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Abstract—We present a novel factor analysis method that can be
applied to the discovery of common factors shared among trajecto-
ries in multivariate time series data. These factors satisfy a prece-
dence-ordering property: certain factors are recruited only after
some other factors are activated. Precedence-ordering arise in ap-
plications where variables are activated in a specific order, which
is unknown. The proposed method is based on a linear model that
accounts for each factor’s inherent delays and relative order. We
present an algorithm to fit the model in an unsupervised manner
using techniques from convex and nonconvex optimization that en-
force sparsity of the factor scores and consistent precedence-order
of the factor loadings. We illustrate the order-preserving factor
analysis (OPFA) method for the problem of extracting precedence-
ordered factors from a longitudinal (time course) study of gene ex-
pression data.

Index Terms—Dictionary learning, genomic signal processing,
misaligned data processing, structured factor analysis.

I. INTRODUCTION

W ITH the advent of high-throughput data collection tech-
niques, low-dimensional matrix factorizations have be-

come an essential tool for preprocessing, interpreting or com-
pressing high-dimensional data. They are widely used in a va-
riety of signal processing domains including electrocardiogram
[1], image [2], or sound [3] processing. These methods can take
advantage of a large range of a priori knowledge on the form of
the factors, enforcing it through constraints on sparsity or pat-
terns in the factors. However, these methods do not work well
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when there are unknown misalignments between subjects in the
population, e.g., unknown subject-specific time shifts. In such
cases, one cannot apply standard patterning constraints without
first aligning the data; a difficult task. An alternative approach,
explored in this paper, is to impose a factorization constraint
that is invariant to factor misalignments but preserves the rela-
tive ordering of the factors over the population. This order-pre-
serving factor analysis is accomplished using a penalized least
squares formulation using shift-invariant yet order-preserving
model selection (group lasso) penalties on the factorization. As
a byproduct the factorization produces estimates of the factor
ordering and the order-preserving time shifts.

In traditional matrix factorization, the data is modeled as a
linear combination of a number of factors. Thus, given an
data matrix , the Linear Factor model is defined as

(1)

where is a matrix of factor loadings or dictionary
elements, is a matrix of scores (also called coordi-
nates) and is a small residual. For example, in a gene expres-
sion time course analysis, is the number of time points, and

is the number of genes in the study, the columns of con-
tain the features summarizing the genes’ temporal trajectories
and the columns of represent the coordinates of each gene
on the space spanned by . Given this model, the problem is
to find a parsimonious factorization that fits the data well ac-
cording to selected criteria, e.g., minimizing the reconstruction
error or maximizing the explained variance. There are two main
approaches to such a parsimonious factorization. One, called
factor analysis, assumes that the number of factors is small and
yields a low-rank matrix factorization [4], [5]. The other, called
dictionary learning [6], [7] or sparse coding [8], assumes that
the loading matrix comes from an overcomplete dictionary
of functions and results in a sparse score matrix . There are
also hybrid approaches such as sparse factor analysis [1], [2],
[9] that try to enforce low rank and sparsity simultaneously.

In many situations, we observe not one but several matrices
and there are physical grounds for believing

that the ’s share an underlying model. This happens, for in-
stance, when the observations consist of different time-blocks of
sound from the same music piece [3], [10], when they consist
of time samples of gene expression microarray data from dif-
ferent individuals inoculated with the same virus [11], or when
they arise from the reception of digital data with code, spatial
and temporal diversity [12]. In these situations, the fixed factor
model (1) is overly simplistic.

1053-587X/$26.00 © 2011 IEEE
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Fig. 1. Example of temporal misalignment across subjects of upregulated gene
CCRL2 . Subject 6 and subject 10 show the earliest and the latest upregulation
responses, respectively.

An example, which is the main motivation for this work is
shown in Fig. 1, which shows the effect of temporal misalign-
ment across subjects in a viral challenge study reported in [11].
Fig. 1 shows the expression trajectory for a particular gene that
undergoes an increase (upregulation) after viral inoculation at
time 0, where the moment when upregulation occurs differs over
the population. Training the model (1) on this data will produce
poor fit due to misalignment of gene expression onset times.

