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Abstract—The autofocus problem in Synthetic Aperture Radar
imaging amounts to estimating unknown phase errors caused
by unknown platform or target motion, or a time- or spatially -
varying transmission medium. At the heart of three state-of-
the-art autofocus algorithms, namely Phase Gradient Autofocus,
Multichannel Autofocus (MCA) and Fourier-domain Multicha n-
nel Autofocus (FMCA), is the solution of a constant modulus
quadratic program (CMQP). Currently, these algorithms solve
CMQP by using an eigenvalue relaxation approach. We propose
an alternative relaxation approach based on semidefinite pro-
gramming, which has recently attracted considerable attention
in other signal processing problems. Experimental resultsshow
that our proposed methods provide promising performance
improvements for MCA and FMCA through an increase in
computational complexity.

Index Terms—Synthetic aperture radar, Autofocus, Multichan-
nel Autofocus, Fourier-domain Multichannel Autofocus, Semidef-
inite relaxation.

I. I NTRODUCTION

Synthetic aperture radar (SAR) offers a means of producing
high-resolution microwave images using an antenna of small
size. High resolution in the range direction is achieved through
traditional pulse compression, while high resolution in the
cross-range direction is obtained by illuminating the target
from many look angles. In one form of SAR, termedspotlight
mode, the radar antenna is continuously steered to illuminate
the target with each transmitted microwave pulse. When the
same antenna is used for both transmitting and receiving, itis
referred to asmonostaticSAR, while inbistaticSAR separate
antennas are used for transmitting and receiving. The collected
returned signal in spotlight mode SAR can be conveniently
modeled using a tomographic formulation, which allows us
to view returned signals as data lying in theFourier domain
of the target reflectivity, after quadrature demodulation [1],
[2]. The Fourier data lies on a polar annulus with parameters
determined by the radar waveform and the radar’s range of
look angles. The SAR image customarily is produced using
polar-to-Cartesian interpolation followed by 2-D Fourierinver-
sion. However, due to unknown signal delays resulting from
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inaccurate range measurements or signal propagation effects,
there will be demodulation timing errors at the radar receiver
[1]. Even though motion compensation systems have improved
(using GPS), those systems do not help with phase errors
introduced by perturbations in the ionosphere in spaceborne
SAR imaging. Timing errors at the demodulator will produce
unknown phase errors in the collected Fourier data, which can
cause the reconstructed image to suffer distortion. Autofocus
algorithms apply signal processing techniques to remove the
undesired phase errors and restore the focused image.

Most existing autofocus algorithms invoke assumptions on
the properties of the unknown phase function or characteristics
of the underlying SAR scene. An early class of autofocus algo-
rithms assumes that the phase error function can be described
by a finite polynomial expansion [3], [4]. Other autofocus
techniques estimate the phase errors by maximizing the sharp-
ness of the reconstructed image [5], [6]. Some popular metrics
that measure the image sharpness include entropy and various
powers of the image intensity [7]. The widely used Phase
Gradient Autofocus (PGA) technique is conceptually based
on an image model where each range coordinate has a single
point target embedded in white complex Gaussian clutter, and
applies maximum-likelihood (ML) phase estimation [8]. The
Multichannel Autofocus (MCA) algorithm assumes a known
region in the SAR image has pixels with zero or nearly-
zero value [9]. Such a region can be identified within the
sidelobes of the antenna pattern. Recently, the Fourier-domain
Multichannel Autofocus (FMCA) algorithm was devised to
allow for a wider range of look angles than permitted by other
techniques [10]. FMCA has been shown to provide superior
image restoration capability as compared to other autofocus
methods.

At the core of the three state-of-the-art autofocus algorithms,
PGA, MCA and FMCA is the solution to a Constant Modulus
Quadratic Program (CMQP) of the following form

min
x∈CM

xHQx

s.t |xi| = 1 , i = 0, . . . ,M − 1.

