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Abstract—The scalar shrinkage-thresholding operator is a key
ingredient in variable selection algorithms arising in wavelet
denoising, JPEG2000 image compression and predictive analysis
of gene microarray data. In these applications, the decision to
select a scalar variable is given as the solution to a scalar sparsity
penalized quadratic optimization. In some other applications,
one seeks to select multidimensional variables. In this work,
we present a natural multidimensional extension of the scalar
shrinkage thresholding operator. Similarly to the scalar case,
the threshold is determined by the minimization of a convex
quadratic form plus an Euclidean norm penalty, however, here the
optimization is performed over a domain of dimension .
The solution to this convex optimization problem is called the
multidimensional shrinkage threshold operator (MSTO). The
MSTO reduces to the scalar case in the special case of . In
the general case of the optimal MSTO shrinkage can be
found through a simple convex line search. We give an efficient
algorithm for solving this line search and show that our method to
evaluate the MSTO outperforms other state-of-the art optimiza-
tion approaches. We present several illustrative applications of
the MSTO in the context of Group LASSO penalized estimation.

Index Terms—Shrinkage-thresholding operator, group LASSO
regression, penalized least squares, proximity operator.

I. INTRODUCTION

T HE scalar shrinkage-thresholding operator is cen-
tral to variable selection algorithms such as Iterative

Thresholding [1] for image deblurring [2], wavelet-based
deconvolution [3] or predictive analysis of gene expression
microarrays [4]. In this paper, we introduce a multidimensional
generalization of the scalar shrinkage thresholding operator.
We define this operator as the minimization of a convex
quadratic form plus a (nonsquared) Euclidean norm penalty.
We analyze this nondifferentiable optimization problem and
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discuss its properties. In particular, in analogy to the scalar
shrinkage operator, we show that this generalization yields a
Multidimensional Shrinkage Thresholding Operator (MSTO)
which takes a vector as an input and shrinks it or thresholds it
depending on its Euclidean norm. Our results rely on a reformu-
lation of the problem as a constrained quadratic problem with
a conic constraint. Using conic duality theory, we transform
this multidimensional optimization problem into a simple line
search which can be efficiently implemented. We propose an
algorithm to evaluate the MSTO and show by simulations that
it outperforms other state-of-the-art algorithms.
In the second part of the paper, we discuss applications of the

MSTO to three estimation problems. First, we consider the Eu-
clidean norm penalized least squares and show, using theMSTO
formulation, that this problem leads to a solution which is ei-
ther the zero vector or the ridge-penalized least squares solution
where the optimal shrinkage is chosen through a line search.
Next, we address Group LASSO penalized estimation with

disjoint groups. This class of problems appears in many signal
processing applications where the structure of the problem
suggests enforcing a group-sparse estimate rather than a simple
sparse estimate. Examples of this situation occur in spectrum
cartography for cognitive radio [5], jointly-sparse signal re-
covery [6], regression with grouped variables [7] or source
localization [8]. We show how the MSTO arises naturally in a
block-descent algorithm for Group LASSO Linear Regression.
Finally, we show how the operator composition of MSTOs

corresponds to the proximity operators for tree-structured
Group LASSO penalties [9], [10], where the groups overlap in
a hierarchical manner. Proximity operators can be understood
as a generalization of convex projection operators and are a
fundamental component of large-scale algorithms for nondif-
ferentiable convex problems [11], [1], [2].
This paper is organized as follows. In Section II, we first

define the MSTO and introduce our main theoretical result.
Second, we discuss how to efficiently evaluate the MSTO. In
Section III we illustrate applications of the MSTO in several
statistical signal processing problems. We present numerical
experiments in Section IV.
The following notation is used. Boldface upper case letters de-

notematrices, boldface lower case letters denote columnvectors,
and standard lower case letters denote scalars. The superscripts
and denote the transpose and the matrix pseudoinverse opera-
tors, respectively. denotes the subvector constructed from the
indices in . Given a symmetric matrix refers to its th
eigenvalue and denotes semi-positive definiteness.Given
a matrix and denote its range and the submatrix
constructed from the indices in and . is the identity matrix.
We define the second order cone as [12]