A more sensible approach for the data in Fig. 1 would be to
separately fit each subject with a translated version of a common
upregulation factor. This motivates the following extension of
model (1), where the factor matrices , are allowed to vary
across observations. Given a number of data matrices

, we let:

(2)

Following the gene expression example, here is the number
of time points, is the number of genes in the study and is
the number of subjects participating in the study. Hence, the

matrices contain the translated temporal features cor-
responding to the th subject and the matrices ac-
commodate the possibility of subjects having different mixing
weights. For different constraints on , , this model spe-
cializes to several well-known paradigms such as principal com-
ponents analysis (PCA) [4], sparse PCA [1], k-SVD [6], struc-
tured PCA [2], nonnegative matrix factorization (NNMF) [13],
maximum-margin matrix factorization (MMMF) [14], sparse
shift-invariant models [3], parallel factor analysis (PARAFAC)
[5], [15], or higher-order SVD (HOSVD) [16]. In this paper,
we will restrict the columns of to be translated versions of
a common set of factors, where these factors have onsets that
occur in some relative order that is consistent across all subjects.
Our model differs from previous shift-invariant models consid-
ered in [3], [10], [17] in that it restricts the possible shifts to
those which preserve the relative order of the factors among dif-
ferent subjects. We call the problem of finding a decomposition
(2) under this assumption the order preserving factor analysis
(OPFA) problem.

The contributions of this paper are the following. First, we
propose a nonnegatively constrained linear model that ac-
counts for temporally misaligned factors and order restrictions.
Second, we give a computational algorithm that allows us to
fit this model in reasonable time. Finally, we demonstrate that
our methodology is able to successfully extract the principal
features in a simulated dataset and in a real gene expression

dataset. In addition, we show that the application of OPFA
produces factors that can be used to significantly reduce the
variability in clustering of gene expression responses.

This paper is organized as follows. In Section II we present
the biological problem that motivates OPFA and introduce our
mathematical model. In Section III, we formulate the nonconvex
optimization problem associated with the fitting of our model
and give a simple local optimization algorithm. In Section IV
we apply our methodology to both synthetic data and real gene
expression data. Finally we conclude in Section V. For lack of
space many technical details are left out of our presentation but
are available in the accompanying technical report [18].

II. MOTIVATION: GENE EXPRESSION TIME-COURSE DATA

In this section we motivate the OPFA mathematical model
in the context of gene expression time-course analysis. Tem-
poral profiles of gene expression often exhibit motifs that corre-
spond to cascades of upregulation/downregulation patterns. For
example, in a study of a person’s host immune response after
inoculation with a certain pathogen, one would expect genes re-
lated to immune response to exhibit consistent patterns of acti-
vation across pathogens, persons and environmental conditions.

A simple approach to characterize the response patterns is to
encode them as sequences of a few basic motifs such as (see, for
instance, [19]):

• Upregulation: Gene expression changes from low to high.
• Down-regulation: Gene expression changes from a high to

a low level.
• Steady: Gene expression does not vary.

If gene expression is coherent over the population of several
individuals, e.g., in response to a common viral insult, the re-
sponse patterns can be expected to show some degree of con-
sistency across subjects. Human immune system response is a
highly evolved system in which several biological pathways are
recruited and organized over time. Some of these pathways will
be composed of genes whose expressions obey a precedence-or-
dering, e.g., virally induced ribosomal protein production may
precede toll-like receptor activation and antigen presentation
[20]. This consistency exists despite temporal misalignment:
even though the order is preserved, the specific timing of these
events can vary across the individuals. For instance, two dif-
ferent persons can have different inflammatory response times,
perhaps due to a slower immune system in one of the subjects.
This precedence-ordering of motifs in the sequence of immune
system response events is invariant to time shifts that preserve
the ordering. Thus if a motif in one gene precedes another motif
in another gene for a few subjects, we might expect the same
precedence relationship to hold for all other subjects. Fig. 2
shows two genes from [11] whose motif precedence-order is
conserved across 3 different subjects. This conservation of order
allows one to impose ordering constraints on (2) without actu-
ally knowing the particular order or the particular factors that
obey the order-preserving property.

Often genes are coregulated or coexpressed and have highly
correlated expression profiles. This can happen, for example,
when the genes belong to the same signaling pathway. Fig. 3
shows a set of different genes that exhibit a similar expression
pattern (upregulation motif). The existence of high correlation



PUIG et al.: ORDER-PRESERVING FACTOR ANALYSIS 4449

Fig. 2. Example of gene patterns with a consistent precedence-order across 3 subjects. The downregulation motif of gene CD1C precedes the peak motif of gene
ORM1 across these three subjects.