(1)

This problem is known to be NP-hard; thus, the best we
can hope for is an approximation. All three algorithms use
eigenvalue relaxation to approximate the original CMQP. In
this paper, we propose an alternative approximation based on
modern conic optimization known as semidefinite relaxation
(SDR). SDR offers a compromise. It is known to provide
a more accurate approximation of the CMQP at the cost of
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complicating the underlying optimization problem.
SDR recently has been applied to many problems in com-

munications and signal processing [11], [12], [13], [14]. Ba-
sically, SDR approximates a quadratic problem with a convex
optimization problem by first lifting the problem to a higher
dimension and then relaxing the nonconvex constraints. To
the best of our knowledge, this is the first time that SDR
has been applied to the problem of SAR autofocus. This
problem formulation is similar to the discrete symbol detection
problem in communication systems, which has recently gained
considerable attention [12]. However, the feasible set is a
continuous constant modulus set as described in (1) above, and
is not discrete. Some theoretical results on the performance of
SDR for the continuous symbol case are given in [15], [16],
[17]. Our simulation results suggest that, combined with MCA
and FMCA, SDR is a promising autofocus technique. We note
that currently solving SDR requires polynomial time and may
not be amenable to online processing. Nonetheless, there may
be crucial situations where it is imperative that an image be
focused as well as possible, using computationally intensive
offline processing.

This paper expands upon a preliminary version of our work
reported in [18]. The organization of the paper is as follows.
We will briefly review the concept of SDR in Section II.
Section III presents the problem formulation for PGA, MCA
and FMCA and also discusses how we can improve these
existing techniques by using SDR. Simulation results are given
in Section IV. Finally, we summarize our work in Section V.

In this paper, a superscript(·)H denotes the hermitian
transpose and(·)T denotes transpose. The function vec(A)
stacks the columns of matrixA to produce a column vector.
The function Diag(u) forms a diagonal matrix with vector
u on the main diagonal. For a complex-valued vectora, the
function∠(a) retains the angular part ofa. We writeA � 0
to indicate thatA is a positive semidefinite matrix, and let
tr(A) denote the trace ofA.

II. REVIEW OF SEMIDEFINITE RELAXATION

In this section, we briefly review the topic of semidefinite
programming (SDP) and its application to approximate non-
convex CMQP problems. More details on SDP can be found
in [19], [20]. The SDR approximation is described in [13].

A. Semidefinite Programming

In recent years, there has been considerable progress on the
development of efficient algorithms for solving a variety of
optimization problems. In particular, significant attention has
been devoted to SDP, a generalization of classical linear pro-
gramming to include linear matrix inequalities. The standard
form of an SDP is [19], [20]:

min tr(QX)

s. t. tr(AiX) = bi , i = 0, . . . ,M − 1

X � 0,

(2)

whereQ, Ai, i = 0, . . . ,M−1 are the data parameters andX

is the optimization variable. SDP belongs to a class of prob-
lems knowns as conic optimization problems whose global
optimum can be efficiently found using standard algorithms.

The most promising technique at present for solving small-
to-medium-scale SDP is the interior-point (IP) method. There
exist off-the-shelf software packages based on IP for solving
general SDP [21]. In many problems, it is more computation-
ally efficient to use a customized IP method tailored to the
problem of interest (e.g., [12]). Unfortunately, IP methods are
not appropriate for large-scale problems, such as the ones ad-
dressed in this paper, because the memory and computational
costs of even one IP iteration are too high. In such scenarios,
first-order methods, with simple iterations, must be utilized.
A classical method is the spectral bundle method developed
in [22], [23]. The standard SDP involves real parameters and
variables, but can be easily generalized to account for complex
values through a change of variables (e.g., [12]), or specifically
tailored complex optimization methods.

B. Constant Modulus Quadratic Programming

One promising application of SDP is in the approximation
of the complex Constant Modulus Quadratic Programming
(CMQP) problem [13]. In particular, CMQP can be written
as

(CMQP ) min
x∈CM

xHQx

s.t |xi| = 1 , i = 0, . . . ,M − 1.

(3)

It is known that CMQP is NP-hard [16], and thus, for large
problem sizes, the best we can hope for is an approximation
algorithm.

