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Abstract—The autofocus problem in Synthetic Aperture Radar inaccurate range measurements or signal propagationsffec
imaging amounts to estimating unknown phase errors caused there will be demodulation timing errors at the radar reeeiv
by unknown platform or target motion, or a time- or spatially - - 111 Even though motion compensation systems have improved

varying transmission medium. At the heart of three state-of . .
the-art autofocus algorithms, namely Phase Gradient Autajcus, (using GPS), those systems do not help with phase errors

Multichannel Autofocus (MCA) and Fourier-domain Multicha n-  introduced by perturbations in the ionosphere in spaceborn
nel Autofocus (FMCA), is the solution of a constant modulus SAR imaging. Timing errors at the demodulator will produce

quadratic program (CMQP). Currently, these algorithms solve unknown phase errors in the collected Fourier data, which ca
CMQP by using an eigenvalue relaxation approach. We propose 55 the reconstructed image to suffer distortion. Agtzo

an alternative relaxation approach based on semidefinite m- lgorith IV Si | ing techni t th
gramming, which has recently attracted considerable attetion algorithms apply signal processing techniques 1o remoee

in other signal processing problems. Experimental resultshow Undesired phase errors and restore the focused image.
that our proposed methods provide promising performance Most existing autofocus algorithms invoke assumptions on
improvements for MCA and FMCA through an increase in the properties of the unknown phase function or charatiesis
computational complexity. of the underlying SAR scene. An early class of autofocus-algo

Index Terms—Synthetic aperture radar, Autofocus, Multichan-  rithms assumes that the phase error function can be dedcribe
nel Autofocus, Fourier-domain Multichannel Autofocus, Senidef- by a finite polynomial expansion [3], [4]. Other autofocus
inite relaxation. techniques estimate the phase errors by maximizing th@shar

ness of the reconstructed image [5], [6]. Some popular oetri
. INTRODUCTION that measure the image sharpness include entropy and sariou

Synthetic aperture radar (SAR) offers a means of producigﬁ)werS of the image intensity [7]. The widely used Phase

high-resolution microwave images using an antenna of sm
size. High resolution in the range direction is achievedtigh
traditional pulse compression, while high resolution ire th

adient Autofocus (PGA) technique is conceptually based

an image model where each range coordinate has a single
point target embedded in white complex Gaussian cluttet, an
applies maximume-likelihood (ML) phase estimation [8]. The

cross-range direction is obtained by illuminating the_ mrgMultichannel Autofocus (MCA) algorithm assumes a known
from many look angles. In one form of SAR, termgabtlight region in the SAR image has pixels with zero or nearly-

mode the radar antenna is continuously steered to illumina

) : ) é%ro value [9]. Such a region can be identified within the
the target with _each transmitted microwave pulse. V_Vh_en .ts%elobes of the antenna pattern. Recently, the Fourigraito
same antenna is used for both transmitting and receiving, i

. L tl\/IuItichanneI Autofocus (FMCA) algorithm was devised to
referred to asnonostaticSAR, \.Nh"e |nb|stat|(_:S_AR separate allow for a wider range of look angles than permitted by other
antennas are us_ed fortrgnsmlttlng and receiving. Thec:te_ﬂle ﬁechniques [10]. FMCA has been shown to provide superior
returned S|g_nal in spotlight mOde SAR.can be. convenieny age restoration capability as compared to other autafocu
modeled using a tomographic formulation, which allows US ethods
to view returned signals as data lying in theurier domain At the c':ore of the three state-of-the-art autofocus algorg

of the target_reflecuw_ty, after quadrature dem_odulaudm [ PGA, MCA and FMCA is the solution to a Constant Modulus
[2]. The Fourier data lies on a polar annulus with paramete