Fig. 3. Example of gene patterns exhibiting coexpression for a particular sub-
ject in the viral challenge study in [11].

between large groups of genes allows one to impose a low rank
property on the factorization in (2).

In summary, our OPFA model is based on the following as-
sumptions:

• A1: Motif consistency across subjects: Gene expression
patterns have consistent (though not-necessarily time
aligned) motifs across subjects undergoing a similar treat-
ment.

• A2: Motif sequence consistency across subjects: If motif
precedes motif for subject , the same precedence must
hold for subject .

• A3: Motif consistency across groups of genes: There are
(not necessarily known) groups of genes that exhibit the
same temporal expression patterns for a given subject.

• A4: Gene Expression data is nonnegative: Gene expression
on a microarray is measured as an abundance and standard
normalization procedures, such as RMA [21], preserve the
nonnegativity of this measurement.

A few microarray normalization software packages produce
gene expression scores that do not satisfy the nonnegativity
assumption A4. In such cases, the nonnegativity constraint in
the algorithm implementing (6) can be disabled. Note that in
general, only a subset of genes may satisfy assumptions A1-A3.

III. OPFA MATHEMATICAL MODEL

In the OPFA model, each of the observations is represented
by a linear combination of temporally aligned factors. Each ob-
servation is of dimension , where is the number of time
points and is the number of genes under consideration. Let
be an matrix whose columns are the common alignable
factors and let be a matrix valued function that applies
a circular shift to each column of according to the vector of
shift parameters , as depicted in Fig. 4. Then, we can refine
model (2) by restricting to have the form

(3)

where and is the maximum
shift allowed in our model. This model is a generalization of
a simpler one that restricts all factors to be aligned but with a
common delay

(4)

where is a circular shift operator. Specifically, the funda-
mental characteristic of our model (3) is that each column can
have a different delay, whereas (4) is a restriction of (3) with

for all and all , .
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Fig. 4. Each subject’s factor matrix��� is obtained by applying a circular shift
to a common set of factors ��� parameterized by a vector ���.

The circular shift is not restrictive. By embedding the ob-
servation into a larger time window it can accommodate tran-
sient gene expression profiles in addition to periodic ones, e.g.,
circadian rhythms [18]. There are several ways to do this em-
bedding. One way is to simply extrapolate the windowed, tran-
sient data to a larger number of time points .
This is the strategy we follow in the numerical experiments of
Section IV-B.

This alignable factor model parameterizes each observation’s
intrinsic temporal dynamics through the -dimensional vector

. The precedence-ordering constraint A2 is enforced by im-
posing the condition

(5)

that is, if factor precedes factor in subject , then the same
ordering will hold in all other subjects. Since the indexing of the
factors is arbitrary, we can assume without loss of generality that

for all and all . This characterization constrains
each observation’s delays independently, allowing for a com-
putationally efficient algorithm for fitting model (3).

A. OPFA as an Optimization Problem

OPFA tries to fit the model (2)–(5) to the data . For
this purpose, we define the following penalized and constrained
least squares problem:

(6)

where is the Frobenius norm, and are regularization
parameters and the set constrains the delays to be order-
preserving

(7)

where . The other soft and hard constraints are briefly
described as follows.

For the gene expression application we wish to extract factors
that are smooth over time and nonnegative. Smoothness will

be captured by the constraint that is small where
is the squared total variation operator

(8)

TABLE I
MODELS CONSIDERED IN SECTION IV-A

where is an appropriate weighting matrix and denotes
the th column of matrix . From A4 , the data is nonnegative
and hence nonnegativity is enforced on and the loadings
to avoid masking of positive and negative valued factors whose
overall contribution sums to zero. To avoid numerical instability
associated with the scale invariance for any

, we constrain the Frobenius norm of . This leads to the
following constraint sets:

(9)

