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Abstract

Grouping based on common motion, or “common fate”
provides a powerful cue for segmenting image sequences.
Recently a number of algorithms have been developed that
successfully perform motion segmentation by assuming that
the motion of each group can be described by a low di-
mensional parametric model (e.g. affine). Typically the
assumption is that motion segments correspond to planar
patches in 3D undergoing rigid motion. Here we develop
an alternative approach, where the motion of each group is
described by a smooth dense flow field and the stability of
the estimation is ensured by means of a prior distribution
on the class of flow fields. We present a variant of the EM
algorithm that can segment image sequences by fitting mul-
tiple smooth flow fields to the spatiotemporal data. Using
the method of Green’s functions, we show how the estima-
tion of a single smooth flow field can be performed in closed
form, thus making the multiple model estimation compu-
tationally feasible. Furthermore, the number of models is
estimated automaticallyusing similar methods to those used
in the parametric approach. We illustrate the algorithm’s
performance on synthetic and real image sequences.
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Figure 1. a. A simple three dimensional scene that
can cause problems for existing motion segmentation al-
gorithms. A cylinder is partially occluded by two bars. b.
A cross section through the theoretical horizontal image ve-
locity field caused by a moving camera. c. The same data as
in (b) but with added Gaussian noise. In practice, the image
velocity will be noisy. d. The desired description of the
data.
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Figure 2. a. The fit of a single smooth curve to the
data shown in figure 1c. Regularization causes heavy over-
smoothing. b. Regularization with line processes. Fitting
a smooth curve with discontinuities, or “line processes”,
causes two problems. First, there is no indication that the
three occluded parts are part of a single object. Second,
since no information is propagated between the occluded
parts, the curvature of the cylinder is lost by the fit.

1 Introduction

Considerable progress in motion analysis has been
achieved by systems that fit multiple global motion mod-
els to the image data [3, 10, 9, 8, 1, 19]. While differing
in implementation, these algorithms share the goal of deriv-
ing from the image data a representation consisting of (1) a
small number of global motion models and (2) a segmenta-
tion map that indicates which pixels are assigned to which
model.

The advantages of these approaches over previous ones
are twofold. First, by combining information over large
region of the image, the local ambiguity of the image data
is overcome and a reliable motion estimate can be found.
Second, the derived segmentation map, in which individual
pixels are grouped into perceptually salient parts, is useful
for higher level processing (e.g. video database indexing,
object recognition).

In order to segment images based on common motion,
most existing algorithms assume that the motion of each
model is described by a low dimensional parameterization.
The two most popular choices are a six parameter affine
model [19, 20] or an eight parameter projective model [1,



9]. Both of these parameterizations correspond to the rigid
motion of a plane: the affine model assumes orthographic
projection while the projective model assumes a perspective
projection.

Despite the success of existing algorithms in segment-
ing image sequences, the assumption that motion segments
correspond to rigid planar patches is obviously restrictive.
Non-planar surfaces, or objects undergoing non-rigid mo-
tion cannot be grouped. In order for the motion segmen-
tation map to be useful for higher level processing, these
methods need to be extended so they can deal with non-
planar surfaces and non-rigid motions.

Figure 1a shows a simple 3D scene that can cause prob-
lems for existing motion segmentation algorithms. A cylin-
der is partially occluded by two bars. Figure 1b shows a
cross section of the horizontal component of optical flow
when a camera, viewing the scene head on, is rotated hor-
izontally about a distant point. The bars that are closer to
the camera move fastest, and the velocity of points on the
cylinder trace out a smooth curve. In practice, of course the
velocity field will not be so perfect and Figure 1c shows the
same data with added Gaussian noise.

