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Abstract

Graphical models, such as Bayesian networks and Markov Ran-
dom Fields represent statistical dependencies of variables by a
graph. Local \belief propagation" rules of the sort proposed by
Pearl [18] are guaranteed to converge to the correct posterior prob-
abilities in singly connected graphical models. Recently, a number
of researchers have empirically demonstrated good performance of
\loopy belief propagation"{using these same rules on graphs with
loops. Perhaps the most dramatic instance is the near Shannon-
limit performance of \Turbo codes", whose decoding algorithm is
equivalent to loopy belief propagation.

Except for the case of graphs with a single loop, there has been
little theoretical understanding of the performance of loopy propa-
gation. Here we analyze belief propagation in networks with arbi-
trary topologies when the nodes in the graph describe jointly Gaus-
sian random variables. We give an analytical formula relating the
true posterior probabilities with those calculated using loopy prop-
agation. We give su�cient conditions for convergence and show
that when belief propagation converges it gives the correct poste-
rior means for all graph topologies, not just networks with a single
loop.

The related \max-product" belief propagation algorithm �nds the
maximum posterior probability estimate for singly connected net-
works. We show that, even for non-Gaussian probability distribu-
tions, the convergence points of the max-product algorithm in loopy
networks are at least local maxima of the posterior probability.

These results motivate using the powerful belief propagation algo-
rithm in a broader class of networks, and help clarify the empirical
performance results.

YW is supported by MURI-ARO-DAAH04-96-1-0341



Problems involving probabilistic belief propagation arise in a wide variety of appli-
cations, including error correcting codes, speech recognition and medical diagnosis.
Typically, a probability distribution is assumed over a set of variables and the task
is to infer the values of the unobserved variables given the observed ones. The
assumed probability distribution is described using a graphical model [13] | the
qualitative aspects of the distribution are speci�ed by a graph structure. The graph
may either be directed as in a Bayesian network [18, 11] or undirected as in a Markov
Random Field [18, 10]. Di�erent communities tend to prefer di�erent graph for-
malisms (see [19] for a recent review) | directed graphs are more common in AI,
medical diagnosis and statistics while undirected graphs are more common in im-
age processing, statistical physics and error correcting codes. In this paper we use
the undirected graph formulation because one can always perform inference on a
directed graph by converting it to an equivalent undirected graph.

If the graph is singly connected (i.e. there is only one path between any two given
nodes) then there exist e�cient local message{passing schemes to calculate the
posterior probability of an unobserved variable given the observed variables. Pearl
(1988) derived such a scheme for singly connected Bayesian networks and showed
that this \belief propagation" algorithm is guaranteed to converge to the correct
posterior probabilities (or \beliefs"). However, as Pearl noted, the same algorithm
will not give the correct beliefs for multiply connected networks:

When loops are present, the network is no longer singly connected
and local propagation schemes will invariably run into trouble : : :
If we ignore the existence of loops and permit the nodes to continue
communicating with each other as if the network were singly con-
nected, messages may circulate inde�nitely around the loops and
the process may not converge to a stable equilibrium : : : Such os-
cillations do not normally occur in probabilistic networks : : : which
tend to bring all messages to some stable equilibrium as time goes
on. However, this asymptotic equilibrium is not coherent, in the
sense that it does not represent the posterior probabilities of all
nodes of the network (Pearl 1988, p. 195)

Despite these reservations, Pearl advocated the use of belief propagation in loopy
networks as an approximation scheme (J. Pearl, personal communication) and one
of the exercises in [18] investigates the quality of the approximation when it is
applied to a particular loopy belief network.

Several groups have recently reported excellent experimental results by using this
approximation scheme | by running algorithms equivalent to Pearl's algorithm on
networks with loops [8, 17, 7]. Perhaps the most dramatic instance of this perfor-
mance is in an error correcting code scheme known as \Turbo codes" [3]. These
codes have been described as \the most exciting and potentially important devel-
opment in coding theory in many years" [16] and have recently been shown [12, 15]
to utilize an algorithm equivalent to belief propagation in a network with loops.
Although there is widespread agreement in the coding community that these codes
\represent a genuine, and perhaps historic, breakthrough" [16] a theoretical under-
standing of their performance has yet to be achieved.

Progress in the analysis of loopy belief propagation has been made for the case of



networks with a single loop [22, 23, 6, 2]. For these networks, it can be shown that:

� Unless all the compatibilities are deterministic, loopy belief propagation
will converge.

� An analytic expression relates the correct marginals to the loopy marginals.
The approximation error is related to the convergence rate of the messages
| the faster the convergence the more exact the approximation.

� If the hidden nodes are binary, then the loopy beliefs and the true beliefs
are both maximized by the same assignments, although the con�dence in
that assignment is wrong for the loopy beliefs.