The parameter above will be fixed to a positive value as its
purpose is purely computational and has little practical impact.
Since the factors are common to all subjects, assumption A3
requires that the number of columns of (and therefore, its
rank) is small compared to the number of genes . In order to
enforce A1 we consider two different models. In the first model,
which we shall name OPFA, we constrain the columns of
to be sparse and the sparsity pattern to be consistent across dif-
ferent subjects. Notice that A1 does not imply that the mixing
weights are the same for all subjects as this would not ac-
commodate magnitude variability across subjects. We also con-
sider a more restrictive model where we constrain

with sparse and we call this model OPFA-C, the
C standing for the additional constraint that the subjects share
the same sequence of mixing weights. The OPFA-C model
has a smaller number of parameters than OPFA, possibly at the
expense of introducing bias with respect to the unconstrained
model. A similar constraint has been successfully adopted in
[22] in a factor model for multiview learning.

Similarly to the approach taken in [23] in the context of simul-
taneous sparse coding, the common sparsity pattern for OPFA
is enforced by constraining to be small, where

is a mixed-norm group-Lasso type penalty function [24]. For
each of the score variables, we create a group containing
its different values across subjects:

(10)

Table I summarizes the constraints of each of the models con-
sidered in this paper.

Following common practice in factor analysis, the nonconvex
problem (6) is addressed using Block Coordinate Descent, dis-
played in the figure labeled Algorithm 1, which iteratively min-
imizes (6) with respect to the shift parameters , the
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scores and the factors while keeping the other vari-
ables fixed. This algorithm is guaranteed to monotonically de-
crease the objective function at each iteration. Since both the
Frobenius norm and , are nonnegative functions,
this ensures that the algorithm converges to a (possibly local)
minima or a saddle point of (6).

Algorithm 1: BCD Algorithm for Finding a Local Minima
of (6). OPFAObjective Denotes the
Objective Function in (6)

Input: Initial estimate of and , , , .

Output: , ,

while do

The subroutines EstimateFactors and EstimateScores solve
the following penalized regression problems:

and

Notice that in OPFA-C, we also incorporate the constraint
in the optimization problem above. The first is a

convex quadratic problem with a quadratic and a linear con-
straint over a domain of dimension . In the applications con-
sidered here, both and are small and hence this problem can
be solved using any standard convex optimization solver. Es-
timateScores is trickier because it involves a nondifferentiable

Fig. 5. Dictionary used to generated the 2-factor synthetic data of Section IV.

convex penalty and the dimension of its domain is equal to1 ,
where can be very large. In our implementation, we use an
efficient first-order method [25] designed for convex problems
involving a quadratic term and a nonsmooth penalty. These pro-
cedures are standard and therefore we focus on the Estimat-
eDelays subroutine. EstimateDelays is a discrete optimization
that is solved using a branch-and-bound (BB) approach [26].
In this approach a binary tree is created by recursively dividing
the feasible set into subsets (“branch”). On each of the nodes
of the tree lower and upper bounds (“bound”) are computed.
When a candidate subset is found whose upper bound is less
than the smallest lower bound of previously considered sub-
sets these latter subsets can be eliminated (“prune”) as candi-
date minimizers. Whenever a leaf (singleton subset) is obtained,
the objective is evaluated at the corresponding point. If its value
exceeds the current optimal value, the leaf is rejected as a candi-
date minimizer, otherwise the optimal value is updated and the
leaf included in the list of candidate minimizers. Details on the
application of BB to OPFA are given here.

The subroutine EstimateDelays solves uncoupled problems
of the form

(11)

where the set is defined in (7). The “branch” part of the op-
timization is accomplished by recursive splitting of the set
to form a binary tree. The recursion is initialized by setting

, . The splitting of
the set into two subsets is done as follows:

(12)

and we update ,
. Here is an integer

and . contains the
elements whose th component is strictly larger than

and contains the elements whose th component is
smaller than . The same kind of splitting procedure is then
subsequently applied to , and its resulting subsets. After

successive applications of this decomposition there will
be subsets and the th split will be

(13)

1This refers to the OPFA model. In the OPFA-C model, the additional con-
straint ��� � � � � � ��� � ��� reduces the dimension to ��.
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where

and denotes the parent set of the two new
sets and , i.e., and . In
our implementation the splitting coordinate is the one cor-
responding to the coordinate in the set with largest interval.
The decision point is taken to be the middle point of this
interval. The “bound” part of the optimization is as follows. De-
note the objective function in (11) and define its minimum
over the set

(14)

A lower bound for this value can be obtained by relaxing the
constraint in (13)

(15)

Letting where and

, we have

where denotes the pseudoinverse of . This leads to

(16)

where denotes the smallest eigenvalue of the sym-
metric matrix . Combining the relaxation in (15) with
(16), we obtain a lower bound on

(17)

which can be evaluated by performing decoupled discrete grid
searches. At the th step, the splitting node will be chosen
as the one with smallest . Finally, this lower bound is
complemented by the upper bound

(18)

These bounds enable the branch-and-bound optimization of
(11).

