
From average case complexity to improper learning
complexity

Amit Daniely∗ Nati Linial† Shai Shalev-Shwartz‡

March 9, 2014

Abstract

The basic problem in the PAC model of computational learning theory is to deter-
mine which hypothesis classes are efficiently learnable. There is presently a dearth of
results showing hardness of learning problems. Moreover, the existing lower bounds
fall short of the best known algorithms.

The biggest challenge in proving complexity results is to establish hardness of im-
proper learning (a.k.a. representation independent learning). The difficulty in proving
lower bounds for improper learning is that the standard reductions from NP-hard
problems do not seem to apply in this context. There is essentially only one known
approach to proving lower bounds on improper learning. It was initiated in [29] and
relies on cryptographic assumptions.

We introduce a new technique for proving hardness of improper learning, based on
reductions from problems that are hard on average. We put forward a (fairly strong)
generalization of Feige’s assumption [20] about the complexity of refuting random con-
straint satisfaction problems. Combining this assumption with our new technique
yields far reaching implications. In particular,

� Learning DNF’s is hard.

� Agnostically learning halfspaces with a constant approximation ratio is hard.

� Learning an intersection of ω(1) halfspaces is hard.

∗Dept. of Mathematics, The Hebrew University, Jerusalem, Israel
†School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel.
‡School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel

1 Introduction

Valiant’s celebrated probably approximately correct (=PAC) model [44] of machine learning
led to an extensive research that yielded a whole scientific community devoted to compu-
tational learning theory. In the PAC learning model, a learner is given an oracle access to
randomly generated samples (X, Y) ∈ X×{0, 1} where X is sampled from some unknown dis-
tribution D on X and Y = h∗(X) for some unknown function h∗ : X → {0, 1}. Furthermore,
it is assumed that h∗ comes from a predefined hypothesis class H, consisting of 0, 1 valued
functions on X . The learning problem defined by H is to find a function h : X → {0, 1} that
minimizes ErrD(h) := PrX∼D(h(X) 6= h∗(X)). For concreteness’ sake we take X = {±1}n,
and we consider the learning problem tractable if there is an algorithm that on input ε, runs
in time poly(n, 1/ε) and outputs, w.h.p., a hypothesis h with Err(h) ≤ ε.

Assuming P 6= NP, the status of most basic computational problems is fairly well under-
stood. In a sharp contrast, almost 30 years after Valiant’s paper, the status of most basic
learning problems is still wide open – there is a huge gap between the performance of the
best known algorithms and hardness results:

� No known algorithms can learn depth 2 circuits, i.e., DNF formulas. In contrast,
we can only rule out learning of circuits of depth d, for some unspecified constant d
[30]. This result is based on a relatively strong assumption (a certain subexponential
lower bound on factoring Blum integers). Under more standard assumptions (RSA in
secure), the best we can do is rule out learning of depth log n circuits [29].

� It is possible to agnostically learn halfspaces (see section 2.1 for a definition of agnostic

learning) with an approximation ratio of O
(

n
logn

)
. On the other hand, the best known

lower bound only rules out exact agnostic learning ([22], based on [35], under the
assumption that the Õ (n1.5) unique shortest vector problem is hard).

� No known algorithm can learn intersections of 2 halfspaces, whereas Klivans and Sher-
stov [35] only rule out learning intersections of polynomially many halfspaces (again
assuming that Õ (n1.5)-uSVP is hard).

The crux of the matter, leading to this state of affairs, has to do with the learner’s freedom to
return any hypothesis. A learner who may return hypotheses outside the class H is called an
improper learner. This additional freedom makes such algorithms potentially more powerful
than proper learners. On the other hand, this added flexibility makes it difficult to apply
standard reductions from NP-hard problems. Indeed, there was no success so far in proving
intractability of a learning problem based on NP-hardness. Moreover, as Applebaum, Barak
and Xiao [3] showed, many standard ways to do so are doomed to fail, unless the polynomial
hierarchy collapses.

The vast majority of existing lower bounds on learning utilize the crypto-based argument,
suggested in [29]. Roughly speaking, to prove that a certain learning problem is hard,
one starts with a certain collection of functions, that by assumption are one-way trapdoor
permutations. This immediately yields some hard (usually artificial) learning problem. The
final step is to reduce this artificial problem to some natural learning problem.

1

Unlike the difficulty in establishing lower bounds for improper learning, the situation in
proper learning is much better understood. Usually, hardness of proper learning is proved by
showing that it is NP-hard to distinguish a realizable sample from an unrealizable sample.
I.e., it is hard to tell whether there is some hypothesis in H which has zero error on a given
sample. This, however, does not suffice for the purpose of proving lower bounds on improper
learning, because it might be the case that the learner finds a hypothesis (not from H) that
does not err on the sample even though no h ∈ H can accomplish this. In this paper we
present a new methodology for proving hardness of improper learning. Loosely speaking, we
show that improper learning is impossible provided that it is hard to distinguish a realizable
sample from a randomly generated unrealizable sample.

Feige [20] conjectured that random 3-SAT formulas are hard to refute. He derived from
this assumption certain hardness of approximation results, which are not known to follow
from P 6= NP. We put forward a (fairly strong) assumption, generalizing Feige’s assumption
to certain predicates other that 3-SAT. Under this assumption, we show:

1. Learning DNF’s is hard.

2. Agnostically learning halfspaces with a constant approximation ratio is hard, even over
the boolean cube.

3. Learning intersection of ω(1) halfspaces is hard, even over the boolean cube.

4. Learning finite automata is hard.

5. Learning parity is hard.

We note that result 4 can be established using the cryptographic technique [29]. Result 5 is
often taken as a hardness assumption. We also conjecture that under our generalization of
Feige’s assumption it is hard to learn intersections of even constant number of halfspaces.
We present a possible approach to the case of four halfspaces. To the best of our knowledge,
these results easily imply most existing lower bounds for improper learning.

1.1 Comparison to the cryptographic technique

There is a crucial reversal of order that works in our favour. To lower bound improper
learning, we actually need much less than what is needed in cryptography, where a problem
and a distribution on instances are appropriate if they fool every algorithm. In contrast,
here we are presented with a concrete learning algorithms and we devise a problem and a
distribution on instances that fail it.

Second, cryptographic assumptions are often about the hardness of number theoretic
problems. In contrast, the average case assumptions presented here are about CSP problems.
The proximity between CSP problems and learning problems is crucial for our purposes:
Since distributions are very sensitive to gadgets, reductions between average case problems
are much more limited than reductions between worst case problems.

2

1.2 On the role of average case complexity

A key question underlying the present study and several additional recent papers is what
can be deduced from the average case hardness of specific problems. Hardness on average
is crucial for cryptography, and the security of almost all modern cryptographic systems
hinges on the average hardness of certain problems, often from number theory. As shown
by Kearns and Valiant [29], the very same hardness on average assumptions can be used to
prove hardness of improper PAC learning of some hypothesis classes.

Beyond these classic results, several recent works, starting from Feige’s seminal work
[20], show that average case hardness assumptions lead to dramatic consequences in com-
plexity theory. The main idea of [20] is to consider two possible avenues for progress beyond
the classic uses of average hardness: (i) Derive hardness in additional domains, (ii) Investi-
gate the implications of hardness-on-average of other problems. For example, what are the
implications of average hardness of 3-SAT? What about other CSP problems?

Feige [20] and then [2, 6] show that average case hardness of CSP problems have surpris-
ing implications in hardness of approximation, much beyond the consequences of standard
complexity assumptions, or even cryptographic assumptions. Recently, [10] and [17] show
that hardness on average of planted clique and 3-SAT have implications in learning theory,
in the specific context of computational-sample tradeoffs. In particular, they show that in
certain learning tasks (sparse PCA and learning halfspaces over sparse vectors) more data
can be leveraged to speed up computation. As we show here, average case hardness of CSP
problems has implications even on the hardness of very fundamental tasks in learning theory.
Namely, determining the tractability of PAC learning problems, most of which are presently
otherwise inaccessible.

2 Preliminaries

2.1 Learning Theory

A hypothesis class, H, is a series of collections of functions Hn ⊂ {0, 1}Xn , n = 1, 2, We
often abuse notation and identify H with Hn. The instance space, Xn, that we consider is
either Xn = {±1}n, Xn = {0, 1}n or Xn = {−1, 1, 0}n. Concrete hypothesis classes, such as
halfspaces, DNF’s etc., are denoted HALFSPACES,DNF etc. Also Zn := Xn × {0, 1}.

Distributions on Zn (resp. Zmn) are denoted Dn (resp. Dmn). Ensembles of distributions

are denoted by D. That is, D = {Dm(n)
n }∞n=1 where Dm(n)

n is a distributions on Zm(n)
n . We

say that D is a polynomial ensemble if m(n) is upper bounded by some polynomial in n.
The error of a hypothesis h : Xn → {0, 1} w.r.t. Dn on Zn is defined as ErrDn(h) =

Pr(x,y)∼Dn (h(x) 6= y). For a hypothesis class Hn, we define ErrDn(Hn) = minh∈Hn ErrDn(h).
We say that a distribution Dn is realizable by h (resp. Hn) if ErrDn(h) = 0 (resp.
ErrDn(Hn) = 0). Similarly, we say that Dn is ε-almost realizable by h (resp. Hn) if
ErrDn(h) ≤ ε (resp. ErrDn(Hn) ≤ ε).

A sample is a sequence S = {(x1, y1), . . . (xm, ym)} ∈ Zmn . The empirical error of a
hypothesis h : Xn → {0, 1} w.r.t. sample S is ErrS(h) = 1

m

∑m
i=1 1(h(xi) = yi). The

empirical error of a hypothesis class Hn w.r.t. S is ErrS(Hn) = minh∈Hn ErrS(h). We say
that a sample S is realizable by h if ErrS(h) = 0. The sample S is realizable by Hn if

3

ErrS(Hn) = 0. Similarly, we define the notion of ε-almost realizable sample (by either a
hypothesis h : Xn → {0, 1} or a class Hn).

A learning algorithm, denoted L, obtains an error parameter 0 < ε < 1, a confidence
parameter 0 < δ < 1, a complexity parameter n, and an access to an oracle that produces
samples according to unknown distribution Dn on Zn. It should output a (description of)
hypothesis h : Xn → {0, 1}. We say that the algorithm L (PAC) learns the hypothesis class
H if, for every realizable distribution Dn, with probability ≥ 1− δ, L outputs a hypothesis
with error ≤ ε. We say that an algorithm L agnostically learns H if, for every distribution
Dn, with probability ≥ 1−δ, L outputs a hypothesis with error ≤ ErrDn(H)+ε. We say that
an algorithm L approximately agnostically learns H with approximation ratio α = α(n) ≥ 1
if, for every distribution Dn, with probability ≥ 1 − δ, L outputs a hypothesis with error
≤ α ·ErrDn(H) + ε. We say that L is efficient if it runs in time polynomial in n, 1/ε and 1/δ,
and outputs a hypothesis that can be evaluated in time polynomial in n, 1/ε and 1/δ. We
say that L is proper (with respect to H) if it always outputs a hypothesis in H. Otherwise,
we say that L is improper.

Let H = {Hn ⊂ {0, 1}Xn | n = 1, 2 . . .} and H′ = {H′n ⊂ {0, 1}X
′
n | n = 1, 2 . . .} be two

hypothesis classes. We say the H is realized by H′ if there are functions g : N → N and
fn : Xn → X ′g(n), n = 1, 2, . . . such that for every n, Hn ⊂ {h′ ◦ fn | h′ ∈ H′n}. We say that
H is efficiently realized by H′ if, in addition, fn can be computed it time polynomial in n.
Note that if H′ is efficiently learnable (respectively, agnostically learnable, or approximately
agnostically learnable) and H is efficiently realized by H′, then H is efficiently learnable
(respectively, agnostically learnable, or approximately agnostically learnable) as well.