One way to overcome the noisiness of the flow field is
to use regularization to approximate the data with a single
smooth function. Figure 2a shows the result of applying a
typical regularization algorithm to the data shown in figure
1b. Although the noise is smoothed out, the fit suffers from
heavy over-smoothing: the motions of the cylinder and the
bars are averaged together. Figure 2b shows the output
of a “regularization with discontinuities algorithm” [18] on
the same data. Although this fixes the problem of over-
smoothing, discontinuities are a bad model of occlusion
(cf. [13, 3, 12]): data in a scene containing multiple oc-
cluding objects is not generated by a single discontinuous
function but rather multiple smooth functions interacting
nonlinearly. The results of fitting a single discontinuous
function causes two problems, which can be seen in the
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Figure 3. a,b. Two outputs of a multiple line fitting
algorithm. Three lines are needed to achieve a reasonable fit,
and the cylinder is broken apart. Various different solutions
are found, and only two are shown. c. A result of extending
the order of the models to quadratic. Although the model
class is now rich enough to capture the data, estimation
becomes unstable.

fit. First, there is no indication that the three parts of the
cylinder are part of a single object. Second, because no
information is propagated between the different fragments,
the cylinder is fit with three nearly straight lines, rather than
curved segments. The cylindrical shape is lost in the fit.

These limitationsof regularization motivated much of the
recent work in motion segmentation and led to the develop-
ment of approaches that fit multiple global motion models
to the data. How would parametric segmentation work on
the data in figure 1? Figure 3 shows the output of a mul-
tiple parametric curve fitting algorithm to this data. The
number of models was estimated automatically as in [20]
(cf. [19, 1]). When the curves are restricted to be lines,
different outcomes are obtained depending on initial condi-
tions, two of which are shown in figures 3a-b. Three lines
are needed to achieve a reasonable fit, and the cylinder is
fragmented.

What about using a quadratic model? In this case, the
model class is rich enough to capture the data, but the esti-
mation becomes unstable. Figure 3c shows a typical output.
The instability of fitting higher order models causes each of
the two bars to be fit with a parabola, an example of over-
fitting. Although the correct fit is sometimes obtained, it is
in no way favored over other erroneous interpretations.

The instability problems associated with increasing the
dimensionality of parameterization are, of course, not lim-
ited to motion analysis or even to computer vision. It is
generally accepted that one should avoid fitting high order
polynomials to data. Multidimensional splines and regular-
ization theory present an elegant alternative - the functions
used in this approach are flexible enough to model the data
yet avoid the instability associated with high order polyno-
mials. Regularization theory has a long history of use in
computer vision [14] and has enjoyed considerable success,
yet its disadvantages are well known. First, smoothness is
simply a bad thing to assume over the whole image. Typi-
cally the image will contain multiple occluding objects, and
assuming smoothness will lead to terrible estimates partic-
ularly in the regions of discontinuities. Second, calculating
the regularized solution has typically involved highly iter-
ative algorithms (e.g. [5, 18, 13, 12]) whose convergence
may be excruciatingly slow.

Here we develop an approach to segmentation that is
based on the assumption of smoothness in layers. Rather
than assuming that the motion of the whole image varies
smoothly, we assume that the motion of a given motion
group or layer varies smoothly. We show how this leads to
the notion of nonparametric mixture estimation, where the
stability of the estimation process is ensured by means of a
prior distribution on the class of flow fields. We present a
variant of the EM algorithm that can perform the segmenta-
tion in a computationally feasible manner, and show how the
algorithm is able to segment higher order flow fields while



avoiding over-fitting.

2 Algorithm Description

2.1 Generative Model

The model assumes that the image data (the spatial and
temporal derivatives of the sequence) were generated by K
smooth motion groups. The velocity field of each group is
drawn from a distribution where smooth velocities are more
probable:
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Here Dv is a differential operator that penalizes fields that
have strong derivatives:
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Thus a0 multiplies the penalty for the magnitude of the
velocity field, a1 the penalty for the magnitude of the gra-
dient of the velocity field, a2 the penalty for the magnitude
of the Laplacian and so forth. We follow [21] in using
an = �2n=(n!2n), although similar results are obtained
with other choices.