In this paper we analyze belief propagation in graphs of arbitrary topology but
focus primarily on nodes that describe jointly Gaussian random variables. We give
an exact formula that relates the correct marginal posterior probabilities with the
ones calculated using loopy belief propagation. We show that if belief propagation
converges then it will give the correct posterior means for all graph topologies, not
just networks with a single loop. The covariance estimates will generally be incorrect
but we present a relationship between the error in the covariance estimates and the
convergence speed. For Gaussian or non-Gaussian variables, we show that the
\max-product" algorithm, which calculates the MAP estimate in singly connected
networks, only converges to points that are at least local maxima of the posterior
probability of loopy networks. This motivates using this powerful algorithm in a
broader class of networks.

1 Belief propagation in undirected graphical models

An undirected graphical model (or a Markov Random Field) is a graph in which
the nodes represent variables and arcs represents compatability constraints between
them. Assuming all probabilities are nonzero, the Hammersley-Cli�ord theorem
(e.g. [18]) guarantees that the probability distribution will factorize into a product
of functions of the maximal cliques of the graph.

Denoting by x the values of all variables in the graph, the factorization has the
form:

P (x) =
Y
c

	(xc) (1)

where xc is a subset of x that form a clique in the graph.

We will assume, without loss of generality, that each xi node has a corresponding
yi node that is connected only to xi.

Thus:
P (x; y) =

Y
c

	(xc)
Y
i

	(xi; yi) (2)

The restriction that all the yi variables are observed and none of the xi variables
are is just to make the notation simple | 	(xi; yi) may be independent of yi
(equivalent to yi being unobserved) or 	(xi; yi) may be �(xi�xo) (equivalent to xi
being observed, with value xo).
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Figure 1: Any Bayesian network can be converted into an undirected graph with
pairwise cliques by adding cluster nodes for all parents that share a common child.
a. A Bayesian network. b. The corresponding undirected graph with pairwise
cliques. A cluster node for (B;C) has been added. The potentials can be set
so that the joint probability in the undirected network is identical to that in the
Bayesian network. In this case the update rules presented in this paper reduce to
Pearl's propagation rules in the original Bayesian network [23].

In describing and analyzing belief propagation we assume the graphical model has
been preprocessed so that all the maximal cliques consist of pairs of units. Any
graphical model can be converted into this form before doing inference through a
suitable clustering of nodes into large nodes [23]. Figure 1 shows an example of
such a conversion.

Equation 2 becomes

P (x; y) =
Y
c

	(xc1 ; xc2)
Y
i

	(xi; yi) (3)

Here each clique c corresponds to an edge in the graph and xc1 ; xc2 refer to the two
nodes connected by the edges.

The advantage of preprocessing the graph into one with pairwise cliques is that the
description and the analysis of belief propagation becomes simpler. For complete-
ness, we review the belief propagation scheme used in [23].

At every iteration, each node sends a (di�erent) message to each of its neighbors
and receives a message from each neighbor. Let V and W be two neighboring nodes
in the graph. We denote by mVW (w) the message that node V sends to node W .
w is the vector{valued random variable at node W . We denote by bV (v) the belief
at node V .



The belief update (or \sum-product" update) rules are:

mVW (w)  �

Z
v

	(V = v;W = w)
Y

Z2N(V )nW

mZV (v) (4)

bV (v)  �
Y

Z2N(V )

mZV (v) (5)

where � denotes a normalization constant and N (V )nW means all nodes neighbor-
ing V , except W .

The procedure is initialized with all message vectors set to constant functions.
Observed nodes do not receive messages and they always transmit the same vector{if
Y is observed to be in state y then mYX (x) = 	(Y = y;X = x). The normalization
of mVW in equation 4 is not necessary{whether or not the message are normalized,
the belief bV will be identical. However, normalizing the messages avoids numerical
underow and adds to the stability of the algorithm. We assume throughout this
paper that all nodes simultaneously update their messages in parallel.

It is easy to show that for singly connected graphs these updates will converge
in a number of iterations equal to the diameter of the graph and the beliefs are
guaranteed to give the correct posterior marginals: bV (v) = P (V = vjO) where O
denotes the set of observed variables.

This message passing scheme is equivalent to Pearl's belief propagation in directed
graphs of arbitrary clique size | for every message passed in this scheme there
exists a corresponding message in Pearl's algorithm when the directed graph is
converted to an undirected graph with pairwise cliques [23]. For particular graphs
with particular settings of the potentials, Equs. 4{5 yield other well-known Bayesian
inference algorithms, such as the forward-backward algorithm in Hidden Markov
Models, the Kalman Filter and even the Fast Fourier Transform [1, 12].

