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Abstract — We propose a generalized belief propaga-
tion (GBP) receiver for two-dimensional (2-D) chan-
nels with memory, which is applicative to 2-D inter-
symbol interference (ISI) equalization and multi-user
detection (MUD). Our experimental study demon-
strates that under non-trivial interference conditions,
the performance of this fully tractable GBP receiver
is almost identical to the performance of the optimal
maximum a-posteriori (MAP) receiver.

I. Introduction

Two-dimensional (2-D) finite state input channels with
memory play a fundamental role in various applications in
modern communications. A popular and important instance
of this class of channels is 2-D inter-symbol interference (ISI)
channels, which appear, e.g., in magnetic and optical record-
ing systems. In ISI, finite state symbols are ordered on a 2-D
grid, causing interference in a limited neighborhood.

Another interesting instance of dispersive 2-D channels is
multiple-access (MA) channels, which appear in cellular net-
works. Following Wyner’s cellular model [1], a planar uplink
model can be viewed as a 2-D channel, where each cell corre-
sponds to a node in the grid, and interference occurs between
neighboring cells. This Wyner-like model assumes that most
of the multiple-access interference (MAI) is caused by inter-
cell effects, rather than intra-cell effects. This assumption is
typical to MA systems with long signature codes distinguish-
ing between users within a cell. These codes are long enough
to diminish cross-correlations between users within the cell,
however, since they are being reused in neighboring tiers, they
may cause inter-cell interference. An example is the allocation
of scrambling codes in 3rd generation UMTS uplink [2].

The task in both ISI and MA channels is to overcome in-
terference and noise, and detect the transmitted symbols. In
ISI this process is termed channel equalization, while in MA
it is called multi-user detection (MUD, [3]).

Optimal detection can be achieved by maximum a-
posteriori (MAP) joint sequence decision based on the
matched filter outputs of all corrupted symbols. The optimal
receiver achieves a significant capacity improvement over the
conventional matched filter receiver. However, its complexity
for 2-D channels is exponential in the grid’s size.

Hence, various practical sub-optimal detection methods
have been proposed (e.g. [4, 5] and references therein). For
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example, Marrow and Wolf [4] have recently evaluated the per-
formance of several iterative detection methods for the binary-
input 2-D ISI channel. They proposed detection schemes op-
erating iteratively on the rows and columns of the 2-D chan-
nel, which approximates the optimal receiver’s bit error rate
(BER) to within 0.5dB.

In this work we present a detection algorithm based on
methods from probabilistic graphical models. The basic ob-
servation is that 2-D channels can be viewed as an undi-
rected graphical model, a.k.a. pairwise Markov random fields
(MRF, [6]), and detection of the 2-D channel symbols is
equivalent to performing inference in this undirected graphical
model.

Graphical models provide powerful tools for exact (optimal)
or approximate inference. For example, loopy belief propaga-
tion (LBP, sum-product algorithm, [7]) is an efficient way to
solve inference problems on graphical models, which has been
shown to serve remarkably well as a decoding engine in low
density parity check (LDPC) codes [8]. In this work we show
that, unlike LDPC codes, LBP performs poorly in 2-D chan-
nels detection. However, an extension of LBP termed gen-
eralized belief propagation (GBP, [9]), is shown to provide a
practical method with near-optimal performance both for 2-D
ISI equalization and for MUD in uncoded cellular networks.

The paper is organized as follows. Section II introduces
the dispersive 2-D channel model, and section III presents its
connection to graphical models. Section IV describes the com-
plexity of exact inference in 2-D channels. Section V presents
approximate inference using LBP and discusses its shortcom-
ings, and then moves on to GBP. Section VI provides sim-
ulation results for the 2-D ISI and MA channels in various
topologies, which are discussed in section VII.

We shall use the following notations. The operator {·}T

stands for a vector or matrix transpose, {·}i and {·}ij denote
entries of a vector and matrix, respectively.

II. System Model

Consider a discrete time N×N 2-D finite state input chan-
nel with memory of the form

yk,l = dk,l + vk,l +
∑

(i,j)∈<k,l>

αi,jdi,j ∀k, l = 1, . . . , N, (1)

where yk,l, the channel’s output observation at symbol (k, l),
is the sum of the finite state alphabet input symbol dk,l and
two additional terms. The first term, vk,l, represents ambi-
ent additive white Gaussian noise (AWGN), while the second
term is the scaled interference caused by adjacent symbols to
(k, l), denoted by < k, l >. The parameter αi,j (|αi,j | ≤ 1)
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Fig. 1: Upper pane: Interference structures for three types of
3 × 3 2-D channels: (a) ISI grid, (b) rectangular cellular network
(c) hexagonal cellular network. The arrows mark the direction of
interference. Lower pane: The corresponding undirected graphi-
cal model representation of the channels in the upper pane: (d) ISI
grid, (e) and (f) rectangular and hexagonal cellular networks. Full
nodes represent (hidden) transmitted bits, while empty nodes cor-
respond to the observations. Interaction couplings (compatibility
function) ψij are denoted by a solid line connecting two full nodes,
while the external field (evidence) φi is depicted by a solid line con-
necting a full node and an empty node. For clarity we use dotted
edges in (e) and (f) to represent the extra edges added compared
to the graphs (d) and (e), respectively.

controls the interference attenuation and fading. We assume
the channel is perfectly known at the receiver’s side.