2.2 Constraints Satisfaction Problems

Let P : {±1}K → {0, 1} be some boolean predicate (that is, P is any non-constant function
from {±1}K to {0, 1}). A P -constraint with n variables is a function C : {±1}n → {0, 1} of
the form C(x) = P (j1xi1 , . . . , jKxiK) for jl ∈ {±1} and K distinct il ∈ [n]. The CSP problem,
CSP(P), is the following. An instance to the problem is a collection J = {C1, . . . , Cm} of
P -constraints and the objective is to find an assignment x ∈ {±1}n that maximizes the
fraction of satisfied constraints (i.e., constraints with Ci(x) = 1). The value of the instance J ,
denoted VAL(J), is the maximal fraction of constraints that can be simultaneously satisfied.
If VAL(J) = 1, we say that J is satisfiable.

For 1 ≥ α > β > 0, the problem CSPα,β(P) is the decision promise problem of
distinguishing between instances to CSP(P) with value ≥ α and instances with value
≤ β. Denote VAL(P) = Ex∼Uni({±1}K) P (x). We note that for every instance J to
CSP(P), VAL(J) ≥ VAL(P) (since a random assignment ψ ∈ {±1}n satisfies in expec-
tation VAL(P) fraction of the constraints). Therefore, the problem CSPα,β(P) is non-trivial
only if β ≥ VAL(P). We say that P is approximation resistant if, for every ε > 0, the
problem CSP1−ε,VAL(P)+ε(P) is NP-hard. Note that in this case, unless P = NP, no algo-
rithm for CSP(P) achieves better approximation ratio than the naive algorithm that simply
chooses a random assignment. We will use even stronger notions of approximation resis-
tance: We say that P is approximation resistant on satisfiable instances if, for every ε > 0,
the problem CSP1,VAL(P)+ε(P) is NP-hard. Note that in this case, unless P = NP, no
algorithm for CSP(P) achieves better approximation ratio than a random assignment, even

4

if the instance is guaranteed to be satisfiable. We say that P is heredity approximation
resistant on satisfiable instances if every predicate that is implied by P (i.e., every predi-
cate P ′ : {±1}K → {0, 1} that satisfies ∀x, P (x) ⇒ P ′(x)) is approximation resistant on
satisfiable instances. Similarly, we define the notion of heredity approximation resistance.

We will consider average case variant of the problem CSPα,β(P). Fix 1 ≥ α > VAL(P).
By a simple counting argument, for sufficiently large constant C > 0, the value of a random
instance with ≥ C · n constraints is about VAL(P), in particular, the probability that a
(uniformly) random instance to CSP(P) with n variables and ≥ Cn constraints will have
value ≥ α is exponentially small. Therefore, the problem of distinguishing between instances
with value ≥ α and random instances with m(n) constraints can be thought as an average
case analogue of CSPα,VAL(P)+ε. We denote this problem by CSPα,rand

m(n) (P). Precisely, we say

that the problem CSPα,rand
m(n) (P) is easy, if there exists an efficient randomized algorithm, A,

with the following properties:

� If J is an instance to CSP(P) with n variables, m(n) constraints, and value ≥ α, then

Pr
coins of A

(A(J) = “VAL(J) ≥ α”) ≥ 3

4

� If J is a random instance to CSP(P) with n variables and m(n) constraints then, with
probability 1− on(1) over the choice of J ,

Pr
coins of A

(A(J) = “J is random”) ≥ 3

4
.

The problem CSPα,rand
m(n) (P) will play a central role. In particular, the case α = 1, that is, the

problem of distinguishing between satisfiable instances and random instances. This problem
is also known as the problem of refuting random instances to CSP(P). A simple observation
is that the problem CSP1,rand

m(n) (P) becomes easier as m grows: If m′ ≥ m, we can reduce

instances of CSP1,rand
m′(n) (P) to instances of CSP1,rand

m(n) (P) by simply drop the last m′(n)−m(n)
clauses. Note that if the original instance was either random or satisfiable, the new instance
has the same property as well. Therefore, a natural metric to evaluate a refutation algorithm
is the number of random constraints that are required to guarantee that the algorithm will
refute the instance with high probability.

Another simple observation is that if a predicate P ′ : {±1}K → {0, 1} is implied by
P then the problem CSP1,rand

m(n) (P ′) is harder than CSP1,rand
m(n) (P ′). Indeed, given an instance

to CSP(P), we can create an instance to CSP(P ′) by replacing each constraint C(x) =
P (j1xi1 , . . . , jKxjK) with the constraint C ′(x) = P ′(j1xi1 , . . . , jKxjK). We note that this
reduction preserves both satisfiability and randomness, and therefore establishes a valid
reduction from CSP1,rand

m(n) (P) to CSP1,rand
m(n) (P ′).

2.3 Resolution refutation and Davis Putnam algorithms

A clause is a disjunction of literals, each of which correspond to a distinct variable. Given
two clauses of the form xi∨C and ¬xi∨D for some clauses C,D, the resolution rule infer the

5

clause C ∨D. Fix a predicate P : {±1}K → {0, 1}. A resolution refutation for an instance
J = {C1, . . . , Cm} to CSP(P) is a sequence of clauses τ = {T1, . . . , Tr} such that Tr is the
empty clause, and for every 1 ≤ i ≤ r, Ti is either implied by some Cj or resulted from the
resolution rule applied on Ti1 and Ti2 for some i1, i2 < i. We note that every un-satisfiable
instance to CSP(P) has a resolution refutation (of possibly exponential length). We denote
by RES(J) the length of the shortest resolution refutation of J .

The length of resolution refutation of random K-SAT instances were extensively studied
(e.g., [9], [8] and [7]). Two motivations for these study are the following. First, the famous
result of [16], shows that NP 6= CoNP if and only is there is no propositional proof system
that can refute every instance J to K-SAT in length polynomial in |J |. Therefore, lower
bound on concrete proof systems might bring us closer to NP 6= CoNP. Also, such lower
bounds might indicate that refuting such instances in general, is intractable.

A second reason is that many popular algorithms implicitly produces a resolution refu-
tation during their execution. Therefore, any lower bound on the size of the resolution
refutation would lead to the same lower bound on the running time or the algorithm. A
widely used and studied refutation algorithms of this kind are Davis-Putnam (DPLL) like
algorithms [19]. A DPLL algorithm is a form of recursive search for a satisfying assignment
which on CSP input J operates as follows: If J contains the constant predicate 0, it ter-
minates and outputs that the instance is un-satisfiable. Otherwise, a variable xi is chosen,
according to some rule. Each assignment to xi simplifies the instance J , and the algorithm
recurses on these simpler instances.

3 The methodology

We begin by discussing the methodology in the realm of realizable learning, and we later
proceed to agnostic learning. Some of the ideas underling our methodology appeared, in a
much more limited context, in [17].

To motivate the approach, recall how one usually proves that a class cannot be efficiently
properly learnable. Given a hypothesis class H, let Π(H) be the problem of distinguishing
between an H-realizable sample S and one with ErrS(H) ≥ 1

4
. If H is efficiently properly

learnable then this problem is in1 RP: To solve Π(H), we simply invoke a proper learning
algorithm A that efficiently learns H, with examples drawn uniformly from S. Let h be the
output of A. Since A properly learns H, we have

� If S is a realizable sample, then ErrS(h) is small.

� If ErrS(H) ≥ 1
4

then, since h ∈ H, ErrS(h) ≥ 1
4
.

This gives an efficient way to decide whether S is realizable. We conclude that if Π(H) is
NP-hard, then H is not efficiently learnable, unless NP = RP.

However, this argument does not rule out the possibility that H is still learnable by an
improper algorithm. Suppose now that A efficiently and improperly learns H. If we try to
use the above argument to prove that Π(H) can be efficiently solved, we get stuck – suppose

1The reverse direction is almost true: If the search version of this problem can be solved in polynomial
time, then H is efficiently learnable.

6

that S is a sample and we invoke A on it, to get a hypothesis h. As before, if S is realizable,
ErrS(h) is small. However, if S is not realizable, since h not necessarily belongs to H, it still
might be the case that ErrS(h) is small. Therefore, the argument fails. We emphasize that
this is not only a mere weakness of the argument – there are classes for which Π(H) is NP-
hard, but yet, they are learnable by an improper algorithm2. More generally, Applebaum et
al [3] indicate that it is unlikely that hardness of improper learning can be based on standard
reductions from NP-hard problems, as the one described here.

We see that it is not clear how to establish hardness of improper learning based on the
hardness of distinguishing between a realizable and an unrealizable sample. The core problem
is that even if S is not realizable, the algorithm might still return a good hypothesis. The
crux of our new technique is the observation that if S is randomly generated unrealizable
sample then even improper algorithm cannot return a hypothesis with a small empirical
error. The point is that the returned hypothesis is determined solely by the examples that A
sees and its random bits. Therefore, if A is an efficient algorithm, the number of hypotheses
it might return cannot be too large. Hence, if S is “random enough”, it likely to be far from
all these hypotheses, in which case the hypothesis returned by A would have a large error
on S.

We now formalize this idea. Let D = {Dm(n)
n }n be a polynomial ensemble of distributions,

such that Dm(n)
n is a distribution on Zm(n)

n . Think of Dm(n)
n as a distribution that generates

samples that are far from being realizable byH. We say that it is hard to distinguish between
a D-random sample and a realizable sample if there is no efficient randomized algorithm A
with the following properties:

� For every realizable sample S ∈ Zm(n)
n ,

Pr
internal coins of A

(A(S) = “realizable”) ≥ 3

4
.

� If S ∼ Dm(n)
n , then with probability 1− on(1) over the choice of S, it holds that

Pr
internal coins of A

(A(S) = “unrelizable”) ≥ 3

4
.

For functions p, ε : N→ (0,∞), we say that D is (p(n), ε(n))-scattered if, for large enough n,
it holds that for every function f : Xn → {0, 1},

Pr
S∼Dm(n)

n

(ErrS(f) ≤ ε(n)) ≤ 2−p(n) .

Example 3.1 Let Dm(n)
n be the distribution over Zm(n)

n defined by taking m(n) independent
uniformly chosen examples from Xn × {0, 1}. For f : Xn → {0, 1}, Pr

S∼Dm(n)
n

(
ErrS(f) ≤ 1

4

)
is the probability of getting at most m(n)

4
heads in m(n) independent tosses of a fair coin. By

Hoeffding’s bound, this probability is ≤ 2−
1
8
m(n). Therefore, D = {Dm(n)

n }n is
(

1
8
m(n), 1/4

)
-

scattered.

2This is true, for example, for the class of DNF formulas with 3 DNF clauses.

7

Theorem 3.2 Every hypothesis class that satisfies the following condition is not efficiently
learnable. There exists β > 0 such that for every c > 0 there is an (nc, β)-scattered ensemble
D for which it is hard to distinguish between a D-random sample and a realizable sample.

Remark 3.3 The theorem and the proof below work verbatim if we replace β by β(n), pro-
vided that β(n) > n−a for some a > 0.

Proof Let H be the hypothesis class in question and suppose toward a contradiction that
algorithm L learns H efficiently. Let M (n, 1/ε, 1/δ) be the maximal number of random bits
used by L when run on the input n, ε, δ. This includes both the bits describing the examples
produced by the oracle and “standard” random bits. Since L is efficient, M (n, 1/ε, 1/δ) <
poly(n, 1/ε, 1/δ). Define

q(n) = M (n, 1/β, 4) + n .

By assumption, there is a (q(n), β)-scattered ensemble D for which it is hard to distinguish
a D-random sample from a realizable sample. Consider the algorithm A defined below. On
input S ∈ Zm(n)

n ,

1. Run L with parameters n, β and 1
4
, such that the examples’ oracle generates examples

by choosing a random example from S.

