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We extend the notion of Combinatorial Walrasian Equilibrium, as defined by Feldman et al. [2013], to
settings with budgets. When agents have budgets, the maximum social welfare as traditionally defined is
not a suitable benchmark since it is overly optimistic. This motivated the liquid welfare of [Dobzinski and
Paes Leme 2014] as an alternative. Observing that no combinatorial Walrasian equilibrium guarantees a
non-zero fraction of the maximum liquid welfare in the absence of randomization, we instead work with
randomized allocations and extend the notions of liquid welfare and Combinatorial Walrasian Equilibrium
accordingly. Our generalization of the Combinatorial Walrasian Equilibrium prices lotteries over bundles of
items rather than bundles, and we term it a lottery pricing equilibrium.

Our results are two-fold. First, we exhibit an efficient algorithm which turns a randomized allocation
with liquid expected welfare W into a lottery pricing equilibrium with liquid expected welfare 3−

√
5

2
·W (≈

0.3819·W ). Next, given access to a demand oracle and an α-approximate oblivious rounding algorithm for the
configuration linear program for the welfare maximization problem, we show how to efficiently compute a
randomized allocation which is (a) supported on polynomially-many deterministic allocations and (b) obtains
[nearly] an α fraction of the optimal liquid expected welfare. In the case of subadditive valuations, combining
both results yields an efficient algorithm which computes a lottery pricing equilibrium obtaining a constant
fraction of the optimal liquid expected welfare.

Additional Key Words and Phrases: Walrasian equilibrium, envy-free, lotteries, combinatorial auctions, bud-
gets

1. INTRODUCTION
In this paper, we study generalizations of the Walrasian Equilibrium in combinatorial
markets to settings with budgets. Given a set of items, a set of agents, and prices on
the items, a bundle of items is said to be in the demand set of an agent if the utility of
the agent — i.e., the difference between the agent’s value of the set of items and the
sum of the item prices — is maximized for this bundle. A Walrasian pricing [Arrow and
Debreu 1954; Walras 1874, 2003] assigns prices to items so that there is an allocation
of items to buyers in which (a) each buyer is assigned a bundle in her demand set,
and (b) the social welfare is maximized. In general, a Walrasian pricing need not exist,
but is known to exist for so-called “gross substitutes” valuations [Kelso and Crawford
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1982]. A Walrasian pricing coupled with an allocation satisfying (a) and (b) is termed
a Walrasian equilibrium.

[Feldman et al. 2013] circumvent the non-existence of Walrasian Equilibrium for ar-
bitrary valuations by relaxing the notion in two ways: by pricing bundles rather than
items, and by no longer requiring the market to clear (i.e. not all items need to be
sold). They term the relaxed notion a Combinatorial Walrasian Equilibrium (CWE).
Feldman et al. [2013] describe a process which starts from an arbitrary initial alloca-
tion A and produces a CWE with 1/2 the social welfare of A.

Our work follows in the tradition of a number of recent works which incorporate
budget constraints in economic design [Devanur et al. 2012; Dobzinski et al. 2008; Goel
et al. 2014]. To the best of our knowledge, Walrasian pricing and its variants have not
previously been considered in combinatorial markets with budgets. In fact, we observe
that even in very simple markets with budgets, the traditional Walrasian equilibrium
need not exist, and only trivial Combinatorial Walrasian Equilibria which assign no
items exist. We observe that generalizing the CWE by setting prices on lotteries over
bundles rather than deterministic bundles restores a rich set of equilibria even in the
presence of budgets. We call these Lottery Pricing Equilibria (LPE).

As a simple motivating example, consider one item and n buyers, with each buyer
having a value n for the item and a budget of 1. If we price the item at p ≤ 1, no alloca-
tion satisfies the demand of more than a single agent, rendering such a price “illegal”.
On the other hand, if we price the item at p > 1, the maximum social welfare is zero.
Suppose instead that we sell n lottery tickets, each of which wins the item with prob-
ability 1/n, and each of which is priced at 1; Assuming agents are risk neutral, this
guarantees a social welfare (and revenue) of n. Ergo, if we require that each agent is
allocated a bundle (or lottery over bundles) in her demand set, the ratio between the
social welfare attainable by pricing lotteries and that attainable by pricing (determin-
istic) bundles is unbounded.

In settings with budgets, the maximum social welfare, as traditionally defined, is
not suitable as a benchmark. To see this, consider a single item with value 1 to agent
A, and value 2 to agent B, and let both agents have a budget of zero. The social welfare
is maximized at 2 by assigning the item to agent B. However, any item pricing either
can not satisfy the demand of both agents (when the price is 0) or results in a social
welfare of 0 (when the price exceeds 0). A similar argument reveals that the same
holds for lottery pricing: every lottery pricing equilibrium must assign non-zero prices
to each lottery on offer, and consequently allocates the empty bundle to each agent.

Motivated by this phenomenon, [Dobzinski and Paes Leme 2014] introduced the
liquid welfare of a deterministic allocation, defined as the sum over all agents of the
minimum between the agent’s budget and her value for her allocated bundle. In the
above example with two agents each with a budget of 0, the maximum liquid welfare
of an allocation is 0, making it more suitable as a benchmark. Consider also the single-
item example with n buyers, each of whom has value n for the item and a budget of
1. The maximum liquid welfare of a deterministic allocation is 1, and is attained by
allocating the item to an [arbitrary] buyer. The minimum between the budget and the
value is 1. This is also an upper bound on the maximum revenue a seller can obtain by
assigning deterministic prices. Recalling that our solution prices lotteries rather than
deterministic bundles, we require a generalization of the liquid welfare to randomized
allocations.

1.1. Our contribution
In this work we introduce lottery pricing equilibria, and show that approximate lottery
pricing equilibria achieve near optimal liquid welfare, for a natural generalization of
the liquid welfare to randomized allocations. We show how to efficiently compute such



approximate equilibria from an initial allocation of lotteries, while losing only a con-
stant fraction of the liquid welfare. We also show how to compute an initial allocation of
lotteries with near-optimal liquid welfare under mild conditions which so happen to be
satisfied by subadditive valuations. We now outline our main modeling and technical
contributions.