Stacking all the observations, data symbols and noise sam-
ples into N2 × 1 vectors y, d and v, respectively, (1) can be
rewritten as

y = Sd + v, (2)

where the matrix S encapsulates the memory/interference
structure.

Different 2-D channels, such as ISI or multi-cell network
topologies of the MA system, differ from one another by the
interference matrix S. Our basic assumption, which later al-
lows for a graphical model interpretation, is that interference
is caused by neighboring symbols, i.e., S is actually a band
matrix. The upper pane in Fig. 1 represents the interference
structure of three topologies: ISI, a rectangular cellular net-
work, and the typical hexagonal cellular network.

In the following derivations, we assume real-space data sig-
nalling d, interference S and noise v ∼ N (0, σ2IN ) (an exten-
sion to the complex domain is straightforward.)

A. Optimal Detection
The individually optimum maximum a-posteriori (MAP)

detection of the i’th transmitted symbol, di = {d}i, is given
by

d̂i = arg max
xi

Pr(xi|y) = arg max
xi

∑
x\xi

Pr(x|y), (3)

where xi = {x}i represents the possible values of the i’th
transmitted symbol.

The joint conditional probability distribution is

Pr(x|y) = Pr(v) ∝ exp

(
− 1

2σ2
||y − Sx||2

)
. (4)

Hereinafter, for exposition purposes, we consider the case
of binary-input alphabet, i.e. di ∈ ±1. Hence, the sufficient

statistics in this case takes the following form

Pr(x|y) ∝ exp

(
− 1

σ2

( ∑
(i>j)

Rijxixj −
∑

i

hixi

))
, (5)

where R = ST S is the interference cross-correlation matrix
and h = ST y is the output vector of a filter matched to the
channel’s interference structure. The notation (i > j) stands
for a summation over all non-zero entries in the upper trian-
gular of the symmetric cross-correlation matrix R.

III. The Connection To Undirected Graphical
Models

An undirected graphical model with pairwise potentials
(a.k.a. pairwise Markov random fields), consists of a graph
G and potential functions ψij(xi, xj) and φi(xi) such that the
probability of an assignment x is given by

Pr(x) ∝
∏
(i>j)

ψij(xi, xj)
∏

i

φi(xi). (6)

Hence, the probability distribution in (5) defines the following
undirected graphical model

Pr(x|y) ∝
∏
(i>j)

ψij(xi, xj)
∏

i

φi(xi, hi), (7)

where

ψij(xi, xj) = exp
(
−Rijxixj

σ2

)
(8)

is a compatibility function representing the structure of the
system. The potential

φi(xi, yi) = exp
(hixi

σ2

)
(9)

is the ’evidence’ or local likelihood, which describes the sta-
tistical dependency between the hidden variable xi and the
observed variable hi

1. The lower pane in Fig. 1 presents the
resulting graphical model of our three application examples -
ISI, a rectangular cellular network and a hexagonal cellular
network.

Once the graphical model is defined we turn to the ana-
logue of detection which is termed ’inference’, i.e., calculating
the probability given in (3). The field of graphical models has
developed tools for efficiently calculating (3), i.e., performing
exact inference. In cases where exact inference is intractable,
approximation algorithms have been developed. In the next
section we present the junction tree algorithm for exact infer-
ence, and then we turn to approximate inference and discuss
our application of generalized belief propagation.

IV. Exact Inference

The junction tree algorithm performs exact inference over
a general graph by converting it into an equivalent tree whose
nodes contain clusters (cliques) of nodes of the original graph.
Then inference can be performed by passing messages forward

1Notice that for the non-binary finite state input alphabet case,
the MRF modelling is identical, except for an additional external
field potential operating on each node which can be absorbed into
φi term. This additional potential arises from the auto-correlations
Rii, which can not be dropped out from the sufficient statistics
expression as in the binary case.



and backward along neighboring cliques in the tree (for further
details see, e.g., [10].)

The complexity of the algorithm is exponential in the size
of the largest clique in the derived tree. For N × N grid-
like graphs, such as our 2-D problem, the size of the largest
clique is proportional to the grid’s dimension length N times
the memory depth ν of the channel. Hence, the detection
complexity becomes impractical for large grids. Furthermore,
even for moderate size graphes (e.g. a small network of tens of
cells) when using a non-binary modulation, or for non-trivial
memory effect, exact inference is still impossible. Thus, we
must resort to approximate inference methods.