2. Let h be the hypothesis that L returns. If ErrS(h) ≤ β, output “realizable”. Otherwise,
output “unrealizable”.

Next, we derive a contradiction by showing that A distinguishes a realizable sample from a
D-random sample. Indeed, if the input S is realizable, then L is guaranteed to return, with
probability ≥ 1− 1

4
, a hypothesis h : Xn → {0, 1} with ErrS(h) ≤ β. Therefore, w.p. ≥ 3

4
A

will output “realizable”.
What if the input sample S is drawn from Dm(n)

n ? Let G ⊂ {0, 1}Xn be the collection
of functions that L might return when run with parameters n, ε(n) and 1

4
. We note that

|G| ≤ 2q(n)−n, since each hypothesis in G can be described by q(n) − n bits. Namely, the
random bits that L uses and the description of the examples sampled by the oracle. Now,
since D is (q(n), β)-scattered, the probability that ErrS(h) ≤ β for some h ∈ G is at most
|G|2−q(n) ≤ 2−n. It follows that the probability that A responds “realizable” is ≤ 2−n. This
leads to the desired contradiction and concludes our proof. 2

Next, we discuss analogue theorem to theorem 3.2 for (approximate) agnostic learning.
Let D be a polynomial ensemble and ε : N → (0, 1). We say that it is hard to distin-
guish between a D-random sample and an ε-almost realizable sample if there is no efficient
randomized algorithm A with the following properties:

� For every sample S ∈ Zm(n)
n that is ε(n)-almost realizable,

Pr
internal coins of A

(A(S) = “almost realizable”) ≥ 3/4 .

� If S ∼ Dm(n)
n , then with probability 1− on(1) over the choice of S, it holds that

Pr
internal coins of A

(A(S) = “unrelizable”) ≥ 3

4
.

8

Theorem 3.4 Let α ≥ 1. Every hypothesis class that satisfies the following condition is not
efficiently agnostically learnable with an approximation ratio of α. For some β and every
c > 0, there is a (nc, αβ + 1/n)-scattered ensemble D such that it is hard to distinguish
between a D-random sample and a β-almost realizable sample.

Remark 3.5 As in theorem 3.2, the theorem and the proof below work verbatim if we replace
α by α(n) and β by β(n), provided that β(n) > n−a for some a > 0.

Proof Let H be the hypothesis class in question and suppose toward a contradiction that
L efficiently agnostically learns H with approximation ratio of α. Let M (n, 1/ε, 1/δ) be the
maximal number of random bits used by L when it runs on the input n, ε, δ. This includes
both the bits describing the examples produced by the oracle and the “standard” random
bits. Since L is efficient, M (n, 1/ε, 1/δ) < poly(n, 1/ε, 1/δ). Define,

q(n) = M (n, n, 4) + n .

By the assumptions of the theorem, there is a (q(n), αβ + 1/n)-scattered ensemble D such
that it is hard to distinguish between a D-random sample and a β-almost realizable sample.
Consider the following efficient algorithm to distinguish between a D-random sample and a
β-almost realizable sample. On input S ∈ Zm(n)

n ,

1. Run L with parameters n, 1/n and 1
4
, such that the examples are sampled uniformly

from S.

2. Let h be the hypothesis returned by the algorithm L. If ErrS(h) ≤ αβ + 1/n, return
“almost realizable”. Otherwise, return “unrealizable”.

Next, we derive a contradiction by showing that this algorithm, which we denote by A,
distinguishes between a realizable sample and a D-random sample. Indeed, if the input S is
β-almost realizable, then L is guaranteed to return, with probability ≥ 1− 1

4
, a hypothesis

h : Xn → {0, 1} with ErrS(h) ≤ αβ+ 1/n. Therefore, the algorithm A will return, w.p. ≥ 3
4
,

“almost realizable”.
Suppose now that the input sample S is drawn according to Dn. Let G ⊂ {0, 1}Xn be

the collection of functions that the learning algorithm L might return when it runs with
the parameters n, 1/n and 1

4
. Note that each hypothesis in G can be described by q(n)− n

bits, namely, the random bits used by L and the description of the examples sampled by the
oracle. Therefore, |G| ≤ 2q(n)−n. Now, since D is (q(n), αβ + 1/n)-scattered, the probability
that some function in h ∈ G will have ErrS(h) ≤ αβ + 1/n is at most |G|2−q(n) ≤ 2−n. It
follows that the probability that the algorithm A will return “almost realizable” is ≤ 2−n.
2

4 The strong random CSP assumption

In this section we put forward and discuss a new assumption that we call “the strong random
CSP assumption” or SRCSP for short. It generalizes Feige’s assumption [20], as well as
the assumption of Barak, Kindler and Steurer [6]. This new assumption, together with

9

the methodology described in section 3, are used to establish lower bounds for improper
learning. Admittedly, our assumption is strong, and an obvious quest, discussed in the end
of this section is to find ways to derive similar conclusions from weaker assumptions.

The SRCSP assumption claims that for certain predicates P : {±1}K → {0, 1}, d > 0 and
α > 0, the decision problem CSPα,rand

nd
(P) is intractable. We first consider the case α = 1. To

reach a plausible assumption, let us first discuss Feige’s assumption, and the existing evidence
for it. Denote by SAT3 : {±1}3 → {0, 1} the 3-SAT predicate SAT3(x1, x2, x3) = x1∨x2∨x3.

Assumption 4.1 (Feige) For every sufficiently large constant C > 0, CSP1,rand
C·n (SAT3) is

intractable.

Let us briefly summarize the evidence for this assumption.

� Hardness of approximation. Feige’s conjecture can be viewed as a strengthening
of Hastad’s celebrated result [25] that SAT3 is approximation resistant on satisfiable
instances. Hastad’s result implies that under P 6= NP, it is hard to distinguish sat-
isfiable instances to CSP(SAT3) from instances with value ≤ 7

8
+ ε. The collection of

instances with value ≤ 7
8

+ ε includes most random instances with C · n clauses for
sufficiently large C. Feige’s conjecture says that the problem remains intractable even
when restricted to these random instances.

We note that approximation resistance on satisfiable instances is a necessary condition
for the validity of Feige’s assumption. Indeed, for large enough C > 0, with probability
1 − on(1), the value of a random instance to CSP(SAT3) is ≤ 7

8
+ ε. Therefore,

tractability of CSP1, 7
8

+ε(SAT3) would lead to tractability of CSP1,rand
C·n (SAT3).

� Performance of known algorithms. The problem of refuting random 3-SAT for-
mulas has been extensively studied and a many algorithms were studied. The best
known algorithms [21] can refute random instances with Ω (n1.5) random constraints.
Moreover resolution lower bounds [9] show that many algorithms run for exponential
time when applied to random instances with O (n1.5−ε) constraints.

We aim to generalize Feige’s assumption in two aspects – (i) To predicates other than
SAT3, and (ii) To problems with super-linearly many constraints. Consider the problem
CSP1,rand

m(n) (P) for some predicate P : {±1}K → {0, 1}. As above, the intractability of

CSP1,rand
m(n) (P) strengthens the claim that P is approximation resistant on satisfiable instances.

Also, for CSP1,rand
m(n) (P) to be hard, it is necessary that P is approximation resistant on sat-

isfiable instances. In fact, as explained in section 2.3, if P ′ : {±1}K → {0, 1} is implied
by P , then the problem CSP1,rand

m(n) (P) can be easily reduced to CSP1,rand
m(n) (P ′). Therefore, to

preserve the argument of the first evidence of Feige’s conjecture, it is natural to require that
P is heredity approximation resistant on satisfiable instances.

Next, we discuss what existing algorithms can do. The best known algorithms for the

predicate SATK(x1, . . . , xK) = ∨Ki=1xi can only refute random instances with Ω
(
nb

K
2
c
)

con-

straints [15]. This gives some evidence that it becomes harder to refute random instances
of CSP(P) as the number of variables grows. Namely, that many random constraints are

10

needed to efficiently refute random instances. Of course, some care is needed with counting
the “actual” number of variables. Clearly, only certain predicates have been studied so far.
Therefore, to reach a plausible assumption, we consider the resolution refutation complexity
of random instances to CSP(P). And consequently, also the performance of a large class of
algorithms, including Davis-Putnam style (DPLL) algorithms.

Davis-Putnam algorithms have been subject to an extensive study, both theoretical and
empirical. Due to the central place that they occupy, much work has been done since the
late 80’s, to prove lower bounds on their performance in refuting random K-SAT formu-
las. These works relied on the fact that these algorithms implicitly produce a resolution
refutation during their execution. Therefore, to derive a lower bound on the run time of
these algorithms, exponential lower bounds were established on the resolution complexity of
random instances to CSP(SATK). These lower bounds provide support to the belief that it
is hard to refute not-too-dense random K-SAT instances.

We define the 0-variability, VAR0(P), of a predicate P as the smallest cardinality of a
set of P ’s variables such that there is an assignment to these variables for which P (x) = 0,
regardless of the values assigned to the other variables. By a simple probabilistic argument,
a random CSP(P) instance with Ω (nr) constraints, where r = VAR0(P) is almost surely
unsatisfiable with a resolution proof of constant size. Namely, w.p. 1 − on(1), there are 2r

constraints that are inconsistent, since some set of r variables appears in all 2r possible ways
in the different clauses. On the other hand, we show in section 8 that a random CSP(P)
problem with O (nc·r) constraints has w.h.p. exponential resolution complexity. Here c > 0
is an absolute constant. Namely,

Theorem 4.2 There is a constant C > 0 such that for every d > 0 and every predicate P
with VAR0(P) ≥ C · d, the following holds. With probability 1− on(1), a random instance of

CSP(P) with n variables and nd constraints has resolution refutation length ≥ 2Ω(
√
n).

To summarize, we conclude that the parameter VAR0(P) controls the resolution com-
plexity of random instances to CSP(P). In light of the above discussion, we put forward the
following assumption.

Assumption 4.3 (SRCSP – part 1) There is a function f : N → N such that the fol-
lowing holds. Let P be a predicate that is heredity approximation resistant on satisfiable
instances with VAR0(P) ≥ f(d). Then, it is hard to distinguish between satisfiable instances
of CSP(P) and random instances with nd constraints.

Next, we motivate a variant of the above assumption, that accommodates also predicates
that are not heredity approximation resistant. A celebrated result of Raghavendra [41] shows
that under the unique games conjecture [31], a certain SDP-relaxation-based algorithm is
(worst case) optimal for CSP(P), for every predicate P . Barak et al. [6] conjectured that
this algorithm is optimal even on random instances. They considered the performance of this
algorithm on random instances and purposed the following assumption, which they called
the “random CSP hypothesis”. Define VAL(P) = maxD Ex∼D P (x), where the maximum is
taken over all pairwise uniform distributions3 on {±1}K .

3A distribution is pairwise uniform if, for every pair of coordinates, the distribution induced on these
coordinates is uniform.

11

Assumption 4.4 (RSCP) For every ε > 0 and sufficiently large C > 0, it is hard to
distinguish instances with value ≥ VAL(P)− ε from random instances with C ·n constraints.

Here we generalize the RCSP assumption to random instances with much more than C · n
constraints. As in assumption 4.3, the 0-variability of P serves to quantify the number of
random constraints needed to efficiently show that a random instance has value < VAL(P)−
ε.

Assumption 4.5 (SRSCP - part 2) There is a function f : N → N such that for every
predicate P with VAR0(P) ≥ f(d) and for every ε > 0, it is hard to distinguish between
instances with value ≥ VAL(P)− ε and random instances with nd constraints.

Finally, we define the notion of a SRCSP-hard problem.

Terminology 4.6 A computational problem is SRCSP-hard if its tractability contradicts
assumption 4.3 or 4.5.

4.1 Toward weaker assumptions

The SRCSP assumption is strong. It is highly desirable to arrive at similar conclusions from
substantially weaker assumptions. A natural possibility that suggests itself is the SRCSP
assumption, restricted to SAT:

Assumption 4.7 There is a function f : N→ N such that for every K ≥ f(d), it is hard to
distinguish satisfiable instances of CSP(SATK) from random instances with nd constraints.

We are quite optimistic regarding the success of this direction: The lower bounds we prove
here use the SRCSP-assumption only for certain predicates, and do not need the full power
of the assumption. Moreover, for the hypothesis classes of DNF’s, intersection of halfspaces,
and finite automata, these predicates are somewhat arbitrary. In [20], it is shown that for
predicates of arity 3, assumption 4.5 is implied by the same assumption restricted to the SAT
predicate. This gives a hope to prove, based on assumption 4.7, that the SRCSP-assumption
is true for predicates that are adequate to our needs.