B. Selection of the Tuning Parameters , , and

From (6), it is clear that the OPFA factorization depends on
the choice of , , and . This is a paramount problem in un-
supervised learning and several heuristic approaches have been
devised for simpler factorization models [9], [27], [28]. These

Fig. 6. MSE (top) and DTF (bottom) as a function of delay variance � for
OPFA and SFA. These curves are plotted with 95% confidence intervals. For
� � �, OPFA outperforms SFA both in MSE and DTF, maintaining its advan-
tage as � increases. For large � , OPFA-C outperforms the other two.

Fig. 7. Same as Fig. 6 except that the performance curves are plotted with re-
spect to SNR for fixed � � �.

approaches are based on training the factorization model on a
subset of the elements of the data matrix (training set) to subse-
quently validate it on the excluded elements (test set).

The variational characterization of the OPFA decomposition
allows for the presence of missing variables, i.e., missing ele-
ments in the observed matrices . In such case, the Least
Squares fitting term in (6) is only applied to the observed set of
indices2. We will hence follow the approach in [9] and train the

2While the EstimateFactors and EstimateScores remain largely the same
under the presence of missing values, a little care is required to adapt Estimat-
eDelays. Particularly, the lower bound in (16) is no longer valid in this setting,
although an equally simple bound can be obtained with a bit more work. See
[18] for details.
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Fig. 8. Comparison of observed (O) and fitted responses (R) for three of the subjects and a subset of genes in the PHD data set. Gene expression profiles for all
subjects were reconstructed with a relative residual error below 10%. The trajectories are smoothed while respecting each subject’s intrinsic delay.

OPFA model over a fraction of the entries in the obser-
vations . Let denote the set of excluded entries
for the th observation. These entries will constitute our test set
and thus our Cross-Validation error measure is

where are the OPFA estimates obtained

on the training set excluding the entries in , for a given
choice of , and .

IV. NUMERICAL RESULTS

A. Synthetic Data: Periodic Model

First we evaluate the performance of the OPFA algorithm for
a periodic model observed in additive Gaussian white noise

(19)

Here , where is the vari-

ance of and are i.i.d. The
columns of are nonrandom smooth signals from the prede-
fined dictionary shown in Fig. 5. The scores are generated
according to a consistent sparsity pattern across all subjects and
its non zero elements are i.i.d. normal truncated to the nonneg-
ative orthant.

Here the number of subjects is , the number of
variables is and the number of time points is .

In these experiments, we choose to initialize the factors with
temporal profiles obtained by hierarchical clustering of the
data. Hierarchical clustering [29] is a standard unsupervised
learning technique that groups the variables into increasingly
finer partitions according to the normalized euclidean distance
of their temporal profiles. The average expression patterns
of the clusters found are used as initial estimates for . The
loadings are initialized by regressing the obtained
factors onto the data.

We compare OPFA and OPFA-C to a standard sparse factor
analysis (SFA) solution, obtained by imposing in the
original OPFA model. Table I summarizes the characteristics of
the three models considered in the simulations. We fix
and choose the tuning parameters using the Cross-Vali-
dation procedure of Section III-B with a 5 3 grid and .

In these experiments, we consider two measures of perfor-
mance, the mean square error (MSE) with respect to the gener-
ated data

MSE:

where is the expectation operator, is

the generated noiseless data, and is the
estimated data and the distance to the true factors (DTF), defined
as

DTF
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TABLE II
SENSITIVITY OF THE OPFA ESTIMATES TO THE INITIALIZATION CHOICE WITH

RESPECT TO THE RELATIVE NORM OF THE PERTURBATION ���

TABLE III
CROSS VALIDATION RESULTS FOR SECTION IV-B

where , are the generated and the estimated factor matrices,
respectively.