(1)

and means that .
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II. MULTIDIMENSIONAL SHRINKAGE-THRESHOLDING
OPERATOR (MSTO)

The scalar shrinkage-thresholding operator is usually defined
as [1], [2]

(2)

where and . This operator takes a scalar as an
input and thresholds or shrinks its magnitude. A natural gener-
alization is the following Multidimensional Shrinkage Thresh-
olding Operator (MSTO):

(3)

where is an matrix, and . This
is a convex optimization problem and can be cast as a standard
Second Order Cone Program (SOCP) [13]:

(4)

where is such that . SOCPs can be solved ef-
ficiently using interior point methods [13]. The next theorem
shows that, as in the scalar case, the MSTO shrinks or thresh-
olds the norm of the input vector and that the corresponding
SOCP (4) can be solved using a simple line search.
Theorem 1: Let and . The optimal

value of the -dimensional, nondifferentiable problem:

(5)

is equal to the optimal value of the convex line-search:

(6)

where

(7)

Furthermore, their solutions are related by

(8)

where is the solution to (6).
Proof: Since and is a norm, it follows that

and are convex functions of . Also, (5)
is equivalent to the following quadratic program with a second
order conic constraint:

(9)

Slater’s condition for generalized inequalities is verified and
strong duality holds. Since is self-dual, the conic dual can
be written as [12, Sec. 5.9.1]:

(10)

where the dual function is defined as

(11)

This inner minimization is unbounded in unless and in
unless . Otherwise, its optimum satisfies

(12)

Plugging (12) in (10), and using the fact that a nondifferentiable
dual conic constraint is equivalent to a stan-
dard quadratic constraint , we obtain the following
dual concave maximization:

(13)

The standard Lagrange dual of this problem is

(14)

Since and , the inner maximization is a
simple quadratic problem in with solution

(15)

where is defined in (7). This leads to the following line
search over the Lagrange multiplier :

(16)

which proves the equivalence between (5) and (6) and is convex
by Lagrange’s duality properties. The eigenvalues of
are real and can be characterized as

(17)

Since and , it holds that
. Therefore, if

then and

(18)

This implies that if the minimum in (16) is attained
by choosing . Plugging (15) into (12) yields (8).

A. Evaluating the MSTO

According to Theorem 1, evaluating the MSTO reduces to
either thresholding or solving (6). In the special case where
for some , the optimality condition for (6) leads to a

simple solution for its positive root

(19)
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which yields the following closed form expression for the
MSTO:

(20)

where . This is equivalent to (2) if we define
the multidimensional sign function as
and coincides with the vectorial soft-threshold in [14]. If
and , evaluating the MSTO is non trivial and re-

quires the numerical solution of the line-search in (6). In par-
ticular, we propose to use a Projected Newton approach with
Goldstein step-length rule [15] which incorporates the advan-
tages of second order methods while respecting the constraint

in (6). Let

where is defined in (7). At iteration , the Goldstein Pro-
jected Newton iteration for problem (6) is given by [15]

(21)

where are the first and second derivatives of
respectively. Letting , the step length is
determined according to the Goldstein scheme [15]:

where

and . Notice
that for close enough to the optimum, , which
corresponds to the regular Newton regime. Here, and

are given by the following formulae:

(22)

where . Convergence analysis for this line-
search technique is available in [15].

III. APPLICATIONS

In this section, we consider promising applications for the
MSTO.

A. Linear Regression With Norm Penalty

Given a vector of observations and an design
matrix , we consider the following class of problems:

(23)

Depending on and , this problem specializes to ridge regres-
sion , robust least-squares ( ) [The-
orem 3.2, [16]] or -penalized least squares .
The following corollary of Theorem 1 characterizes the solu-
tion of the latter.