5 Summary of results

5.1 Learning DNF’s

A DNF clause is a conjunction of literals. A DNF formula is a disjunction of DNF clauses.
Each DNF formula over n variables naturally induces a function on {±1}n. We define the
size of a DNF clause as the number of its literals and the size of a DNF formula as the sum
of the sizes of its clauses.

As DNF formulas are very natural form of predictors, learning hypothesis classes consist-
ing of DNF’s formulas of polynomial size has been a major effort in computational learning
theory. Already in Valiant’s paper [44], it is shown that for every constant q, the hypoth-
esis class of all DNF-formulas with ≤ q clauses is efficiently learnable. The running time

12

of the algorithm is, however, exponential in q. We also note that Valiant’s algorithm is
improper. For general polynomial-size DNF’s, the best known result [34] shows learnability

in time 1
ε
· 2Õ

(
n

1
3

)
. Better running times (quasi-polynomial) are known under distributional

assumptions [36, 38].
As for lower bounds, properly learning DNF’s is known to be hard [40]. However, proving

hardness of improper learning of polynomial DNF’s has remained a major open question in
computational learning theory. Noting that DNF clauses coincide with depth 2 circuits, a
natural generalization of DNF’s is circuits of small depth. For such classes, certain lower
bounds can be obtained using the cryptographic technique. Kharitonov [30] has shown that
a certain subexponential lower bound on factoring Blum integers implies hardness of learning
circuits of depth d, for some unspecified constant d. Under more standard assumptions (that
the RSA cryptosystem is secure), best lower bounds [29] only rule out learning of circuits of
depth log(n).

For a function q : N → N, denote by DNFq(n) the hypothesis class of functions over

{±1}n that can be realized by DNF formulas of size at most q(n). Also, let DNFq(n) be the
hypothesis class of functions over {±1}n that that can be realized by DNF formulas with at
most q(n) clauses. Since each clause is of size at most n, DNFq(n) ⊂ DNFnq(n).

As mentioned, for a constant q, the class DNFq is efficiently learnable. We show that for
every super constant q(n), it is SRCSP-hard to learn DNFq(n):

Theorem 5.1 If limn→∞ q(n) =∞ then learning DNFq(n) is SRCSP-hard.

Since DNFq(n) ⊂ DNFnq(n), we immediately conclude that learning DNF’s of size, say, ≤
n log(n), is SRCSP-hard. By a simple scaling argument, we obtain an even stronger result:

Corollary 5.2 For every ε > 0, it is SRCSP-hard to learn DNFnε.

Remark 5.3 Following the Boosting argument of Schapire [43], hardness of improper learn-
ing of a class H immediately implies that for every ε > 0, there is no efficient algorithm that
when running on a distribution that is realized by H, guaranteed to output a hypothesis with
error ≤ 1

2
− ε. Therefore, hardness results of improper learning are very strong, in the

sense that they imply that the algorithm that just makes a random guess for each example,
is essentially optimal.

5.2 Agnostically learning halfspaces

Let HALFSPACES be the hypothesis class of halfspaces over {−1, 1}n. Namely, for every
w ∈ Rn we define hw : {±1}n → {0, 1} by hw(x) = sign (〈w, x〉), and let

HALFSPACES = {hw | w ∈ Rn} .

We note that usually halfspaces are defined over Rn, but since we are interested in lower
bounds, looking on this more restricted class just make the lower bounds stronger.

The problem of learning halfspaces is as old as the field of machine learning, starting with
the perceptron algorithm [42], through the modern SVM [45]. As opposed to learning DNF’s,
learning halfspaces in the realizable case is tractable. However, in the agnostic PAC model,

13

the best currently known algorithm for learning halfspaces runs in time exponential in n

and the best known approximation ratio of polynomial time algorithms is O
(

n
log(n)

)
. Better

running times (usually of the form npoly(1
ε)) are known under distributional assumptions

(e.g. [28]).
The problem of proper agnostic learning of halfspaces was shown to be hard to approxi-

mate within a factor of 2log1−ε(n) [4]. Using the cryptographic technique, improper learning
of halfspaces is known to be hard, under a certain cryptographic assumption regarding the
shortest vector problem ([22], based on [35]). No hardness results are known for approxi-
mately and improperly learning halfspaces. Here, we show that:

Theorem 5.4 For every constant α ≥ 1, it is SRCSP-hard to approximately agnostically
learn HALFSPACES with an approximation ratio of α.

5.3 Learning intersection of halfspaces

For a function q : N→ N, we let INTERq(n) be the hypothesis class of intersection of ≤ q(n)
halfspaces. That is, INTERq(n) consists of all functions f : {±1}n → {0, 1} for which there
exist w1, . . . wk ∈ Rn such that f(x) = 1 if and only if ∀i, 〈wi, x〉 > 0.

Learning intersection of halfspaces has been a major challenge in machine learning. Be-
side being a natural generalization of learning halfspaces, its importance stems from neural
networks [12]. Learning neural networks was popular in the 80’s, and enjoy a certain come-
back nowadays. A neural network is composed of layers, each of which is composed of nodes.
The first layer consists of n nodes, containing the input values. The nodes in the rest of the
layers calculates a value according to a halfspace (or a “soft” halfspace obtained by replac-
ing the sign function with a sigmoidal function) applied on the values of the nodes in the
previous layer. The final layer consists of a single node, which is the output of the whole
network.

Neural networks naturally induce several hypothesis classes (according to the structure
of the network). The class of intersection of halfspaces is related to those classes, as it can
be realized by very simple neural networks: the class INTERq(n) can be realized by neural
networks with only an input layer, a single hidden layer, and output layer, so that there are
q(n) nodes in the second layer. Therefore, lower bounds on improperly learning intersection
of halfspaces implies lower bounds on improper learning of neural networks.

Exact algorithms for learning INTERq(n) run in time exponential in n. Better running

times (usually of the form npoly(1
ε)) are known under distributional assumptions (e.g. [33]).

It is known that properly learning intersection of even 2 halfspaces is hard [32]. For improper
learning, Klivans and Sherstov [35] have shown that learning an intersection of polynomially
many half spaces is hard, under a certain cryptographic assumption regarding the shortest
vector problem. Noting that every DNF formula with q(n) clauses is in fact the complement
of an intersection of q(n) halfspaces4, we conclude from theorem 5.1 that intersection of every
super constant number of halfsapces is hard.

4In the definition of INTER, we considered halfspaces with no threshold, while halfspaces corresponding
to DNFs do have a threshold. This can be standardly handled by padding the examples with a single
coordinate of value 1.

14

Theorem 5.5 If limn→∞ q(n) =∞ then learning INTERq(n) is SRCSP-hard.

In section 7.4 we also describe a route that might lead to the result that learning INTER4

is SRCSP-hard.

5.4 Additional results

In addition to the results mentioned above, we show that learning the class of finite automata
of polynomial size is SRCSP-hard. Hardness of this class can also be derived using the
cryptographic technique, based on the assumption that the RSA cryptosystem is secure [29].
Finally, we show that agnostically learning parity with any constant approximation ratio is
SRCSP-hard. Parity is not a very interesting class from the point of view of practical machine
learning. However, learning this class is related to several other problems in complexity [13].
We note that hardness of agnostically learning parity, even in a more relaxed model than
the agnostic PAC model (called the random classification noise model), is a well accepted
hardness assumption.

In section 8 we prove lower bounds on the size of a resolution refutation for random
CSP instances. In section 9 we show that unless the polynomial hierarchy collapses, there is
no “standard reduction” from an NP-hard problem (or a CoNP-hard problem) to random
CSP problems.

5.5 On the proofs

Below we outline the proof for DNFs. The proof for halfspaces and parities is similar.
For every c > 0, we start with a predicate P : {±1}K → {0, 1}, for which the problem
CSP1,rand

nc (P) is hard according to the SRCSP-assumption, and reduce it to the problem
of distinguishing between a (Ω(nc), 1

5
)-scattered sample and a realizable sample. Since c is

arbitrary, the theorem follows from theorem 3.2.
The reduction is performed as follows. Consider the problem CSP(P). Each assignment

naturally defines a function from the collection of P -constraints to {0, 1}. Hence, if we think
about the constraints as instances and about the assignments as hypotheses, the problem
CSP(P) turns into some kind of a learning problem. However, in this interpretation, all the
instances we see have positive labels (since we seek an assignment that satisfies as many
instances as possible). Therefore, the problem CSP1,rand

nc (P) results in “samples” which are
not scattered at all.

To overcome this, we show that the analogous problem to CSP1,rand
nc (P), where (¬P)-

constraints are also allowed, is hard as well (using the assumption on the hardness of
CSP1,rand

nc (P)). The hardness of the modified problem can be shown by relying on the special
predicate we work with. This predicate was defined in the recent work of Huang [27], and it

has the property of being heredity approximation resistant, even though |P−1(1)| ≤ 2O(K1/3).
At this point, we have an (artificial) hypothesis class which is SRCSP-hard to learn by

theorem 3.2. In the next and final step, we show that this class can be efficiently realized
by DNFs with ω(1) clauses. The reduction uses the fact that every boolean function can be
expressed by a DNF formula (of possibly exponential size). Therefore, P can be expressed by

15

a DNF formula with 2K clauses. Based on this, we show that each hypothesis in our artificial
class can be realized by a DNF formula with 2K clauses, which establishes the proof.

The results about learning automata and learning intersection of ω(1) halfspaces follow
from the result about DNFs: We show that these classes can efficiently realize the class of
DNFs with ω(1) clauses. In section 7.4 we suggest a route that might lead to the result that
learning intersection of 4 halfspaces is SRCSP-hard: We show that assuming the unique
games conjecture, a certain family of predicates are heredity approximation resistant. We
show also that for these predicates, the problem CSP1,α(P) is NP-hard for some 1 > α > 0.
This leads to the conjecture that these predicates are in fact heredity approximation resistant.
Conditioning on the correctness of this conjecture, we show that it is SRCSP-hard to learn
intersection of 4-halfspaces. This is done using the strategy described for DNFs.

The proof of the resolution lower bounds (section 8) relies on the strategy and the ideas
introduced in [24] and farther developed in [7, 8, 9]. The proof that it is unlikely that the
correctness of the SRCSP-assumption can be based on NP-hardness (section 9) uses the idea
introduced in [3]: we show that if an NP-hard problem (standardly) reduces to CSPα,rand

m(n) (P),
then the problem has a statistical zero knowledge proof. It follows that NP ⊂ SZKP, which
collapses the polynomial hierarchy.

6 Future work

We elaborate below on some of the numerous open problems and research directions that
the present paper suggests.

6.1 Weaker assumptions?

First and foremost, it is very desirable to draw similar conclusions from assumption substan-
tially weaker than SRCSP (see section 4.1). Even more ambitiously, is it possible to reduce
some NP-hard problem to some of the problems that are deemed hard by the SRCSP as-
sumption? In section 9, we show that a pedestrian application of this approach is doomed to
fail (unless the polynomial hierarchy collapses). This provides, perhaps, a moral justification
for an “assumption based” study of average case complexity.

6.2 The SRCSP-assumption

We believe that the results presented here, together with [20, 2, 17, 10] and [6], make a
compelling case that it is of fundamental importance for complexity theory to understand the
hardness of random CSP problems. In this context, the SRCSP assumption is an interesting
conjecture. There are, of course, many ways to try to refute it. On the other hand, current
techniques in complexity theory seem too weak to prove it, or even to derive it from standard
complexity assumptions. Yet, there are ways to provide more circumstantial evidence in favor
of this assumption:

� As discussed in the previous section, one can try to derive it, even partially, from
weaker assumptions.