Liquid welfare and lotteries. Given a randomized allocation of items to agents, we
define its liquid expected welfare as the sum, over all agents, of the minimum between
the agent’s budget and her expected value for her bundle. We use the maximum liquid
expected welfare as our benchmark, and note that it also serves as an upper bound
on the maximum revenue which can be obtained by a seller from risk neutral agents.
As illustrated by our previous single-item n-agent example with valuations of n and
budgets of 1, the gap in liquid expected welfare between the best randomized and the
best deterministic allocations can be as large as n, and it is easy to see that this is
tight.

Our pricing equilibria will assign prices to a collection of lotteries, where each lottery
is a distribution over bundles of items. A collection of m lotteries is mutually compat-
ible — or feasible — if there exists an implementation of these lotteries as the parts
of a random partition of the items into m sets. We can thus interpret a randomized
allocation of items to agents as a feasible collection of lotteries, one per agent. More
generally, we consider many-to-one allocations of a collection of lotteries to agents,
as needed to reason about our lottery pricing equilibria. When an agent is allocated
multiple lotteries in a collection, the implementation of the collection is of paramount
consequence in determining the resulting randomized allocation of items. Therefore
the implementation must be fixed before we can calculate an agent’s expected value or
the liquid expected welfare.1

Lottery Pricing Equilibria. We define the Lottery Pricing Equilibrium (LPE), gen-
eralizing the Combinatorial Walrasian Equilibrium to lotteries. For ε ≥ 0, a ε-LPE
consists of jointly distributed (feasible) collection of lotteries (and an associated imple-
mentation), a price for each lottery, and an allocation of those lotteries to the agents
so that each agent receives a bundle of lotteries (with total price at most his budget)
approximately maximizing his expected utility to within ε. For each ε > 0, we show
the existence of a ε-LPE for budgeted agents with arbitrary valuations that achieves a
constant fraction of the liquid expected welfare of the best randomized allocation.

Our proof of existence is constructive, by way of an efficient algorithm analogous to
that of [Feldman et al. 2013]. Specifically, our algorithm takes as input an arbitrary
randomized allocation consisting of one lottery per agent, and terminates with a ε-LPE
obtaining at least a 3−

√
5

2 fraction of the liquid expected welfare of the initial random-
ized allocation.

The algorithm starts by setting an initial price for each lottery equal to a constant
fraction of its contribution to the liquid expected welfare, and then proceed in rounds.
Each round involves either “merging” a set of lotteries in the collection (and pricing
the merged lottery at the sum of the two prices), or “resolving contention” between two
agents demanding the same lottery. Merging a set of lotteries is the natural generaliza-
tion of taking the union of a set of bundles: specifically, the random bundle associated

1To see this, consider two lotteries L1 and L2 in a collection, assume that L1 uniformly randomizes between
the bundles {a} and ∅, and L2 uniformly randomizes between {b} and ∅. Consider two implementations:
one in which drawing the empty set from both lotteries has probability 0.5 (i.e. the lotteries are “positively
correlated”), and another in which at least one of the lotteries draws a non-empty set (i.e., the lotteries are
“negatively correlated”). If both lotteries are asigned to single agent who values items a and b as substitutes,
then such an agent prefers the second implementation.



with the merged lottery is the union of the set of random bundles associated with the
original lotteries. The implementation is adapted appropriately.

The main difference between our algorithm and that of [Feldman et al. 2013] —
necessitated by the presence of budgets — is in the contention resolution procedure:
instead of increasing the price of the contentious lottery, we carefully scale down the
probability of each non-empty bundle in its support (i.e., we mix the lottery with the
empty bundle).

Computing the Initial Allocation. The above-described procedure reduces finding a
lottery pricing equilibrium with near-optimal liquid welfare to the problem of com-
puting a randomized allocation with near-optimal liquid welfare. Consider the latter
problem. By adapting the configuration linear program for combinatorial welfare max-
imization to the liquid expected welfare objective, we show how to sample a random-
ized allocation with liquid expected welfare within an α factor of optimal whenever two
conditions are satisfied: (a) We are given demand oracle access to agents’ valuations;
(b) There is a rounding algorithm which, when applied to any fractional solution of
the configuration LP, outputs a (possibly random) allocation preserving each player’s
valuation to within a factor of α. All rounding algorithms for the configuration LP we
are aware of satisfy the latter player-by-player welfare guarantee; in particular, for
submodular (and, more generally, XOS) valuations we get α = e

e−1 using the round-
ing technique of [Dobzinski and Schapira 2006], and for subadditive valuations we get
α = 2 using the rounding technique of [Feige 2009].

Finally, we show how to produce an explicitly-described randomized allocation —
supported on polynomially-many deterministic allocations — with nearly the same
player-by-player guarantee. This is accomplished by Monte-Carlo sampling a near-
optimal randomized allocation mixed with the allocation assigning all items to a ran-
dom agent; the mixing is required in order to handle (exponentially) low-probability
yet high-value events in the near-optimal randomized allocation.

Organization of the paper. Section 3 defines the basics of lotteries, collections of lot-
teries and their implementations, and our generalization of the liquid welfare to ran-
domized allocations. Section 4 describes our procedure for turning a randomized alloca-
tion to a lottery pricing equilibrium at a loss of a constant factor in the liquid welfare.
Finally, Section 5 examines the problem of computing a randomized allocation with
high liquid expected welfare.

2. RELATED WORK
Starting with the work of Walras [1874, 2003], the study of market equilibria has
been a cornerstone of economic theory. The classical equilibrium concept there is the
Walrasian equilibrium (a.k.a. competitive equilibrium). When goods are divisible, Wal-
rasian equilibria exist in quite general settings, with many buyers and sellers, as well
as budgets (see [Mas-Colell et al. 1995]). In combinatorial markets involving indivisi-
ble goods, on the other hand, the situation is more nuanced. In this paper, we focus on
combinatorial markets consisting of a single seller and multiple buyers, in which case
the Walrasian equilibrium reduces to a pricing of the goods coupled with a market-
clearing allocation satisfying each buyer’s demand. In the absence of budgets, it was
shown by [Kelso and Crawford 1982] that such equilibria exist when buyers have Gross
Substitutes valuations, and subsequently [Gul and Stacchetti 1999a] showed that this
is essentially necessary. In each Walrasian equilibrium, the associated allocation of
goods is welfare maximizing.