Corollary 2: The solution to the -penalized least squares

(24)

is

(25)

where the shrinkage parameter is such that
solves

(26)

In the special case where is orthogonal
then (23) has the closed form solution (25) with

.
The proof of this Corollary follows immediately from The-

orem 1 by observing that .

B. Block-Wise Optimization for Group Lasso Linear
Regression

Given as in the previous section and disjoint groups
of indices satisfying , the
Group LASSO linear regression problem [7] is defined as

(27)

where are fixed penalty parameters which we assume known.
For an arbitrary design matrix , problem (27) can be solved
using a Block Coordinate Descent (BCD) algorithm. The main
idea of the BCD method is to iteratively solve (27) for each
block , letting the parameters corresponding to the other
blocks remain fixed. Defining
and using the MSTO operator (3) we can obtain the following
update rule for each block at iteration :

(28)

where is the complementary set of indices with respect to
. Convergence of this algorithm is guaranteed for this cost

function [17].

C. MSTO in Proximity Operators for Tree-Structured Penalties

The proximity operator of a (possibly nondifferentiable)
convex function is defined as [18], [11]

Proximity operators are the main ingredient of proximal algo-
rithms [11], [2], which arise in LASSO and Group LASSO pe-
nalized linear regression [1], [2], [9], collaborative sparse mod-
eling [19] and hierarchical dictionary learning [10]. In these ap-
plications, proximal algorithms can be understood as a gener-
alization of quasi-Newton methods to nondifferentiable convex
problems. An important example is the Iterative Thresholding
procedure [1], [2] which solves



366 IEEE SIGNAL PROCESSING LETTERS, VOL. 18, NO. 6, JUNE 2011

Fig. 1. Comparison of Mosek®, MSTO, and FISTA elapsed times for solving
(24) while varying [with fixed, plot (a)] and varying [with

fixed, plot (b)]. MSTO is significantly faster than the other two under
the conditions considered.

by generating the sequence

for an appropriate .
The proximity operator of is given by the or-

thogonal MSTO (20). In this section we show that the com-
position of orthogonal MSTOs corresponds to the proximity
operator of Group LASSO penalties with (possibly overlap-
ping) hierarchical groups. Given groups of indices

and a partial order of the
groups such that only if we con-
sider the following function:

(29)

It can be shown [10] that

(30)

where is the composition operator and

(31)

where . It is clear that
and for .

IV. NUMERICAL RESULTS

In this section we illustrate the advantage of evaluating the
MSTO using our theoretical results. To this end, we compare the
elapsed times to evaluate (3) using three different optimization
methods. The first one, which we denote by MSTO in the fig-
ures, solves the dual problem in (6) using the projected Newton
approach described in Section II-A. The second method uses
an accelerated first order method named FISTA1 [2] and the
third method uses the commercial state-of-the-art SOCP solver
Mosek®. Our experiment consists of solving problem (24) for

1FISTA is implemented using backtracking and (20) to compute its corre-
sponding shrinkage/thresholding update.

randomly generated and where we control the conditioning
of the matrix through the ratio (where is the
number of columns and is the number of rows of ).
We show in Fig. 1 the average elapsed times to achieve the

same value of the objective function, as a function of the number
of variables and the ratio . Our algorithm clearly outper-
forms the other two over a large range of values of and .

V. CONCLUSION

We have introduced the MSTO, a multidimensional gener-
alization of the Scalar Shrinkage Thresholding Operator. Our
main theoretical result shows that the MSTO is the solution of
a convex problem that performs Shrinkage/Thresholding on the
norm of its input and that it can be efficiently evaluated in large
finite dimensional spaces. TheMSTO appears naturally in many
algorithms for nonlinear estimation with Group LASSO-type
penalties. We show by simulation that our theory yields an algo-
rithm that outperforms state-of-the-art second-order cone pro-
gram solvers.
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