A natural approximation to CMQP is eigenvalue relaxation
(EVR), which can be written as

(EV R) min
x∈CM

xHQx

s.t xHx = M.

(4)

The main advantage of EVR is that the problem(EV R) has
a simple closed-form solution. Using the variational charac-
terization of singular values, the optimal solution to EVR is
the right singular vector ofQ that corresponds to the mini-
mum singular value. Clearly, if this eigenvector satisfies the
original (CMQP ) constraints, then it is the optimal solution
to (CMQP ) as well and the relaxation is tight. Otherwise,
we can obtain an approximate solutioñx by rounding the
minimum right singular vector, denoted byv, as

x̃ = ej∠(v). (5)

Recently, a more advanced relaxation scheme, SDR, has
been proposed. This relaxation can be derived through La-
grange duality or via a lift-and-relax argument (see exer-
cise 5.39 in [19]). For completeness, we review the latter
derivation. Using the identityxHQx = tr(QxxH), we first
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lift the solution space of(CMQP ) from vectors to positive
semidefinite matrices to obtain

(CMQP ′) min
X∈CM×M

tr(QX)

s.t Xii = 1 , i = 0, . . . ,M − 1

X � 0

rank(X) = 1.

(6)
Problems(CMQP ) and (CMQP ′) are equivalent since the
solution to (CMQP ′), X, can be expressed asX = xxH

with |xi| = 1, i = 0, . . . ,M − 1. Problem(CMQP ′) has
a nonconvex feasible set due to the rank 1 constraint and
cannot be solved efficiently. Instead, we relax the feasibleset
of (CMQP ′) to obtain the revised problem(SDR):

(SDR) min
X∈CM×M

tr(QX)

s.t Xii = 1 , i = 0, . . . ,M − 1

X � 0.

(7)

The above optimization problem is a relaxation of(CMQP ′)
and is a SDP withAi = Diag(ei) whereei is the ith column
of the identity matrix andbi = 1 for all i. Thus, it can be
efficiently solved as explained above.

Just like the EVR approach, the SDR must be complemented
with an additional rounding scheme which uses its solution to
generate an approximate feasible solution to(CMQP ). Let X̂
be the solution of(SDR). If rank(X̂) = 1, thenX̂ = x̂x̂H is
an optimal solution to(CMQP ), and the(CMQP ) problem
is solved exactly. Otherwise, we can useX̂ to obtain a feasible
approximate solution to(CMQP ). There are several methods
we might employ. Here we focus on the randomization method
[16]. Let X̂ = V̂V̂H whereV̂ = [v̂1, . . . , v̂n] is a square-root
factor of X̂. Because we relax the rank-1 constraint forX̂, n
may be greater than 1. The randomization method generates
Mrand complex gaussian vectorsu1,u2, . . . ,uMrand

that are
independent with zero mean and covarianceI. It then com-
putesyi = ∠(V̂ui), i = 1, . . . ,Mrand and approximates a
feasible solution,̃x, to (CMQP ) as

x̃ = argmin
y1,...,yMrand

yH
i Qyi. (8)

C. Approximation quality

We now discuss the approximation quality of SDR com-
pared with that of EVR. Our main result is summarized in
Theorem 1.

Theorem 1:Let v∗o , v∗sdr andv∗evr represent the optimal ob-
jective function values found for problems(CMQP ), (SDR)
and (EV R), respectively. Then

v∗o ≥ v∗sdr ≥ v∗evr . (9)

Proof: First, we have shown that(SDR) is a relaxation
of (CMQP ′) and(CMQP ′) is equivalent to(CMQP ). This
immediately gives us

v∗o ≥ v∗sdr. (10)

To show the second inequality, we note that(EV R) is
equivalent to the following problem:

(EV R′) min
X∈CM×M

tr(QX)

s.t tr(X) = M

X � 0.

