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Abstract

The Gaussian parallel relay network, introduced by Schein and Gallager, consists of a concatenation

of a Gaussian additive broadcast channel from a single encoder to a layer of relays followed by a

Gaussian multiple-access channel from the relays to the final destination (decoder), where all noises

are independent. This setup exhibits an inherent conflict between digital and analog relaying; while

analog relaying (known as “amplify-and-forward”, A&F) suffers from noise accumulation, digital relaying

(known as “decode-and-forward”) looses the potential “coherence gain” in combining the relay noises

at the decoder. For a large number of relays the coherence gain is large, thus analog relaying has better

performance; however it is limited to white channels of equal bandwidth. In this work, we present a

generalization of the analog approach to the bandwidth mismatch case. Our strategy, coined “Rematch and

Forward” (R&F), is based upon applying joint source–channel coding techniques that belong to a certain

“maximally analog” class. Using such techniques, R&F converts the bandwidth of the broadcast section to

that of the multiple-access section, creating an equivalent matched-bandwidth network over which A&F

is applied. It is shown that this strategy exploits the full bandwidth of the individual channels, without

sacrificing the coherence gain offered by A&F. Specifically,for given individual-link capacities, R&F

remains within a constant gap from the network capacity for any number of relays and any bandwidth

ratio between the sections. Finally, the approach is extended to the case of colored channels.
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I. INTRODUCTION

The emerging field of communication over networks witnessesthe collapse of the traditional distinction

between channel, source and joint source–channel problems. A special class of problems has a relay

structure, in which a message source node wishes to pass information to a destination node, while other

nodes act as relays, whose sole purpose is to help in this datatransfer. Although the end-to-end problem

is a channel coding one, the techniques used to solve it are diverse. Consider the best known relaying

techniques (see e.g. [1]), where each one is known to be better under different conditions of network

topology and signal-to-noise ratios:

1. A channel coding approach:Decode-and-Forward(D&F), where a relay decodes the message, and

then re-encodes it.

2. A source and channel coding approach:Compress-and-Forward(C&F), where a relay treats its input

as an “analog” source, compresses it, and then uses a channelcode to forward it.

3. A joint source–channel coding (JSCC) approach:Amplify-and-Forward(A&F), where a relay simply

forwards its input, only applying power adjustment.

The last is indeed a non-digital JSCC approach. It does not opt to decode the input, but rather treats

it as a source; furthermore, the analog processing of this source, reminiscent of analog transmission in

Gaussian point-to-point communications [2], relies upon the natural matching that exists in the quadratic-

Gaussian case between the “source” statistics, channel statistics and distortion measure.

In this work we concentrate on a simple test-case: The Gaussian parallel relay network, first introduced

by Schein and Gallager [3]. In this network, depicted in Figure 1, all the relays are ordered in a parallel

manner; the message source node is connected to the relays bya Gaussian broadcast channel (BC), while

the relays are connected to the destination node by a Gaussian multiple access channel (MAC). In the

original setting, all noises are white and the channels all have the same bandwidth (BW). Surprisingly,

the capacity of this relatively simple network is unknown, except when the signal-to-noise ratio (SNR) of

the BC section is high enough relative to the SNR of the MAC section (in which case D&F is optimal).

If the network only contained one relay, then D&F would be always optimal, and the resulting network

capacity would be the minimum between the capacity of the link to the relay and the link from the relay.
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Fig. 1: The Parallel Relay Network.

The advantage of a digital scheme in such a situation was pointed out early in the development of

Information Theory [4], and it stems from the ability of the relay to recover the original message of the

encoder, thus avoidingnoise accumulationbetween network sections. If this relay had multiple antennas,

then the scheme could enjoy additional gains: multiplereceiveantennas mean that the relay can perform

maximum-ratio combining (MRC) of its inputs, resulting in again also known as receive beamforming

gain; multiple transmit antennas mean that the relay can perform transmit beamforming, resulting in a

gain also known as array gain. We refer to these two gains ascoherence gainswith respect to both network

sections. Unfortunately, if the multiple-antenna relay isreplaced by multiple single-antenna relays, it is

not possible to avoid noise accumulation and enjoy coherence gain w.r.t. the BC section at the same

time. This is since in a digital scheme the BC noises have to beremoved at the relays — but due to the

distributed setting, the potential coherence gain in combining the noises is lost. Using the A&F strategy,

the task of removing the BC noise is left for the final decoder,where MRC can be performed, with

the penalty of noise accumulation. It is not surprising, then, that in the limit of high SNR in the MAC

section, as well as in the limit of many relays [5], the A&F approach is optimal.

In this work we extend the view to networks where the noises are colored, and specifically to the

important case of BW mismatch between the BC and MAC sections. In such cases, there is no hope for

the A&F strategy to be optimal; for instance, in the presenceof a BW mismatch, any linear processing

in the relays can only result in an end-to-end channel of the minimum BW, so that the extra BW is

not utilized. This disadvantage is particularly critical in the case where the section with the higher BW

has a worse SNR, thus the extra BW could serve to “open the bottleneck.” Still, in order to enjoy the

coherence gain we must preserve as much as possible the analog nature of the transmission. In order

to overcome this problem we introduce a new relaying strategy, a “maximally analog” JSCC approach
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namedRematch-and-Forward(R&F). We show that it enjoys the same coherence gains as A&F does,

yet it exploits the BW of both sections and the noise memory, beyond what is achievable by A&F.

