Flip-Flop manner by alternatively
solving for the unknowns in closed form. As before, we nor-
malized the true covariance and its estimates by their trace. In
Fig. 2, we provide the average normalized squared Frobenius

Fig. 3. Hybrid estimation in a Gaussian setting.

norm error over 500 independent non-Gaussian experiments.
The hybrid method outperforms its competitors for all sample
sizes considered. For completeness, Fig. 3 shows the results of a
similar experiment with known factors , corresponding to
a pure Gaussian setting. Here, as expected from a robust estima-
tion method, the hybrid approach performs slightly worse than
Tyler, but the degradation is small and vanishes as the number
of samples increase.

IX. DISCUSSION

In this paper, we extended classical convexity results on ex-
ponentials and log-sum-exp functions to g-convexity in positive
definite matrix variables. We then applied these results to two
modern covariance estimation problems. We reformulated both
of these as g-convex minimizations and noted their similarity.
This analysis shed more light on these problems and paved the
road to various generalizations.

APPENDIX

In this Appendix, we provide results on the convexity of log
determinant functions with exponentially weighted positive
semidefinite matrices. These results have been previously
published in [40] using a different proof and are provided for
completeness.
It is well known that the log-sum-exp function [36, pp. 74]

(42)

is convex in . Indeed, its gradient and Hessian are

(43)

where

(44)
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Convexity follows since

(45)

where

(46)

(47)

and we have used the Cauchy Schwartz inequality.
The next lemma generalizes this convexity result to log-deter-

minant functions of exponentially weighted positive semidefi-
nite rank one matrices.
Lemma 4 ([40]): Let for be a set of

vectors which span . The function

(48)

is convex in .
Proof: First, we note that the argument of the determinant

is positive definite when span their space, and there-
fore inside the domain. Using the chain rule, the gradient and
Hessian can be computed as

(49)

where

(50)

and is an orthogonal projection matrix. Due to Lemma 5
below, the Hessian is positive semidefinite and the function is
convex.
Lemma 5: Let be a projection matrix, then the matrix

(51)

is positive semidefinite.
Proof: We need to show that for any vector

(52)

Alternatively, by expressing as , we need to
show that for any diagonal matrix

(53)

This is equivalent to

(54)

which can also be written as

(55)

The latter holds since and are posi-
tive semidefinite, and the trace of the product of two positive
semidefinite matrices is non-negative.
Interestingly, Lemma 5 can be interpreted as an extension of

the Cauchy Schwartz inequality from vectors to projection ma-
trices. Indeed, specializing it to the case of a rank one projection
matrix

(56)

where , yields

(57)

This is equivalent to

(58)

Defining

(59)

yields

(60)

results in the Cauchy-Schwartz inequality:

(61)
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