The work most closely related to ours is by [Feldman et al. 2013], who are motivated
by the non-existence of the Walrasian Equilibrium for more general classes of valua-



tions in combinatorial markets. Their notion of Combinatorial Walrasian Equilibrium
(CWE) prices bundles rather than items, and relaxes the market clearing property.
They show the existence of CWE obtaining half the optimal social welfare. Since [Feld-
man et al. 2013] prices only the bundles assigned to buyers in the associated allo-
cations (with all other bundles implicitly priced at infinity), their work is related in
spirit to much of the earlier literature on envy-free pricing. The literature on envy-
free pricing is vast (e.g., [Aumann 1975; Bikhchandani and Mamer 1997; Cohen et al.
2012; Fiat and Wingarten 2009; Foley 1967; Gul and Stacchetti 1999b; Leonard 1983;
Mu’Alem 2009; Shapley and Shubik 1971; Varian 1974]). More recent work in the com-
puter science community has focused on approximately optimal envy-free pricings as
well as computational considerations (see e.g. [Balcan et al. 2008; Briest 2006; Che-
ung and Swamy 2008; Feldman et al. 2012; Guruswami et al. 2005; Hartline and Yan
2011]).

Since near-optimal CWE exist for general valuations, the work of [Feldman et al.
2013] partially bridges the gap between settings with divisible goods — in which Wal-
rasian equilibria exist generally — and settings with indivisible goods. Our work con-
tinues in this spirit by seeking to remedy the second main deficiency of Walrasian equi-
libria in combinatorial markets: budgets. As previously described, doing so requires a
new metric other than the social welfare which incorporates budgets, and our starting
point for that is the liquid welfare of [Dobzinski and Paes Leme 2014].

Finally, we remark that pricing lotteries has been studied at length in mechanism
design (see e.g. [Briest et al. 2010; Chen et al. 2015; Hart and Nisan 2013; Thanassoulis
2004]), where it has long been known that selling lotteries is required to maximize
revenue (with or without budgets).

3. PRELIMINARIES
3.1. Lotteries and Collections
Given a set M of items, a lottery L is simply a distribution supported on 2M . For a
bundle of items S ⊆M , we use L(S) to denote the probability of S in lottery L.

We also consider collections of lotteries. Given a collection L = (L1, . . . , Ln) of n
lotteries, we say this collection is feasible if it is consistent with a random partial allo-
cation of the items to n bins. Formally, the collection L is feasible if there is a random
collection of disjoint bundles S1, . . . , Sn ⊆ M so that each Si is distributed as the lot-
tery Li. An algorithm I which samples such a random allocation S = (S1, . . . , Sn) is
said to be an implementation of L. We refer to the range of outputs of I — a set of
deterministic allocations — as the support of the implementation. We use the random
variable I(L) to denote the (random) allocation output by the implementation. More
generally, given a sub-collection L′ ⊆ L of lotteries, we use I(L′) to denote the projec-
tion of the allocation I(L) onto the the lotteries in L′. For example, if L = (L1, L2, L3)
with S = (S1, S2, S3) ∼ I(L), and if L′ consists of L1 and L3, then I(L′) is the imple-
mentation of L′ which samples the random variable S ′ = (S1, S3).

Consider an agent with a valuation function v : 2M → R defined on bundles. We use
the natural extension of v to lotteries: v(L) = ES∼Lv(S). Similarly, given a collection of
lotteries L = {L1, . . . , Ln} and an implementation I of L, we extend v to sub-collections
L′ of L as follows:

v(L′, I) = ES∼I(L′)v (∪S∈SS) .

In other words, the agent’s value for a sub-collection of lotteries equals her expected
value for the union of the associated bundles.



3.2. Operations on Lotteries
We now describe two operations on lotteries and their collections, which will be useful
when describing our algorithms.

Merging Lotteries. Given a collection L = (L1, . . . , Ln) of lotteries with implementation
I, the merger of L with respect to I, denoted by Merge(L, I), is the lottery which sam-
ples the random variable ∪iSi for (S1, . . . , Sn) ∼ I(L). In other words, merging a jointly
distributed family of lotteries simply merges their associated (random) bundles.

Similarly, we often merge a subset of the lotteries in a collection to form a new
collection. Given a feasible collection L = (L1, . . . , Ln) with implementation I and a
sub-collection L′ = (Li1 , . . . , Lik), merging L′ yields the new collection L∪{Merge(L′)}\
L′. Naturally, this new collection of lotteries is feasible, and admits the implementation
newimp(I,L,L′) which simply samples the collection (S1, . . . , Sn) ∼ I(L), removes from
it Si1 , . . . , Sik , and then adds their union.

We note that our extension of an agent’s valuation v to collections of lotteries
can be alternately described as follows. Given a collection L with implementation
I, and a sub-collection L′ of L, the agent’s value for L′ can be written as v(L′, I) =
v(Merge(L′, I(L′))) = ES∼Merge(L′,I(L′))v(S).

Scaling Lotteries. Our final operation on lotteries is scaling. Given a lottery L and
a scaling factor q ∈ [0, 1], we define Decrease-Probability(L, q) as the lottery L̃ with
L̃(S) = qL(S) for each non-empty bundle S. In other words, scaling lottery L by q
simply mixes L with the empty bundle in proportions q and 1− q.

This operation naturally extends to feasible collections of lotteries, where we may
scale down a lottery in a collection by some factor while maintaining feasibility.
Given a collection of lotteries L = (L1, . . . , Ln) with implementation I, a partic-
ular lottery Li, and a scaling factor q ∈ [0, 1], we implement the new collection
(L−i,Decrease-Probability(L, q)) canonically by first sampling (S1, . . . , Sn) ∼ I(L), then
— using an independent biased coin — replacing Si with the empty set with probability
1− q.

3.3. Liquid Expected Welfare
Given an agent i with valuation vi : 2M → R+, recall that the agent’s expected value
for a draw from lottery L is denoted by vi(L). When the agent has a budget of bi, we
also define her liquid expected value for a lottery L as the minimum of vi(L) and bi.
When the budget bi is clear from context, we use v̄i(L) = min(vi(L), bi) to denote the
agent’s liquid expected value for a lottery L. We note that an agent’s liquid expected
value for a lottery serves as an upperbound on the price an individually-rational and
risk-neutral agent is willing to pay for a draw from that lottery.