V. Approximate Inference

In this section we discuss approximate inference algorithms
using belief propagation and its generalizations.

A. Loopy Belief Propagation
Loopy belief propagation (LBP) is equivalent to applying

Pearl’s local message passing algorithm [7], originally derived
for trees, to a general graph even if it contains cycles (loops).
As mentioned previously LBP has been found to have out-
standing empirical success in many application, e.g., in de-
coding Turbo and LDPC codes. The performance of LBP in
these applications may be attributed to the sparsity of the
graphs. The cycles in the graph are long, hence inference may
be performed as if it were a tree.
Can LBP be used for approximating the transmitted symbols
over dispersive 2-D channels?

Our studies show that LBP almost always fails to converge
and therefore the associated detection performance is poor.
This result is not surprising. As opposed to the sparse graphs
of LDPC codes, the graphs of 2-D channels consist of many
short cycles. As a result LBP’s implicit tree-like assumption
does not hold, and its approximation is poor. In order to
earn back the near-optimal characteristics of message passing
inference one must circumvent this problem.

B. Generalized Belief Propagation
The generalized belief propagation algorithm (GBP, [9]) is

an extension of LBP that has been shown to provide better
approximations in many applications. GBP starts by defin-
ing regions (clusters) of nodes which may intersect, and then
passes messages between these regions in an analogous way to
LBP. Within each such region GBP performs exact inference,
hence short cycles of nodes which are included in a region
cause no problem. To date, no systematic method of choos-
ing these regions in a general graph exists, so as to produce
a better approximation. A region that encompasses all nodes
along the shortest cycles, might be a desired choice. For ex-
ample, the regions used for the 2-D channel examples (of all
types) consisted of 3 × 3 squares of nodes, as displayed in
Fig. 2. This choice of regions is natural since nodes are con-
nected up to their second nearest neighbor. Notice that the
graph ’contained’ in a region is identical to the graphs shown
in Fig 1(d)–(f).

Surprisingly, the computations required for GBP are only
slightly more than the computations required for LBP and
the complexity grows exponentially only with the size of the
chosen regions. Naturally, enlarging the basic region entails a
more accurate inference at the cost of complexity.

Fig. 2: Covering a 4 × 4 2-D channel
by 3× 3 regions used in GBP. Regions
are defined by sliding a 3 × 3 window
along the channel. The result is four
regions for this 4× 4 system:
{1, 2, 3, 5, 6, 7, 9, 10, 11},
{2, 3, 4, 6, 7, 8, 10, 11, 12},
{5, 6, 7, 9, 10, 11, 13, 14, 15},
{6, 7, 8, 10, 11, 12, 14, 15, 16}.

Can GBP improve the detection of symbols corrupted
by the 2-D channel?

Our empirical study shows that GBP gives remarkable re-
sults and near-optimal detection performance, even for harsh
interference conditions. These close to optimal results are ob-
tained even when small basic clusters are chosen (e.g. 3 × 3
node regions). Further details of the GBP receiver will be
discussed in a future publication. In the following section, we
present our experimental results of the GBP receiver for 2-D
channels.

VI. Simulation Results

The performance of the proposed GBP receiver was evalu-
ated using Monte-Carlo simulations of three examples of the
dispersive 2-D channel: a 2-D ISI channel, and two topologies
of a cellular network - rectangular and hexagonal. In all ex-
amples, the size of selected GBP basic region was 3× 3, as in
Fig. 2.

The performance of GBP was compared to the optimal re-
ceiver, and to several other standard receivers. In all our ex-
periments the LBP receiver did not converge in a substantial
percentage of the simulations, for both synchronous and asyn-
chronous message scheduling. As a result its performance was
worse than a matched filter receiver, and in certain cases was
close to a random guess. Hence, LBP’s results are omitted
from the performance evaluation figures.

A. 2-D ISI Channel
Following [4], we simulated a 6× 6 binary ISI channel, un-

der two non-trivial constant interference levels, αi,j = α = 0.5
and α = 0.75. Outside the grid the symbols were assumed to
have value (−1). Fig. 3 compares between the equalization
performance of the optimal receiver and GBP, in terms of av-
erage bit error rate (BER) per symbol as a function of signal
to noise ratio (SNR). As can be seen the GBP error perfor-
mance coincides with MAP error levels or is extremely close
to it. In [4], for similar ISI channel setting, the performance
of the best iterative detector was approximately 2/3dB above
the optimal BER.