. adratic Program (CMQP) of the following form
determined by the radar waveform and the radar’s range %SP 9 (CMQP) 9
look angles. The SAR image customarily is produced using . H
polar-to-Cartesian interpolation followed by 2-D Fouriirer- ot ® Qx )
sion. However, due to unknown signal delays resulting from

st |xi|=1,i=0,...,.M—1.
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complicating the underlying optimization problem. whereQ, A;, i =0,..., M —1 are the data parameters aKd

SDR recently has been applied to many problems in cons-the optimization variable. SDP belongs to a class of prob-
munications and signal processing [11], [12], [13], [14h-B lems knowns as conic optimization problems whose global
sically, SDR approximates a quadratic problem with a conveptimum can be efficiently found using standard algorithms.
optimization problem by first lifting the problem to a higher The most promising technique at present for solving small-
dimension and then relaxing the nonconvex constraints. T @medium-scale SDP is the interior-point (IP) method. rEhe
the best of our knowledge, this is the first time that SDRBXxist off-the-shelf software packages based on IP for sglvi
has been applied to the problem of SAR autofocus. Thigneral SDP [21]. In many problems, it is more computation-
problem formulation is similar to the discrete symbol détet ally efficient to use a customized IP method tailored to the
problem in communication systems, which has recently ghinproblem of interest (e.g., [12]). Unfortunately, IP methade
considerable attention [12]. However, the feasible set isn@t appropriate for large-scale problems, such as the ahes a
continuous constant modulus set as described in (1) aboge, dressed in this paper, because the memory and computational
is not discrete. Some theoretical results on the performahnc costs of even one IP iteration are too high. In such scenarios
SDR for the continuous symbol case are given in [15], [16first-order methods, with simple iterations, must be iz
[17]. Our simulation results suggest that, combined withAMCA classical method is the spectral bundle method developed
and FMCA, SDR is a promising autofocus technique. We noite [22], [23]. The standard SDP involves real parameters and
that currently solving SDR requires polynomial time and mayariables, but can be easily generalized to account for temp
not be amenable to online processing. Nonetheless, theye malues through a change of variables (e.g., [12]), or spediii
be crucial situations where it is imperative that an image bailored complex optimization methods.
focused as well as possible, using computationally intensi
offline processing.

This paper expands upon a preliminary version of our wo
reported in [18]. The organization of the paper is as follows One promising application of SDP is in the approximation
We will briefly review the concept of SDR in Section Il.of the complex Constant Modulus Quadratic Programming
Section Il presents the problem formulation for PGA, MCACMQP) problem [13]. In particular, CMQP can be written
and FMCA and also discusses how we can improve theag
existing techniques by using SDR. Simulation results arergi

&. Constant Modulus Quadratic Programming

in Section IV. Finally, we summarize our work in Section V. (CMQP) min  x7Qx
In this paper, a superscrigt)” denotes the hermitian xeCM (3)
transpose and-)” denotes transpose. The function (¢ st xil=1,i=0,...,M—1.

stacks the columns of matriA to produce a column vector.

The function Diagu) forms a diagonal matrix with vector It is known that CMQP is NP-hard [16], and thus, for large
u on the main diagonal. For a complex-valued vectothe problem sizes, the best we can hope for is an approximation
function Z(a) retains the angular part af. We write A = 0  algorithm.

to indicate thatA is a positive semidefinite matrix, and let A natural approximation to CMQP is eigenvalue relaxation

tr(A) denote the trace oA. (EVR), which can be written as
Il. REVIEW OF SEMIDEFINITE RELAXATION (EVR) min  x7Qx
xeCM (4)