Fig. 6 shows the estimated MSE and DTF perfor-
mance curves as a function of the delay variance
for fixed (which is defined as SNR

). OPFA and OPFA-C

perform at least as well as SFA for zero delay and
significantly better for in terms of DTF. OPFA-C
outperforms OPFA for high delay variances at the price
of a larger MSE due to the bias introduced by the constraint

. In Fig. 7 the performance curves are plotted
as a function of SNR, for fixed . Note that OPFA and
OPFA-C outperform SFA in terms of DTF and that OPFA is
better than the others in terms of MSE for . Again,
OPFA-C shows increased robustness to noise in terms of DTF.

We also performed simulations to demonstrate the value of
imposing the order-preserving constraint in (11). This was ac-
complished by comparing OPFA to a version of OPFA for which
the constraints in (11) are not enforced. Data were generated ac-
cording to the model (19) with , , , and

. The results of our simulations (not shown) were that,
while the order-preserving constraints never degrade OPFA per-
formance, the constraints improve performance when the SNR
is small (below 3 dB for this example).

Finally, we conclude here by studying the sensitivity of the
final OPFA estimates with respect to the initialization choice.
To this end, we initialize the OPFA algorithm with the correct
model perturbed with a random gaussian vector of increasing
variance. We analyze the performance of the estimates in terms
of MSE and DTF as a function of the norm of the model per-
turbation relative to the norm of the noiseless data, which we
denote by . Notice that larger corresponds to increasingly
random initialization. The results in Table II show that the MSE
and DTF of the OPFA estimates are very similar for a large range
of values of and therefore are robust to the initialization.

Fig. 9. Comparison of observed (O) and fitted responses (R) for four genes
(OAS1, CCR1, CX3CR1, ORM1) showing upregulation and downregulation
motifs and three subjects in the PHD dataset. The gene trajectories have been
smoothed while conserving their temporal pattern and their precedence-order.
The OPFA-C model revealed that OAS1 upregulation occurs consistently after
ORM1 downregulation among all subjects.

B. Experimental Data: Predictive Health and Disease (PHD)

The PHD data set was collected as part of a viral challenge
study that is described in [11]. In this study 20 human subjects
were inoculated with live H3N2 virus and Genechip mRNA
gene expression in peripheral blood of each subject was mea-
sured over 16 time points. The raw Genechip array data was
preprocessed using robust multi-array analysis [21] with quan-
tile normalization [30]. In this section we show results for the
constrained OPFA model (OPFA-C). While not shown here, we
have observed that OPFA-C gives very similar results to uncon-
strained OPFA but with reduced computation time.

Specifically, we use OPFA-C to perform the following tasks:
1) Subject Alignment: Determine the alignment of the factors

to fit each subject’s response, therefore revealing each sub-
ject’s intrinsic response delays.

2) Gene Clustering: Discover groups of genes with common
expression signature by clustering in the low-dimensional
space spanned by the aligned factors. Since we are using
the OPFA-C model, the projection of each subject’s data on
this lower dimensional space is given by the scores

. Genes with similar scores will have
similar expression signatures.

3) Symptomatic Gene Signature discovery: Using the gene
clusters obtained in step 2 we construct temporal signa-
tures common to subjects who became sick.

The data was normalized by dividing each element of each
data matrix by the sum of the elements in its column. Since
the data is nonnegative valued, this will ensure that the mixing
weights of different subjects are within the same order of mag-
nitude, which is necessary to respect the assumption that

in OPFA-C. In order to select a subset of strongly
varying genes, we applied one-way Analysis-Of-Variance [31]
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Fig. 10. Top plots: Motif onset time for each factor � � and peak symptom time reported by expert clinicians (O). Bottom plots: Aligned factors for each subject.
Factor 1 and 3 can be interpreted as upregulation motifs and factor 2 is a strong downregulation pattern. The arrows show each factor’s motif onset time.

to test for the equality of the mean of each gene at 4 different
groups of time points and selected the first genes
ranked according to the resulting F-statistic. To these gene tra-
jectories we applied OPFA-C to the symptomatic sub-
jects in the study. In this context, the columns in are the set
of signals emitted by the common immune system response and
the vector parameterizes each subject’s characteristic onset
times for the factors contained in the columns of . To avoid
wrap-around effects, we worked with a factor model of dimen-
sion in the temporal axis.