A related algorithm, \max-product", changes the integration in equation 4 to a
maximization. This message-passing is equivalent to Pearl's \belief revision" al-
gorithm in directed graphs. For particular graphs with particular settings of the
potentials, the max-product algorithm is equivalent to the Viterbi algorithm for
Hidden Markov Models, and concurrent dynamic programming. We de�ne the
max-product assignment at each node to be the value that maximizes its belief
(assuming a unique maximizing value exists). For singly connected graphs, the
max-product assignment is guaranteed to give the MAP assignment.

1.1 Gaussian Markov Random Fields

A Gaussian MRF (GMRF) is an MRF in which the joint distribution is Gaussian.
We assume, without loss of generality, that the joint mean is zero (the means can
be added-in later), so the joint probability, P (x), is

P (x) = �e�
1

2
x
T
Vxxx (6)

where V is the inverse covariance matrix and � denotes a normalization constant.
The MRF properties guarantee that Vxx(i; j) = 0 if xi is not a neighbor of xj. It is
straightforward to write the inverse covariance matrix describing the GMRF which
respects the statistical dependencies within the graphical model [4].



Note that when we expand the term in the exponent we will only get terms of the
form Vxx(i; j)x(i)x(j). Thus there exist a set of matrices Vc, one corresponding to
each pairwise clique, such that:

P (x) = �
Y
c

e�
1

2
xTc Vcxc (7)

So that for any pair of nodes 	(xc) = �e�
1

2
xTc Vcxc .

1.2 Inference in Gaussian MRFs

The joint distribution of z =

�
x
y

�
is given by:

P (z) = �e�
1

2
zTV z (8)

where V has the following structure

V =

�
Vxx Vxy
Vyx Vyy

�
(9)

Note that because xi is only connected to yi, Vxy is zero everywhere except the
diagonals.

The marginalization formulas for Gaussians allow us to compute the conditional
mean of x given the observations y. Writing out the exponent of Eq. 8 and com-
pleting the square shows that the mean � of x, given y, is a solution to:

Vxx� = �Vxyy (10)

and the covariance matrix Cxjy of x given y is:

Cxjy = V �1
xx (11)

We will denote by Cxijy the ith row of Cxjy, so the marginal posterior variance of
xi, given the data, is Cxijy(i).

Belief propagation in Gaussian MRFs gives simpler update formulas than the gen-
eral purpose case (Eqs. 4 and 5). The messages and the beliefs are all Gaussians and
the updates can be written directly in terms of the means and covariance matrices.
Each node sends and receives a mean vector and covariance matrix to and from each
neighbor, in general, each di�erent. The beliefs at a node are calculated by com-
bining the means and covariances of all the incoming messages. For scalar nodes,
the beliefs are a weighted average of the incoming messages, inversely weighted by
their variance.

We can now state the main question of this paper. What is the relationship between
the true posterior means and covariances (calculated using Eq. 10) and the belief
propagation means and covariances (calculated using the belief propagation rules
Eqs. 4{5) ?
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Figure 2: Left: A Markov network with multiple loops. Right: The unwrapped
network corresponding to this structure. The unwrapped networks are constructed
by replicating the potentials 	(xi; xj) and observations yi while preserving the
local connectivity of the loopy network. They are constructed so that the messages
received by node A after t iterations in the loopy network are equivalent to those
that would be received by A in the unwrapped network. An observed node, yi, not
shown, is connected to each depicted node.

2 Analysis

To compare the correct posteriors and the loopy beliefs, we construct an unwrapped
tree. The unwrapped tree is the graphical model that the loopy belief propagation
is solving exactly when applying the belief propagation rules in a loopy network
[9, 24, 23]. In error-correcting codes, the unwrapped tree is referred to as the
\computation tree" | it is based on the idea that the computation of a message
sent by a node at time t depends on messages it received from its neighbors at time
t � 1 and those messages depend on the messages the neighbors received at time
t� 2 etc.

To construct an unwrapped tree, set an arbitrary node, say x1, to be the root node
and then iterate the following procedure t times:

� Find all leaves of the tree (start with the root).

� For each leaf, �nd all k nodes in the loopy graph that neighbor the node
corresponding to this leaf.

� Add k � 1 nodes as children to each leaf, corresponding to all neighbors
except the parent node.

Each node in the loopy graph will have a di�erent unwrapped tree with that node
at the root.

Figure 2 shows an unwrapped tree around node A for the diamond shaped graph
on the left. Each node has a shaded observed node attached to it that is not
shown for clarity. Since belief propagation is exact for the unwrapped tree, we can
calculate the beliefs in the unwrapped tree by using the marginalization formulae
for Gaussians.

We use ~ for unwrapped quantities. We scan the tree in breadth �rst order and
denote by ~x the vector of values in the hidden nodes of the tree when scanned in



this fashion. Simlarly, we denote by ~y the observed nodes scanned in the same

order. As before, ~z =

�
~x
~y

�
To simplify the notation, we assume throughout this

section that all nodes are scalar valued. In section 4 we generalize the analysis to
vector valued nodes.