We also evaluated the performance of the GBP receiver in
a similar setting, but for a larger 20×20 channel with α = 0.5.
As MAP equalization is infeasible for such a system, we com-
pared GBP’s performance to an analytical lower bound on the
optimal error probability. This bound was obtained by assum-
ing that all interfering bits are known at the receiver’s side,
thus transforming the dispersive channel into a memoryless
one, where optimal detection is achieved by using a simple
matched filter. Fig. 4 displays the equalization performance
of GBP and the lower bound on the optimal error probability.
The results show that the GBP receiver’s BER is very close to
the bound, which implies that its performance is near-optimal
for this system also.
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Fig. 3: 2-D ISI equalization in a 6×6 channel for αi,j = α = 0.5 and
α = 0.75. Equalization performance of GBP vs. optimal (MAP)
receivers in terms of average bit error rate (BER) per symbol, as a
function of signal to noise ratio (SNR). The solid line corresponds
to α = 0.5, and dashed line corresponds to α = 0.75.
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Fig. 4: 2-D ISI equalization in a 20 × 20 channel for α = 0.5.
Equalization performance of a GBP receiver (solid line) vs. lower
bound (dashed line) on optimal (MAP) receiver error probability
in terms of average BER per symbol, as a function of SNR.

B. Rectangular Topology Cellular Network
We simulated a cellular network of 9×9 cells2 with rectan-

gular topology (Fig. 1-(b)). Inter-cell interference was either
constant αi,j = α = 0.5, or taken from a zero-mean Gaussian
distribution with standard deviation αstd = 0.5, hard limited
at α = ±1. The latter corresponds to a random MAI which
may be interpreted as caused by channel fading.

Fig. 5 presents the performance of the optimal MAP re-
ceiver, the GBP-MUD receiver, and also two other standard
receivers - the linear minimum mean square error (MMSE)
and the naive single-user matched filter (MF) receivers. GBP
practically coincides with the optimal MUD for both constant
and random interference scenarios, while MMSE and MF are
substantially inferior.

29× 9 was the largest system for which exact inference was pos-
sible.
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Fig. 5: MUD in a 9×9 rectangular topology. Average BER per cell
as a function of SNR, for the optimal (MAP) and GBP receivers.
Also shown are the BER for the linear minimum mean square error
(MMSE) and single-user matched filter (MF) receivers. The BER
was evaluated for two channel profiles of fixed (αi,j = α = 0.5, solid
lines) and random interference (α ∼ 0.5 · N (0, 1), dashed lines).

C. Hexagonal Topology Cellular Network
We empirically studied another instance of the 2-D model,

where a 9×9 cellular network is planned according to a hexag-
onal topology (Fig. 1-(c)). As in the rectangular case the
inter-cell interference was either constant or random. Fig. 6
compares the GBP-MUD receiver to the optimal MAP, and
to MMSE and MF receivers, showing similar performance as
in the rectangular case.
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Fig. 6: MUD in 9× 9 hexagonal topology. The setting is similar to
Fig. 5.

We also evaluated the performance of the GBP-MUD re-
ceiver in an additional setting, in which the SNR level was
fixed (4dB), and the interference α was varied. We used
α ∼ αstd·N (0, 1), hard limited at α = ±1, where 0 ≤ αstd ≤ 1.
Fig. 7 displays the performance of GBP, MAP, MMSE and MF
receivers in this setting. GBP is near-optimal for all interfer-
ence levels, even for harsh (α→ 1) conditions.
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Fig. 7: MUD in 9 × 9 hexagonal topology over a range of random
interferences. Average BER per cell as a function of random in-
terference standard deviation αstd, for the optimal (MAP), GBP,
MMSE, and MF receivers. The BER was evaluated for a random
interference scenario α ∼ αstd · N (0, 1) and a fixed SNR (= 4dB).

VII. Discussion

In this paper we introduced a GBP receiver for 2-D chan-
nels with memory. Simulation results for three different
examples show near-optimal error performance of this fully
tractable message passing scheme. This behavior is consistent
both as a function of the SNR and over the possible interfer-
ence range.

Other practical instances of the 2-D channel for which the
GBP receiver may be suitable are indoor wireless local area
networks (W-LAN) and multiple-in multiple-out (MIMO)
channels. An example of the latter is a single cell base-station
with a planar antenna array and widely spaced antenna ele-
ments. The remarkable performance of the proposed detection
scheme may also be of interest in designing new ad-hoc wire-
less networks.

Another attractive property of the GBP receiver in the
Wyner-like MUD context is its potential decentralized imple-
mentation. GBP’s messages between neighboring regions (or
cells) may be implemented in the network itself, instead of
being computed in a central processor.

Apart from providing the correct hard decisions, GBP re-
ceiver may also infer the marginal probabilities which may be-

come useful in coded systems. We empirically observed that
the marginal beliefs well approximate the a-posteriori proba-
bilities (APP). Thus, GBP may operate, e.g., as a detection
stage in an iterative detection and decoding scheme. Further
research concerning the usage of the GBP receiver in coded
systems is underway.
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