The OPFA-C algorithm was run with 4 random initializa-
tions and retained the solution yielding the minimum of the
objective function (6). For each (number of fac-
tors), we estimated the tuning parameters following the
Cross-Validation approach described in III-B over a 10 3 grid.
The resulting results, shown in Table III resulted in selecting

, and . The choice of three fac-
tors is also consistent with an expectation that the principal gene
trajectories over the period of time studied are a linear combi-
nation of increasing, decreasing or constant expression patterns
[11].

To illustrate the goodness-of-fit of our model, we plot in Fig. 8
the observed gene expression patterns of 13 strongly varying
genes and compare them to the OPFA-C fitted response for three
of the subjects, together with the relative residual error. The av-
erage relative residual error is below 10% and the plots demon-
strate the agreement between the observed and the fitted pat-
terns. Fig. 9 shows the trajectories for each subject for four genes
having different regulation motifs: upregulation and downregu-
lation. It is clear that the gene trajectories have been smoothed
while conserving their temporal pattern and their precedence-
order, e.g., the upregulation of gene OAS1 consistently follows
the downregulation of gene ORM1.

In Fig. 10 we show the 3 factors along with the factor delays
and factor loading discovered by OPFA-C. The three factors,
shown in the three bottom panels of the figure, exhibit features
of three different motifs: factor 1 and factor 3 correspond to up-
regulation motifs occurring at different times; and factor 2 is
a strong downregulation motif. The three top panels show the
onset times of each motif as compared to the clinically deter-
mined peak symptom onset time. Note, for example, that the

strong upregulation pattern of the first factor coincides closely
with the onset peak time. Genes strongly associated to this factor
have been closely associated to acute antiviral and inflammatory
host response [11]. Interestingly, the downregulation motifs as-
sociated with factor 2 consistently precedes this upregulation
motif.

Finally, we consider the application of OPFA as a prepro-
cessing step preceding a clustering analysis. Here the goal is
to find groups of genes that share similar expression patterns
and determine their characteristic expression patterns. In order
to obtain gene clusters, we perform hierarchical clustering on
the raw data and on the lower dimensional space of
the estimated factor scores , obtaining two different
sets of 4 well-differentiated clusters. We then compute the
average expression signatures of the genes in each cluster by
averaging over the observed data and averaging
over the data after OPFA correction for the temporal mis-
alignments. Fig. 11 illustrates the results. Clustering using the
OPFA-C factor scores produces a very significant improvement
in cluster concentration as compared to clustering using the
raw data . The first two columns in Figure compare
the variation of the gene profiles over each cluster for the tem-
porally realigned data (labeled “A”) as compared to the profile
variation of these same genes for the misaligned observed
data (labeled “M”). For comparison, the last column shows
the results of applying hierarchical clustering directly to the
original misaligned dataset . It is clear that clustering
on the low-dimensional space of the OPFA-C scores unveils
interesting motifs from the original noisy temporal expression
trajectories.

V. CONCLUSION

We have proposed a general method of order-preserving
factor analysis that accounts for possible temporal misalign-
ments in a population of subjects undergoing a common
treatment. We have described a simple model based on cir-
cular-shift translations of prototype motifs and have shown
how to embed transient gene expression time courses into this
periodic model. The OPFA model can significantly improve
interpretability of complex misaligned data. The method is
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Fig. 11. The first two columns show the average expression signatures and their estimated upper/lower confidence intervals for each cluster of genes obtained
by: Averaging the estimated Aligned expression patterns over the � � � subjects (A) and directly averaging the misaligned observed data for each of the gene
clusters obtained from the OPFA-C scores (M). The confidence intervals are computed according to � the estimated standard deviation at each time point. The
cluster average standard deviation ��� is computed as the average of the standard deviations at each time point. The last column shows the results of applying
hierarchical clustering directly to the original misaligned dataset ���� � . In the first column, each gene expression pattern is obtained by mixing the estimated
aligned factors ��� according to the estimated scores ���. The alignment effect is clear and interesting motifs become more evident.

applicable to other signal processing areas beyond gene expres-
sion time course analysis.

A Matlab package implementing OPFA and OPFA-C will be
available at the Hero Group Reproducible Research page (http://
tbayes.eecs.umich.edu).
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