The basic idea behind our analysis is to relate the wrapped and unwrapped inverse
covariance matrices. By the nature of unwrapping, all elements ~Vxy(i; j) and ~y(i) are
copies of the corresponding elements Vxy(i

0; j0) and y(i0) (where ~xi; ~xj are replicas

of xi0 ,xj0). Also, all elements ~Vxx(i; j) where i and j are non-leaf nodes are copies

of Vxx(i0; j0). However, the elements ~Vxx(i; j) for the leaf nodes are not copies of
Vxx(i0; j0) because leaf nodes are missing some neighbors.

Intuitively, we might expect that if all the equations that ~� satisi�es are copies of
the equations that � satisi�es, then simply creating ~� by many copies of � would
give a valid solution in the unwrapped network. However, because some of the
equations are not copies, this intuition does not explain why the means are exact
in Gaussian networks.

An additional intuition, that we formalize below, is that the inuence of the non-
copied equations (those at the leaf nodes) decreases with additional iterations. As
the number of iterations is increased, the distance between the leaf nodes and the
root node increases and their inuence on the root node decreases. When their
inuence goes to zero, the mean at the root node is exact.

Although the elements Vxx(i; j) are copies of Vxx(i0; j0) for the non-leaf nodes, the
matrix ~Vxx is not simply a block replication of Vxx. The system of equations that
de�nes ~� is a coupled system of equations. Hence the variance at the root node
~V �1
xx (1; 1) di�ers from the correct variance V �1

xx (1; 1).

In the following section we prove the following three claims.

Assume, without loss of generality, that the root node is x1. Let ~�(1) and ~�2(1) be
the conditional mean and variance at node 1 after t iterations of loopy propagation.
Let �(1) and �2(1) be the correct conditional mean and variance of node 1. Let
~Cx1jy be the conditional correlation of the root node with all other nodes in the
unwrapped tree then:

Claim 1:

~�(1) = �(1) + ~Cx1jyr (12)

where r is a vector that is zero everywhere but the last L components (corresponding
to the leaf nodes).

Claim 2:

~�2(1) = �2(1) + ~Cx1jyr1 � ~Cx1jyr2 (13)

where r1 is a vector that is zero everywhere but the last L components and r2 is
equal to 1 for all components corresponding to non-root nodes in the unwrapped
tree that reference x1. All other components of r2 are zero.

Claim 3: If the conditional correlation between the root node and the leaf nodes
decreases rapidly enough then (1) belief propagation converges (2) the belief prop-
agation means are exact and (3) the belief propagation variances are equal to the
correct variances minus the summed conditional correlations between ~x1 and all ~xj
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Figure 3: The conditional correlation between the root node and all other nodes
in the unwrapped tree for the diamond �gure after 15 iterations. Potentials were
chosen randomly. Nodes are presented in breadth �rst order so the last elements
are the correlations between the root node and the leaf nodes. It can be proven
that if this correlation goes to zero then (1) belief propagation converges (2) the
loopy means are exact and (3) the loopy variances equal the correct variances minus
the summed conditional correlation of the root node and all other nodes that are
replicas of the same loopy node. Symbols plotted with a star denote correlations
with nodes that correspond to the node A in the loopy graph. It can be proven
that the sum of these correlations gives the correct variance of node A while loopy
propagation uses only the �rst correlation.

that are replicas of x1.

To obtain intuition, Fig. 3 shows ~Cx1jy for the diamond �gure in Fig. 2. We gen-
erated random potential functions and observations for the loopy diamond �gure
and calculated the conditional correlations in the unwrapped network. Note that
the conditional correlation decreases with distance in the tree | we are scanning in
breadth �rst order so the last L components correspond to the leaf nodes. As the
number of iterations of loopy propagation is increased the size of the unwrapped
tree increases and the conditional correlation between the leaf nodes and the root
node decreases.

From equations 12{13 it is clear that if the conditional correlation between the leaf
nodes and the root nodes are zero for all su�ciently large unwrappings then (1)
belief propagation converges (2) the means are exact and (3) the belief propagation
variances are equal to the correct variances minus the summed conditional corre-
lations between ~x1 and all ~xj that are replicas of x1. In practice the conditional
correlations will not actually be equal to zero for any �nite unwrapping so claim 3
states this more precisely.

2.1 Relation of loopy and unwrapped quantities

The proof of all three claims relies on the relationship between the elements of y; Vxy
and Vxx with their unwrapped quantities, described below.

