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Abstract
Automatic grouping and segmentation of images re-

mains a challenging problem in computer vision. Re-

cently, a number of authors have demonstrated good

performance on this task using methods that are based

on eigenvectors of the a�nity matrix. These ap-

proaches are extremely attractive in that they are based

on simple eigendecomposition algorithms whose stabil-

ity is well understood. Nevertheless, the use of eigen-

decompositions in the context of segmentation is far

from well understood. In this paper we give a uni-

�ed treatment of these algorithms, and show the close

connections between them while highlighting their dis-

tinguishing features. We then prove results on eigen-

vectors of block matrices that allow us to analyze the

performance of these algorithms in simple grouping

settings. Finally, we use our analysis to motivate

a variation on the existing methods that combines

aspects from di�erent eigenvector segmentation algo-

rithms. We illustrate our analysis with results on real

and synthetic images.

Human perceiving a scene can often easily segment
it into coherent segments or groups. There has been
a tremendous amount of e�ort devoted to achieving
the same level of performance in computer vision. In
many cases, this is done by associating with each pixel
a feature vector (e.g. color, motion, texture, position)
and using a clustering or grouping algorithm on these
feature vectors.

Perhaps the cleanest approach to segmenting points
in feature space is based on mixture models in which
one assumes the data were generated by multiple pro-
cesses and estimates the parameters of the processes
and the number of components in the mixture. The
assignment of points to clusters can then be easily per-
formed by calculating the posterior probability of a
point belonging to a cluster. Despite the elegance of
this approach, the estimation process leads to a no-
toriously di�cult optimization. The frequently used
EM algorithm [3] often converges to a local maximum

that depends on the initial conditions.

Recently, a number of authors [11, 10, 8, 9, 2] have
suggested alternative segmentation methods that are
based on eigenvectors of the (possibly normalized)
\a�nity matrix". Figure 1a shows two clusters of
points and �gure 1b shows the a�nity matrix de�ned
by:

W (i; j) = e�d(xi;xj )=2�
2

(1)

with � a free parameter. In this case we have used
d(xi; xj) = kxi�xjk2 but di�erent de�nition of a�ni-
ties are possible. The a�nities do not even have to
obey the metric axioms (e.g. [7]), we will only assume
that d(xi; xj) = d(xj; xi). Note that we have ordered
the points so that all points belonging to the �rst clus-
ter appear �rst and the points in the second cluster.
This helps the visualization of the matrices but does
not change the algorithms| eigenvectors of permuted
matrices are the permutations of the eigenvectors of
the original matrix.

From visual inspection, the a�nity matrix contains
information about the correct segmentation. In the
next section we review four algorithms that look at
eigenvectors of a�nity matrices. We show that while
seemingly quite di�erent, these algorithms are closely
related and all use dominant eigenvectors of matrices
to perform segmentation. However, these approaches
use di�erent matrices, focus on di�erent eigenvectors
and use a di�erent method of going from the con-
tinuous eigenvectors to the discrete segmentation. In
section 2 we prove results on eigendecompositions of
block matrices and use these results to analyze the be-
havior of these algorithms and motivate a new hybrid
algorithm. Finally, in section 3 we discuss the appli-
cation of these algorithms to a�nity matrices derived
from images.
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Figure 1: a. A simple clustering problem. b. The a�nity matrix. c. The �rst eigenvector. d. The second generalized
eigenvector. e. The Q matrix.
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Figure 2: a. Another simple clustering problem. b. The a�nity matrix. c. The �rst eigenvector. d. The second
generalized eigenvector. e. The Q matrix.
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Figure 3: a. Another simple clustering problem. b. The a�nity matrix. c. The �rst eigenvector. d. The second
generalized eigenvector. e. The Q matrix.
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Figure 4: a. A single frame from a scene with two rigidly moving objects. b. The a�nity matrix. c. The Q matrix.
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1 The algorithms
1.1 The Perona and Freeman (1998) algo-

rithm
Perona and Freeman [8] suggested a clustering al-

gorithm based on thresholding the �rst eigenvector of
the a�nity matrix (throughout this paper we refer to
the \�rst" eigenvector as the one whose corresponding
eigenvalue is largest in magnitude). This is closely re-
lated to an approach suggested by Sarkar and Boyer [9]
in the context of change detection.