In this section, we briefly review the topic of semidefinite
programming (SDP) and its application to approximate non- st xPx=M.
convex CMQP problems. More details on SDP can be found

in [19], [20]. The SDR approximation is described in [13]. The main advantage of EVR is that the problemV' k) has
a simple closed-form solution. Using the variational clara

o ) terization of singular values, the optimal solution to EV&R i
A. Semidefinite Programming the right singular vector of) that corresponds to the mini-
In recent years, there has been considerable progress onntiwen singular value. Clearly, if this eigenvector satisfies t
development of efficient algorithms for solving a variety obriginal (CM @ P) constraints, then it is the optimal solution
optimization problems. In particular, significant attemtihas to (CMQP) as well and the relaxation is tight. Otherwise,
been devoted to SDP, a generalization of classical linear pwe can obtain an approximate solutisnby rounding the
gramming to include linear matrix inequalities. The staddaminimum right singular vector, denoted by as
form of an SDP is [19], [20]:

x =4V, (5)
min  tr(QX) Recently, a more advanced relaxation scheme, SDR, has
_ 5 been proposed. This relaxation can be derived through La-
st tr(AX)=b; ,i=0,....,M—1 @) grange duality or via a lift-and-relax argument (see exer-

cise 5.39 in [19]). For completeness, we review the latter
X =0, derivation. Using the identitk” Qx = tr(Qxx'), we first



lift the solution space ofCMQP) from vectors to positive Proof: First, we have shown thdtSDR) is a relaxation
semidefinite matrices to obtain of (CMQP') and(CMQP’) is equivalent tq CMQP). This
immediately gives us
/ .
(CMRE) it TN v = ol (10)
s.t Xi=1,i=0,...,M—1 To show the second inequality, we note th@V R) is
equivalent to the following problem:

X>0
(EVR') min tr(QX)
rank(X) = 1. e
(6) st tr(X)=M (11)
Problems(CMQP) and (CMQP') are equivalent since the
solution to (CMQP'), X, can be expressed & = xx! X = 0.

with |x;) =1, ¢ = 0,...,M — 1. Problem(CMQP’) has o _ _ o
a nonconvex feasible set due to the rank 1 constraint ahfiS iS easily proved by showing thaE'VR') is both a
cannot be solved efficiently. Instead, we relax the feasibte lower bound and an upper bound fa£V R); thus it is tight.

of (CMQP') to obtain the revised problefis DR): Let v}, be the optimal objective function value found for
(EVR') and we havev’,. = v},.. On the other hand,
(SDR)  min,, ¥(QX) o X0~ 1,9 constaint 1 £ < A, and therefors
st Xuy=1,i=0,....M—1 () Vidr = Vippr = Vg (12)
X = 0. .

Theorem 1 shows that in terms of objective function value,
SDR is a tighter relaxation than the natural EVR approach.
However, it is important to emphasize that these resultsado n
provide any guarantees on the quality of the solution itself

Another result, due to So et al. [16], provides quality
assurance for approximating a certain form of CMQP using

R. Their result states that SDR plus randomization is a
J-approximation algorithm for CMQP witlQ in (3) that is
negative semidefinite, i.e.,

The above optimization problem is a relaxation(6fM Q P’)
and is a SDP withA; = Diag(e;) wheree; is theith column
of the identity matrix andh; = 1 for all 7. Thus, it can be
efficiently solved as explained above.

Just like the EVR approach, the SDR must be complemen
with an additional rounding scheme which uses its solutin
generate an approximate feasible solutio0dd/QP). LetX
be the solution of SDR). If rank(X) = 1, thenX = %% is
an optimal solution tdCMQP), and the(CMQP) problem vy > Ely” Qy] > L);’
is solved exactly. Otherwise, we can USdo obtain a feasible 4
approximate solution t6C'M QP). There are several methodsvherey = /(Vu) andu is a normally distributed complex
we might employ. Here we focus on the randomization methegctor.