Each node in ~x corresponds to a node in the original loopy network. Let O be a



matrix that de�nes this correspondence. O(i; j) = 1 if ~xi corresponds to xj and
zero otherwise. Thus, in �gure 2, ordering the nodes alphabetically, the �rst rows
of O are:

O =

0
BBBBBBBBBBBBBBBB@

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
: : : : : : : : : : : : : : :

1
CCCCCCCCCCCCCCCCA

(14)

Using O we can formalize the relationship between the unwrapped quantities and
the original ones. The simplest one is ~y, that only contains replicas of the original
y:

~y = Oy (15)

Since every xi is connected to a yi, Vxy and ~Vxy are zero everywhere but along their
diagonals (the block diagonals, for vector valued variables). The diagonal elements
of ~Vxy are simply replications of Vxy hence:

~VxyO = OVxy (16)

~Vxx also contains the elements of the original Vxx but here special care needs to
be taken. Note that by construction, every node in the interior of the unwrapped
tree has exactly the same statistical relationship with its neighbors as with the
corresponding node in the loopy graph. If a node in the loopy graph has k neighbors
then a node in the unwrapped tree will have, by construction, one parent and k� 1
children. The leaf nodes in the unwrapped tree, however, will be missing the k � 1
children and hence will not have the same number of neighbors. Thus, for all nodes
~xi; ~xj that are not leaf nodes, ~Vxx(i; j) is a copy of the corresponding Vxx(k; l),
where unwrapped nodes i and j refer to loopy nodes k and l, respectively.

Therefore:
~VxxO +E = OVxx (17)

where E is an error matrix. E is zero for all non-leaf nodes so the �rst N � L rows
of E are zero.

2.2 Proof of claim 1

The marginalization equation for the unwrapped problem gives:

~Vxx~� = �~Vxy~y (18)

Substituting Eqs. 15 and 16, relating loopy and unwrapped network quantities, into
Eq. 18, for the unwrapped posterior mean, gives:

~Vxx~� = �OVxyy (19)



For the true means, �, of the loopy network, we have

Vxx� = �Vxyy (20)

To relate that to the means of the unwrapped network, we left-multiply by O:

OVxx� = �OVxyy: (21)

Using Eq. 17, relating Vxx to ~Vxx, we have

~VxxO�+ E� = �OVxyy (22)

Comparing Eqs. 22 and 19 gives

~VxxO�+E� = ~Vxx~� (23)

or:
~� = O�+ ~V �1

xx E�: (24)

Using Eq. 11
~� = O�+ ~CxjyE�: (25)

The left and right hand sides of equation 25 are column vectors. We take the �rst
component of both sides and get:

~�(1) = �(1) + ~Cx1jyE� (26)

Since E is zero in the �rst N � L rows, E� is zero in the �rst N � L components.
2

2.3 Proof of claim 2

From Eq. 11,
VxxCxjy = I: (27)

Taking the �rst column of this equation gives:

VxxC
T
x1jy

= e1 (28)

where e1(1) = 1; e1(j > 1) = 0.

Using the same strategy as in the previous proof, we left multiply by O:

OVxxC
T
x1jy

= Oe1 (29)

and similarly we substitute equation 17:

~VxxOC
T
x1jy

+ECT
x1jy

= Oe1 (30)

The analog of equation 28 in the unwrapped problem is:

~Vxx ~C
T
x1jy

= ~e1 (31)



where ~e1(1) = 1; ~e1(j > 1) = 0.

Subtracting Eqs. 30 and 31 and rearranging terms gives:

~Cx1jy = OCT
x1jy

+ ~V �1
xx ECT

x1jy
+ ~V �1

xx (~e1 �Oe1) (32)

Again, we take the �rst row of both sides of equation 32 and use the fact that the
�rst row of ~V �1

xx is ~Cx1jy to obtain:

~�2(1) = �2(1) + ~Cx1jyEC
T
x1jy

+ ~Cx1jy(~e1 � Oe1) (33)

Again, since E is zero in the �rst NL rows, ECx1jy is zero in the �rst N � L
components. 2

2.4 Proof of claim 3

Here we need to de�ne what we mean by \rapidly enough". We restate the claim
precisely.

Suppose for every � there exists a t� such that for all t > t� j ~Cx1jyrj < �maxi jr(i)j
for any vector r that is nonzero only in the last L components (those corresponding
to the leaf nodes). In this case, (1) belief propagation converges (2) the means are
exact and (3) the variances are equal to the correct variances minus the summed
conditional correlations between ~x1 and all non-root ~xj that are replicas of x1

This claim follows from the �rst two claims. The only thing to show is that E�
and ECx1jy are bounded for all iterations. This is true because the rows of E are
bounded and �;Cx1jy do not depend on the iteration. 2

How wrong will the variances be? The term ~Cx1jyr2 in Eq. 13 is simply the sum of

many components of ~Cx1jy. Figure 3 shows these components. The correct variance
is the sum of all the components while the loopy variance approximates this sum
with the �rst (and dominant) term.

Note that when the conditional correlation decreases rapidly to zero two things
happen. First, the convergence is faster (because ~Cx1jyr1 approaches zero faster).