The R&F approach is based upon treating the channel codewordas a Gaussian process having the

same BW as the MAC section. A JSCC scheme is used to transform this “source” into a signal having

the BW of the BC section, which allows each relay to obtain an estimate of that codeword. The relays

now transmit their estimates (now back in the original BW) over the MAC section. It turns out, that if

the overall scheme is to achieve the simultaneous BW utilization and coherence gain properties discussed

above, this JSCC scheme needs to satisfy two conditions:

1. The estimation MSE at each relay should be optimal with respect to the capacity of the channel

from the transmitter to that relay.

2. The estimation errors at the relays should be mutually uncorrelated.

The first condition cannot be satisfied by analog transmission, which does not exploit the full channel

capacity (unless the “source” is transmitted over a white channel of matched BW). The second condition

rules out digital transmission, where the estimation errors are all identical, being the error of some

quantization applied at the encoder. We show that some JSCC schemes — variants of hybrid digital–

analog schemes (HDA, [6],[7]) and of modulo-lattice modulation schemes (MLM,[8]) — satisfy the

second property at all SNR, and the first condition in the limit of high SNR.

Based on these conditions, we show that the R&F approach satisfies that for given single-link capacities

(i.e., a given capacity of the point-to-point channel from the encoder to a single relay, and of the point-

to-point channel from a single relay to the decoder), the R&Frate remains within aconstant gapfrom

an upper bound on the network capacity, for any number of relays and for any ratio between the BW of

the MAC and BC sections.

When using HDA techniques, R&F amounts to using superposition and frequency-division for trans-

mitting digital and analog components over the network sections. Interestingly, a similar structure [9]

was recently proposed for the same problem using a differentapproach. Although both points of view are

valid (and lead to similar results, see Section VI), the JSCCapproach has the benefit of encapsulation:

it treats each link on its own, without resorting to complicated global optimization of the network.

The rest of this paper is organized as follows: We start in Section II by formally introducing the problem

and the notation used. In Section III we present the concept of channel coding over JSCC schemes.

Section IV contains a new view of the A&F strategy which motivates our approach. In Section V we

present the R&F strategy and use it to prove an achievabilityresult for the parallel relay network with BW

mismatch. In Section VI we analyze the resulting performance and compare it with alternative strategies
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and with outer bounds. In Section VII we extend the results tocolored noises, using a modulo-lattice

modulation implementation. In Section VIII we discuss the use of the R&F strategy as a building block

for more general networks.

II. PROBLEM FORMULATION AND NOTATION

In the network model of interest (recall Figure 1), a messageW needs to be recovered at the destination

decoder. We describe here the setting where all noises are white, although there may be a mismatch

between the bandwidths of the two sections; we shall break with the whiteness assumption in Section VII.

We assume a symmetric model, under which the noises in all theM branches of the BC section have

the same power spectral density (PSD), and the transmissionBW and power constraints are equal for all

theM relays.

In continuous-time notation, let the BC noises have a flat (two-sided) PSD of levelPBC/2, while the

MAC noise has flat PSD of levelPMAC/2. We may assume without loss of generality, that each relay and

the source encoder are subject to the same power constraintPX per time unit. Each channel is limited

to BW B, that is, no transmission is allowed in frequencies|f | > B. The BC and MAC sections have

BW ρ > 0 andρ = 1, respectively;ρ is thus the BW expansion ratio of the BC section w.r.t. the MAC

section. We define the SNRs

SNRBC =
PX

PBC
(1a)

SNRMAC =
MPX

PMAC
, (1b)

respectively. Note that the MAC SNR is defined w.r.t. the total power of all the relays.

For convenience, we work with a discrete time model, where each relay transmits anN -dimensional

block and the encoder transmits a block of length⌊ρN⌋. Such blocks are denoted in bold, e.g. the

transmitted block of them-th relay isXm; the n-th element of that block isXm,n. In the discrete-time

model, the additive mutually-independent noise sequencesZ1, · · · ,ZM and ZMAC are i.i.d. Gaussian,

with variances:

E{Z2
m,n} = PBC

E{Z2
MAC,n} = PMAC .
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The channel power constraints are given by:

1

ρN
E{‖XBC‖2} =

PX

ρ

1

N
E{‖XMAC‖2} = PX .

A rate R is admissible if a coding scheme exists where each of⌈exp{NR}⌉ equiprobable messages

can be reconstructed with arbitrarily low probability of error, and the network capacityC is the supremum

of all such rates.