[16]. LetX = VV whereV = [v4,...,V,] is a square-root
factor of X. Because we relax the rank-1 constraint 3y n I1l. AUTOFOCUS INSYNTHETIC APERTURERADAR
may be greater than 1. The randomization method generateg, i4is section we briefly review the tomographic formu-

Miand complex- gaussian Vectors, Uy, . . ., U, that are |ation of spotlight-mode SAR for both the monostatic and
independent with zero mean and covariadcét then com- bistatic cases and refer the reader to [1] for more detalils.

putesy; = Z(Vu;),i = 1,..., Mranq and approximates a eyt we formulate the autofocus problem solution using

feasible solutionx, to (CMQP) as the PGA, MCA and FMCA approaches. The main message
%= argmin y’Qys;. (8) of this section is th_at all of these app_roaches _Iead to a
YooY M CMQP problem. Previous work has approximated this problem
using the EVR approach, and we propose to enhance the
C. Approximation quality performance using the SDR technique described above.

] ) ) ) A spotlight-mode SAR system can be mathematically de-
We now discuss the approximation quality of SDR cOMgeriped using the following tomographic model. A target

pared with that of EVR. Our main result is summarized i@cene represented by a complex-valued reflectivity fancti
Theorem 1. _ L. . _ g(z,y), is illuminated by SAR over the radar’s range of look
~ Theorem 1:Letvg, v, andv;,, represent the optimal 0b- 551654, ..., 0,,_,. The discrete signal collected from look
jective function values found for probleni€MQP), (SDR)  gngle g,, can be modeled as a "slice” of the 2-D Fourier
and (EV R), respectively. Then transform ofg(z, y), taken at anglé,, and sampled at radiuses
v >, >l 9) Ro,--+ ,Rn_1. These signals are conveniently collected _into
an M x N matrix G,, known as the polar-format Fourier
transform ofg(x, y).

(13)

rand



SAR image reconstruction estimates the amplitudes of theis easy to see thatP — PGA) is a CMQP withQ =
target scene using the polar-format Fourier data. Theickss —GZ.(GI)H. It was shown in [1] that, under the assumed
image formation technique interpolat€s, onto a Cartesian single point reflector model and at high signal-to-noiséorat
grid and then applies an inverse 2-D discrete Fourier trarthe eigenvalues of [ have onlyone dominating term and
form. The result is denoted by(z;,y;) for ¢ = 1,---,I. its corresponding eigenvector is the true autofocus phasee e
Under suitable conditions, it has been demonstrated tleat trector (with unknown time shift). In other wordsP — PG A)
speckle imagej(z;, y;)| can be a good approximation for thesatisfies the following
amplitudes|g(z;, y;)|, so long as the phasegg(x;,y;), are

. SR a7
approximately uncorrelated [24]. 0 evr

A challenge in SAR imaging is that in order to <_:orrectlyand EVR is tight.
demodulate the returned signal, the two-way travel timénef t :

. . . For completeness, we note that the above scheme is not the
transmitted signal must be known. In practice, due to unlmov]y ; o .
. . ; Il PGA algorithm, but is its core step. The full algorithm
signal delays resulting from inaccurate range measuresmen

iS an iterative technique where at each iteration the alyori

or signal propagation effects, the polar-format Founetadaﬁrst preprocesses the obtained phase-compensated image so

is contaminated with unknown phase errors that cause E 3t it can be more accurately described by the assumed point

;etcgnsiggstlegolimaangelet(;u?_fuefrfefrrodrft%r:Osna'm;rgeunmkﬁgjvl:lregzg parget model. Then the phase errors are estimated by usihg (1
9 9 Yhd a refined image is constructed. For a complete desariptio

and, under a narrow-band assumption, their unknown ph%%%he full PGA algorithm, see [1]. Also, note that in praetic

is constant. The delays, and their associated phases, e:hang

. . . impler PGA algorithm is commonly used where the phase
between different look angles. This resuits in the error e1IOd3i1‘ference between adjacent pulses is estimated. Thisadeth

G,[m,n] = Gp[m,n] €*™ + Wm,n], (14) can be shown to be a special case of the maximum-likelihood

whereg(m) €e R,m =0,1,..., M — 1 are unknown phases,teChn'que presented above.