(11)

This is easily proved by showing that(EV R′) is both a
lower bound and an upper bound for(EV R); thus it is tight.
Let v∗evr′ be the optimal objective function value found for
(EV R′) and we havev∗evr′ = v∗evr. On the other hand,
(EV R′) can be viewed as a relaxation of(SDR) by relaxing
theXii = 1, ∀i constraint to tr(X) = M , and therefore

v∗sdr ≥ v∗evr′ = v∗evr. (12)

Theorem 1 shows that in terms of objective function value,
SDR is a tighter relaxation than the natural EVR approach.
However, it is important to emphasize that these results do not
provide any guarantees on the quality of the solution itself.

Another result, due to So et al. [16], provides quality
assurance for approximating a certain form of CMQP using
SDR. Their result states that SDR plus randomization is a
π
4 -approximation algorithm for CMQP withQ in (3) that is
negative semidefinite, i.e.,

v∗p ≥ E[yHQy] ≥
π

4
v∗p, (13)

wherey = ∠(V̂u) andu is a normally distributed complex
vector.

III. A UTOFOCUS INSYNTHETIC APERTURERADAR

In this section we briefly review the tomographic formu-
lation of spotlight-mode SAR for both the monostatic and
bistatic cases and refer the reader to [1] for more details.
Next, we formulate the autofocus problem solution using
the PGA, MCA and FMCA approaches. The main message
of this section is that all of these approaches lead to a
CMQP problem. Previous work has approximated this problem
using the EVR approach, and we propose to enhance the
performance using the SDR technique described above.

A spotlight-mode SAR system can be mathematically de-
scribed using the following tomographic model. A target
scene, represented by a complex-valued reflectivity function
g(x, y), is illuminated by SAR over the radar’s range of look
angles,θ0, · · · , θM−1. The discrete signal collected from look
angle θm can be modeled as a ”slice” of the 2-D Fourier
transform ofg(x, y), taken at angleθm and sampled at radiuses
R0, · · · , RN−1. These signals are conveniently collected into
an M × N matrix Gp, known as the polar-format Fourier
transform ofg(x, y).
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SAR image reconstruction estimates the amplitudes of the
target scene using the polar-format Fourier data. The classical
image formation technique interpolatesGp onto a Cartesian
grid and then applies an inverse 2-D discrete Fourier trans-
form. The result is denoted bŷg(xi, yi) for i = 1, · · · , I.
Under suitable conditions, it has been demonstrated that the
speckle image|ĝ(xi, yi)| can be a good approximation for the
amplitudes|g(xi, yi)|, so long as the phases,∠g(xi, yi), are
approximately uncorrelated [24].

A challenge in SAR imaging is that in order to correctly
demodulate the returned signal, the two-way travel time of the
transmitted signal must be known. In practice, due to unknown
signal delays resulting from inaccurate range measurements
or signal propagation effects, the polar-format Fourier data
is contaminated with unknown phase errors that cause the
reconstructed image to suffer distortion. The measurements
at a given look angle suffer from the same unknown delay,
and, under a narrow-band assumption, their unknown phase
is constant. The delays, and their associated phases, change
between different look angles. This results in the error model

G̃p[m,n] = Gp[m,n] ejφ(m) +W[m,n], (14)

whereφ(m) ∈ R,m = 0, 1, . . . ,M − 1 are unknown phases,
andW[m,n] represents additional noise [1].

SAR reconstruction amounts to estimating the speckle im-
age|ĝ(xi, yi)| given the observations̃Gp. Note that even with-
out unknown phases, SAR reconstruction produces a speckle
image that is similar to|g(xi, yi)| but not identical. Moreover,
as the additive noise increases, the quality of the speckle image
degrades. The goal of SAR autofocus is to recover this speckle
image (and not the true reflectivity function) in the presence of
unknown phases. In this paper, we will address this problem
using a natural approach that first estimates the unknown
phases, compensates for them and finally reconstructs the
speckle image using classical techniques.