We denote byC(·) the AWGN channel capacity with SNRA:

C(A) ,
1

2
log(1 + max(A, 0)). (2)

As stated in the introduction, we shall prove our results using joint source–channel results, thus we

will resort to estimation and distortion, where the useful measure turns out to be the mean squared error

(MSE). When it comes to MSE distortion, our results are more easily presented in terms ofunbiased

errors, defined as follows.

Definition 1 (CUBE estimation): Let Ŝ be an estimator of a random vectorS of size N . Ŝ is a

correlation-sense (sample-wise) unbiased estimator (CUBE), if

E{(Ŝn − Sn)Sn} = 0 ∀n = 1, . . . , N .

Note that any estimator which is unbiased in the strong sense, i.e.,

E{Ŝ− S|S} = 0 ∀S ,

is CUBE. However, weak-sense unbiased estimator, whereE{Ŝ − S} = 0, is not necessarily CUBE.

Also note that any estimator̃S of S can be transformed into a CUBE estimatorŜ by multiplication by

a suitable constant:

Ŝ =
E{S2}
E{SS̃}

S̃ .

In the extreme case of an estimator which is uncorrelated with the source, this constant approaches

infinity and so does the CUBE MSE, unlike the biased MSE which need not exceed the source variance.

We define the signal-to-distortion ratio w.r.t. a CUBE estimator:

SDR,
E{‖S‖2}

E{‖Ŝ − S‖2}
. (3)

Note that this definition is different than the standard (biased) definition of SDR. In terms of this CUBE

SDR, the unbiased quadratic-Gaussian white rate–distortion function (see also [10]):

R(D) , inf
w(Ŝ|S):E{(Ŝ−S)2}≤D,E{(Ŝ−S)S}=0

I(S; Ŝ) (4)
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equalsC(SDR). We use this rate–distortion function (rather than the morecommon biased one) throughout

the paper.1

III. D ATA TRANSMISSION OVER JSCC SCHEMES

In this section we present some results that will be needed inthe sequel, connecting the performance

of a JSCC scheme with achievable rates of a channel encoder–decoder pair which encapsulates it.

Proposition 1: Let S be some memoryless source. Let eachN -dimensional reconstruction block̂S

be drawn according to some conditional distributionw(ŝ|s), i.i.d. between blocks. Denote the (scalar)

distortion measure byd(Si, Ŝi) and the corresponding distortion between the blocksS and Ŝ — by

d(S, Ŝ) =
1

N

N∑

i=1

d(Si, Ŝi) .

If the expected distortion satisfies

E{d(S, Ŝ)} ≤ ND0 , (5)

then there exists a channel coding scheme of any rate

R < R(D0) (6)

over the channel fromS to Ŝ, whereR(D) is the rate–distortion function ofS w.r.t. the distortion measure

d(·, ·).
Proof: According to the rate–distortion theorem,

I(S, Ŝ) ≥ NR(D0) . (7)

Consider now the “block channel” betweenS and Ŝ, described by the conditional distributionw(ŝ|s).
Let RN be a coding rate for this channel, i.e., a rate per a “block input” S. According to the channel

coding theorem, any

RN < I(S, Ŝ)

is achievable. Re-normalizing per a single (scalar) input,we have that any rate

R =
1

N
RN <

1

N
I(S, Ŝ) (8)

1This biased RDF is achievable, since it is exactly the SDR obtained when removing the bias from a reconstruction that obeys

the optimal (biased) quadratic-Gaussian test channel. To the contrary, it cannot be exceeded, or introducing an MMSE factor

would result in surpassing the performance of the quadratic-Gaussian (biased) RDF.
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is achievable. Combining the results of (7) and (8) we conclude that any rate satisfying

R ≤ R(D0) (9)

is achievable.

Remark 1:When working in this encapsulated manner, the inputS is not drawn according to a mem-

oryless distribution, but instead it is a symbol of the block-channel codebook. Nevertheless, considering

the distortiond(S, Ŝ) averaged over the memoryless source distribution is sufficient.

We now specialize this result to the white Gaussian RDF. In terms of the CUBE performance (see

Definition 1) of the JSCC scheme, Proposition 1 becomes the following.

Corollary 1: If the CUBE SDR satisfies

SDR≥ SDR0 ,

then there exists a channel coding scheme for any rate

R < C(SDR0)

over the channel fromS to Ŝ.

We give this result the following interpretation (see Figure 2): For some communication network, if we

can find a scheme, containing any block functions (of dimensionN ) at the network nodes (which we view

as JSCC encoders and decoders), such that the expected SDR isat least SDR0, then the rateC(SDR0)

can be approached in transmission between these nodes by viewing the whole scheme as an equivalent

channel and adding an external channel encoder/decoder pair. The resulting scheme is as follows.

Scheme 1: 1) Use a codebook with2KNR words; each word is composed ofK super-symbols, each

super-symbolS composed ofN real numbers.

2) Feed each such super-symbolS is independently to the JSCC scheme, resulting in a reconstruction

Ŝ.
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3) The decoder recovers the message from the JSCC scheme outputs, assuming that the outputs

Ŝ1, . . . , ŜK were created from the correspondingS1, . . . ,SK by a memorylessw(Ŝ|S). the (dis-

torted) source-blockŝS using the JSCC decoder.