Figure 1c shows the �rst eigenvector of the a�nity
matrix in �gure 1b. Indeed, the eigenvector can be
used to easily separate the two clusters.

Why does this method work? Perona and Freeman
have shown that for block diagonal a�nity matrices,
the �rst eigenvector will have nonzero components cor-
responding to points in the dominant cluster and ze-
ros in components corresponding to points outside the
dominant cluster. Figure 2 shows that when the non-
diagonal blocks are nonzero, the picture is a bit more
complicated. Figure 2a shows two very tight clusters
where we have constrained both clusters to have ex-
actly the same number of points. Figure 2b shows the
a�nity matrix with the evident block structure. Fig-
ure 2c shows the �rst eigenvector. Note that there is
no correlation between the components of the eigen-
values and the correct segmentation. Figure 3 shows
another example where the Perona and Freeman (PF)
algorithm works successfully.

1.2 The Shi and Malik (1997) algorithm.
Shi and Malik have argued for using a quite di�er-

ent eigenvector for solving these type of segmentation
problems. Rather than examining the �rst eigenvector
of W they look at generalized eigenvectors. Let D be
the degree matrix of W :

D(i; i) =
X
j

W (i; j) (2)

De�ne the generalized eigenvector yi as a solution
to:

(D �W )yi = �iDyi (3)

and de�ne the second generalized eigenvector as the
yi corresponding to the second smallest �i. Shi and
Malik suggested thresholding this second generalized
eigenvector of W in order to cut the image into two
parts. Figure 1c and �gure 2c show the second gener-
alized eigenvector ofW for the two cases. Indeed these
vectors can be easily thresholded to give the correct
segmentation.

Why does this method work? Shi and Malik have
shown that the second generalized eigenvector is a so-
lution to a continuous version of a discrete problem in

which the goal is to minimize:

yT (D �W )y

yTDy
(4)

subject to the constraint that yi 2 f1;�bg and
yTD1 = 0 (where 1 is the vector of all ones).

The signi�cance of the discrete problem is that its
solution can be shown to give you the segmentation
that minimizes the normalized cut:

Ncut(A;B) =
cut(A;B)

asso(A; V )
+

cut(A;B)

asso(B; V )
(5)

where cut(A,B)=
P

i2A;j2BW (i; j) and asso(A; V ) =P
j

P
i2AW (i; j). Thus the solution to the discrete

problem �nds a segmentation that minimizes the a�n-
ity between groups normalized by the a�nity within
each group.

As Shi and Malik noted, there is no guarantee that
the solution obtained by ignoring the constraints and
optimizing equation 4 will bear any relationship to the
correct discrete solution. Indeed, they show that the
discrete optimization of equation 4 is NP-complete.

Thus the connection to the discrete optimization
problem does not rigorously answer the question of
why the second generalized eigenvector should give us
a good segmentation. Nevertheless, in cases when the
solution to the unconstrained problem happens to sat-
isfy the constraints (as in the �rst two examples), we
can infer that it is close to the constrained problems.
But what of cases when the second generalized eigen-
vector doesn't satisfy the constraints? Figure 3a shows
an example. The second generalized eigenvector does
not have two values but it obviously gives very good
information on the correct segmentation (as does the
�rst eigenvector). Why is that?

Note that while Perona and Freeman use the largest
eigenvector, Shi and Malik use the second smallest

generalized eigenvector. Thus the two approaches ap-
pear quite di�erent. There is, however, a closer con-
nection. De�ne the normalized a�nity matrix:

N = D�1=2WD�1=2 (6)

We call this a normalized a�nity matrix following [1].
Note that N (i; j) =W (i; j)=

p
D(i; i)

p
D(j; j). Given

N the following normalization lemma is easily shown:
Normalization Lemma: 1. Let v be an eigenvec-

tor of N with eigenvalue � then D�1=2v is a general-
ized eigenvector of W with eigenvalue 1 � �. 2. The
vector D1=21 is an eigenvector of N with eigenvalue 1.