and W[m, n] represents additional noise [1].
SAR reconstruction amounts to estimating the speckle im: Multichannel Autofocus
age|g(z;,y:)| given the observations,,. Note that even with-

out unknown phases, SAR reconstruction produces a spec ) . .
b P b orrison et al. [9]. The autofocus algorithm they developed

image that is similar tdg(z;, ;)| but not identical. Moreover, :
as the additive noise increases, the quality of the specidge called Multichannel Autofocus (MCA). The MCA reconstruc-
y 'Pn method assumes that there is a known region in the image

degrades. The goal of SAR autofocus is to recover this specf{_l ) X .
image (and not the true reflectivity function) in the preseat that consists of nearly_zerq-valued pixels, 'ﬁ%".y’”) ~ 0

unknown phases. In this paper, we will address this problefﬁ{r =0, R—1. This prior knowledge can be inferred by
using a natural approach that first estimates the unkno ing the low-return region of the antenna pattern [9]. gsin

phases, compensates for them and finally reconstructs %‘é knowledge an_d reverse engneering, MC_:A searc_hes for
speckle image using classical techniques. the phases that will result in a reconstructed image with

n alternative image model was recently proposed by

A. Phase Gradient Autofocus 9(zrye)l ~ 0 for r =0, R -1 (18)
PGA is the autofocus method most widely employed ifior simplicity, MCA assumes that the range of look angles

practice. It is motivated by considering a scenario whei® small enough so thak, can be well approximated by a

each row ofg contains only a single point reflector located=artesian grid. Therefore, the polar-to-Cartesian irtargpn

at the center of the row. These reflectors are modeled RI&cess can be ignored in the image reconstruction process

mutually independent and identically distributed (i.izBro- and (18) reduces to solving

mean complex Gaussian random variables with variarjce 1 . _ (2o, yen

whereas the surrounding clutter is represented by iitb-ze 7% > Gylm,n] e Ml "R ) ~ 0 (19)

mean complex Gaussian random variables with variarjce m,n

Let G,. denqte the ran_ge—compress.ed data defingfﬁ‘rgs for ¢(0), (1), , (M —1) and forr = 0,1, ..., R—1. Us-

after undergoing a 1-D inverse Fourier transform in #he g yector notation, the autofocus problem reduces to fandin

dimension. Then, the rows_cﬁ‘rm are |.|._d. reallza_\tlons of a a vectorx € CM such that

zero mean complex Gaussian vector with covariance

O'QXXH+0'21 (15) AX:O, |Xl| :1, Z:0,1, ,]\/[_1, (20)
where x = ¢/ is the phase vector ¢( = WhereA isanR by M matrix with elements
[¢(0), ¢(1),- -+, (M — 1)]T) which satisfies|x;] = 1 5 e
fori=0,1,---,M — 1. Alm,r] = ﬁ > Gy m, ne? (55 (21)

PGA estimatesx using a maximum likelihood approach.
After simple algebraic manipulations, the problem reduces A naive approach to this problem is to try solving this system

(P — PGA) eIbpca — argmax x G (GL)Hx, (16) of equations exactly. In practice, the measurements asy noi
x:|xi|=1 rexTrel and the approximately zero-valued pixels are not exactly.ze



Instead, requiring that the low-return region has minimuhus the FMCA approach reduces to solving a standard
energy leads to the following optimization problem: CMQP with Q = B#B. In the original FMCA method
[10], an approximate solution was proposed using an EVR
(22) approach. In the next section, we will demonstrate that tebet
_ approximation can be obtained using the SDR technique in
Thus, the MCA approach reduces to solving a standard CM@Rchange for an increase in computational complexity.
with Q = A A. In the original MCA paper [9], an approxi-
mate solution was proposed using an EVR approach. A better
approximation can be obtained by using our proposed SDR at
the cost of increased computational complexity. In this section, we provide a few illustrative experiments
For completeness, we note that the original MCA derivatigiiowing the advantages of the SDR approach in comparison
used a more general framework with arbitrary basis funstiorfo existing autofocus algorithms. We examine narrow ancwid
and worked in the spatial domain rather than the Fouriggnges of look angles, as well as the bistatic scenario. In

domain. The SDR method can be applied equally well in thitis section we denote MCA-SDR and FMCA-SDR as the
framework. algorithms using SDR to approximafé® — M CA) in (22)
and (P — FMCA) in (27), respectively.