Given a randomized allocation of items to budgeted agents, we define the liquid ex-
pected welfare as the sum, over all agents, of the agent’s liquid expected value for her
assigned random bundle (equivalently, lottery). More formally, given n agents with
valuations v1, . . . , vn and budgets b1, . . . , bn, if the randomized allocation implements
a collection of lotteries L = (L1, . . . , Ln) — i.e., the bundle assigned to agent i is dis-
tributed as a draw from Li — then the liquid expected welfare of the allocation equals∑n
i=1 v̄i(Li). We denote the maximum possible liquid expected welfare — taken over all

randomized allocations — by OPT. Note that, assuming risk neutrality and individual
rationality, the liquid expected welfare of a randomized allocation serves as an upper-
bound on the total revenue the seller may generate using that allocation, and OPT
serves as an upperbound on the optimal revenue. As illustrated in the introduction,
attaining a liquid expected welfare close to OPT often require randomization in the
allocation.



4. LOTTERY PRICING EQUILIBRIA
In this section we are given a collection L = (L1, . . . , Ln) of feasible lotteries, where LW
denotes

∑
i v̄(Li). We aim at computing a tuple (L′,p) such that L′ are feasible lotteries,

(L′,p) form an ε-LPE, and the liquid expected welfare,
∑
i v̄i(L

′
i), is a constant fraction

of the liquid expected welfare of the initial lotteries.

4.1. Definition of Lottery Pricing Equilibrium
Let us first present a formal definition of LPE.

Definition 4.1.

(1) Given a set of lotteries L, implementation I, and price function p : L 7→ <≥0, the
utility of buyer i on a collection of lotteries L′ ⊆ L, L′ = L`1 , L`2 , . . . , L`k is

ui (L′, p, I) =

{
−∞ if

∑k
j=1 p(L`j ) > bi

vi(L′, I)−
∑k
j=1 p(L`j )

.

(2) Given a set of lotteries L, an implementation I, and a price function p : L 7→ <≥0,
the demand set of agent i, Di(L, p, I) includes all L′ ⊆ L that maximize the utility
for agent i, ui (Merge(L′, I), p, I) . Note that the demand set may be of exponential
size.

(3) A Lottery Price Equilibrium (LPE) for bidders with Budgets consists of
— A set of n budget limited buyers, where buyer i has valuation function vi and

budget bi.
— A collection of n feasible lotteries, L = (L1, L2, . . . , Ln), some of which may be the

empty lottery (assigns nothing deterministically).
— An implementation, I of L.
— A price function p : L 7→ <≥0 defined on the set of all lotteries onto the reals.

Buyer i maximizes her utility by choosing lottery Li, over every other subset of
lotteries.

We next give the definition of ε-LPE.

Definition 4.2.

— We say that f is ε-maximized at x ∈ D over a domain D if f(x) ≥ f(y)−ε for all y ∈ D.
— Given a collection of lotteries L, an implementation I, and a price function p : L 7→
<≥0, the ε-demand of agent i, ε-D(L, p, I), includes all sets of lotteries for which the
utility of agent i is ε-maximized; i.e., if L′ ⊆ L is in ε-Di(L, p, I), then for all L̂ ⊆ L,
ui(L′, p, I) ≥ ui(L̂, p, I)− ε.

— An ε-approximate Lottery Price Equilibrium for bidders with budgets differs from a
Lottery Price Equilibrium for bidders with budgets in item 3 above. The difference is
that the buyer need not maximize her utility at Li but only ε-maximized by Li, over
all other combinations of lotteries on sale.

4.2. Computing Lottery Pricing Equilibria
We present in Figure 1 the process that outputs a ε-LPE.

The algorithm will start from an initial collection of lotteries L = (L1, . . . , Ln), one
for each agent, of high liquid expected welfare. The initial pricing of lottery Li is set to
p(Li) = ϕ · v̄i(Li) for some ϕ ∈ (0, 1) to be determined later. However, for an agent a,
La may not belong to ε-Da(L, p, I). If this is the case, we consider a set S of lotteries in
the (true) demand of buyer a. If S is not a singleton, we merge the lotteries in S and
we update the implementation accordingly. The pricing of the merged lottery is equal
to the sum of the prices of the lotteries in S. If S is formed by one single lottery, say L′,



before to allocate L′ to agent a, the algorithm checks whether L′ is in the true demand
set of some other agent b. If this is the case, the algorithm resolve(L′, a, b) given in
Figure 2 solves the conflict by decreasing the probability of lottery L′ till it is no longer
in the true demand set of a or b. We are still guaranteed that L′ is in the ε-demand of
the other agent which is given the lottery.

ε-LPE
Input: Valuations v; Feasible lotteries L = (L1, . . . , Ln); Algorithm I implementing
L.
Output: ε-LPE (L′,p), L′ = (L′1, . . . , L

′
n).

(1) Initialize Γ = L; p(Li) = ϕ · v̄i(Li) for all i; L′i = ∅ for all i; Pool=N ; I ′ ← I.
(2) While Pool6= ∅:

(a) Remove an arbitrary buyer a from the Pool.
(b) If the empty set is in the ε demand of a for prices p and lotteries Γ (i.e.,
∅ ∈ ε-Da(Γ, p, I ′)) then nothing further is done with respect to buyer a, she
will receive nothing and pay nothing.
otherwise let S be an arbitrary set of lotteries in the (true) demand of buyer
a, note that the set Da(Γ, p, I ′) is a set of sets of lotteries.

(c) If S is not a singleton (|S| > 1)
then

i. L′a ← Merge(S, I ′).
ii. Let I ′ = newimp(I ′,Γ, L′a) (an algorithm implementing lotteries (Γ \ S) ∪
{L′a}).

iii. Γ← (Γ \ S) ∪ {L′a}.
iv. p(L′a)←

∑
L∈S p(L).

v. For all b such that L′b ∈ S:
L′b ← ∅, Pool← Pool ∪ {b}.

else (|S| = 1)
i. Let L′ be the single lottery requested by a (now in S).

ii. If some agent b 6= a has L′b = L′:
then resolve(L′, a, b)
Otherwise, L′a ← L′ ∈ S.

(3) Return (L′,p).

Fig. 1: The ε-LPE process.

The following invariants are used to prove convergence of the process to an ε-LPE.

OBSERVATION 4.3. Let i ∈ {a, b} be the agent that gets the lottery at the end of
resolve(L′, a, b). We have that:

(1) vi(L′) ≥ p(L′).
(2) L′ ∈ ε-Di(Γ, p, I).