Second, the approximation error of the variances is smaller (because ~Cx1jyr2 is
smaller). Thus, as in the single loop case, we �nd that quick convergence is corre-
lated with good approximation.

In practice, it may be di�cult to check whether the conditional correlations decrease
rapidly enough. In the next section we show that if loopy propagation converges
then the loopy means are exact.

3 Fixed points of loopy propagation

Each iteration of belief propagation can be thought of as an operator F that inputs
a list of messages m(t) and outputs a list of messages m(t+1) = Fm(t). Thus belief
propagation can be thought of as an iterative way of �nding a solution to the �xed
point equations Fm = m with an initial guess m0 in which all messages are constant
functions.



Note that this is not the only way of �nding �xed-points. McEliece et al. [16]
have shown a simple example for which F contains multiple �xed points and belief
propagation �nds only one. They also showed a simple example where a �xed-point
exists but the iterations m = Fm do not converge. An alternative way of �nding
�xed-points of F is described in [17].

In this section we ask, suppose a �xed-point m� = Fm� has been found by some
method, how are the beliefs calculated based on these messages related to the correct
beliefs?

Claim 4: For a Gaussian graphical model of arbitrary topology, if m� is a �xed-
point of the message-passing dynamics then the means based on that �xed-point
are exact.

The proof is based on the following lemma:

Periodic beliefs lemma: If m� is a �xed-point of the message-passing dynamics
in a graphical model G then one can construct a modi�ed unwrapped tree T of
arbitrarily large depth such that: (1) all non-leaf nodes in T have the same statistical
relationship with their neighbors as the corresponding nodes in G and (2) all nodes
in T will have the same belief as the beliefs in G derived from m�.

Proof: The proof is by construction. We �rst construct an unwrapped tree T of
the desired depth. We then modify the potentials and the observations in the leaf
nodes in the following manner. For each leaf node ~xi, �nd the k�1 nodes in G that
neighbor xi0 (where ~xi is a replica of xi0) excluding the parent of ~xi. Calculate the
product of the k� 1 messages that these neighbors send to the corresponding node
in G under the �xed-point messages m� and the message that yi0 sends to xi0 . Set
~yi and 	(~yi; ~xi) such that the message ~yi sends to ~xi is equal to this product.

By this construction, all leaf nodes in T will send their neighbors a message from
m�. Since all non-leaf nodes in T have the same statistical relationship to their
neighbors as the corresponding nodes in G, the local message passing updates in T
are identical to those in G. Thus all messages in T will be replicas of messages in
m�. 2

Proof of Claim 4: Using this lemma we can prove claim 4. Let ~� be the conditional
mean in the modi�ed unwrapped tree then, by the periodic beliefs lemma:

~� = O�0 (34)

where �0(i) is the posterior mean at node i under m�.

We also know that ~� is a solution to:

~Vxx~� = �~Vxy~y (35)

where ~Vxx; ~Vxy; ~y refers to quantities in the modi�ed unwrapped tree. So:

~VxxO�0 = �~Vxy~y (36)

We use the notation [A]m to indicate taking the m �rst rows of a matrix A. Note
that for any two matrices [AB]m = [A]m B. Taking the �rst m rows of equation 36
gives: h

~VxxO
i
m
�0 = �

h
~Vxy~y

i
m

(37)



As in the previous proofs, the key idea is to relate the inverse covariance matrix of
the modi�ed unwrapped tree to that of the original loopy graph. Since all non-leaf
nodes in the modi�ed unwrapped tree have the same neighborhood relationships
with their neighbors as the corresponding nodes in the loopy graph we have, for
any m < N � L: h

~VxxO
i
m
= [OVxx]m (38)

and: h
~Vxy~y

i
m
= [OVxyy]m (39)

Substituting these relationships into equation 37 gives:

[O]m Vxx�0 = � [O]m Vxyy (40)

This equation holds for any m < N�L. Since we can unwrap the tree to arbitrarily
large size we can choose m such that [O]m has n independent rows (this happens
once all nodes in the loopy graph appear at least once in the modi�ed unwrapped
tree). Thus:

Vxx�0 = �Vxyy (41)

hence the means derived from the �xed-point messages are exact. 2

3.1 Non-Gaussian variables

In Sect. 1 we described the \max-product" belief propagation algorithm that �nds
the MAP estimate for each node [18, 23] of a network without loops. As with max-
product, iterating this algorithm is a method of �nding a �xed-point of the message
passing dynamics. How does the assignment derived from this �xed-point compare
the MAP assignment?

Claim 5: For a graphical model of arbitrary toplogy with continuous potential
functions, if m� is a �xed-point of the max-product message-passing dynamics then
the assignment based on that �xed-point is a local maximum of the posterior prob-
ability.