The next stage is to generate a labeling of the image,
i.e. a vector L(x; y) at every location such that Lk(x; y) =
1 if and only if position x; y will be assigned to group
k. The labelings are drawn from a Markov Random Field
distribution:

P (L) =
1
Z2

exp

0
@ X

x;y;x0;y0

wx;y;x0;y0Lt(x; y)L(x0; y0)

1
A

(3)
The link weights wx;y;x0;y0 determine the distribution of

labelings. For example setting wx;y;x0;y0 = 1 for neigh-
boring sites and zero otherwise makes labelings in which
neighboring locations have similar labels more probable.
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at location (x; y) is given by:
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where, for clarity’s sake, we have omitted the dependence
of Lk; Ix; Iy; It; vk; Lk on (x; y) and �N is the expected
level of noise in the sequence. Similar likelihood functions
have been used for the single motion case in [15, 11]. Note
that here the likelihood depends on multiple velocities, but
if Lk(x; y) is known then the likelihood depends only on
the velocity model to which a pixel is assigned.

2.2 Nonparametric mixture estimation

To estimate the parameters of this model we use the
Expectation-Maximization (EM) algorithm [4]. The algo-
rithm iterates two steps: (1) the Expectation (or E) step in
which the hidden labels are replaced with their conditional
expectation and (2) the Maximization (or M) step in which
the velocity fields are found by maximizing their posterior
probability.

Previous implementations of the EM algorithm for mo-
tion segmentation are described in [20, 10, 1]. Two aspects
of the algorithm used here are similar to the implementation
described in [20] and will only be described briefly:

� The number of models is estimated automatically, by
initializing the algorithm with more models than will
be needed. The algorithm merges redundant models
and the final number of models found depends on the
parameter �N .

� The MRF priors on the labelings make an exact E step
computationally expensive and hence a consistent ap-
proximation to the MRF distribution is used for which
an exact E step can be computed efficiently.

2.3 Estimating smooth flow fields using Green’s
functions

The distinguishing feature of our algorithm in compari-
son to previous EM based approaches is in the M step. It
requires finding, for each model, the dense flow field that
maximizes the conditional posterior probability, or equiva-
lently minimizes:
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X
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where the parameter � is determined by the ratios of �N
and �R in the generative model. L̂k(x; y) is the “filled in”
estimate for the labeling at location (x; y). It is these weights
in equation 5 that cause the estimated dense flow to differ
from model to model.

Since the nonparametric EM algorithm calls for mini-
mizing equation 5 at every iteration for all models, this
approach can only be computationally feasible if the mini-
mization can be performed efficiently. We now show how
this can be done.

Using the method of Green’s Functions (cf. [21, 6]) it
can be shown that the optimal velocity field V �

k is a linear
combination of basis flow fields,Bi(x; y):

V �

k (x; y) =
X
i

�iBi(x; y) (6)



There is a basis flow field centered at every pixel where
the image gradient is nonzero:

Bi(x; y) = G(x� xi; y� yi)
�
Ix(xi; yi); Iy(xi; yi)

�t
(7)

The scalar valued function G(x; y) is the Green’s function
corresponding to the differential operator D in equation 5
(cf. [16]). It is a solution to:

D�DG = �(x; y) (8)

For the differential operator used here, the Green’s func-
tion is a two dimensional Gaussian [21]. The coefficients �
are the solution to the linear system:

(WM + �I)� = WY (9)

With Mji is given by the scalar product of the basis field
centered on pixel i and the gradient at pixel j, Yj is simply
the temporal derivative at pixel j andW is a diagonal matrix
whose diagonal elements determine the weight of a pixel in
estimating model parameters Wii = L̂k(xi; yi).

Although equation 9 gives a closed form solution for
the optimal velocity field for each model, its solution is
still computationally prohibitive as it requires solving a lin-
ear system whose rank is equal to the number of nonzero
gradients in the image. Are we then back to square one?
No, because a remarkably good suboptimal solution can be
found using this method in a computationally feasible way.