16

� Analyse the performance of existing algorithms. In section 8 it is shown that no Davis-
Putnam algorithm can refute the SRCSP assumption. Also, Barak et al [6] show that
the basic SDP algorithm [41] cannot refute assumption 4.5, and also 4.3 for certain
predicates (those that contain a pairwise uniform distribution). Such results regarding
additional classes of algorithms will lend more support to the assumption’s correctness.

� Show lower bounds on the proof complexity of random CSP instances in refutation
systems stronger than resolution.

For a further discussion, see [6]. Interest in the SRCSP assumption calls for a better un-
derstanding of heredity approximation resistance. For recent work in this direction, see
[26, 27].

6.3 More applications

We believe that the method presented here and the SRCSP-assumption can yield additional
results in learning and approximation. Here are several basic questions in learning theory
that we are unable to resolve even under the SRCSP-assumption.

1. Decision trees are very natural hypothesis class, that is not known to be efficiently
learnable. Is it SRCSP-hard to learn decision trees?

2. What is the real approximation ratio of learning halfspaces? We showed that it is
SRCSP-hard to agnostically learn halfspaces with a constant approximation ratio. The
best known algorithm only guarantees an approximation ratio of n

logn
. This is still a

huge gap. See remark 7.3 for some speculations about this question.

3. Likewise for learning large margin halfspaces (see remark 7.4) and for parity.

4. Prove that it is SRCSP-hard to learn intersections of a constantly many halfspaces.
This might be true even for 2 halfspaces. In section 7.4, we suggest a route to prove
that intersection of 4 halfspaces is SRCSP-hard.

Besides application to learning and approximation, it would be fascinating to see applications
of the SRCSP-assumption in other fields of complexity. It will be a poetic justice if we could
apply it to cryptography. We refer the reader to [6] for a discussion. Finding implications
in fields beyond cryptography, learning and approximation would be even more exciting.

7 Proofs of the lower bounds

Relying on our general methodology given in section 3, to show that a learning problem
is SRCSP-hard, we need to find a scattered ensamble, D, such that it is SRCSP-hard to
distinguish between a realizable sample and a D-random sample. We will use the following
simple criterion for an ensamble to be scattered.

17

Proposition 7.1 Let D be some distribution on a set X . For even m, let X1, . . . , Xm

be independent random variables drawn according to D. Consider the sample S =
{(X1, 1), (X2, 0) . . . , (Xm−1, 1), (Xm, 0)}. Then, for every h : X → {0, 1},

Pr
S

(
ErrS(h) ≤ 1

5

)
≤ 2−

9
100

m

Proof For 1 ≤ i ≤ m
2

let Ti = 1[h(X2i−1) 6= 1] + 1[h(X2i) 6= 0]. Note that ErrS(h) =
1
m

∑m
2
i=1 Ti. Also, the Ti’s are independent random variables with mean 1 and values between

0 and 2. Therefore, by Hoeffding’s bound,

Pr
S

(
ErrS(h) ≤ 1

5

)
≤ e−

9
100

m ≤ 2−
9

100
m .

2

7.1 Learning DNFs

In this section we prove theorem 5.1 and corollary 5.2. We will use the SRCSP assumption
4.3 with Huang’s predicate [27]. Let k ≥ 1 and denote K = k +

(
k
3

)
. We index the first

k coordinates of vectors in {±1}K by the numbers 1, 2, . . . , k. The last
(
k
3

)
coordinates are

indexed by
(

[k]
3

)
. Let Hk : {±1}K → {0, 1} be the predicate such that Hk(x) = 1 if and

only if there is a vector y with hamming distance ≤ k from x such that, for every A ∈
(

[k]
3

)
,

yA =
∏

i∈A yi. The basic properties of Hk are summarized in the following lemma due to
[27].

Lemma 7.2 ([27])

1. Hk is heredity approximation resistant on satisfiable instances.

2. |H−1
k (1)| = Õ(K1/3).

3. The 0-variability of Hk is ≥ k.

4. For every sufficiently large k, there exists yk ∈ {±1}K such that Hk(x) = 1⇒ Hk(y
k⊕

x) = 0

Proof 1. and 2. were proved in [27]. 3. is very easy. We proceed to 4. Choose yk ∈ {±1}K
uniformly at random. By 2., for every x ∈ {±1}K , Pr

(
Hk(y

k ⊕ x) = 1
)

= 2−K+Õ(K1/3).
Taking a union over all vectors x ∈ H−1

k (1), we conclude that the probability that one of

them satisfies Hk(y
k⊕x) = 1 is 2−K+Õ(K1/3)+Õ(K1/3) = 2−K+Õ(K1/3). For large enough k, this

is less than 1. Therefore, there exists a yk as claimed. 2

Proof (of theorem 5.1) Let d > 0 by assumption 4.3 and lemma 7.2, for large enough k, it is
SRCSP-hard to distinguish between satisfiable instances to CSP(Hk) and random instances
with m = 2nd constraints. We will reduce this problem to the problem of distinguishing
between a realizable sample to DNFq(n) and a random sample drawn from a

(
9
50
nd, 1/5

)
-

scattered ensamble D. Since d is arbitrary, the theorem follows from theorem 3.2.

18

The reduction works as follows. Let yk be the vector from lemma 7.2. Given an instance

J = {Hk(j1,1xi1,1 , . . . , j1,Kxi1,K), . . . , Hk(jm,1xim,1 , . . . , jm,Kxim,K)}

to CSP(Hk), we will produce a new instance J ′ by changing the sign of the variables according
to yk in every other constraint. Namely,

J ′ = {Hk(j1,1xi1,1 , . . . , j1,Kxi1,K), Hk(y
k
1j2,1xi2,1 , . . . , y

k
Kj2,Kxi2,K), . . .

. . . , Hk(jm−1,1xim−1,1 , . . . , jm−1,Kxim−1,K
), Hk(y

k
1jm,1xim,1 , . . . , y

k
Kjm,Kxim,K)} .

Note that if J is random then so is J ′. Also, if J is satisfiable with a satisfying assignment u,
then, by lemma 7.2, u satisfies in J ′ exactly the constraints with odd indices. Next, we will
produce a sample S ∈

(
{±1}2Kn × {0, 1}

)m
from J ′ as follows. We will index the coordinates

of vectors in {±1}2Kn by [K] × {±1} × [n]. We define a mapping Ψ from the collection of
Hk-constraints to {±1}2Kn as follows – for each constraint C = Hk(j1xi1 , . . . , jKxiK) we
define Ψ(C) ∈ {±1}2Kn by the formula

(Ψ(C))l,b,i =

{
−1 (b, i) = (−jl, il)
1 otherwise

Finally, if J ′ = {C ′1, . . . , C ′m}, we will produce the sample

S =
{

(Ψ(C ′1), 1), (Ψ(C ′2), 0), . . . , (Ψ(C ′m−1), 1), (Ψ(C ′m), 0)
}
.

The theorem follows from the following claim:

Claim 1

1. If J is a random instance then S is
(

9
100
m, 1

5

)
-scattered.

2. If J is a satisfiable instance then S is realizable by a DNF formula with ≤ 2K clauses.

Proposition 7.1 implies part 1. We proceed to part 2. Like every boolean function on K
variables, Hk is expressible by a DNF expression of 2K clauses, each of which contains all
the variables. Suppose then that

Hk(x1, . . . , xK) = ∨2K

t=1 ∧Kr=1 bt,rxr .

Let u ∈ {±1}n be an assignment to J . Consider the following DNF formula over {±1}2Kn

φu(x) = ∨2K

t=1 ∧Kr=1 ∧ni=1xr,(uibt,r),i ,

where, as mentioned before, we index coordinates of x ∈ {±1}2Kn by triplets in [K]×{±1}×
[n]. We claim that for every Hk-constraint C, φu(Ψ(C)) = C(u). This suffices, since if u
satisfies J then u satisfies exactly the constraints with odd indices in J ′. Therefore, by the
definition of S and the fact that ∀C, φu(Ψ(C)) = C(u), φu realizes S.

19

Indeed, let C(x) = Hk(j1xi1 , . . . , jKxiK) be a Hk-constraint. We have

φu(Ψ(C)) = 1 ⇐⇒ ∃t ∈ [2K]∀r ∈ [K], i ∈ [n], (Ψ(C))r,(uibt,r),i = 1

⇐⇒ ∃t ∈ [2K]∀r ∈ [K], i ∈ [n] (uibt,r, i) 6= (−jr, ir)
⇐⇒ ∃t ∈ [2K] ∀r ∈ [K], uirbt,r 6= −jr
⇐⇒ ∃t ∈ [2K] ∀r ∈ [K], bt,r = jruir
⇐⇒ C(u) = Hk(j1ui1 , . . . , jKuiK) = 1 .

2

By a simple scaling argument we can prove corollary 5.2.
Proof (of corollary 5.2) By theorem 5.1, it is SRCSP-hard to learn DNFn. Since DNFn ⊂
DNFn2 , we conclude that it is SRCSP-hard to learn DNFn2 . To establish the corollary,
we note that DNFn2 can be efficiently realized by DNFnε using the mapping f : {±1}n →
{±1}n

2
ε that pads the original n coordinates with n

2
ε − n ones. 2

7.2 Agnostically learning halfspaces

Proof (of theorem 5.4) Let H be the hypothesis class of halfspaces over {−1, 1, 0}n, induced
by ±1 vectors. We will show that agnostically learning H is SRCSP-hard. While we defined
the class of HALFSPACES over instances in {±1}n, proving the hardness of learning H
(which is defined over {−1, 1, 0}n) suffices for our needs, since H can be efficiently realized
by HALFSPACES as follows: Define ψ : {−1, 1, 0} → {±1}2 by

ψ(α) =

(−1,−1) α = −1

(1, 1) α = 1

(−1, 1) α = 0

.

Now define Ψ : {−1, 1, 0}n → {±1}2n by

Ψ(x) = (ψ(x1), . . . , ψ(xn)) .

Also define Φ : {±1}n → {± 1}2n by

Φ(w) = (w1, w1, w2, w2, . . . , wn, wn) .

It is not hard to see that for every w ∈ {±1}n and every x ∈ {−1, 1, 0}n, hw(x) =
hΦ(w)(Ψ(x)). Therefore, H is efficiently realized by HALFSPACES.

We will use assumption 4.5 with respect to the majority predicate MAJK : {±1}K →
{0, 1}. Recall that MAJ(x) = 1 if and only if

∑K
i=1 xi > 0. The following claim analyses its

relevant properties.

Claim 2 For every odd K,

� VAL(MAJK) = 1− 1
K+1

.

� VAR0(MAJK) = K+1
2

.

20

Proof It is clear that MAJK has K+1
2

0-variability. We show next that VAL(MAJK) =
1− 1

K+1
. Suppose that K = 2t+1. Consider the distribution D on {±1}K defined as follows.

With probability 1
2t+2

choose the all zero vector, and with probability 2t+1
2t+2

choose a vector
uniformly at random among all vectors with t + 1 ones. It is clear that Ex∼D[MAJK(x)] =
1 − 1

2t+2
. We claim that D is pairwise uniform, therefore, VAL(MAJK) ≥ 1 − 1

2t+2
. Indeed

for every distinct i, j ∈ [K],

Pr
x∼D

((xi, xj) = (0, 1)) = Pr
x∼D

((xi, xj) = (1, 0)) =
2t+ 1

2t+ 2
· t+ 1

2t+ 1
· t

2t
=

1

4
,

Pr
x∼D

((xi, xj) = (1, 1)) =
2t+ 1

2t+ 2
· t+ 1

2t+ 1
· t

2t
=

1

4
,

and Prx∼D ((xi, xj) = (0, 0)) = 1
4
.

Next, we show that VAL(MAJK) ≤ 1 − 1
2t+t

. Let D be a pairwise uniform distribution

on {±1}K . We have Ex∼D
[∑K

i=1
xi+1

2

]
= K

2
therefore, by Markov’s inequality,

E
x∼D

[
MAJ
K

(x)
]

= Pr
x∼D

(
MAJ
K

(x) = 1
)

= Pr
x∼D

(
K∑
i=1

xi + 1

2
≥ t+ 1

)
≤ 2t+ 1

2(t+ 1)
.