A. Phase Gradient Autofocus

PGA is the autofocus method most widely employed in
practice. It is motivated by considering a scenario where
each row ofg contains only a single point reflector located
at the center of the row. These reflectors are modeled as
mutually independent and identically distributed (i.i.d)zero-
mean complex Gaussian random variables with varianceσ2

a,
whereas the surrounding clutter is represented by i.i.d. zero-
mean complex Gaussian random variables with varianceσ2

n.
Let G̃rc denote the range-compressed data defined asG̃p

after undergoing a 1-D inverse Fourier transform in then-
dimension. Then, the rows of̃Grc are i.i.d. realizations of a
zero mean complex Gaussian vector with covariance

σ2
axx

H + σ2
n I, (15)

where x = ejφφφ is the phase vector (φφφ =
[φ(0), φ(1), · · · , φ(M − 1)]T ) which satisfies |xi| = 1
for i = 0, 1, · · · ,M − 1.

PGA estimatesx using a maximum likelihood approach.
After simple algebraic manipulations, the problem reducesto

(P − PGA) ejφ̂φφPGA = argmax
x:|xi|=1

xHG̃T
rc(G̃

T
rc)

Hx, (16)

It is easy to see that(P − PGA) is a CMQP withQ =
−G̃T

rc(G̃
T
rc)

H . It was shown in [1] that, under the assumed
single point reflector model and at high signal-to-noise ratio,
the eigenvalues of E[Q] have onlyone dominating term and
its corresponding eigenvector is the true autofocus phase error
vector (with unknown time shift). In other words,(P −PGA)
satisfies the following

v∗o ≈ v∗evr (17)

and EVR is tight.
For completeness, we note that the above scheme is not the

full PGA algorithm, but is its core step. The full algorithm
is an iterative technique where at each iteration the algorithm
first preprocesses the obtained phase-compensated image so
that it can be more accurately described by the assumed point
target model. Then the phase errors are estimated by using (16)
and a refined image is constructed. For a complete description
of the full PGA algorithm, see [1]. Also, note that in practice
a simpler PGA algorithm is commonly used where the phase
difference between adjacent pulses is estimated. This method
can be shown to be a special case of the maximum-likelihood
technique presented above.

B. Multichannel Autofocus

An alternative image model was recently proposed by
Morrison et al. [9]. The autofocus algorithm they developedis
called Multichannel Autofocus (MCA). The MCA reconstruc-
tion method assumes that there is a known region in the image
that consists of nearly zero-valued pixels, i.e.,g(xr, yr) ≈ 0
for r = 0, · · · , R−1. This prior knowledge can be inferred by
using the low-return region of the antenna pattern [9]. Using
this knowledge and ”reverse engineering,” MCA searches for
the phases that will result in a reconstructed image with

|ĝ(xr , yr)| ≈ 0 for r = 0, · · · , R− 1. (18)

For simplicity, MCA assumes that the range of look angles
is small enough so thatGp can be well approximated by a
Cartesian grid. Therefore, the polar-to-Cartesian interpolation
process can be ignored in the image reconstruction process
and (18) reduces to solving

1

MN

∑

m,n

G̃p[m,n] e−jφ(m)ej2π(
xrm
K

+ yrn
L ) ≈ 0 (19)

for φ(0), φ(1), · · · , φ(M −1) and forr = 0, 1, . . . , R−1. Us-
ing vector notation, the autofocus problem reduces to finding
a vectorx ∈ CM such that

Ax = 0, |xi| = 1, i = 0, 1, · · · ,M − 1, (20)

whereA is anR by M matrix with elements

A[m, r] =
1

MN

∑

n

G̃p[m,n]ej2π(
xrm
M

+ yrn
N ). (21)

A naive approach to this problem is to try solving this system
of equations exactly. In practice, the measurements are noisy
and the approximately zero-valued pixels are not exactly zero.
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Instead, requiring that the low-return region has minimum
energy leads to the following optimization problem:

(P −MCA) ejφ̂φφMCA = argmin
x:|xi|=1

‖A x‖2. (22)

Thus, the MCA approach reduces to solving a standard CMQP
with Q = AHA. In the original MCA paper [9], an approxi-
mate solution was proposed using an EVR approach. A better
approximation can be obtained by using our proposed SDR at
the cost of increased computational complexity.

For completeness, we note that the original MCA derivation
used a more general framework with arbitrary basis functions,
and worked in the spatial domain rather than the Fourier
domain. The SDR method can be applied equally well in that
framework.