PROOF. At the start of the run of resolve, if one of the invariants does not hold for
some agent i, then L′ /∈ Di(Γ, p, I), and agent i does not get the lottery, therefore, both
invariants hold at first.

We show that after every iteration of the loop in step 2 of resolve, both invariants
hold. Let L′ : 2M → R≥0 be the lottery before calling Decrease-Probability(L′, q) in some
iteration, and L̃ : 2M → R≥0 and Ĩ be the the lottery and implementation afterwards.
Now, vi(L̃) =

∑
S∈2M\{∅} L̃(S) · vi(S) =

∑
S∈2M\{∅} q · L′(S) · vi(S) = q · vi(L′). Since



resolve(L′, a, b)

(1) q ← 0.
(2) While {L′} ∈ Da(Γ, p, I ′) ∩Db(Γ, p, I

′) and q 6= 1:
(a) vmin ← min(va(L′), vb(L

′)); vmax ← max(va(L′), vb(L
′)).

(b) q ← max
(

1− ε
vmax

, p(L
′)

vmin

)
.

(c) Decrease-Probability(L′, q), adjust the implementation accordingly.
(3) If {L′} /∈ Da(Γ, p, I ′) then

—L′b ← L′; L′a ← ∅; Pool← Pool ∪ {a}.
Else:
—L′a ← L′; L′b ← ∅; Pool← Pool ∪ {b}.

Fig. 2: The algorithm that resolves the conflict of attribution of a lottery.

q ≥ 1 − ε
vmax

, we have that vi(L̃) ≥
(

1− ε
vmax

)
vi(L

′) ≥ vi(L
′) − ε. Therefore, if L′ ∈

Di(p,Γ, I
′), then L̃ ∈ ε-Di(Γ, p, Ĩ).

Finally, it follows from q ≥ p(L′)
vmin

that vi(L̃) ≥ p(L′)
vmin
·vi(L′) ≥ p(L′)

vmin
·vmin = p(L′) = p(L̃),

which implies that the utility of agent i from L̃ is non-negative.

The following implies that for an agent who is not in the pool, her current allocation
is in her ε demand.

OBSERVATION 4.4. For any agent i, at any point of the ε-LPE process, if i /∈ Pool,
then L′i is in the ε-demand of agent i.

PROOF. This holds trivially at the start of the process. Whenever an agent takes a
single lottery (or the empty set) in her demand, this holds. Whenever an agent takes a
set of lotteries in her demand, and this set is merged at step 2(c)i of the process, this is
true since the adapted implementation returns a random bundle which is the union of
the random bundles received by the merged lotteries. Since the price of the new lottery
is the sum of prices of the merged lotteries, this insures that the agent has the same
utility for the new lottery as she had for the original set of lotteries. Finally, whenever
two agent compete over a lottery in resolve, Observation 4.3 implies that for the agent
who gets the lottery, this lottery is in her ε-demand.

Finally, the following holds simply since no lottery is dropped during the process.

OBSERVATION 4.5. Let L be some lottery that is unassigned at the end of the ε-LPE
process. It follows that this lottery was unassigned throughout the process.

We now show that the process converges to an ε-LPE in weakly polynomial time.

LEMMA 4.6. The process described above outputs an ε-LPE, and runs in time
(weakly) polynomial in the input size and 1/ε.

PROOF. We first claim that the process terminates. At every iteration, one of the
following can occur:

(1) A merger of two or more lotteries occurs.
(2) The probability of a lottery is reduced until one of the buyers has a 0 utility.
(3) The probability of a lottery is reduced until the reduced lottery is no longer in the

demand set of one of the buyers.



(1) can happen at most n times, as when lotteries are merged, the overall number of
lotteries decreases by 1. For every lottery, (2) can happen once for every agent until
the merger of the lottery with another lottery, and therefore, (2) can happen at most
2n · n = 2n2 times.

Let v̂ = maxi vi(M). Let L′ be a lottery whose probability has not yet been decreased,
and let v̂L′ = maxi vi(L

′) ≤ v̂. Every time the lottery’s probability is decreased, the
expected value of the lottery to the agent who values the lottery the most decreases
by at least ε. This can happen until the expected value of the agent for the lottery
is equal to its price p′. At that point, the utility of all agents for this lottery is at
most 0, and it won’t be demanded again. Therefore, Step 2c of resolve can happen at
most v̂L′−p′

ε ≤ v̂
ε times, which is weakly polynomial. Since there are no more than 2n

lotteries throughout the process (every time a lottery is created, the overall number
of lotteries decreases by 1), this implies that the number of times (3) can happen is
weakly polynomial as well.

According to Observation 4.4, when the process terminates, for every agent, her
given bundle is in her ε-demand.

Finally, we show that the computed ε-LPE has liquid expected welfare at least 3−
√
5

2
of the liquid expected welfare of the initial allocation.

THEOREM 4.7. Let L′ = (L′1, . . . , L
′
n) be the final assignment of lotteries to agents,

where agent i receives lottery L′i, and let L = (L1, . . . , Ln) be the initial set of lotteries.
Setting ϕ =

√
5−1
2 in process ε-LPE, we get∑

i

v̄i(L
′
i) ≥

3−
√

5

2

∑
i

v̄i(Li) ≈ 0.3819
∑
i

v̄i(Li).

PROOF. Let Untaken = {i : Li remains unassigned at the end of the process}, and
let Taken = {1, . . . , n} \Untaken. We define the following set:

L(i) = {j : Lj was merged in the process of creating L′i}.
Notice that p(L′i) =

∑
j∈L(i) p(Lj) = ϕ ·

∑
j∈L(i) v̄j(Lj), and that for every i 6= j, L(i) ∩

L(j) = ∅. Therefore, ∑
i

p(L′i) = ϕ ·
∑

j∈Taken

v̄j(Lj). (1)

For every agent i, since her expected utility is non-negative at the end of the ε-LPE
process, we have

v̄i(L
′
i) ≥ p(L′i). (2)

For every agent i such that i ∈ Untaken, we show that

v̄i(L
′
i)− ϕ · p(L′i) ≥ (1− ϕ) · v̄i(Li). (3)