The suboptimal solution is obtained by using only a sub-
set of the basis fields in equation 6. Denote byN the number
of basis fields in the reduced expansion, then the N coeffi-
cients are a solution to:

(M tWM + �R)� =M tWY (10)

where Mji is again given by the scalar product of the basis
field centered on pixel i and the gradient at pixel j, R is a
NxN submatrix of M in which only the pixels which have
basis functions centered on them are used, andW and Y are
as before. Note that equation 10 is of rank N independent
of the number of pixels. Note also the term �R in the
left hand side of equation 10. It is this term that imposes
the prior distribution and makes the estimation well posed
regardless of the dimensionality of the parameter vector �.
In general, the solution obtained by solving equation 10
will be different from one obtained by simply assuming the
flow field is parameterized by a spline basis set (e.g. [17]).
Finally, note that the reduced rank of the system is obtained
by using only a subset of the basis fields, not by using
a subset of the gradient constraints. The solution of the
system gives the flow field spanned by the reduced basis set
that best satisfies the gradient constraints at all pixels.

The difference between the optimal and the suboptimal
solution depends on the image data, the differential operator
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Figure 4. Using the method of Green’s functions, a closed
form solution can be found for fitting a smooth dense flow
field to the image data. A suboptimal solution, which is
computationally efficient can also be found. We have found
the difference between the optimal and suboptimal solutions
to be negligible. a. A frame from a test sequence. A second
frame was generated by warping this frame with the super-
imposed flow field. b. Cross sections from the estimated
velocity field using the full basis function set (circles) and
using only 50 basis functions (crosses). The two solutions
are indistinguishable.

D and the choice of subsets. In practice, we have found the
difference to be negligible when 50 basis fields are used, cho-
sen so that they are equally spaced on the image. To get an
intuitionregarding the optimal and suboptimal solutions, we
generated a synthetic sequence by warping the image shown
in figure 4a according to the superimposed flow. Figure 4b
shows cross sections from the estimated velocity fields. The
suboptimal solution is plotted with crosses, and the optimal
one is plotted with circles. The solutions are indistinguish-
able. On a R4400 Silicon Graphics workstation, solving
equation 10 to calculate the suboptimal solution took less
than 1=100 of a second, while solvingequation 9 to calculate
the optimal solution took over an hour.

Although we have used here the differential operator
suggested in [21] the exact same method can be used with
other differential operators. For example, we have been able
to solve the Horn and Schunck [7] equations in closed form
using this method.

2.4 Algorithm summary

To summarize, the statistical assumptions about the gen-
erative model are characterized by four numbers: �; �which
embody the smoothness assumption, �N the assumed level
of noise in the sequence and wxyx0y0 which specifies the
probability that a pixel will belong to a different model than
its four neighbors.

Given these assumptions and spatiotemporal derivatives
computed over the image, we use a computationallyefficient
EM algorithm to calculate number of models, the segmen-
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Figure 5. The performance of our algorithm on the data
shown in 1c. The model is randomly initialized with four
curves and automatically decides that two curves are suffi-
cient in this case. The algorithm converges in seven iter-
ations. Note that the curvature of the cylinder is correctly
estimated.

tation of the image and a smooth dense flow field for every
model.

3 Results

Before showing the results of our motion segmentation
algorithm, we show the performance of a similar 1D non-
parametric mixture estimation algorithm on the data dis-
cussed in the introductionand shown in figure 1c. Although
some of the problems characteristic of motion segmentation
are not present in 1D (e.g. the aperture problem), we choose
to first illustrate the performance on a 1D problem because it
enables us to display the evolution of the model’s estimates.
Figure 5 shows the line fits and estimated labelings, L̂k(x),
as a function of iteration. Note that although the labelLk(x)
are assumed to be binary, their “filled in” estimates L̂k(x)
are continuous valued and lie between zero and one. The
algorithm is initialized with four curves each of which has
is initially assigned a random subset of the data. Hence the
initial fits are nearly identical. After six iterations, when
the algorithm converges, two of the models are merged and
only two unique models are needed to explain the data.