Since this is true for every pairwise uniform distribution, VAL(MAJK) ≤ 2t+1
2(t+1)

= 1− 1
K+1

.
2

Fix α ≥ 1. We will use theorem 3.4 to show that there is no efficient algorithm that
approximately agnostically learns H with approximation ratio of α, unless the SRCSP as-
sumption is false. Let c > 1 and denote β = 1

10α
. It suffices to show that there is a polynomial

ensamble D = {Dm(n)
n }∞n=1 that is (Ω(nc), αβ + 1

n
)-scattered and it is SRCSP-hard to distin-

guish between a D-random sample and an β-almost realizable sample.
By assumption 4.5 and claim 2, for large enough odd K, it is SRCSP-hard to distinguish

between a random instances of CSP(MAJK) with m(n) = nc constraints and instances

with value ≥ 1 − β. Consider the following ensamble D = {D2m(n)
n }∞n=1: pick m = m(n)

independent uniform vectors x1, . . . , xm ∈ {x ∈ {−1, 1, 0}n | |{i | xi 6= 0}| = K|}. Then,
consider the sample S = {(x1, 1), (−x1, 0), . . . , (xm, 1), (−xm, 0)}. The theorem follows from
the following claim:

Claim 3

� D is (Ω(nc), αβ + 1
n
)-scattered.

� It is SRCSP-hard to distinguish between a D-random sample and an β-almost realizable
sample.

Proof The first part follows from proposition 7.1. Next, we show that it is SRCSP-hard
to distinguish between a D-random sample and β-almost realizable sample. We will reduce
from the problem of distinguishing between a random instance with m(n) constraints and
an instance with value ≥ 1−β. Given an instance J with m(n) constraints, we will produce
a sample S of 2m(n) examples by transforming each constraint into two examples as follows:

21

for the constraint C(x) = MAJ(j1xi1 , . . . , jKxiK) we denote by u(C) ∈ {x ∈ {−1, 1, 0}n |
|{i | xi 6= 0}| = K|} the vector whose il coordinate is jl. We will produce the examples

(u(C), 1) and (−u(C), 0). It is not hard to see that if J is random then S ∼ D2m(n)
n . If the

value of J is ≥ 1 − β, indicated by an assignment w ∈ {±1}n, it is not hard to see that
hw ∈ H ε-almost realizes the sample S. This concludes the proof of the claim. 2

Combining all the above we conclude the proof of theorem 5.4. 2

Remark 7.3 What is the real approximation ratio of agnostically learning halfspaces in n
dimension? Taking a close look at the above proof, we see that in some sense, by the SRCSP
assumption with MAJK, it is hard to agnostically learn halfspaces with approximation ratio of
Ω (K). If we let K grow with n (this is not allowed by the SRCSP-hypothesis), say K = 1

100
n,

we can hypothesize that it is hard to agnostically learn halfspaces with approximation ratio of
about n. The approximation ratio of the best known algorithms is somewhat better, namely,
n

log(n)
. But this is not very far from our guess. Therefore, one might hypothesize that the

best possible approximation ratio is, say, of the form n
poly(log(n))

. Given a rigorous treatment
to the above intuition is left as an open question.

Remark 7.4 The problem of learning large margin halfsapces is an important variant of
the problem of learning halfspaces. Here, we assume that the instance space is the unit ball
in Rd. For 1 > γ > 0, the γ-margin error of a hyperplane h is the probability of an example
to fall on the wrong side of h or at a distance ≤ γ from it. The γ-margin error of the best
h (with respect to a distribution D) is denoted Errγ(D). An α(γ)-approximation algorithm
receives γ, ε as input and outputs a classifier with error rate ≤ α(γ) Errγ(D) + ε. Such an
algorithm is efficient if it uses poly(1

γ
, 1
ε
) samples and runs in time polynomial in the sample

size. For a detailed definition, the reader is referred to [18].
It is not hard to see that the proof of theorem 5.4 shows that it is hard to approximately

learn large margin halfspaces with any constant approximation ratio. Taking considerations
as in remark 7.3, one might hypothesize that the correct approximation ratio for this problem
is about 1

γ
. As in the case of learning halfspaces, best known algorithms [37, 11] do just

a bit better, namely, they have an approximation ratio of 1

γ
√

log(1/γ)
. Therefore, one might

hypothesize that the best possible approximation ratio is 1
γ poly(log(1/γ))

. We note that a recent

result [18] shows that this is the best possible approximation ratio, if we restrict ourselves
to a large class of learning algorithms (that includes SVM with a kernel, regression, Fourier
transform and more).

7.3 Learning automata

For a function q : N → N, let AUTOq(n) be the class of functions h : {±1}n → {0, 1} that
can be realized by a finite automaton with q(n) states.

Theorem 7.5 For every ε > 0, it is SRCSP-hard to learn AUTOnε.

Note 7.6 The theorem remains true (with the same proof), even if we restrict to acyclic
automata.

22

Proof By a simple scaling argument, as in the proof of corollary 5.2, it is enough to show
that it is SRCSP-hard to learn AUTOn2+1. By theorem 5.1, it is SRCSP-hard to learn
DNFlog2(n). To establish the theorem, we will show that if a function h : {±1}n → {0, 1} can
be realized by a DNF formula with log2(n) clauses, then it can be realized by an automaton
with n2 + 1 states.

For simplicity, assume that n is a power of 2. Given a DNF formula R with k := log2(n)
clauses, we will construct an acyclic automaton as follows. For each variable we will have
n states (corresponding to subsets of [k]). In addition, we will have a start state. From the
start state, the automaton will jump to the state (1, A), where A is the set of the indices of
all the clauses in R that are not violated by the value of x1. After reading x2 the automaton
will jump to the state (2, A), where A is the set of the indices of all the clauses in R that
are not violated by the values of x1 and x2. In this manner, after reading x1, . . . , xn the
automaton will be at the state (n,A), where A is the set of the indices of all the clauses in
R that are satisfied by x1, . . . , xn. The automaton accepts if and only if A 6= ∅.

Clearly, this automaton calculates the same function as R. 2

7.4 Toward intersection of 4 halfspaces

For 1 ≤ l ≤ k Consider the predicate Tk,l : {±1}k → {0, 1} such that Tk,l(x) = 1 if and only
if x has at least l ones. For example, Tk,1 is the SAT predicate, Tk,b k

2
c+1 is the MAJ predicate

and Tk,k is the AND predicate. Define Pk :
(
{±1}k

)8 → {0, 1} by

PK(x1, . . . , x8) =
(
∧4
j=1Tk,d k

2
e−1(xj)

)
∧ ¬

(
∧8
j=5Tk,d k

2
e−1(xj)

)
.

Proposition 7.7 There is k0 such that for every odd k ≥ k0 we have

1. Assuming the unique games conjecture, Pk is heredity approximation resistant.

2. For some constant 1 > α > 0, it is NP-hard to distinguish between satisfiable instances
to CSP(Pk) and instances with value ≤ α.

Proof We start with part 1. By [5], it suffices to show that there is a pairwise uni-
form distribution that is supported in P−1

k (1). Denote Q(x1, . . . x4) = ∧4
j=1Tk,d k

2
e−1(xj) and

R(x1, . . . x4) = ¬
(
∧4
j=1Tk,d k

2
e−1(xj)

)
. Note that if DQ is a pairwise uniform distribution that

is supported in Q−1(1) and DR is a pairwise uniform distribution that is supported in R−1(1),
then DQ ×DR is a pairwise uniform distribution that is supported in P−1

k (1). Therefore, it
suffices to show that such DQ and DR exist.

We first construct DQ. Let Dk be the following distribution over {±1}k – with probability
1

k+1
choose the all-one vector and with probability k

k+1
, choose at random a vector with

dk
2
e− 1 ones (uniformly among all such vectors). By the argument of claim 2, Dk is pairwise

uniform. Clearly, the distribution DQ = Dk × Dk × Dk × Dk over
(
{±1}k

)4
is a pairwise

uniform distribution that is supported in Q−1(1).
Next, we construct DR. Let k0 be large enough so that for every k ≥ k0, the probability

that a random vector from {±1}k will have more than dk
2
e minus-ones is ≥ 3

8
(it is easy to

23

see that this probability approaches 1
2

as k approaches ∞. Therefore, such k0 exists). Now,
let Z ∈ {0, 1}4 be a random variable that satisfies:

� Z1, . . . , Z4 are pairwise independent.

� For every 1 ≤ i ≤ 4, Pr(Zi = 1) = 3
8
.

� Pr(Z = (0, 0, 0, 0)) = 0.

In a moment, we will show that a random variable with the above properties exists. Now,
let B ⊂ {±1}k be a set with |B| ≥ 3

8
· 2k such that every vector in B has more than dk

2
e

minus-ones. Consider the distribution DR of the random variable (X1, . . . , X4) ∈
(
{±1}k

)4

sampled as follows. We first sample Z, then, for 1 ≤ i ≤ 4, if Zi = 1, we choose X i to be a
random vector B and otherwise, we choose X i to be a random vector Bc.

We note that since Z1, . . . , Z4 are pairwise independent, X1, . . . , X4 are pairwise inde-
pendent as well. Also, the distribution of X i, 1 = 1, . . . , 4 is uniform. Therefore, DR is
pairwise uniform. Also, since Pr(Z = (0, 0, 0, 0)) = 0, with probability 1, at least one of the
X i’s will have more than dk

2
e minus-ones. Therefore, DR is supported in R−1(1).

It is left to show that there exists a random variable Z ∈ {0, 1}4 as specified above. Let
Z be the random variable defined as follows:

� With probability 140
192

Z is a uniform vector with a single positive coordinate.

� With probability 30
192

Z is a uniform vector with 2 positive coordinates.

� With probability 22
192

Z is a uniform vector with 4 positive coordinates.

Clearly, Pr(Z = (0, 0, 0, 0)) = 0. Also, for every distinct 1 ≤ i, j ≤ 4 we have

Pr(Zi = 1) =
140

192
· 1

4
+

30

192
· 1

2
+

22

192
=

3

8

and

Pr(Zi = 1, Zj = 1) =
30

192
· 1

6
+

22

192
=

(
3

8

)2

.

Therefore, the other two specifications of Z hold as well.
We proceed to part 2. The reduction is quite simple and we only sketch it. By adding

dummy variables, it is enough to prove that it is NP-hard to distinguish between satisfiable
instances of CSP(Tk,d k

2
e−1) and instances with value ≤ α for some constant 0 < α < 1. We

will show somewhat stronger property, namely, that if 1 ≤ l ≤ k−2, then for some 0 < α < 1,
it is NP-hard to distinguish between satisfiable instances of CSP(Tk,l) and instances with
value ≤ α.

We will reduce from the problem of distinguishing between satisfiable instances to 3-SAT
and instances with value ≤ 8

9
. This problem is NP-hard [25]. Given an instance J to 3-SAT,

we will produce an instance R(J) to CSP(Tk,l) as follows. Its variables would be the variables
of J together with some new variables. For every constraint C(x) = j1xi1 ∨ j2xi2 ∨ j3xi3 in
J , we will add k + l − 1 new variables xC1 , . . . , x

C
k and yC4 , . . . , x

C
l+2. These new variables

will be used only in the new clauses corresponding to C. We will introduce the following

24

constraints: we add the constraint Tk,l(j1xi1 , j2xi2 , j3xi3 , y
C
4 , . . . , y

C
l+2,−xCl+3, . . . ,−xCk). Also,

for every (j1, . . . , jk) ∈ {±1}k with at most (k − l) minus-ones we will add the constraint
Tk,l(j1x

C
1 , . . . , jkx

C
k).

If J is satisfiable, then R(J) is satisfiable as well: simply set all new variables to 1. On
the other hand, if VAL(J) ≤ 8

9
, then it is not hard to see that for every assignment to R(J)’s

variables, for at least 1
9

of J ’s clauses, at least one of the new clauses corresponding to it
will be unsatisfied. Since we introduce ≤ 2k constraints in R(J) for each constraint in J , we
conclude that VAL(R(J)) ≤ 1− 2−k 1

9
. Therefore, the theorem holds with α = 1− 2−k 1

9
. 2

Conjecture 7.8 Pk is heredity approximation resistant on satisfiable instances.