Thus the second smallest generalized eigenvector of
W can be obtained by a componentwise ratio of the
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second and �rst largest eigenvectors ofN . The Shi and
Malik (SM) algorithm thus di�ers from PF in that (1)
it uses a normalized W matrix and (2) it uses the �rst
two eigenvectors rather than just the �rst one.

1.3 The Scott and Longuet-Higgins
(1990) algorithm.

The Scott and Longuet-Higgins [10] relocalisation
algorithm gets as input an a�nity matrix W and a
number k and outputs a new matrix Q calculated by:

� Constructing the matrix V whose columns are the
�rst k eigenvectors of W .

� normalizing the rows of V so that they have unit
Euclidean norm. V (i;!) = V (i;!)=kV (i;!)k.

� Constructing the matrix Q = V V T .

� Segmenting the points by looking at the elements
of Q. Ideally, Q(i; j) = 1 if points belong to the
same group and Q(i; j) = 0 if points belong to
di�erent groups.

Figures 1d{3d show the Q matrix computed by
the Scott and Longuet-Higgins (SLH) algorithm for
the cases surveyed above. Note that in all cases, the
Q(i; j) entries for points belonging to the same group
are close to 1 and those belonging to di�erent groups
are close to 0.

1.4 The Costeira and Kanade (1995) al-
gorithm

Independently of the recent work on using eigenvec-
tors of a�nity matrices to segment points in feature
space, there has been interest in using singular values
of the measurement matrix to segment the points into
rigidly moving bodies in 3D [2, 4]. Although these al-
gorithms seem quite di�erent from the ones discussed
so far, they are in fact very closely related.

To see the connection, we review the Costeira and
Kanade algorithm. Suppose we track n points in f
frames. The measurement matrix is a nx(2f) matrix:

M = (XY ) (7)

where X(i; j); Y (i; j) give the x; y coordinate of point
i in frame j. The method of Costeira and Kanade
segments these points by taking the �rst k singular
vectors of M (where k is the rank of the matrix) and
putting them into a matrix V whose columns are the
singular vectors. Then constructing the matrix Q by:

Q = V V T (8)

Q is a nxn matrix and Qij = 0 for any two points that
belong to di�erent objects.

What does this have to do with eigenvectors of a�n-
ity matrices? Recall that the singular values of M are
by de�nition the eigenvectors of W = MTM . W is a
nxn by matrix that can be thought of as an a�nity
matrix. The a�nity of point i and j is simply the
inner product between their traces (X(i;!)Y (i;!))
and (X(j;!)Y (j;!)). Given this de�nition of a�n-
ity, the Costeira and Kanade algorithm is nearly iden-
tical to the SLH algorithm. Figure 4 illustrates the
Costeira and Kanade algorithm.

2 Analysis of the algorithms in simple
grouping settings

In this section we use properties of block matrices
to analyze the algorithms. To simplify notation, we
assume the data has two clusters. We partition the
matrix W into the following form:

W =

�
A C
CT B

�
(9)

where A and B represent the a�nities within the two
clusters and C represents the between cluster a�nity.

Our strategy in this section is to prove results on
idealized block matrices and then appeal to pertur-
bation theorems on eigenvectors [6] to generalize the
results to cases where the matrices are only approxi-
mately of this form.

2.1 Approximately constant blocks
We begin by assuming the matrices A;B;C are

constant. As can be seen from equation 1, this will
be the case when the variation of the within and
between cluster dissimilarities is signi�cantly smaller
than �. Thus W (i; j) depends only on the member-
ship of points i and j. Note that we do not assume
that the between cluster a�nityB is zero, or even that
it is smaller than the within cluster a�nity.

Under these assumptions we can analyze the be-
havior of the three algorithms exactly:

Claim 1: Assume W (i; j) depends only on the
memberships of points i; j. Let v1 be the indicator
vector of the PF algorithm (i.e. the �rst eigenvector
of W ) . If point i and point j belong to the same
cluster then v1(i) = v1(j).