Remark 2:One may construct the codebook using randomness as follows.The codebook is drawn as

2KNR × (KN) i.i.d. Gaussian values. Then, in average over these codebooks, the CUBE SDR of the

JSCC scheme is at least SDR0, thus for any rate belowC(SDR0) the error probability of the ensemble

approaches zero; consequently, at least one codebook has vanishing error probability.

Remark 3:This coding strategy is similar to [11, Theorem 10], although the approach there suggests

to eliminate the JSCC encoder and decoder rather than use them as part of the scheme.

Remark 4: In general this approach may require a highly complex decoder which takes into account

the (possibly non-white) transition distributionw(Ŝ|S). In the Gaussian case, however, super-symbols are

not required and a simple Euclidean decoder is always sufficient, see e.g. [12, Theorem 2]. Interestingly,

a similar result to Proposition 1 was proven for discrete alphabets in [13] without resorting to super-

symbols.

IV. A&F AS A JOINT SOURCE–CHANNEL APPROACH

In the simple case where both sections have the same BW (ρ = 1) and the noises are white, we can

use a codebook which is good for transmission over an AWGN channel in conjunction with the A&F

strategy. In this strategy, each relay simply forwards a scaled version of its input:

Xm = γYm = γ(XBC + Zm) (10)

where the relay amplification factor is set by the channel power constraint:

γ =

√
PX

PX + PBC
=

√
SNRBC

1 + SNRBC
.

Consequently, the decoder receives

YMAC =

M∑

m=1

Xm + ZMAC

= γ(MXBC +

M∑

m=1

Zm) + ZMAC .

From the point of view of the decoder, this is equivalent to a point-to-point AWGN channel with SNR:

SDRAF =
E{‖γMXBC‖2}

E{‖γ
∑M

m=1 Zm‖2}+ E{‖ZMAC‖2}

= M (SNRBC↿↾SNRMAC) ,

(11)
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where

A↿↾B ,
AB

1 +A+B
(12)

is the equivalent SNR in transmitting a signal through the concatenation of additive noise channels of

SNRsA andB.2 The resulting achievable rate of the network is as in [3]:

RAF = C (SDRAF) . (13)

This rate reflects the coherence gain w.r.t. the noises of both sections, as explained in the introduction.

However, when we leave the white equal-BW case, the A&F strategy fails to fully exploit the capacity

of the individual channels; for example, it is restricted tothe minimal BW of the two sections, since it

is fully analog.

We present here an alternative view of the A&F strategy. Using the analysis in Section III, we think

of the scheme as a joint source–channel coding (JSCC) schemeover the relay network, surrounded by

a channel encoder–decoder pair. The sole purpose of this JSCC scheme is to produce a “good” estimate

of the codewordS at the decoder; in light of Corollary 1, the relevant measureof goodness is MSE

distortion. For the purpose of this scheme,S is treated as an i.i.d. Gaussian signal (drawn from an i.i.d.

source rather than from a codebook). For the parallel relay network topology, the JSCC scheme is a

concatenation of two schemes, from the encoder to the relaysand from the relays to the decoder. The

A&F strategy uses the simplest JSCC schemes, i.e. analog transmission, for both sections. While this

choice is not optimal in general, we show in the sequel that ifwe restrictoneof the sections to be analog,

then the other may be analog as well without further loss.

2Here for each channel, the SNR is defined as the ratio of its input to noise power, i.e. for the second channel the “signal”

includes the noise of the first channel. This causes the additional term “1” in the denominator, without which this would have

been a scaled harmonic mean of the SNRs.
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A classic result by Goblick [2] states that analog transmission is optimal in the white quadratic-

Gaussian point-to-point setting. Recent works, e.g. [14],[15], extend this property to some network

settings. Gastpar [16] shows the optimality of analog transmission in a problem of particular interest to

us: a sensor network problem, where agents observe a white Gaussian source contaminated by white

Gaussian noise (i.i.d. between the agents), and communicate with a central decoder through a Gaussian

MAC; the aim of the decoder is to reconstruct the source, subject to an MMSE criterion. Thus, this is a

combination of the quadratic-Gaussian CEO problem with theGaussian MAC problem.

This setting is equivalent to the joint source–channel problem betweenS and Ŝ in Figure 3, under

the constraint that the JSCC scheme over the BC section must be analog, see Figure 4a. We present the

result, then, in the relay network notation.

Theorem 1 (Collection / “Sensors Network”, [16]): In the white Gaussian relay network, ifS is a
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white Gaussian source andXBC = βS for someβ satisfying the power constraint, the CUBE SDR of

the reconstruction̂S satisfies

SDR≤ SDRAF ,

where SDRAF was defined in (11).

We now look at a dual problem: Suppose that we can distributeS to the relays using any JSCC scheme,

but the estimation ofS at the final decoder is obtained by an analog operation. This is again equivalent

to the joint source–channel problem betweenS andŜ in Figure 3, only now under the constraint that the

JSCC scheme over the MAC section must be analog, see Figure 4b. For this problem, we have a similar

result.