Theorem 7.9 Assuming conjecture 7.8, it is SRCSP-hard to learn INTER4

Proof (sketch) The proof goes along the same lines of the proof of theorem 5.4. We will
prove SRCSP-hardness for learning intersections of two halfspaces over {−1, 1, 0}n, induced
by ±1 vectors. As in the proof of theorem 5.4, SRCSP-hardness of learning intersections of
two halfspaces over the boolean cube follows from this.

Fix d > 0. It is not hard to check that VAR0(Pk) ≥ dk2e − 2. Therefore, by conjecture
7.8 and assumption 4.3, for large enough odd k, it is SRCSP-hard to distinguish between a
random instance to CSP(Pk) with nd constraints and a satisfiable instance. We will reduce
from this problem to the problem of distinguishing between a realizable sample and a random
sample that is (Ω(md), 1

5
)-scattered. Since d is arbitrary, the theorem follows.

Given an instance J , we produce two examples for each constraint: for the constraint

C(x) =
(
∧4
q=1Tk,d k

2
e−1(jq,1xiq,1 , . . . , jq,kxiq,k)

)
∧¬
(
∧8
q=5Tk,d k

2
e−1(jq,1xiq,1 , . . . , jq,kxiq,k)

)
we will produce two examples in {−1, 1, 0}4n×{0, 1}, each of which has exactly 4k non zero
coordinates. The first is a positively labelled example whose instance is the vector with the
value jq,l, 1 ≤ q ≤ 4, 1 ≤ l ≤ k in the n(q − 1) + iq,l coordinate. the second is a negatively
labelled example whose instance is the vector with the value jq,l, 5 ≤ q ≤ 8, 1 ≤ l ≤ k in the
n(q − 5) + iq,l coordinate.

It is not hard to see that if J is satisfiable then the produced sample is realizable by
intersection of four halfspaces: if u ∈ {±1}n is a satisfying assignment then the sample is
realized by the intersection of the 4 halfspaces

∑n
i=1 uixn(q−1)+i ≥ −1, q = 1, 2, 3, 4. On

the other hand, by proposition 7.1, if J is random instance with nd constraints, then the
resulting ensamble is (Ω(nd), 1

5
) scattered.

2

7.5 Agnostically learning parity

For convenience, in this section the domain of hypotheses will be {0, 1}n and the domain
of predicates will be {0, 1}K (instead of {±1}n and {±1}K). For every S ⊂ [n] define
χS : {0, 1}n → {±1} by χS(x) = ⊕i∈Sxi. Let PARITY be the hypothesis class consisting of
all functions χS, S ⊂ [n].

25

Theorem 7.10 For every constant α ≥ 1, it is SRCSP-hard to approximately agnostically
learn PARITY with an approximation ratio of α.

Proof Let PK : {0, 1}K → {0, 1} be the parity predicate. That is, PK(x) = ⊕Ki=1xi. We
first show that for K ≥ 3, VAL(PK) = 1. Indeed, a pairwise uniform distribution which
is supported in P−1

K (1) is the following – choose (x1, . . . , xK−1) uniformly at random and
then choose xK so that PK(x) = 1. Second, it is clear that VAR0(PK) = K. Therefore, by
assumption 4.5, for every β > 0 and every d, for sufficiently large K, it is SRCSP-hard to
distinguish between instances to CSP(PK) with value ≥ 1−β and random instances with md

constraints. Note that with the convention that the domain of PK is {0, 1}K , the constraints
of instances to CSP(PK) are of the form C(x) = xi1⊕ . . .⊕xiK or C(x) = xi1⊕ . . .⊕xiK ⊕1.

We will reduce from the aforementioned problem to the problem of distinguishing between
β-almost realizable sample and D-random sample for a distribution D which is

(
Ω
(
nd
)
, 1

4

)
-

scattered. Since both β and d are arbitrary, the theorem follows from theorem 3.4.
Given an instance J to CSP(PK), for each constraint C(x) = xi1 ⊕ . . .⊕ xiK ⊕ b we will

generate an example (uC , yC) where uC is the vector with ones precisely in the coordinates
i1, . . . , iK and yC = b. It is not hard to verify that if J is a random instance with md

constraints then the generated sample is
(
Ω
(
nd
)
, 1

4

)
-scattered. On the other hand, assume

that the assignment ψ ∈ {0, 1}n satisfies 1 − β fraction of the constraints. Consider the
hypothesis χS where S = {i | xi = 1}. We have χS(xC) = ⊕i∈S(uC)i = ⊕Kq=1ψiq . Therefore,
ψ satisfies C if and only if χS is correct on (uC , yC). Since ψ satisfies 1 − β fraction of the
constraints, the generated sample is β-almost realizable. 2

8 Resolution lower bounds

In this section we prove theorem 4.2. Let P : {0, 1}K → {0, 1} be some predicate. Let
τ = {T1, . . . , Tr} be a resolution refutation for a CSP(P) instance J . A basic parameter
associated with τ is the width. The width of a clause is the number of literals it contains, and
the width of τ is width(τ) := max1≤i≤r width(Ti). We also define the width of an unsatisfiable
instance J to CSP(P) as the minimal width of a resolution refutation of J . Ben-Sasson and
Wigderson [9] have shown that if an instance to CSP(P) has a short resolution refutation,
then it necessarily has a narrow resolution refutation. Namely,

Theorem 8.1 ([9]) Let J be an unsatisfiable instance to CSP(P). The length of every

resolution refutation for J is at least 2
Ω

(
width2(J)

n

)
.

Theorem 4.2 now follows from theorem 8.1 and the following two lemmas.

Lemma 8.2 Let J be an unsatisfiable instance to CSP(P). Assume that for every subset I
of l constraints from J , most of the constraints in I have ≥ K −VAR0(P)− 1 variables that
do not appear in any other constraint in I. Then width(J) ≥ l

6
.

Proof Let τ = {T1, . . . , Tr} be a resolution refutation to J . Define µ(Ti) as the minimal
number µ such that Ti is implied by µ constraints in J .

Claim 4

26

1. µ(∅) > l.

2. If Ti is implied by Ti1 , Ti2 , i1, i2 < i then µ(Ti) ≤ µ(Ti1) + µ(Ti2).

Proof The second property clearly holds. To prove the first property, suppose toward a
contradiction that µ(∅) ≤ l. It follows that there are t ≤ l constraints I ⊂ J that implies
the empty clause, i.e., it is impossible to simultaneously satisfy all the constraints in I. By
the assumption of the lemma, it is possible to choose an ordering I = {C1, . . . , Ct} such
that for every 1 ≤ i ≤ t, Ci contains at least K − VAR0(P) − 1 variables that do not
appear in C1, . . . , Ci−1. Indeed, let us simply take Ct to be a clause that contains at least
K−VAR0(P)− 1 variables that do not appear in the clauses in I \ {Ct}. Then, choose Ct−1

in the same way from I \ {Ct} and so on. Now, let ψ ∈ {±1}n be an arbitrary assignment
that satisfies C1. By the definition of 0-variability, it is possible to change the values of the
variables appearing in C2 but not in C1 to satisfy also C2. We can continue doing so till
we reach an assignment that satisfies C1, . . . , Ct simultaneously. This leads to the desired
contradiction. 2

By the claim, and the fact that µ(C) = 1 for every clause that is implied by one of the
constraints of J , we conclude that there is some Ti with l

3
≤ µ = µ(Tj) ≤ 2l

3
. It follows that

there are µ constraints C1, . . . , Cµ in J that imply Tj, but no strict subset of these clauses
implies Tj. For simplicity, assume that these constraints are ordered such that for every
1 ≤ i ≤ µ

2
, Ci contains at least K −VAR0(P)− 1 variables that do not appear in the rest of

these constraints. The proof of the lemma is established by the following claim

Claim 5 For every 1 ≤ i ≤ µ
2
, Tj contains a variable appearing only is Ci.

Proof Assume toward a contradiction that the claim does not hold for some 1 ≤ i ≤ µ
2
.

Since no strict subset of C1, . . . , Cµ imply Tj, there is an assignment ψ ∈ {±1}n such that for
every i′ 6= i, Ci′(ψ) = 1 but Tj(ψ) = 0. Since C1, . . . , Cµ imply Tj, we must have Ci(ψ) = 0.
Now, by the definition of 0-variability, we can modify the values of the K − VAR0(P) − 1
variables that appear only in Ci to have a new assignment ψ′ ∈ {±1}n with Ci(ψ

′) = 1.
Since Tj and the rest of the constraints do not contain these variables, we conclude that still
for every i′ 6= i, Ci′(ψ) = 1 and Tj(ψ) = 0. This contradicts the fact that C1, . . . , Cµ imply
Tj. 2

2

The next lemma shows that the condition in lemma 8.2 holds w.h.p. for a suitable random
instance. For the sake of readability, it is formulated in terms of sets instead of constraints.

Lemma 8.3 Fix integers k > r > d such that r > max{17d, 544}. Suppose that
A1, . . . , And ∈

(
[n]
k

)
are chosen uniformly at random. Then, with probability 1 − on(1), for

every I ⊂ [nd] with |I| ≤ n
3
4 for most i ∈ I we have |Ai \ ∪j∈I\{i}Aj| ≥ k − r.

Proof Fix a set I with 2 ≤ t ≤ n
3
4 elements. Order the sets in I arbitrarily and also order

the elements in each set arbitrarily. Let X1, . . . , Xkt be the following random variables: X1

is the first element in the first set of I, X2 is the second element in the first set of I and so
on till the k’th element of the last set of I.

Denote by Ri 1 ≤ i ≤ kt the indicator random variable of the event that Xi = Xj for
some j < i. We claim that if

∑
Ri <

tr
4

, the conclusion of the lemma holds for I. Indeed,

27

let J1 ⊂ I be the set of indices with Ri = 1, J2 ⊂ I be the set of indices i with Ri = 0 but
Xi = Xj for some j > i and J = J1 ∪ J2. If the conclusion of the lemma does not hold for
I, then |J | ≥ tr

2
. If in addition |J1| =

∑
Ri <

tr
4

we must have |J2| > tr
4
> |J1|. For every

i ∈ J2, let f(i) be the minimal index j > i such that Xi = Xj. We note that f(i) ∈ J1,
therefore f is a mapping from J2 to J1. Since |J2| > |J1|, f(i1) = f(i2) for some i1 < i2 in
J2. Therefore, Xi1 = Xf(i1) = Xi2 and hence, Ri2 = 1 contradicting the assumption that
i2 ∈ J2.

Note that the probability that Ri = 1 is at most tk
n

. This estimate holds also given the
values of R1, . . . , Ri−1. It follows that the probability that Ri = 1 for every i ∈ A for a

particular A ⊂ I with |A| = d rt
4
e is at most

(
tk
n

) rt
4 . Therefore, for some constants C ′, C > 0

(that depend only on d and k), the probability that J fails to satisfy the conclusion of the
lemma is bounded by

Pr

(∑
Ri ≥

tr

4

)
≤

(
tk

d tr
4
e

)(
tk

n

) tr
4

≤ 2C·t
(
tk

n

) tr
4

≤ 2C
′·t
(
t

n

) tr
4

The second inequality follows from Stirling’s approximation. Summing over all collections I
of size t we conclude that for some C ′′ > 0, the probability that the conclusion of the lemma
does not hold for some collection of size t is at most(

nd

t

)
2C
′·t
(
t

n

) tr
4

≤ ndt−
1
16
tr · 2C′·t ≤ n−

1
272

tr · 2C′·t ≤ n−2t · 2C′·t ≤ C ′′
1

n

Summing over all 2 ≤ t ≤ n
3
4 , we conclude that the probability that the conclusion of the

lemma does not hold is at most C ′′n−
1
4 = on(1). 2

9 On basing the SRCSP assumption on NP-Hardness

Fix a predicate P : {±1}K → {0, 1} and let 1 ≥ α > VAL(P). Let L ⊂ {0, 1}∗ be some
language. We say that L can be efficiently reduced to the problem of distinguishing between
random instances to CSP(P) with Cn constraints and instances with value ≥ α, if there is
an efficient probabilistic Turing machine that given x ∈ {0, 1}n, acts as follows: for some
function f : N→ N,

� If x ∈ L then M(x) is an instance to CSP(P) with f(n) variables, C · f(n) constraints
and value ≥ α.