Since Li was left untouched during the run of ε-LPE, agent i’s utility from the lottery
she received is at least vi(Li) − p(Li) − ε. Although this ε can be arbitrarily small,
and does not change our statement by much, we observe that we can get rid of this
ε by a slight change in the ε-LPE process, as follows. When two agents compete over
a lottery in resolve, if the lottery drops out of both agents’ demand at once, and one
of the agents’ initial lotteries is still unassigned, we allocated the lottery to the other
agent. If both agents’ initial lottery is unassigned, we make sure that the probability
of the lottery is reduced in such a way that one of the agents does not strictly prefer
her initial lottery, and assign the lottery to this agent. This change ensures that if an



agent’s initial lottery is left untouched, her utility from the lottery she received is at
least the utility from her initial lottery, i.e.,

vi(Li)− p(Li) ≥ v̄i(Li)− ϕ · v̄i(Li) = (1− ϕ) · v̄i(Li), (4)

where the first inequality follows by vi(Li) ≥ v̄i(Li) and p(Li) = ϕ · v̄i(Li).
For every agent i ∈ Untaken, either

— v̄i(L
′
i) = vi(L

′
i): In this case,

v̄i(L
′
i)− ϕ · p(L′i) = vi(L

′
i)− ϕ · p(L′i) > vi(L

′
i)− p(L′i) = ui(L

′
i) ≥ (1− ϕ) · v̄i(Li),

where the last inequality follows by Eq. (4), or,
— v̄i(L

′
i) = bi: Since the agent has a non-negative utility from L′i, bi ≥ p(L′i), and there-

fore, v̄i(L′i)− ϕ · p(L′i) ≥ bi − ϕ · bi ≥ (1− ϕ) · v̄i(Li), where the first inequality follows
since the agent has a non-negative utility from her assigned lottery (and therefore
bi ≥ p(L′i)), and last inequality follows by the definition of liquid welfare.

We get that∑
i

v̄i(L
′
i) =

∑
i

(v̄i(L
′
i)− ϕ · p(L′i)) + ϕ

∑
i

p(L′i)

≥
∑

i∈Untaken

(v̄i(L
′
i)− ϕ · p(L′i)) + ϕ

(
ϕ
∑

i∈Taken

v̄i(Li)

)
≥ (1− ϕ)

∑
i∈Untaken

v̄i(Li) + ϕ2
∑

i∈Taken

v̄i(Li)

≥ min
(
1− ϕ,ϕ2

)
·
∑
i

v̄i(Li),

where the first inequality is due to (1) and (2), and the second inequality is due to (3).
Solving for 1− ϕ = ϕ2, we get ϕ =

√
5−1
2 , and therefore∑

i

v̄i(L
′
i) ≥

3−
√

5

2

∑
i

v̄i(Li) ≈ 0.3819
∑
i

v̄i(Li),

as desired.

In [Feldman et al. 2013] a combinatorial algorithm giving an exact CWE is pre-
sented. Unfortunately, our algorithm and a straightforward adaptation of the com-
binatorial algorithm of [Feldman et al. 2013] fails to give an exact LPE. A concrete
example appears in Appendix A.

5. COMPUTING THE INITIAL ALLOCATION
5.1. The Liquid Welfare LP
In this section we show how to compute the initial randomized allocations used for
the LPE process. We first present an LP for finding an assignment that maximizes a
relaxed version of our problem, where agents can receive fractional bundles.

Although this LP has an exponential 2m · n variables, the dual can be solved using a
separation oracle. In the dual there are exponentially many constraints. Nevertheless,
we can solve it, assuming we have access the demand oracle of each player. Given a
solution {ui, zi}i∈N , {pj}j∈M , we want to verify that ui + (zi − 1) · vi(S) +

∑
j∈S pj ≥ 0

holds for every agent i and set S. For agent i, consider 2 cases. If zi ≥ 1, then the LHS
of the inequality is non-negative since all variables are non-negative. Therefore, all
constraints hold for agent i. If zi < 1, then consider the equivalent set of constraints



LW-LP:

max
∑
i,S

yi,S · vi(S)

s.t.
∑
S

yi,S · vi(S) ≤ bi for every i ∈ N∑
S

yi,S ≤ 1 for every i ∈ N∑
i,S3j

yi,S ≤ 1 for every j ∈M

yi,S ∈ [0, 1] for every i ∈ N , S ⊆M

Fig. 3: An LP that maximizes the liquid welfare fractionally.

Dual:

min

n∑
i=1

(ui + bi · zi) +

m∑
j=1

pj

s.t. ui + vi(S) · zi +
∑
j∈S

pj ≥ vi(S) for every i ∈ N , S ⊆M

ui, zi ≥ 0 for every i ∈ N
pj ≥ 0 for every j ∈M

Fig. 4: The dual of LW-LP.

vi(S) −
∑
j∈S

pj
1−zi ≤

ui

1−zi for every set S; This can be verified by checking if the con-
straint holds for the set that maximizes the agent’s utility at prices {pj/(1−zi)}j∈M ,
which can be done given agent i’s demand oracle.

5.2. Producing Lotteries from the LP solution
Since we want to produce lotteries for the agents, we must use a rounding algorithm
R that takes a solution y of LW-LP and returns a feasible allocation S = (S1, . . . , Sn).
Let LP =

∑
i,S yi,S · vi(S), and for every agent i, let LPi =

∑
S yi,S · vi(S). Let R be a

randomized polynomial time rounding algorithm such that:

(1) For every S ∼ R(x) and for every i 6= j, Si ∩ Sj = ∅.
(2) For every i, ES∼R(x)[vi(Si)] ≥ α · LPi.

If R satisfies both properties, we say R is an α-guarantee rounding algorithm.
We note that the existence of such an algorithm already guarantees the existence of

feasible lotteries L = (L1, . . . , Ln) such that
∑
i vi(Li) ≥ α · OPT . This can be done by

setting Li(S) = PrS∼R(x)[Si = S]. The algorithm that implements L is simply R(x).
We get the following:∑

i

v̄i(Li) =
∑
i

min(vi(Li), bi) ≥
∑
i

min(α · LPi, bi)

=
∑
i

α · LPi = α · LP, (5)



where the inequality holds since for every i, vi(Li) = ES∼R(x)[vi(Si)] ≥ α · LPi, and
the following equality holds since LPi ≤ bi for every i.