Theorem 2 (Distribution / “Emitters Network”): In the white Gaussian relay network, ifS is a white

Gaussian source and̂S = αYMAC for someα, the CUBE SDR of the reconstruction̂S satisfies

SDR≤ SDRAF ,

where SDRAF was defined in (11).

The proof is given in Appendix A. It is based upon consideringthe joint statistics of the CUBE errors

at the relays, denoted bỹZm = Ŝm − S. The proof shows that errors which are uncorrelated and have

fixed variance, both in time and in the spatial dimension, areoptimal, with a minimum SDR that equals

the BC SNR. Thus, from the point of view of a linear decoder under a quadratic distortion measure,

these errors are equivalent to the BC noises. In the white equal-BW case, they may as well be these

noises themselves. In the following sections, we define a generalization of this principal:additiveJSCC

schemes.

We see, then, that if either the encoder or the decoder are restricted to be scalar and linear, then the

whole scheme fromS to Ŝ may be scalar and linear as well, without increasing the distortion. The A&F

strategy can be thus described as follows.

Scheme 2 (Amplify-and-Forward):

1) Channel Encoding: Choose a codewordS from an i.i.d. Gaussian codebook.

2) Distribution: Over the BC section, use the optimum strategy that obtains reconstructions{Ŝm} at

the relays, under the assumptions thatS is a sequence from a white Gaussian source and that the

final decoder is linear and scalar.

3) Collection: Over the MAC section, use the optimum strategy that obtains afinal reconstruction̂S,

under the assumptions thatS is a sequence from a white Gaussian source, that the estimates {Ŝm}
are the BC channel outputs and the encoder is linear and scalar.
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γ

Z̃
M

Ŝ
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Ŵ

(b) Equivalent A&F channel
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4) Channel Decoding:Treat the estimation̂S as the output of a channel, and decode the message.

We shall see in the sequel, that the rematch-and-forward strategy extends these principles beyond the

white equal-BW case.

V. REMATCH-AND-FORWARD FORBANDWIDTH M ISMATCH

We now turn to present the Rematch-and-Forward (R&F) strategy for the BW mismatch case. We follow

the steps of the A&F strategy, as defined in Scheme 2. We use a random white Gaussian codebook, and

choose it to have the BW of the MAC section. Consequently, analog transmission remains optimal for

the collection stage (over the MAC section). However, for the distribution stage (over the BC section)

we need to replace the analog transmission by an adequate JSCC scheme. Figure 5 shows the resulting

structure of the R&F strategy: Some JSCC scheme, to be specified later, is used over the BC section,

while analog transmission is used over the MAC section. Seeing the CUBE errors (recall Definition 1) of

the JSCC decoders at the relays as “channel noises”, we have the equivalent channel of Figure 5b, which

in turn is just the AF strategy applied to a white relay network, where all the links have the original BW

of the MAC section. The following theorem states our main achievability result, using that approach.

Our rate expression makes use of the equivalent, (or “mutual-information preserving”) SNR of the BC
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section, denoted bySNRBC, satisfying

C(SNRBC) = ρC

(
SNRBC

ρ

)
, (14)

which is equivalent to

SNRBC =

(
1 +

SNRBC

ρ

)ρ

− 1 . (15)

Theorem 3 (R&F Performance for BW Mismatch): The capacity of the Gaussian parallel relay net-

work (per MAC section use) is lower-bounded byRRF, where forρ > 1:

RRF = C
(
M(SNR′

BC↿↾SNRMAC)
)
, (16)

where the operator↿↾ was defined in (12) and:

SNR′
BC =

(
1 +

SNRBC

ρ

)ρ−1 SNRBC

ρ
=

SNRBC

ρ+ SNRBC
(1 + SNRBC) , (17)

while for ρ ≤ 1:

RRF = ρ · C
(
M(SNRBC↿↾SNRMAC)

)
+ (1− ρ) · C

(
SNRBC↿↾(MSNRMAC)

)
. (18)

The rest of this section is devoted to proving this result. Section V-A and Section V-B contain the

proofs of (16) and (18), respectively.

A. Transmission over the BC Section with BW Expansion

For ρ ≥ 1, the JSCC scheme used to materialize the distribution stageof Scheme 2 must be a “good”

scheme for BW expansion. Recall that the coherence gain for A&F was achieved due to the mutual

independence of the BC section noises; the following definition and lemma provide us with a sufficient

condition for a scheme to produce such an equivalent channel.

Definition 2 (Additive JSCC scheme): A JSCC scheme for a sourceS is additive with error probabil-

ity pe, if there exists an eventC of probability at least1− pe, such that the CUBE error̃Z is statistically

independent ofS given the encoding and decoding functions and the eventC.

In this definition, the error probability corresponds to a decoding failure of some digital element of

the scheme, if such an element exists. It is understood, thatby taking a large enough block length this

probability can be made arbitrarily small. The additivity in this definition is in a point-to-point setting;

the following lemma translates this to the BC setting.
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Note that the independence ofZ̃ in S, given the encoding and decoding functions, implies thatZ̃ and

S are independent given any common randomness shared by the encoder and the decoder.