(P — MCA) ¢®vea = argmin ||A x|2.

x:|x;|=1

IV. SIMULATION RESULTS

C. Fourier-domain Multichannel Autofocus

Only on rare occasions does SAR operate over a rangefsf SAR Simulator
look angles spanning a small fraction of one degree. MCA In order to test the different algorithms, we built a SAR
breaks down quickly as the range of look angles becomsignulator which used a SAR image, to generate Fourier
larger [25]. FMCA is a generalization of MCA that recognizesbservations:;p. The complex imageg;, we used were taken
that the collected Fourier data is in polar format and thieom the public SAR database provided by Sandia National
interpolation process cannot be ignored. FMCA requires thaaboratory [26]. The complex image was multiplied by a 2-D
the polar-to-Cartesian interpolation tigear to preserve the antenna pattern, and then a 2-D discrete Fourier transform
linear structure of the inverse problem. In practice, ImegDFT) was applied. The resulting Fourier matrix was then
interpolation is almost always used, for example see [1}hWilinearly interpolated to a polar grid to obtain thé x N polar
linear interpolation, the Cartesian grided data, denotgd format dataG, whereM andN denote the number of samples
G.[k,l], can be expressed as. in the range and cross-range directions, respectivelyshbpe
of the polar grid was dominated by the range of viewing
Gelk, 1) = 3 alk, L, m, n) Gy [m, ], (23)  angles adopted in each simulation. Finally, the noisy and
e phase-corrupted observatio@, were simulated as expressed
wherea(k,l,m,n) are the interpolation coefficients. In thisin (14). Our simulator generated a white phase error where
paper we used a nearest-neighbor interpolation for sifitylic eachg(m) was independent and uniformly distributed between
Thus a(k,l,m,n) = 1 whenG,[m,n] is closest toG.[k,l]] —x and~. This is considered the most challenging type of
and0 otherwise. In principle, any linear interpolation can b@hase error function. The additive noise was independent,
used and accommodated within this framework. Assumingro-mean complex Gaussian with variangedetermined by
g(wr,y-) are nearly zero, and together with (23), (19) anghe signal-to-noise ratio (SNR). Here, the SNR is defined as
(14), FMCA formulates the autofocus problem as the soluti@NR= 20 log;,{(}",, ,, |G p[n,m]|/NM)/on}.
to Our simulator embloyed two types of antenna patterns: a
1 ~ —jo(m) jom(z£kpuely o trapezoidal pattern with unit gain over 90 percent of thegena
XL > > alk,lm,n)Gylm, n] e=/70e] () ~0 and linearly increasing attenuation1p0 < v < 1, at the edge
(24) of the image; and a more realistic 2-D sinc-squared antenna
for all » = 0,1,...,R — 1. Similar to MCA, the FMCA Pattern with 95 percent of the mainlobe covering the image.

problem reduces to finding a vectarsuch that
Bx=0, |x]=1 i=01,---,M—1 (25) B. Reconstruction Experiments

k,0 n,m

In our first set of simulations we adopted a SAR system

where B is ani? by M matrix with elements operating across a narrow range of look angles, so that the