C. Fourier-domain Multichannel Autofocus

Only on rare occasions does SAR operate over a range of
look angles spanning a small fraction of one degree. MCA
breaks down quickly as the range of look angles becomes
larger [25]. FMCA is a generalization of MCA that recognizes
that the collected Fourier data is in polar format and the
interpolation process cannot be ignored. FMCA requires that
the polar-to-Cartesian interpolation belinear to preserve the
linear structure of the inverse problem. In practice, linear
interpolation is almost always used, for example see [1]. With
linear interpolation, the Cartesian grided data, denoted by
Gc[k, l], can be expressed as.

Gc[k, l] =
∑

m,n

α(k, l,m, n)Gp[m,n], (23)

whereα(k, l,m, n) are the interpolation coefficients. In this
paper we used a nearest-neighbor interpolation for simplicity.
Thusα(k, l,m, n) = 1 whenGp[m,n] is closest toGc[k, l]
and0 otherwise. In principle, any linear interpolation can be
used and accommodated within this framework. Assuming
g(xr, yr) are nearly zero, and together with (23), (19) and
(14), FMCA formulates the autofocus problem as the solution
to
1

KL

∑

k,l

∑

n,m

α(k, l,m, n)G̃p[m,n] e−jφ(m)ej2π(
xrk

K
+yrl

L ) ≈ 0

(24)
for all r = 0, 1, . . . , R − 1. Similar to MCA, the FMCA
problem reduces to finding a vectorx such that

Bx = 0, |xi| = 1, i = 0, 1, · · · ,M − 1 (25)

where B is anR by M matrix with elements

B[m, r] =
1

KL

∑

k,l

(

∑

n

α(k, l,m, n)G̃p[m,n]

)

ej2π(
xrk
K

+ yrl
L ). (26)

In practice, it is more reasonable to assume that the low-return
region has small energy. Therefore, FMCA attempts to solve
the following optimization problem:

(P − FMCA) ejφ̂φφFMCA = argmin
x:|xi|=1

‖B x‖2. (27)

Thus the FMCA approach reduces to solving a standard
CMQP with Q = BHB. In the original FMCA method
[10], an approximate solution was proposed using an EVR
approach. In the next section, we will demonstrate that a better
approximation can be obtained using the SDR technique in
exchange for an increase in computational complexity.

IV. SIMULATION RESULTS

In this section, we provide a few illustrative experiments
showing the advantages of the SDR approach in comparison
to existing autofocus algorithms. We examine narrow and wide
ranges of look angles, as well as the bistatic scenario. In
this section we denote MCA-SDR and FMCA-SDR as the
algorithms using SDR to approximate(P − MCA) in (22)
and (P − FMCA) in (27), respectively.

A. SAR Simulator

In order to test the different algorithms, we built a SAR
simulator which used a SAR image,g, to generate Fourier
observations̃Gp. The complex images,g, we used were taken
from the public SAR database provided by Sandia National
Laboratory [26]. The complex image was multiplied by a 2-D
antenna pattern, and then a 2-D discrete Fourier transform
(DFT) was applied. The resulting Fourier matrix was then
linearly interpolated to a polar grid to obtain theM×N polar
format dataGp whereM andN denote the number of samples
in the range and cross-range directions, respectively. Theshape
of the polar grid was dominated by the range of viewing
angles adopted in each simulation. Finally, the noisy and
phase-corrupted observationsG̃p were simulated as expressed
in (14). Our simulator generated a white phase error where
eachφ(m) was independent and uniformly distributed between
−π and π. This is considered the most challenging type of
phase error function. The additive noise was independent,
zero-mean complex Gaussian with varianceσ2

n determined by
the signal-to-noise ratio (SNR). Here, the SNR is defined as
SNR= 20 log10{(

∑

m,n |G̃p[n,m]|/NM)/σn}.
Our simulator employed two types of antenna patterns: a

trapezoidal pattern with unit gain over 90 percent of the image
and linearly increasing attenuation toγ, 0 < γ < 1, at the edge
of the image; and a more realistic 2-D sinc-squared antenna
pattern with 95 percent of the mainlobe covering the image.