We next claim that LP ≥ OPT . To see this, let L∗ = {L∗1, . . . , L∗n} be a feasible set
of lotteries that yields optimal liquid expected welfare. One can transform L∗ into a
solution to the LW-LP by setting yi,S to be the probability of S in lottery L∗i . By the
feasibility of L∗, all the feasibility constraints in LW-LP are satisfied. In addition, one
can assume, without loss of generality, that in an optimal set of lotteries, the expected
welfare of every agent does not exceed her budget (otherwise, decrease probabilities of
lottery outcomes without affecting liquid welfare or feasibility). Since

∑
S yi,S · vi(S) is

exactly the expected welfare of agent i from L∗i , this means that the LW-LP constraints
of type

∑
S yi,S · vi(S) ≤ bi are also satisfied. We conclude that the transformation of L∗

as described above gives a feasible assignment to LW-LP with objective value of OPT .
Therefore, LP ≥ OPT . Combining this with Equation (5) yields

∑
i v̄i(Li) ≥ α ·OPT .

Plugging these lotteries to the LPE process yields a LPE with a liquid expected
welfare which is within a 3−

√
5

2 · α factor from the optimal one. From [Feige 2009] we
can use a method that computes a feasible allocation in polynomial time with α = 1/2
for subadditive valuations and α = (e − 1)/e for submodular valuations. However, Li
might be a lottery over an exponential number of sets (although R is a polynomial time
algorithm). We devote the next section to show how to produce a set of feasible lotteries
over a polynomial number of sets with approximately the same guarantees.

5.3. Reducing support size to be polynomial
In this section, we are given a set of feasible lotteries L = (L1, . . . , Ln) with a possibly
super-polynomial support size, and an implementation of these lotteries I. For every i,
let v̂i = vi(Li). Our goal is to output a set of lotteries with a polynomial support size,
that are easily implemented, with approximately the same liquid expected welfare
guarantee v̂i for each agent i. Since the lotteries might be of super-polynomial sup-
port size, they cannot necessarily be explicitly described. For this reason, we assume a
sample access to the implementation of the lotteries OI ; i.e., OI returns an allocation
S = (S1, . . . , Sn), where PrS∼OI [Si = T ] = Li(T )2.

A straightforward approach to produce a set of lotteries with the same welfare is
the following – Let S1, . . . ,S` be the output produced in ` samples from OI (St =

(St1, . . . , S
t
n) is the output of the tth sample). A set L̂ of feasible lotteries can be pro-

duced the following way — L̂i is a lottery which with probability 1
` outputs Ski for

k ∈ {1, . . . , `}. The implementation of L̂ is simply to choose Sk with probability 1
` for

k ∈ {1, . . . , `} and allocated Ski for the owner of L̂i. For a sufficiently large `, this process
guarantees that with high probability vi(L̂i) is close to v̂i. Unfortunately, this ` can be
exponential in n.

To show this, consider the following example — a single item a is up for sale. Agents
i = {1, . . . , n − 1} are with value 2n for the item and a budget of 1. agent n is with
value 1 and budget 1 − n−1

2n for the item. The unique optimal solution for LW-LP in
this case is to set xi = 1

2n for i = {1, . . . , n − 1} and xn = 1 − n−1
2n . Let L be the set of

lotteries representing this solution; i.e., Li(a) = xi for every i. An implementation I of
L can simply give the item a to Li with probability xi. However, for any ` = p(n) runs,
with an astonishingly high probability, none of agents 1, . . . , n− 1 will receive an item.
Therefore, using such process above to produce lotteries will not give us the welfare
guarantee we want, unless the support of each lottery is exponential.

2In [Feige 2009], he shows how to implement such an oracle for subadditive valuations in polynomial time.



Fig. 5: An illustration of the process of creating the new set of lotteries. Every column
i represents a lottery L̂i created by the process, where each entry Ski is a set in the
support of L̂i. The entries in the kth row, S = (Sk1 , S

k
2 , . . . , S

k
i , . . . , S

k
n) represents disjoint

sets of items returned by the kth sample from ÔI . For every k ∈ [`], the implementation
of the lotteries chooses the kth row with probability 1/`, and for each lottery L̂i, returns
the corresponding Ski .

In the above example, some agents receive most of their welfare only in an event
of a very low probability. To overcome this, we introduce the following change in the
process. At each iteration, with probability 1 − ε, we sample OI as before to produce
the sets of items; with probability ε, we pick a random agent i, and give this agent all
the items. This modification reduces the expected welfare of each agent by a factor of
at most 1− ε, and for the agents who only receive a substantial welfare from low prob-
ability events, increases the probability of such events. The modification is captured
by the sample oracle ÔI (Figure 7) in use by the process. The process is presented by
Algorithm ProduceLotteries (Figure 6). See Figure 5 for a visualization of the resulting
lotteries obtained by the process.

ProduceLotteries
Input: OI : A an oracle access to the implementation I of a set L of lotteries.
Output: Feasible lotteries L̂ = (L̂1, . . . , L̂n).

(1) For t← 1 . . . `:
— St = (St1, . . . , S

t
n) ∼ ÔI(OI).

(2) For every i, let L̂i be the algorithm that picks k ∈ [`] uniformly at random and
returns Ski .

(3) Return L̂ =
(
L̂1, . . . , L̂n

)
.

Fig. 6: Producing initial lotteries for the LPE process.



ÔI(OI)
— With probability 1− ε:

— Let S ∼ OI ; return S.
— Otherwise (with probability ε):

— Let i be chosen uniformly at random from [n].
— Set Si = M and for all j 6= i Sj = ∅. Return S = (S1, . . . , Sn).

Fig. 7: An α · (1− ε)-guarantee oblivious rounding algorithm.

We finally show that using poly time iterations of this process, we produce a set L̂ of
feasible lotteries with the desired properties.

LEMMA 5.1. Letting ` = Θ
(
n log(n/ε)

ε3

)
, with probability 1 − ε, for every i, vi(L̂i) ≥

(1− ε)v̂i.
PROOF. In order to analyze the number of rounds needed, we use the following

variants of the multiplicative Chernoff bound.
Let χ1, . . . , χ` be ` independent random variables, such that χi ∈ [0, B] for some

B > 0, and let E[χi] = µ for every i ∈ {1, . . . , `}. For every ε ∈ (0, 1], the following holds:

Pr

[
1

`

∑̀
i=1

χi < (1− ε)µ

]
< exp

(
−ε

2 · µ · `
2B

)
. (6)

First, notice that vi(L̂i) =
∑`

t=1 vi(S
t
i)

` . For every agent i, we define the following sets:

Bigi =
{
S ⊆M : vi(S) ≥ n

ε
· v̂i
}

and Smalli =
{
S ⊆M : vi(S) <

n

ε
· v̂i
}
.