Lemma 1 (Additive JSCC scheme over a BC): A JSCC scheme for a sourceS is used over a BC

wM (y1, . . . ,yM |x) =
M∏

m=1

w(ym|x) (19)

by applying the decoding function of the JSCC scheme to each channel outputYm. If the scheme is

additive with error probabilitype, then there exists an eventCM of probability at least1−Mpe such that

the CUBE errors{Z̃m} are mutually independent givenCM and the encoding and decoding functions.

Proof: The probability thatall
{
Z̃m

}
are independent ofS is lower-bounded by the union-bound

P (CM ) ≥ 1−Mpe .

Given the eventCM and the encoding and decoding functions,f(·) andg(·), we have

P

({
Z̃m ≤ zm

}M

m=1

∣∣∣CM , f, g

)
=

∫
P

({
Z̃m ≤ zm

}M

m=1

∣∣∣CM , f, g,S = s

)
fS(s)ds ,

wherefS(·) is the probability distribution function of the sourceS. Under this conditioning,̃Zm is a

function of the channel noiseZm only, and hence independent of all other CUBE errors
{
Z̃m

}
i 6=m

, due

to the BC structure (19). Thus,

P

({
Z̃m ≤ zm

}M

m=1

∣∣∣CM , f, g

)
=

∫ M∏

m=1

P
(
Z̃m ≤ zm

∣∣∣CM , f, g,S = s

)
fS(s)ds

=

M∏

m=1

P
(
Z̃m ≤ zm

∣∣∣CM , f, g
)
,

where the last equality holds true since
{
Z̃m

}
are independent ofS given CM and the decoding and

encoding functions.

The additivity allows us to express the SDR ofŜ in terms of the point-to-point performance of the

BC section JSCC scheme as follows.

Lemma 2:Consider using over the BC section a sequence of additive JSCC schemes, indexed by the

block lengthN , with error probabilitiespeN , and with CUBE SDR ofSNRBC (when there is no error).

If limN→∞ peN = 0, then limN→∞ SDR= M(SNRBC↿↾SNRMAC).

Proof: Forpe = 0, the result follows with an appropriate choice of factors, just as in A&F. It remains

to show that the effect of errors is small in the limit of smallpe; this follows from basic probability-

theoretic arguments; see the proof of [17, (5.2)].

Recall that by Corollary 1, any channel rate belowC(SDR0) is achievable over a general channel that

has CUBE SDR of SDR0 for a white Gaussian input. Thus, Lemma 2 proves the achievability of the
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Fig. 6: HDA Scheme for BW Expansion.

rate of (16), if SNR′BC is the CUBE SDR of an additive JSCC scheme with a white Gaussian input. It

remains to demonstrate that there exists a scheme that achieves SNR′BC of (17). To that end, we use an

additive variant of a scheme by Mittal and Phamdo, depicted also in Figure 6; later in Section VII we

present an alternative which has the same performance in thehigh-SNR limit.

In this section, we denote the first(ρ− 1)N samples of anN -dimensional vector and the rest of the

vector by subscripts ‘out’ and ‘in’, respectively. For example, Xout andXin denote the first(ρ − 1)N

and the lastN entries of the vectorX of lengthρN .

Scheme 3 (HDA Scheme for BW expansion, after [6, System 3]):
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Encoding:

1) Quantize the source vectorS of lengthN , i.e., splitS into a quantized valueSQ and a quantization

errorZQ.

2) Use a digital channel code (satisfying the average channel power constraintPX/ρ) to obtain(ρ−1)N

channel inputs representingSQ, denoted byXout.

3) Apply power adjustment to the quantization error vectorZQ (of lengthN ), i.e., multiply it by
√
α,

where

α ,
PX/ρ

σ2
ZQ

, (20)

and send the resulting inflated error signalXin =
√
αZQ over the remainingN samples, in an

analog manner.

Decoding:

1) Decode the channel code from the first(ρ− 1)N output samplesYout (corresponding toXout), and

then the source code, to recover the quantized source representationŜQ.

2) Reverse the power adjustment applied to the remainingN channel outputsYin, i.e., multiply Yin

by
√

1/α:
√

1

α
Yin = ZQ +

√
1

α
Zin .

3) Add
√

Yin/α to ŜQ to arrive at the (unbiased) reconstructed signal

Ŝ = ŜQ +

√
1

α
Yin = ŜQ + ZQ +

√
1

α
Zin . (21)

Proposition 2: For a white Gaussian source, Scheme 3 is additive with vanishing error probability as

N → ∞. Furthermore,

S̃DR=

(
1 +

SNR
ρ

)ρ−1 SNR
ρ

, (22)

whereS̃DR is the scheme CUBE SDR given that no error event occurred,and SNR is the channel SNR.

Proof: By the separation principle (see, e.g., [18]), a distortion(viz. average power ofZQ) satisfying

log

(
σ2
S

σ2
ZQ

)
= (ρ− 1) log

(
1 +

SNR
ρ

)
, (23)

is achievable, with vanishing error probability.