1 N collected polar Fourier data was nearly Cartesian. In this
Blm,r] = = <Za(k,l,m7n)GZ,[m,n]> simulation we letM = N = 256. We compared the
kil \om performance of MCA-SDR with that of MCA-EVR, PGA

ed2m () (26) and sharpness-maximization autofocus algorithms. We used

o the focused image in Fig. 1a with a 2-D sinc-squared antenna

In practice, it is more reasonable to assume that the lowrsret pattern applied to it and SNR=60dB. The defocused image
region has small energy. Therefore, FMCA attempts to sol¥grrypted by a white phase error function is shown in Fig. 1b.
the following optimization problem: The MCA reconstruction using SDR is presented in Fig. 1c,
(P — FMCA) eIrmca — argmin ||B x]|2. 27) and the reconstruction using EVR is shown in Fig. 1d. The

x:|x;|=1 PGA and sharpness-maximization reconstructions are shown
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Fig. 1: Comparison of MCA-SDR with existing autofocus apmrbes: (a) perfectly focused image with 2-D sinc-squared
antenna pattern applied and SNR=60dB; (b) defocused imagepted by a white phase error function; (c) MCA-SDR
restoration (SNR,;=15.3527dB); (d) MCA-EVR restoration (SNR=8.1809dB); (e) PGA restoration (SYR=9.3092dB);

() Sharpness-maximization restoration (SNR5.8177dB).



@ in Fig. 1e and Fig. 1f, respectively. A close inspection shiow
that the MCA-SDR reconstruction yields the best visual gqual

—o— MCA-SDR ity reconstruction.

s ~*-MCA-EVR | oo ] To quantitatively evaluate the reconstruction we used the

o PGA : .
-y~ Sharpness—Max SNR,,: metric defined as

35

25

lvedg)ll2
(Ivedg)| — [vedg)])ll2’

where g is the reconstructed image. SMNR measures the
B pixel-wise magnitude difference between the reconstdicte
, imageg and the perfectly focused image A higher SNR,;
value correspondmughly to a better restoration. The values
1 of SNR,,; for the above simulation are 15.3527dB for MCA-
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ SDR and 8.1809dB, 9.3092dB, 5.8177dB for MCA-EVR,
° 0 “ snR (dB) °0 80 100 PGA and sharpness-maximization, respectively.
For this simulation we implemented SDR via the interior-
(b) point (IP) method [19]. The complexity of the IP method is on
the order ofA/3-> which makes it computationally demanding
for large M as is the case for a real SAR system (usually
in the thousands). However, there is a large body of research
on large-scale SDP methods [27]. To give a rough idea of its
computational cost, the run times for the above simulation o
8 a HP 7200 (Quad 2.66 GHz) PC with 8GB of RAM were
14.1863, 0.2936, 2.2245 and 67.4647 seconds for MCA-SDR,
MCA-EVR, PGA and sharpness-maximization, respectively.
Next, we plotted SNR,; versus increasing SNR in Fig. 2a.
g ARt A A A A A Figure 2b shows SNR; versus SNR plotted for the same
i setup as in Fig. 2a but with a trapezoidal antenna pattera (
10~%) applied. From Fig. 2 we can see that MCA provides a
0, P T P— better reconstruction than PGA and sharpness-maximizatio
SNR (dB) autofocus for high-SNR. Also, we can see that MCA-SDR is
slightly superior to MCA-EVR.

In our second set of simulations, we adopted a SAR system
operating across a wide range of look angles and compared
£MCA-SDR with FMCA-EVR. In this simulation, we as-

4 sumed an 18 degree range of look angles and used M=1500,
(y=107%. N=800 to generate the polar grid shown in Fig. 3 whéte
and F,, denote the coordinates of the 2-D Fourier space. The
focused image is shown in Fig. 4a with a 2-D sinc-squared
antenna pattern applied and SNR=80dB. The defocused image
corrupted by a white phase error function is shown in Fig. 4b.
The FMCA reconstruction using SDR is shown in Fig. 4c and
the reconstruction using EVR is shown in Fig. 4d. It is easy
to see the visual image enhancement due to the use of SDR.
In order to demonstrate the effect of input SNR on restonatio
. quality, Fig. 5 presents the output versus input SNRs for a
L 400F 1 50 by 50 "toy” image collected on a polar grid with a 2
degree range of look angles. The toy image was generated
randomly, with independent pixels having uniform magnéud
2001 ] and uniform phases. As expected, at high input SNR both EVR
and SDR succeed in estimating the unknown phases, but the
advantage of SDR is significant in cases with medium input
0 ™ " = - o SNR where the low-return region assumption is inexact.