Claim 2: Assume W (i; j) depends only on the
memberships of points i; j. Let v be the indicator
vector of the SM algorithm (the second generalized
eigenvector of W ). If point i and point j belong to
the same clusters then v(i) = v(j).

Claim 3: Assume W (i; j) depends only on the
memberships of points i; j. Let v be the indicator
vector of the SM algorithm (the second Q(i; j) in the
SLH algorithm with k = 2 eigenvectors is equal to
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1 if points i and j belong to the same group and 0
otherwise.

The proof of these claims follows from the following
decomposition of W :

W = OSOT (10)

with O a binary matrix indicating whose columns are
membership vectors for the clusters:

O =

0
BBBB@

1 0
1 0
� � � � � �
0 1
0 1

1
CCCCA (11)

and S a small 2x2 matrix that contains the constant
values of W :

S =

�
a c
c b

�
(12)

Obviously, if we had an algorithm that given W
gave us O then segmentation would be trivial. Un-
fortunately, the decomposition in equation 10 is not
an eigendecomposition so standard linear algebra al-
gorithms will not recover it. However, eigendecompo-
sition algorithms will recover a rotation of a suitably
normalized O. It can be shown that if V is a matrix
whose two columns are the �rst two eigenvectors ofW
then V = OD2R where D2 is a 2x2 diagonal matrix
and R is a 2x2 rotation matrix. Hence the claims.

Note that for the PF and SM algorithms we cannot
prove that points belonging to di�erent clusters will
have di�erent indicator values. We can only prove
that points belonging to same clusters will have the
same value. Thus in �gure 2c the �rst eigenvector
of W has roughly equal values for all points | both
those belonging to the same cluster and those belong-
ing to di�erent clusters. Any visible variation is due
to noise. It is only for the SLH algorithm that we can
guarantee that points belonging to di�erent clusters
will be separated.

2.2 Non-constant block diagonal matrices
Here we assume that the within-cluster a�nities,

i.e. the matrices A;B are arbitrary matrices with pos-
itive elements. The between-cluster a�nities, i.e. the
matrix C is assumed to be zero. We denote by �Ai ; �

B
i

the eigenvalues of matrices A and B respectively, or-
dered by decreasing magnitude.

Claim 4: Assume between cluster a�nities are
zero and within cluster a�nities are positive. Let v1 be
the PF indicator vector. If �A1 > �B1 then v1(i) > 0 for
all points belonging to the �rst cluster and v1(i) = 0
for all points belonging to the second cluster.

Claim 5: Assume between cluster a�nities are
zero and within cluster a�nities are positive. Let v
be the SM indicator vector then v(i) = v(j) if points
i; j belong to the same cluster.

Claim 6: Assume between cluster a�nities are
zero and within cluster a�nities are positive. Let Q
be the SLH matrix constructed from W. If �B1 > j�A2 j
and �A1 > j�B2 j then Q(i; j) = 1 if i; j belong to the
same cluster and zero otherwise.

Claim 4 was proven in [8] and the proof of claim 6 is
analogous: if va is an eigenvector of A then v = (va; 0)
is an eigenvector ofW with the same eigenvalue. Thus
the conditions of claim 6 guarantee that the �rst two
eigenvectors of W will be (va; 0); (0; vb). Claim 5 fol-
lows from the normalization lemma proven in the pre-

vious section. The vectors (D1=2
A 1; 0) and (0;D1=2

B 1)
are both eigenvectors of N with eigenvalue 1 where
DA; DB are the degree matrices of A and B. Thus
the second generalized eigenvector of W will be some
linear combination of these two vectors multiplied by
D�1=2 so it will be constant for points belonging to
the same cluster.