Assuming no decoding error was made, the reconstructed signal (21) is equal to

Ŝ = S+
1√
α
Zin = S+

√
σ2
ZQ

PX/ρ
Zin ,
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which implies in turn an unbiased distortion of

E

[(
Ŝ − S

)2]
=

σ2
ZQ

SNR/ρ
. (24)

By combining (23) and (24) the desired (unbiased) SDR is achieved:

S̃DR=
σ2
S

E

[(
Ŝ − S

)2] =

(
1 +

SNR
ρ

)ρ−1 SNR
ρ

. (25)

Since, when substituting SNR= SNRBC, the S̃DR of (22) is equal to SNR′BC of (17), the proof of

Theorem 3 forρ > 1 is completed. Note that SNR′BC < SNRBC, where the difference, which can be seen

as a penalty for additivity, vanishes in the high-SNR limit.In the original scheme of Mittal and Phamdo

[6], the full mutual information of the channel is exploitedby multiplying the analog channel outputs by

an MMSE factor, before adding them to the quantized values. While this reduces the estimation error,

it causes it to depend on the quantization error, thus turning the scheme unto a non-additive one. We

conjecture that no additive JSCC scheme over a Gaussian channel with BW expansion can exploit the

full mutual information.

B. Transmission over the BC Section with BW Compression

We now show how (18) can be approached. Note, that in this rateexpression the coherence gain w.r.t.

the BC noises is achieved only over a portionρ of the BW. This occurs since now the JSCC scheme over

the BC section needs to perform BW compression rather than expansion. Intuitively speaking, such a

scheme cannot be additive in the sense of Definition 2, since the channel does not supply enough degrees

of freedom. Consequently, the equivalent noise seen by the channel coding scheme is not white, and the

channel scheme must be chosen accordingly. We start, then, by defining the additivity property which is

applicable to this case.

Definition 3 (ρ-Additive JSCC scheme): A JSCC scheme isρ-additive with error probabilitype, if the

lastρN elements of the CUBE error̃Z are additive with error probabilitype, in the sense of Definition 2.

In this section, we denote the first(1 − ρ)N samples of anN -dimensional vector and the rest of

the vector by subscripts ‘out’ and ‘in’, respectively. Imagine that we have aρ-additive JSCC scheme,

which achieves the same error-free CUBE SDR ofSNRBC for bothSout andSin. By Lemma 1,{Z̃in,m}
are mutually independent;{Z̃out,m}, on the other hand, may be arbitrarily correlated. This leads to the

following.
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Lemma 3:Consider using over the BC section a sequence ofρ-additive JSCC schemes with error

probabilitiespeN , and with CUBE SDR ofSNRBC (when there is no error), equal for both sub-vectors

Sout andSin. If limN→∞ peN = 0 then

lim
N→∞

SDRin =M(SNRBC↿↾SNRMAC)

lim
N→∞

SDRout =SNRBC↿↾(MSNRMAC) .

Proof: As in the proof of Lemma 2, we only need to verify forpe = 0. The result for SDRin follows

from the analysis of A&F; for SDRout, make the worst-case assumption that{Z̃out,m} are identical to

derive the desired result.

Again, in order to approach the performance promised by Theorem 3 we must have a scheme that

achievesSNRBC of (15) for a white Gaussian input. Another HDA scheme by Mittal and Phamdo,

depicted in Figure 7, qualifies.

Scheme 4 (HDA Scheme for BW compression, after [6, System 4]):

Encoding:

1) Quantize the vector composed of the first(1−ρ)N source samplesSout, and denote the corresponding

reconstructed signal bŷSout; then use a digital channel code, to obtainρN channel inputs denoted

by Xdigital representinĝSout, of average power(1− α)PX/ρ, where

α =
(1 + SNR/ρ)ρ − 1

SNR/ρ
, (26)

which satisfies0 ≤ α ≤ 1 for all ρ ≤ 1.

2) Multiply the remainingρN source samplesSin by
√

αPX/ρ
σ2

S

, to form Xanalog of average power

(1− α)PX/ρ:

Xanalog=

√
α

PX/ρ

σ2
S

Sin .

3) Transmit the sum ofXdigital andXanalog, namelyX = Xdigital + Xanalog, whose length isρN and

average power —PX/ρ.

Decoding:

1) Decode the channel codeXdigital, treatingXanalog as noise, then decode the source code to recover

Ŝout.

2) Subtract the decodedXout from Y and multiply the result by
√

σ2

S

αPX/ρ , to attain the unbiased

reconstruction ofSin which equals to (assuming no channel decoding errors were made)

Ŝin = Sin +

√
σ2
S

αPX/ρ
Z .
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Fig. 7: HDA Scheme for BW Compression.

Proposition 3: For a white Gaussian input, Scheme 4 isρ-additive with vanishing error probability as

N → ∞. Furthermore,

C(S̃DRout) = C(S̃DRin) = ρC

(
SNR
ρ

)
, (27)

whereS̃DRout and S̃DRin are the CUBE SDRs of the scheme for both source parts given that no error

event occurred, and SNR is the channel SNR.