Ex We also report the results of an additional FMCA simulation

conducted for a bistatic SAR system. We considered a histati

Fig. 3: Collected Fourier data pattern for wide-angle SAR (ISaAR scenario where a moving transmitter and a moving
degree range of viewing angles). receiver traverse a straight-line trajectory, perperidicto
each other. The corresponding Fourier data lies on a skewed

20/ ] SNRuw¢ = 201ogy, ” (28)
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Fig. 2: Plots of the restoration quality metric SNR ver-

sus the input SNR for MCA-SDR, MCA-EVR, PGA and
sharpness-maximization autofocus: (a) 2-D sinc-squared
tenna pattern applied; (b) trapezoidal antenna pattertieabp
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Fig. 4: Image restoration of FMCA-SDR and FMCA-EVR for widagle SAR autofocus: (a) perfectly focused image with

2-D sinc-squared antenna pattern applied and SNR=80dBddfpcused image produced by applying a white phase error
function, (c) FMCA-SDR restoration (SNR = 4.8718 dB); (d) FMCA-EVR restoration (SNR = 3.1536 dB).
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Fig. 5: Comparison of FMCA-SDR and FMCA-EVR image _ o .
restoration, measured by SNR. Fig. 6: Collected Fourier data pattern for bistatic SAR (ingv

transmitter and a moving receiver).
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Fig. 7: Comparison of FMCA-SDR and FMCA-EVR for bistatic SARtofocus: (a) perfectly focused image with 2-D sinc-
squared antenna pattern applied and SNR=50dB; (b) defdé¢osme produced by applying a white phase error function; (c
FMCA-SDR restoration (SNR; = 4.6086 dB); (d) FMCA-EVR restoration (SNR = 2.1295 dB).

polar grid shown in Fig. 6 [28]. In this bistatic simulatiorew V. CONCLUSION
set M = N = 2000. The focused image with a 2-D sinc-

squared antenna pattern applied to it and input SNR equal to ) o i
py!N this work, we proposed to use semidefinite relaxation

50dB is shown in Fig. 7a. The defocused image, corrupted i
a white phase error, is shown in Fig. 7b. The images restor@ﬁD R) to improve two state-of-the-art SAR autofocus algo-

by FMCA-SDR and FMCA-EVR are shown in Figs. 7c andithms, namely Multichannel Autofocus (MCA) and Fourier-

7d, respectively. Here too, the advantage of SDR over EVRquam Multichannel Autofocus (FMCA). We first recognized
apparent. that, although MCA and FMCA are developed based on differ-

ent models and assumptions, they both attempt to find a solu-

tion to a constant modulus quadratic program (CMQP). CMQP

is known to be NP-hard. MCA and FMCA both, either implic-

itly or explicitly, use eigenvalue relaxation to approxie#he

The two FMCA simulations reported above correspond ©MQP. We proposed to use SDR to approximate the CMQP

a fairly large-scale SDP problemd{ = 1500 for wide-angle arising in both algorithms. Experimental results showedat th
simulation andM = 2000 for bistatic simulation). For these SDR provided promising image quality advantages over MCA
two simulations, we implemented SDR via the bundle meth@hd FMCA. Although solving autofocus problems using the
[22]. To give a rough idea of its computational cost, the runew method is more computationally expensive, there may
time for the EVR simulation with Fig. 4a as input requiredslesbe crucial situations where it is imperative that an image be
than 30 minutes on a HP Z200 (Quad 2.66 GHz) PC with 8GBcused as well as possible, using computationally intensi
of RAM, while SDR required about 24 hours to converge. off-line processing.
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