Note that as in the case for constant block matrices,
for the PF and SM algorithms we cannot guarantee
that points belonging to di�erent clusters can be eas-
ily segmented. In the PF algorithm v(i) is guaranteed
to be positive for all points in the �rst cluster, but
there is no guarantee of how positive. Figure 5c illus-
trates this. Many points in the \foreground" cluster
have components that are positive yet close to zero.
In the SM algorithm, since N has two identical �rst
eigenvalues, v2 may be any linear combination of the
eigenvectors, so the di�erence between values for the
�rst and second cluster is arbitrary and depends on
the implementation details of the eigendecomposition
algorithm. In the SLH algorithm, we can again guar-
antee that di�erent clusters will be segmented but we
require an additional constraint on the eigenvalues of
the blocks. Figure 5d shows what happens when this
additional constraint does not hold. In this case the
�rst two eigenvectors of W are (0; vb1); (0; v

b
2) and the

Q matrix does not �nd the correct segmentation.

To summarize, when the matrix has constant blocks
then all three algorithms will work, although extract-
ing the discrete segmentation is probably easiest in the
SLH algorithm. In this case, normalizing the W ma-
trix does not make any di�erence. When the blocks
are not constant, however, and the between cluster
a�nities are zeros, the normalization makes a big dif-
ference in that it reorders the eigenvectors.

This analysis suggests a combined (SM+SLH) al-
gorithm in which the SLH algorithm is applied to the
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Figure 5: a. Another simple clustering problem. b. The a�nity matrix. c. The �rst eigenvector. d. The second
generalized eigenvector. e. The Q matrix of the SLH algorithm.

normalized W matrix, N, rather than to the raw a�n-
ity matrix. Indeed, when we run this combined algo-
rithm on the data in �gure 5a the correct segmentation
is found.

We summarize the properties of the combined
(SM+SLH) algorithm:

Claim 7: Assume a�nities are only a function of
point membership or assume that the between cluster
a�nities are zero and within cluster a�nities are posi-
tive. Under both assumptions Q(i; j) in the combined
(SM+SLH) algorithm is one if points i and j belong
to the same cluster and zero otherwise.

Note that in the idealized cases we have been ana-
lyzing, where between cluster a�nities are zero and
within cluster a�nities are positive, then a simple
connected-components algorithm will �nd the correct
segmentation. However the perturbation theorems of
eigenvectors guarantee that that our claims still hold
with small perturbations around these idealized ma-
trices, even when the between cluster a�nities are
nonzero. In the following section, we show that our
analysis for idealized matrices also predicts the be-
havior on a�nity matrices derived from images.

3 A�nity matrices of images

Perona and Freeman conducted a comparison be-
tween the �rst eigenvector of W and the second gen-
eralized eigenvector of W when W is constructed by
representing each pixel with a (position,intensity) fea-
ture vector. In their comparison, the eigenvector of
W had a much less crisp representation of the cor-
rect segmentation. We have found this to be the case
generally for W matrices constructed in this way from
images.

Figures 6{9 show examples. Figure 6a shows the
baseball player �gure from [11]. We constructed a W
matrix using the same constants. Figure 6b-e show
the �rst four eigenvectors of W . Note that there is
very little information in these eigenvectors regarding
the correct segmentation (the pictures do not change
when we show log intensities). Figure 6f-i show the

�rst four eigenvectors of the normalized a�nity matrix
N . Note that at least visually all eigenvectors appear
to be correlated with the correct segmentation.

How should this information be recovered? Fig-
ure 7a shows the SM indicator vector displayed as an
image. Although it contains the information, it is not
at all clear how to extract the correct segments from
this image | the pixels belonging to the same object
do not have constant value but rather have smooth
variation. Furthermore, there is obviously additional
information in the other eigenvectors.

Figure 7b shows a single column from the matrix
Q constructed by the combined (SM+SLH) method
with 6 eigenvectors displayed as an image. Ideally, if
we had the correct k this column should be all ones for
a single object and zeros for points not belonging to
the object. Even for k that is too small, this column
should have all ones for a single object (but not neces-
sarily zeros for the other pixels). Indeed, we �nd that
the value is nearly one for points belonging to the same
object. Figure 7c shows a cross-section. Note that all
points corresponding to the baseball player are essen-
tially at 1. It is trivial to extract the baseball player
from this representation. Figure 7d show a second
column. Again, all pixels corresponding to the second
baseball player are very close to 1.