Compare the fit obtained by our algorithm to those dis-
cussed in the introduction. Unlike the regularization with
discontinuitiesfit in figure 2b, our algorithmcombines infor-
mation across the different portions of the occluded cylinder
and the curvature of the cylinder is apparent in the fit. Since
each of the models is flexible enough, our algorithm can
achieve a good fit with just two curves, unlike the line fit
shown in figure 3. Since our algorithm uses a prior favor-
ing smooth fits, it does not over-fit as does the quadratic fit
shown in figure 3c.
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Figure 6. a. A single frame from the cylinder sequence.
A textured cylinder is partially occluded by two textured
bars, and the camera is rotating about a distant center. b.
Reconstructed three dimensional surfaces obtained from the
horizontal dense velocity fields estimated by our algorithm.
c. The segmentation maps displayed on top of the surfaces,
indicating the opacity of each layer.

We now show an example of the full 2D motion segmen-
tation algorithm. We generated a synthetic image sequence
modeled after the scene in figure 1a. Figure 6a shows a sin-
gle frame from the sequence. A textured cylinder is partially
occluded by two textured bars, and the camera is rotating
about a distant center and translating. The camera was as-
sumed to be orthographic and the translation was such that
the mean horizontal velocity of the image was zero. Similar
to the 1D case discussed earlier, this sequence is hard to seg-
ment using parametric approaches. Figures 6b-c show the
output of our algorithm – it correctly estimates the number
of models and the segmentation. The high quality velocity
field obtained using our method enables us to reconstruct a
three dimensional surface for each segment output (assum-
ing orthography, this is simply the horizontal component of
the derived dense flow fields). Figure 6b shows the surfaces
obtained in this way, and Figure 6c shows the segmentation
maps displayed on top of the surfaces, indicating the opacity
of each layer.

We have found that sequences which are easily seg-
mented using parametric motion models are also segmented
using our approach. This is not surprising – the low dimen-
sional motion models are often smooth and hence favored
as segmentations by our model. Figure 7a shows a single
frame from a sequence that was segmented using transla-
tional models in [10, 3]. A person is moving behind a
plant. Figure 7b shows the segmentation derived by our al-
gorithm. The parameter settings are identical to those used
in the cylinder sequence. The number of models is correctly
estimated and the different fragments corresponding to the
person are grouped together. Figure 7c shows the estimated
velocities.

Figure 8a shows a single frame from the MPEG flower-
garden sequence that was segmented using planar models
in [19, 1, 20]. Since this sequence contains large motions,
we replaced the temporal derivative in equation 4 with a cal-
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Figure 7. a. The plant sequence. A person is moving
behind a plant. b. The segmentation found by our algorithm.
Pixels belonging to the person are grouped together. c.
The velocity estimate obtained by plotting at each pixel the
velocity of the model to which that pixel is assigned.
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Figure 8. a. The flower garden sequence. The camera is
translating approximately horizontally. b. The segmenta-
tion found by our algorithm. Two segments are found - one
corresponding to the tree (shown) and another correspond-
ing to the rest of the image. c. A cross section through the
horizontal flow field taken at the dotted line in a. Note that
the algorithm correctly finds the nonplanar motions of the
flower bed and the tree.

culated normal velocity at each pixel. The normal velocity
was calculated using a coarse-to-fine method (cf. [2]). The
other aspects of the algorithm were identical to those used
in previous sequences.

For the value of �N used two segments are found, one
corresponding to the tree (shown in figure 8b) and the other
corresponding to the rest of the image. An advantage of
using nonparametric models for the segmentation, is that
the nonplanarity of the scene can be captured in the out-
put. Figure 8c shows a cross section through the horizontal
flow recovered by our algorithm (since the camera motion
is roughly horizontal, this flow is approximately related to
distance from the camera). The cross section is taken at the
position indicated by the dotted line in figure 8a. Note that
the motions of the flower bed and the tree are smooth, curved
functions. This type of structure can be easily captured in
a nonparametric technique, but is lost when segments are
assumed to be 3D planes. As a result, when we use the esti-
mated motions to align the two frames, we obtain a notice-
ably better alignment with the nonparametric segmentation
technique as compared to affine segmentation.