B. Reconstruction Experiments

In our first set of simulations we adopted a SAR system
operating across a narrow range of look angles, so that the
collected polar Fourier data was nearly Cartesian. In this
simulation we letM = N = 256. We compared the
performance of MCA-SDR with that of MCA-EVR, PGA
and sharpness-maximization autofocus algorithms. We used
the focused image in Fig. 1a with a 2-D sinc-squared antenna
pattern applied to it and SNR=60dB. The defocused image
corrupted by a white phase error function is shown in Fig. 1b.
The MCA reconstruction using SDR is presented in Fig. 1c,
and the reconstruction using EVR is shown in Fig. 1d. The
PGA and sharpness-maximization reconstructions are shown
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Fig. 1: Comparison of MCA-SDR with existing autofocus approaches: (a) perfectly focused image with 2-D sinc-squared
antenna pattern applied and SNR=60dB; (b) defocused image corrupted by a white phase error function; (c) MCA-SDR
restoration (SNRout=15.3527dB); (d) MCA-EVR restoration (SNRout=8.1809dB); (e) PGA restoration (SNRout=9.3092dB);
(f) Sharpness-maximization restoration (SNRout=5.8177dB).
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Fig. 2: Plots of the restoration quality metric SNRout ver-
sus the input SNR for MCA-SDR, MCA-EVR, PGA and
sharpness-maximization autofocus: (a) 2-D sinc-squared an-
tenna pattern applied; (b) trapezoidal antenna pattern applied
(γ = 10−4).
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Fig. 3: Collected Fourier data pattern for wide-angle SAR (18
degree range of viewing angles).

in Fig. 1e and Fig. 1f, respectively. A close inspection shows
that the MCA-SDR reconstruction yields the best visual qual-
ity reconstruction.

To quantitatively evaluate the reconstruction we used the
SNRout metric defined as

SNRout = 20 log10
‖vec(g)‖2

‖(|vec(g)| − |vec(ĝ)|)‖2
, (28)

where ĝ is the reconstructed image. SNRout measures the
pixel-wise magnitude difference between the reconstructed
imageĝ and the perfectly focused imageg. A higher SNRout
value correspondsroughly to a better restoration. The values
of SNRout for the above simulation are 15.3527dB for MCA-
SDR and 8.1809dB, 9.3092dB, 5.8177dB for MCA-EVR,
PGA and sharpness-maximization, respectively.

For this simulation we implemented SDR via the interior-
point (IP) method [19]. The complexity of the IP method is on
the order ofM3.5 which makes it computationally demanding
for large M as is the case for a real SAR system (usually
in the thousands). However, there is a large body of research
on large-scale SDP methods [27]. To give a rough idea of its
computational cost, the run times for the above simulation on
a HP Z200 (Quad 2.66 GHz) PC with 8GB of RAM were
14.1863, 0.2936, 2.2245 and 67.4647 seconds for MCA-SDR,
MCA-EVR, PGA and sharpness-maximization, respectively.

Next, we plotted SNRout versus increasing SNR in Fig. 2a.
Figure 2b shows SNRout versus SNR plotted for the same
setup as in Fig. 2a but with a trapezoidal antenna pattern (γ =
10−4) applied. From Fig. 2 we can see that MCA provides a
better reconstruction than PGA and sharpness-maximization
autofocus for high-SNR. Also, we can see that MCA-SDR is
slightly superior to MCA-EVR.

In our second set of simulations, we adopted a SAR system
operating across a wide range of look angles and compared
FMCA-SDR with FMCA-EVR. In this simulation, we as-
sumed an 18 degree range of look angles and used M=1500,
N=800 to generate the polar grid shown in Fig. 3 whereFx

andFy denote the coordinates of the 2-D Fourier space. The
focused image is shown in Fig. 4a with a 2-D sinc-squared
antenna pattern applied and SNR=80dB. The defocused image
corrupted by a white phase error function is shown in Fig. 4b.
The FMCA reconstruction using SDR is shown in Fig. 4c and
the reconstruction using EVR is shown in Fig. 4d. It is easy
to see the visual image enhancement due to the use of SDR.
In order to demonstrate the effect of input SNR on restoration
quality, Fig. 5 presents the output versus input SNRs for a
50 by 50 ”toy” image collected on a polar grid with a 2
degree range of look angles. The toy image was generated
randomly, with independent pixels having uniform magnitude
and uniform phases. As expected, at high input SNR both EVR
and SDR succeed in estimating the unknown phases, but the
advantage of SDR is significant in cases with medium input
SNR where the low-return region assumption is inexact.