Since the posterior probability factorizes into a product of pairwise potentials, the
log posterior will have the form,

logP (xjy) =
X
ij

Jij(xi; xj) + Jii(xi; yi) (42)

Assuming the clique potential functions are di�erentiable and �nite, the MAP so-
lution, u, will satisfy

@

@xi
logP (xjy)jx=u = 0 (43)

We will write this as:
V u = 0 (44)

where V is a nonlinear operator.

As in the previous section, we can use the periodic belief lemma to construct a
modi�ed unwrapped tree of arbitrary size based on m�. If we denote by ~V the



nonlinear set of equations that the solution to the modi�ed unwrapped problem
must satisfy we have:

~V ~u = 0 (45)

Because of the periodic belief lemma:

~u = Ou0 (46)

Similarly, as in the previous section, all the non-leaf nodes will have the same
statistical relationship with their neighbors as do the corresponding nodes in the
loopy network, so: h

~V O
i
m
= [OV ]m (47)

where the left and right hand sides are nonlinear operators.

Substituting Eqs. 46 and 47 into Eq. 45 gives:

V u0 = 0 (48)

A similar substitution can be made with the second derivative equations to show
that the Hessian at u0 is positive de�nite. Thus the assignment based on m� is at
least a local maximum of the posterior. 2

4 Vector valued nodes

All of the results we have derived so far hold for vector-valued nodes as well but
the indexing notation is slightly more cumbersome. We use a stacking convention,
in which we de�ne the vector x by:

x =

0
@ x1

x2
� � �

1
A (49)

Thus supposing x1 is a vector of length 2 then x(1) is the �rst component of x1 and
x(2) is the second component of x1 (not x2). We de�ne y in a similar fashion.

Using this stacking notation the equations for exact inference in Gaussians remain
unchanged, but we need to be careful in reading out the posterior means and covari-
ances from the stacked vectors. Thus we can still complete the square in stacked
notation to obtain:

Vxx� = �Vxyy (50)

and Cxjy = V �1
xx . Assuming x1 is of length 2, �1 the posterior mean of x1 is given

by:

�1 =

�
�(1)
�(2)

�
(51)

and the posterior covariance matrix �1 is given by:

�1 =

�
Cxjy(1; 1) Cxjy(1; 2)
Cxjy(2; 1) Cxjy(2; 2)

�
(52)



We use the same stacked notation for ~x and de�ne the matrixO such that O(i; j) = 1
if ~x(i) is a replica of x(j) and zero otherwise. Using this notation, the relationships

between unwrapped and loopy quantities (e.g.
h
~VxxO

i
m

= [OVxx]m ) still hold.

Thus all the analysis done in the previous sections holds | the only di�erence are
the semantics of quantities such as �(1), which need to be understood as a scalar
component of a (possibly) larger vector �1. For explicitness, we restate the �ve
claims for vector valued nodes.

For any i; j less than or equal to the number of components in x1 we have:

Claim 1a:

~�(i) = �(i) + ~Cxijyr (53)

where r is a vector that is zero everywhere but the last L components (corresponding
to the leaf nodes).

Claim 2a:
~Cxjy(i; j) = Cxjy(i; j) + ~Cxjjyr1 �

~Cxjjyr2 (54)

where r1 is a vector that is zero everywhere but the last L components (correspond-
ing to the leaf nodes) and r2 is equal to 1 for all components corresponding to
non-root nodes in the unwrapped tree that reference x(i). All other components of
r2 are zero.

Claim 3a: If the conditional correlation between all components of the root node
and the leaf nodes decreases rapidly enough then (1) belief propagation converges
(2) the belief propagation means are exact and (3) the i; j component of the belief
propagation covariance matrices is equal to the i; j component of the true covariance
matrices minus the summed conditional correlations between ~x(j) and all nonroot
~x(k) that are replicas of x(i).

Claim 4a: For a (possibly vector-valued) Gaussian graphical model of arbitrary
topology, if m� is a �xed-point of the message-passing dynamics, then the means
based on that �xed-point are exact.

Claim 5a: For a (possibly vector-valued) graphical model of arbitrary topology
with continuous potential functions, if m� is a �xed-point of the max-product
message-passing dynamics, then the assignment based on that �xed-point is a local
maximum of the posterior probability.

We emphasize that these claims do not need to be reproved | all the equations
used in proving the scalar-valued case still hold only the semantics we place on the
individual components are di�erent.

We end this analysis with two simple corollaries:

Corollary 1: Let m� be a �xed-point of Pearl's belief propagation algorithm on
a Gaussian Bayesian network of arbitrary toplogy and arbitrary clique size. Then
the means based on m� are exact.

Corollary 2: Let m� be a �xed-point of Pearl's belief revision (max-product) algo-
rithm on a Bayesian network with continuous joint probability, arbitrary topology
and arbitrary clique size. The assignment based on m� is at least a local maximum
of the posterior probability.