4 Discussion

Motion segmentation algorithms are often categorized
as “direct” or “indirect” based on whether they fit models
directly to the image data (e.g. [1]) or to local optical flow
measurements (e.g. [19]). The particular implementation
presented here would be classified as direct, since the models
are fit to the spatiotemporal derivatives (see equation 4).
However, the framework we have developed here is in no
way restricted to spatiotemporal derivatives and can also be
applied to local optical flow measurements, in cases when
an indirect method is judged to be advantageous.

Our generative model assumes that for every pixel, there
exists a motion model that generated the spatiotemporal
derivatives at that pixel. This formulation ignores the accre-
tion and deletion of pixels at occlusion boundaries that give
rise to spatiotemporal data that is not well explained by any
of the motion models. In current work, we are exploring the
use of outlier models to deal with those pixels (cf. [10]).

The preceding discussions highlight the relationship be-
tween our approach and existing segmentation algorithms.
Our approach fits a dense smooth flow field for every seg-
ment, and this allows us to segment non-planar surfaces
or objects undergoing non-rigid motions. However, our
approach shares the basic structure of existing parametric
segmentation algorithms, and thus when dealing with ques-
tions of model selection, large motions and outlier rejection,
we can build on the progress made by existing algorithms.

The distinction between parametric and nonparametric
estimation may seem rather arbitrary. Indeed, the dense flow
field by which we represent the motion of each group may
be thought of as a parametric description with the number of
parameters equal to the number of pixels. However, there is
a fundamental difference between the two approaches. The
difference is not in the number of free parameters but rather
lies in what is responsible for making the estimation well
posed. In parametric approaches, this is accomplished by
assuming a small number of unknowns, while in nonpara-
metric approaches the well-posedness is a result of assum-
ing a prior distribution over the unknowns. In this work,
we assumed a prior distribution where the probability of a
flow field is inversely related to its smoothness and showed
how to efficiently maximize the posterior probability un-
der this assumption. An advantage of the nonparametric
mixture framework developed here, is that other types of
prior distributions can be easily incorporated in place of the
smoothness assumption. Thus this framework can be used
to investigate what assumptions are necessary to achieve
stable segmentation of arbitrary image sequences.



5 Conclusion

Existing motion segmentation algorithms are able to seg-
ment image sequences by restricting the motion of each seg-
ment to lie in a low dimensional subspace. This approach
has inherent limitations. If the subspace is small then it is
too restrictive and cannot group together pixels undergoing
more complex motions. If the subspace is rich enough to
capture complex motions, the dimensionality is large and
the estimation becomes unstable.

Existing regularization approaches avoid some of the
shortcomings of parametric models but introduce new prob-
lems. The assumption of smoothness over the whole image
leads to erroneous estimates in any scene containing multi-
ple objects, and the solution involves slow, iterative calcula-
tions. The addition of “line processes” to the regularization
framework only partially addresses these problems: line
processes are a bad model for occlusion, thus disabling the
propagation of information between occluded fragments,
and the computational cost associated with these algorithms
is even more prohibitive.

Here we have developed a new approach that builds on
the recent progress made in statistically based segmenta-
tion. We have presented a generative model that embodies
a prior towards smoothness, but smoothness in a layer and
not smoothness over the whole image. We have shown
how this leads to nonparametric mixture estimation and de-
veloped a variant of the EM algorithm that can efficiently
perform segmentation under this assumption. By deriving a
closed form solution to the smooth motion problem, we are
able to avoid the slow iterative calculations of traditional
approaches. Based on the successful performance of our
algorithm on synthetic and real image sequences, we are
optimistic that this framework will also be useful for other
segmentation tasks in computational vision.
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