We also report the results of an additional FMCA simulation
conducted for a bistatic SAR system. We considered a bistatic
SAR scenario where a moving transmitter and a moving
receiver traverse a straight-line trajectory, perpendicular to
each other. The corresponding Fourier data lies on a skewed



8

(a)

Range

C
ro

ss
−

ra
ng

e

100 200 300 400 500 600

100

200

300

400

500

600

(b)

Range

C
ro

ss
−

ra
ng

e

100 200 300 400 500 600

100

200

300

400

500

600

(c)

Range

C
ro

ss
−

ra
ng

e

100 200 300 400 500 600

100

200

300

400

500

600

(d)

Range

C
ro

ss
−

ra
ng

e

100 200 300 400 500 600

100

200

300

400

500

600

Fig. 4: Image restoration of FMCA-SDR and FMCA-EVR for wide-angle SAR autofocus: (a) perfectly focused image with
2-D sinc-squared antenna pattern applied and SNR=80dB; (b)defocused image produced by applying a white phase error
function, (c) FMCA-SDR restoration (SNRout = 4.8718 dB); (d) FMCA-EVR restoration (SNRout = 3.1536 dB).
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Fig. 6: Collected Fourier data pattern for bistatic SAR (moving
transmitter and a moving receiver).
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Fig. 7: Comparison of FMCA-SDR and FMCA-EVR for bistatic SARautofocus: (a) perfectly focused image with 2-D sinc-
squared antenna pattern applied and SNR=50dB; (b) defocused image produced by applying a white phase error function; (c)
FMCA-SDR restoration (SNRout = 4.6086 dB); (d) FMCA-EVR restoration (SNRout = 2.1295 dB).

polar grid shown in Fig. 6 [28]. In this bistatic simulation we
set M = N = 2000. The focused image with a 2-D sinc-
squared antenna pattern applied to it and input SNR equal to
50dB is shown in Fig. 7a. The defocused image, corrupted by
a white phase error, is shown in Fig. 7b. The images restored
by FMCA-SDR and FMCA-EVR are shown in Figs. 7c and
7d, respectively. Here too, the advantage of SDR over EVR is
apparent.

The two FMCA simulations reported above correspond to
a fairly large-scale SDP problem (M = 1500 for wide-angle
simulation andM = 2000 for bistatic simulation). For these
two simulations, we implemented SDR via the bundle method
[22]. To give a rough idea of its computational cost, the run
time for the EVR simulation with Fig. 4a as input required less
than 30 minutes on a HP Z200 (Quad 2.66 GHz) PC with 8GB
of RAM, while SDR required about 24 hours to converge.

V. CONCLUSION

In this work, we proposed to use semidefinite relaxation
(SDR) to improve two state-of-the-art SAR autofocus algo-
rithms, namely Multichannel Autofocus (MCA) and Fourier-
domain Multichannel Autofocus (FMCA). We first recognized
that, although MCA and FMCA are developed based on differ-
ent models and assumptions, they both attempt to find a solu-
tion to a constant modulus quadratic program (CMQP). CMQP
is known to be NP-hard. MCA and FMCA both, either implic-
itly or explicitly, use eigenvalue relaxation to approximate the
CMQP. We proposed to use SDR to approximate the CMQP
arising in both algorithms. Experimental results showed that
SDR provided promising image quality advantages over MCA
and FMCA. Although solving autofocus problems using the
new method is more computationally expensive, there may
be crucial situations where it is imperative that an image be
focused as well as possible, using computationally intensive
off-line processing.
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