These corollaries follow from claims 4a and 5a along with the equivalence between
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Figure 4: (a) 25� 25 graphical model for simulation. The unobserved nodes (un-
�lled) were connected to their four nearest neighbors and to an observation node
(�lled). (b) The error of the estimates of loopy propagation and successive over-
relaxation (SOR) as a function of iteration. Note that belief propagation converges
much faster than SOR.

Pearl's propagation rules and the propagation rules for pairwise undirected graphical
models analyzed here [23]. Note that even if the Bayesian network contained only
scalar nodes, the conversion to pairwise cliques may necessitate using vector-valued
nodes.

5 Simulations

We ran belief propagation on a 25� 25 2D grid. The joint probability was:

P (x; y) = exp(�
X
ij

wij(xi � xj)
2 �
X
i

wii(xi � yi)
2) (55)

where wij = 0 if nodes xi; xj are not neighbors and 0:01 otherwise and wii was
randomly selected to be 0 or 1 for all i with probability of 1 set to 0:2. The obser-
vations yi were chosen randomly. This problem corresponds to an approximation
problem from sparse data where only 20% of the points are visible.

We found the exact posterior by solving Eq. 10. We also ran loopy belief propagation
and found that when it converged, the loopy means were identical to the true means
up to machine precision. Also, as explained by the theory, the loopy variances were
too small | the loopy estimate was overcon�dent.

In many applications, the solution of equation 10 by matrix inversion is intractable
and iterative methods are used. Figure 4 compares the error in the means as a
function of iterations for loopy propagation and successive-over-relaxation (SOR),
considered one of the best relaxation methods [20]. Note that after �ve iterations
loopy propagation gives essentially the right answer while SOR requires many more.
As expected by the fast convergence, the approximation error in the variances was
quite small. The median error was 0:018. For comparison the true variances ranged
from 0:01 to 0:94 with a mean of 0:322. Also, the nodes for which the approximation
error was worse were indeed the nodes that converged slower.



The slow convergence of SOR on problems such as these lead to the development
of multi-resolution models in which the MRF is approximated by a tree [14, 5] and
an algorithm equivalent to belief propagation is then run on the tree. Although
the multi-resolution models are much more e�cient for inference, the tree structure
often introduces block artifacts in the estimate. Our results suggest that one can
simply run belief propagation on the original MRF and get the exact posterior
means. Although the posterior variances will not be correct, for those nodes for
which loopy propagation converged rapidly the approximation error will be small.

6 Discussion

Our main interest in analyzing the Gaussian case was to understand the performance
of belief propagation in networks with multiple loops. Although there are many
special properties of Gaussians, we are struck by the similarity of the analytical
results reported here for multi-loop Gaussians and the analytical results for single
loops and general distributions reported in [23]. The most salient similarities are:

� In single loop networks with binary nodes, the mode at each node is guar-
anteed to be correct but the con�dence in the mode may be incorrect. In
Gaussian networks with multiple loops the mean at each node is guaran-
teed to be correct but the con�dence around that mean will in general be
incorrect.

� In single loop networks fast convergence is correlated with good approxi-
mation of the beliefs. This is also true for Gaussian networks with multiple
loops.

� In single loop networks the convergence rate and the approximation error
were determined by a ratio of eigenvalues �1=�2. This ratio determines
the extent of the statistical dependencies between the root and the leaf
nodes in the unwrapped network for a single loop. In Gaussian networks
the convergence rate and the approximation error are determined by the
o�-diagonal terms of ~Cxjy. These terms quantify the extent of conditional
dependencies between the root nodes and the leaf nodes of the unwrapped
network.

These similarities are even more intriguing when one considers how di�erent Gaus-
sians graphical models are from discrete models with arbitrary potentials and a
single loop. In Gaussians the conditional mean is equal to the conditional mode
and there is only one maximum in the posterior probability, while the single loop
discrete models may have multiple maxima, none of which will be equal to the mean.
Furthermore, in terms of approximate inference the two classes behave quite di�er-
ently. For example, mean �eld approximations are exact for Gaussian MRFs while
they work poorly in discrete networks with a single loop in which the connectivity
is sparse [21]. The resemblance of the results for Gaussian graphical models and
for single loops leads us to believe that similar results may hold for a larger class of
networks.

The sum-product and max-product belief propagation algorithms are appealing,
fast and easily parallelizable algorithms. Due to the well known hardness of prob-
abilistic inference in graphical models, belief propagation will obviously not work



for arbitrary networks and distributions. Nevertheless, there is a growing body of
empirical evidence showing its success in many loopy networks. Our results give a
theoretical justi�cation for applying belief propagation in networks with multiple
loops. This may enable fast, approximate probabilistic inference in a range of new
applications.
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