� If x /∈ L then M(x) is a random instance to CSP(P) with f(n) variables and C · f(n)
constraints.

28

Theorem 9.1 For every sufficiently large constant C > 0, the following holds. Assume that
the language L ⊂ {0, 1}∗ can be efficiently reduced to the problem of distinguishing between
random instances to CSP(P) with m(n) ≥ Cn constraints and instances with value ≥ α.
Then, L has a statistical zero knowledge proof.

Corollary 9.2 For every sufficiently large constant C > 0, the following holds. Assume
that there is a reduction from an either an NP-hard or CoNP-hard problem to the problem
of distinguishing between random instances to CSP(P) with m(n) ≥ Cn constraints and
instances with value ≥ α. Then, the polynomial hierarchy collapses.

Proof (of corollary 9.2) Under the conditions of the corollary, by theorem 9.1, we have
NP ⊂ SZKP or CoNP ⊂ SZKP. Since SZKP is closed under taking complement [39],
in both cases, NP ⊂ SZKP. Since SZKP ⊂ CoAM [1], we conclude that NP ⊂ CoAM,
which collapses the polynomial hierarchy [14]. 2

Proof (of theorem 9.1) Let C > 0 be a constant large enough so that, with probability ≥ 1
2
,

a random instance to CSP(P) with Cn constraints will have value ≤ α.
Consider the following problem. The input is a circuit Ψ : {0, 1}n → {0, 1}m and a

number t. The instance is a YES instance if the entropy5 of Ψ, when it acts on a uniform
input sampled from {0, 1}n, is ≤ t− 1. The instance is a NO instance if this entropy is ≥ t.
By [23] this problem is in SZKP. To establish the proof, we will show that L can be reduced
to this problem.

Assume that there is a reduction from the language L to the problem of distinguishing
between random instances to CSP(P) with m(n) ≥ Cn constraints and instances with value
≥ α. Let M and f be a Turing machine and a function that indicate that. By a standard
argument, it follows that there is an efficient deterministic Turing machine M ′ that given
x ∈ {0, 1}n produces a circuit Ψ whose input is {0, 1}g(n) for some polynomially growing
function and whose output is an instance to CSP(P), such that, for a uniformly randomly
chosen input z ∈ {0, 1}g(n),

� If x ∈ L then Ψ(z) is a (possibly random) satisfiable instance to CSP(P) with f(n)
variables and m(f(n)) constraints.

� If x /∈ L then Ψ(z) is a random instance to CSP(P) with f(n) variables and m(f(n))
constraints.

Since the number of instances to CSP(P) with m(f(n)) constraints is
((

f(n)
K

)
2K
)m(f(n))

, in

the second case, the entropy of Ψ is q(n) := m(f(n)) log2

((
f(n)
K

)
2K
)

. On the other hand,

in the first case, the entropy is at most the entropy of a random instance to CSP(P) with
m(f(n)) constraints and value ≥ α. By the choice of C, the number of such instances is at
most half of the total number of instances with m(f(n)) constraints. Therefore, the entropy

of Ψ is at most m(f(n)) log2

((
f(n)
K

)
2K
)
− 1 = q(n)− 1. Hence, using M ′, we can reduce L

to the problem mentioned in the beginning of the proof. 2

5We consider the standard Shannon’s entropy with bits units.

29

Acknowledgements: Amit Daniely is a recipient of the Google Europe Fellowship in
Learning Theory, and this research is supported in part by this Google Fellowship. Nati
Linial is supported by grants from ISF, BSF and I-Core. Shai Shalev-Shwartz is supported
by the Israeli Science Foundation grant number 590-10. We thank Sangxia Huang for his
kind help and for valuable discussions about his paper [27]. We thank Guy Kindler for
valuable discussions.

References

[1] William Aiello and Johan Hastad. Statistical zero-knowledge languages can be recog-
nized in two rounds. Journal of Computer and System Sciences, 42(3):327–345, 1991.

[2] Michael Alekhnovich. More on average case vs approximation complexity. In Founda-
tions of Computer Science, 2003. Proceedings. 44th Annual IEEE Symposium on, pages
298–307. IEEE, 2003.

[3] B. Applebaum, B. Barak, and D. Xiao. On basing lower-bounds for learning on worst-
case assumptions. In Foundations of Computer Science, 2008. FOCS’08. IEEE 49th
Annual IEEE Symposium on, pages 211–220. IEEE, 2008.

[4] Sanjeev Arora, László Babai, Jacques Stern, and Z Sweedyk. The hardness of ap-
proximate optima in lattices, codes, and systems of linear equations. In Foundations
of Computer Science, 1993. Proceedings., 34th Annual Symposium on, pages 724–733.
IEEE, 1993.

[5] Per Austrin and Elchanan Mossel. Approximation resistant predicates from pairwise
independence. Computational Complexity, 18(2):249–271, 2009.

[6] Boaz Barak, Guy Kindler, and David Steurer. On the optimality of semidefinite re-
laxations for average-case and generalized constraint satisfaction. In Proceedings of the
4th conference on Innovations in Theoretical Computer Science, pages 197–214. ACM,
2013.

[7] Paul Beame and Toniann Pitassi. Simplified and improved resolution lower bounds.
In Foundations of Computer Science, 1996. Proceedings., 37th Annual Symposium on,
pages 274–282. IEEE, 1996.

[8] Paul Beame, Richard Karp, Toniann Pitassi, and Michael Saks. On the complexity of
unsatisfiability proofs for random k-cnf formulas. In Proceedings of the thirtieth annual
ACM symposium on Theory of computing, pages 561–571. ACM, 1998.

[9] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrowresolution made simple. In
Proceedings of the thirty-first annual ACM symposium on Theory of computing, pages
517–526. ACM, 1999.

[10] Quentin Berthet and Philippe Rigollet. Computational lower bounds for sparse pca. In
COLT, 2013.

30

[11] A. Birnbaum and S. Shalev-Shwartz. Learning halfspaces with the zero-one loss: Time-
accuracy tradeoffs. In NIPS, 2012.

[12] Christopher M Bishop. Neural networks for pattern recognition. Oxford university press,
1995.

[13] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity
problem, and the statistical query model. Journal of the ACM (JACM), 50(4):506–519,
2003.

[14] Andrej Bogdanov and Luca Trevisan. On worst-case to average-case reductions for np
problems. SIAM Journal on Computing, 36(4):1119–1159, 2006.

[15] Amin Coja-Oghlan, Colin Cooper, and Alan Frieze. An efficient sparse regularity con-
cept. SIAM Journal on Discrete Mathematics, 23(4):2000–2034, 2010.

[16] Stephen A Cook and Robert A Reckhow. The relative efficiency of propositional proof
systems. The Journal of Symbolic Logic, 44(1):36–50, 1979.

[17] Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. More data speeds up training time
in learning halfspaces over sparse vectors. In NIPS, 2013.

[18] Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. The complexity of learning halfs-
paces using generalized linear methods. Arxiv preprint arXiv:1211.0616 v3, 2013.

[19] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

[20] Uriel Feige. Relations between average case complexity and approximation complexity.
In Proceedings of the thiry-fourth annual ACM symposium on Theory of computing,
pages 534–543. ACM, 2002.

[21] Uriel Feige and Eran Ofek. Easily refutable subformulas of large random 3cnf formulas.
In Automata, languages and programming, pages 519–530. Springer, 2004.

[22] V. Feldman, P. Gopalan, S. Khot, and A.K. Ponnuswami. New results for learning
noisy parities and halfspaces. In In Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science, 2006.

[23] Oded Goldreich and Salil Vadhan. Comparing entropies in statistical zero knowledge
with applications to the structure of szk. In Computational Complexity, 1999. Proceed-
ings. Fourteenth Annual IEEE Conference on, pages 54–73. IEEE, 1999.

[24] Armin Haken. The intractability of resolution. Theoretical Computer Science, 39:297–
308, 1985.

[25] Johan H̊astad. Some optimal inapproximability results. Journal of the ACM (JACM),
48(4):798–859, 2001.

31

[26] Sangxia Huang. Approximation resistance on satisfiable instances for predicates strictly
dominating parity. 2012.

[27] Sangxia Huang. Approximation resistance on satisfiable instances for predicates with
few accepting inputs. In STOC, 2013.

[28] Adam Tauman Kalai, Adam R Klivans, Yishay Mansour, and Rocco A Servedio. Ag-
nostically learning halfspaces. SIAM Journal on Computing, 37(6):1777–1805, 2008.

[29] Michael Kearns and Leslie G. Valiant. Cryptographic limitations on learning Boolean
formulae and finite automata. In STOC, pages 433–444, May 1989.

[30] Michael Kharitonov. Cryptographic hardness of distribution-specific learning. In Pro-
ceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages
372–381. ACM, 1993.

[31] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the
thiry-fourth annual ACM symposium on Theory of computing, pages 767–775. ACM,
2002.

[32] Subhash Khot and Rishi Saket. On the hardness of learning intersections of two halfs-
paces. Journal of Computer and System Sciences, 77(1):129–141, 2011.

[33] Adam R Klivans and Ryan O’Donnell. Learning intersections and thresholds of halfs-
paces. In Foundations of Computer Science, 2002. Proceedings. The 43rd Annual IEEE
Symposium on, pages 177–186. IEEE, 2002.

[34] Adam R Klivans and Rocco Servedio. Learning dnf in time 2O(n1/3). In Proceedings of
the thirty-third annual ACM symposium on Theory of computing, pages 258–265. ACM,
2001.

[35] Adam R. Klivans and Alexander A. Sherstov. Cryptographic hardness for learning
intersections of halfspaces. In FOCS, 2006.

[36] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier
transform, and learnability. In FOCS, pages 574–579, October 1989.

[37] P.M. Long and R.A. Servedio. Learning large-margin halfspaces with more malicious
noise. In NIPS, 2011.

[38] Yishay Mansour. An o(n log log n) learning algorithm for dnf under the uniform distri-
bution. Journal of Computer and System Sciences, 50(3):543–550, 1995.

[39] Tatsuaki Okamoto. On relationships between statistical zero-knowledge proofs. In
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages
649–658. ACM, 1996.

[40] L. Pitt and L.G. Valiant. Computational limitations on learning from examples. Journal
of the Association for Computing Machinery, 35(4):965–984, October 1988.

32

[41] Prasad Raghavendra. Optimal algorithms and inapproximability results for every csp?
In Proceedings of the 40th annual ACM symposium on Theory of computing, pages
245–254. ACM, 2008.

[42] F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65:386–407, 1958. (Reprinted in Neu-
rocomputing (MIT Press, 1988).).

[43] R.E. Schapire. The strength of weak learnability. In FOCS, pages 28–33, October 1989.

[44] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, November 1984.

[45] V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.

33

	Introduction
	Comparison to the cryptographic technique
	On the role of average case complexity

	Preliminaries
	Learning Theory
	Constraints Satisfaction Problems
	Resolution refutation and Davis Putnam algorithms

	The methodology
	The strong random CSP assumption
	Toward weaker assumptions

	Summary of results
	Learning DNF's
	Agnostically learning halfspaces
	Learning intersection of halfspaces
	Additional results
	On the proofs

	Future work
	Weaker assumptions?
	The SRCSP-assumption
	More applications

	Proofs of the lower bounds
	Learning DNFs
	Agnostically learning halfspaces
	Learning automata
	Toward intersection of 4 halfspaces
	Agnostically learning parity

	Resolution lower bounds
	On basing the SRCSP assumption on NP-Hardness