Let
vSmall
i =

∑
S∈Smalli

Pr
S∼ÔI

[Si = S] · vi(S).

Let S1, . . . ,S` be the ` outputs of R during the run of ProduceLotteries. Let Xt be a
random variable defined by

Xt =

{
vi (Sti ) Sti ∈ Smalli
0 otherwise

,

let Yt be a random variable defined by

Yt =

{
1 Sti ∈ Bigi
0 otherwise

.

Using the above definitions, we have that

vi(L̂i) =

∑`
t=1(Xt + Yt · vi (Sti ))

`
. (7)

Note that E [Xt] = vSmall
i and that Xt ∈

[
0, nε · v̂i

]
. If vSmall

i > (1− ε)v̂i, using Chernoff
bound (6) and ` = Θ

(
n·log(n/ε)

ε3

)
, we get that

Pr

[∑`
t=1Xt

`
< (1− ε)vSmall

i

]
< exp

(
−ε

2 · vSmall
i · `

2n
ε · v̂i

)
< exp (− log(n/ε)) =

ε

n
,



where the second inequality comes from the definition of ` and from the fact that
vSmall
i > (1− ε)α · LPi for some small ε.
If Bigi is non-empty, and by the monotonicity of vi, M ∈ Bigi. Therefore, E[Yt] ≥

Pr[Sti = M ] ≥ ε
n . Using Chernoff bound with ` = Θ

(
n log(n/ε)

ε3

)
, we get that

Pr

[∑`
t=1 Yt
`

< (1− ε) E[Yt]

]
< exp

(
−ε

2 · E[Yt] · `
2

)
< exp (− log(n/ε)) =

ε

n
,

where the second inequality comes from the definition of ` and from the fact that
E[Yj ] ≥ ε

n .
We inspect the following cases:

— Bigi 6= ∅: In this case, whenever
∑`

t=1 Yt

` ≥ (1− ε) E[Yt] ≥ (1− ε) εn , then

vi

(
L̂i

)
≥
∑`
t=1 Yt · vi (Sti )

`
≥ (1− ε) · ε

n
· n
ε
· v̂i = (1− ε) · v̂i

.
— Bigi = ∅: In this case, vSmall

i = ES∼R [vi(Si)] ≥ (1− ε) · v̂i. Whenever
∑`

t=1Xt

` ≥ (1− ε) ·
vSmall
i , then vi

(
L̂i

)
≥

∑`
t=1Xt

` ≥ (1− ε)2 · v̂i > (1− 2ε) · v̂i.

In both cases, Pr
[
vi

(
L̂i

)
< (1− 2ε) · L̂i

]
< ε

n . Using a union bound, we get the desired
result.

6. CONCLUSIONS AND OPEN PROBLEMS
In this work we introduce Lottery Pricing Equilibria (LPE), extending the notion of
Combinatorial Walrasian Equilibrium [Feldman et al. 2013] to settings with bud-
gets by pricing lotteries over bundles. We use a generalization of the liquid welfare
of [Dobzinski and Paes Leme 2014] to lotteries as our objective, in lieu of the social
welfare. We present a weakly polynomial algorithm that turns an initial randomized
allocation into a ε-LPE, losing only a constant fraction of the initial liquid welfare in
the process. We also show how to efficiently compute an initial randomized allocation
with high liquid welfare for subadditive valuations.

Our work raises several interesting questions. Can our loss of a factor of 3−
√
5

2 be
improved? Does there exist, and can we compute (in weakly or strongly polynomial
time), an exact LPE with high liquid welfare? What about bounding the revenue which
can be obtained by an LPE?
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A. A NOTE ON EXACT LPE
We give an algorithm that constructs an ε-LPE. In contrast, [Feldman et al. 2013]
gives an algorithm that produces an exact CWE. In this section we explain why a
straightforward adaptation of [Feldman et al. 2013] fails to give an exact LPE.

The fundamental difference between our procedure and the procedure used in [Feld-
man et al. 2013] is that in [Feldman et al. 2013] prices increase, whereas in our proce-
dure probabilities decrease. Suppose that in [Feldman et al. 2013], say after the second
agent picked her bundle, agents 1 and 2 are allocated bundles A and B, respectively.
At this point, the prices of A and B simultaneously increase, until one of the agents 1,2
is indifferent between her own bundle and some unallocated bundle. Note that since
utilities are linear in prices, by increasing the prices of the allocated bundles simul-
taneously, the demand structure within the set of allocated bundles remains intact.
What changes is that now we have an additional demanded bundle outside the set of
allocated bundles. In [Feldman et al. 2013] it is explained how this property is used to
produce an exact CWE.

Crucially, we cannot mimic this process because we deal with reduced probabili-
ties, not increased prices, and utility is not linear in probability. One would attempt
to address this problem by decreasing probabilities at different rates. Unfortunately,
this attempt fails to preserve the demand structure, as demonstrated in the following
example.

Consider an instance with two unit-demand agents, 1 and 2, and two lotteries, A
and B, with valuations v1(A) = 8, v1(B) = 6, v2(A) = 9, v2(B) = 7, and prices pA = 5,
pB = 3. Let qA and qB be the scaling factors of lotteries A and B respectively. Simple
calculation shows that for agent 1 to prefer A over B, it must hold that qA ≥ 3

4qB + 1
4 .

Similarly, for agent 2 to prefer B over A, it must hold that qB ≥ 9
7qA−

2
7 . Combining, we

get qA ≥ 1. Thus, to keep the desired demand structure, qA must stay intact throughout
the process. (This is in contrast to [Feldman et al. 2013], where prices can always
increase simultaneously.) Consequently, we cannot achieve the desired property that
one of the agents be indifferent between her lottery and an unallocated one. Suppose,
for example, that lottery C is such that v1(C) = v2(C) = ε. Agent 1 cannot be made
indifferent between A and C, since qA cannot be reduced. For agent 2 to be indifferent
between B and C, qB must drop, but then agent 2 would strictly prefer A over B, so
the demand structure changes.
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