Exactly the same behavior is observed in the dancer
image. The information in �gure 9a is su�cient to
give a segmentation but it is not trivial. In the cross-
section (�gure 9b) the variation between groups is
similar to the variation within groups. Figure 9c-d
show the row of the Q(i; j) matrix in the combined
(SM+SLH) algorithm and the same cross-section. Ex-
tracting the discrete segmentation is trivial.

4 Discussion

Why do eigendecomposition methods for segmenta-
tion work? In this paper we have presented a uni�ed
view of three of these methods | Perona and Free-
man [8], Shi and Malik [11] and Scott and Longuet-
Higgins [10]. We showed the similarities and the dif-
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Figure 6: a. The baseball image from [11] b-e. The eigenvectors of the a�nity matrix W . Note there is very little
correlation with the desired segmentation. f-i. The eigenvectors of the normalized a�nity matrix N . Note that all
eigenvectors are correlated with the desired segmentation.
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Figure 7: a. The second generalized eigenvector ofW for the baseball image. Although there is information here regarding
the correct segmentation, its extraction is nontrivial. b. A row of the Q matrix in the combined (SM+SLH) algorithm for
the baseball image. Ideally all pixels corresponding to the same object should have value 1. c. A cross section through
the pixels in b. Note that pixels corresponding to the �rst baseball player are nearly all 1. d. A di�erent row of the Q
matrix. All pixels corresponding to the second baseball player are 1.
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Figure 8: a. A gray level image of a ballet dancer. b-e. The eigenvectors of the a�nity matrix W . Note there is very
little correlation with the desired segmentation. f-i. The eigenvectors of the normalized a�nity matrix N . Note that all
eigenvectors are correlated with the desired segmentation.
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Figure 9: a. The second generalized eigenvector of W for the dancer image. Although there is information here regarding
the correct segmentation, its extraction is nontrivial. b. A horizontal cross section through a. Note that the variation
between groups is of similar order of magnitude as the variation within groups. c. A row of the Q matrix in the combined
(SM+SLH) algorithm for the dancer image. Ideally all pixels corresponding to the same object should have value 1. d. A
cross section through the pixels in c. Note that pixels corresponding to the dancer are nearly all 1.
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ferences. The similarities are that they all use the
top eigenvectors of a matrix. They di�er in two ways
| which eigenvectors to look at and whether to nor-
malize the W matrix in advance. Using properties of
block matrices we showed that when W has constant
block structure, all three of these methods will yield
eigenvectors that carry some information. We also
showed analytically the importance of normalization
when the matrix is block diagonal with non-constant
blocks. As suggested by the analysis, we found that
for real images, unless the W matrix is normalized in
the form suggested by Shi and Malik [11] it is nearly
impossible to extract segmentation information from
the eigenvectors.

In all our analysis and experiments, we never found
an example where using normalized W rather than
raw W degraded performance. This suggested a
scheme that combines the SM algorithm with the SLH
algorithm| work with eigenvectors of normalizedW
but use the �rst k eigenvectors rather than just the
�rst two. This is similar in spirit to the approach
of [12] where the �rst k eigenvectors of W were used
to de�ne a new a�nity matrix between the points.
Our experimental results on real images are encourag-
ing | by using the �rst k eigenvectors and combining
them into the SLH Q matrix we extract a representa-
tion that leads trivially to a discrete segmentation.

We have also discussed a seemingly unrelated
rigid body segmentation algorithm | Costeira and
Kanade [2] and shown that it is nearly identical to SLH
with a particular de�nition of a�nity. It was this con-
nection that motivated the analysis in section 2. We
wanted to generalize that type of analysis for arbitrary
a�nity matrices.

In the case of multibody rigid grouping, there has
been additional progress made by using algorithms
that do not use eigendecompositions but rather other,
more stable matrix decompositions such as the re-
duced echelon form [4, 5]. Given the close connection
between the two problems, we are currently experi-
menting with using these alternative decompositions
in the general grouping context.

The main goal of presenting these algorithms in a
uni�ed framework is to enable future work to build
on the collective progress made by many researchers
in di�erent sub�elds. We hope that research into the
di�cult problem of segmentation will bene�t from the
connections we have pointed out between the di�erent
algorithms.
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