Proof: Since the worst noise distribution subject to a given power constraint is Gaussian and due

to the separation principle (see, e.g., [18] for both), the following CUBE SDR is achievable (assuming

no channel decoding errors were made) for the first(1 − ρ)N samples, with vanishing decoding error

probability:

(1− ρ)C
(

S̃DRout

)
= ρC (SNRdigital) , (28)
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where

SNRdigital ,
(1− α)PX/ρ

α PX/ρ + PBC
=

(1− α)SNR/ρ

α SNR/ρ + 1
.

Assuming no decoding error of the channel code was made, subtractingXdigital of Y and multiplying

the result by
√

σ2

S

αPX/ρ , results the unbiased estimation ofSin, namely

Ŝin = Sin +

√
σ2
S

αPX/ρ
Z .

Thus, the CUBE SDR (assuming no decoding errors were made) ofthe remainingρN samples satisfies:

C(S̃DRin) = C

(
α

SNR
ρ

)
. (29)

The ρ-additivity of the scheme follows sinceSin is effectively transmitted in an analog manner over an

AWGN channel (again, assuming no errors were made). Finally, by substitutingα (26) in (28) and (29),

(27) follows. Note thatρ ≤ 1 impies

1 ≤
(
1 +

SNR
ρ

)ρ

≤ 1 +
SNR
ρ

,

which is in turn equivalent to0 ≤ α ≤ 1.

In order to complete the proof of Theorem 3 forρ < 1, we note that we can composeS of two

codebooks, one which gives the ‘out’ samples and another — for the ‘in’ ones. By applying Corollary 1

to each codebook separately, we have that rates approaching

(1− ρ)C(SDRout) + ρC(SDRin)

are achievable. Substituting the results of Lemma 3 and Proposition 3, we arrive at (18) as desired.

VI. STRATEGIES FOR THEPARALLEL RELAY NETWORK: PERFORMANCECOMPARISON

In this section we consider the rate expressionRRF of Theorem 3. We start by presenting a simple upper

bound, as well as lower bounds by previously known strategies, on the network capacity. In Section VI-D

we compare these bounds, concentrating on limiting cases and showing the asymptotic optimality of the

RF strategy. Finally in Section VI-E we discuss variations on the RF strategy, among them time-sharing

which allows us to improve the best known performance even for the equal-BW case.
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A. Upper Bound on the Network Capacity

The network capacity is upper-bounded by cut-set bounds over both sections, as follows.

Proposition 4: The network capacityC is upper-bounded byRouter where

Router= min
{
ρC

(
M · SNRBC

ρ

)
, C (M · SNRMAC)

}
.

Proof: We prove that each of the two terms in the minimization is an upper bound on the capacity.

The first term follows by a cut-set bound on the BC section, normalizing the rate by the BW ratioρ

(recall that the MAC BW is chosen to be1). For the second — we use a cut-set bound on the MAC

section: Consider the AWGN between
∑M

m=1 Xm andYMAC . For a given power, the mutual information

is maximized by a Gaussian input, and the maximal input powerM2PX is achieved when all the relays

transmit the same signal.

B. Universality and Asymptotic Optimality of R&F

This outer bound allows us to show that the R&F strategy is universal in the following way: for all

the networks that possess the same single-relay capacity over the two sections, i.e., the sameSNRBC and

SNRMAC , there exists a uniform bound on the gap from optimality.

Theorem 4:For any parallel relay network with SNRs SNRBC and SNRMAC , number of relaysM and

BW expansion ratioρ:

Router−RRF ≤ ∆(SNRBC,SNRMAC) < ∞ .

For ρ > 1, this holds provided that SNRBC > ρ.

Proof: For ρ > 1:

Router−RRF ≤ C (M · SNRMAC)− C
(
M(SNR′

BC↿↾SNRMAC)
)

≤ 1

2
log

(
SNRMAC

SNR′
BC↿↾SNRMAC

)

≤ C

(
2 · SNRMAC + 1

SNRBC − 1

)
,

where the last transition is justified by the assumption SNRBC > ρ. On the other hand, forρ < 1:

Router−RRF ≤ ρC

(
M · SNRBC

ρ

)
− ρC

(
M(SNRBC↿↾SNRMAC)

)
− (1− ρ)C

(
SNRBC↿↾SNRMAC

)

≤ 1

2
log

(
(SNRBC/ρ)

ρ

SNRBC↿↾SNRMAC

)

≤ C

(
SNRBC

SNRBC↿↾SNRMAC

)
+ C

(
1

SNRBC

)
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As a direct corollary from the bounds derived in the proof, wehave the following asymptotic optimality

result:

Corollary 2: In the parallel relay network, for any fixedM andρ, the following limits are taken by

varying SNRBC and SNRMAC . For ρ > 1:

lim
SNRBC

SNRMAC
→∞

lim
SNRMAC→∞

[Router−RRF] = 0 .

For ρ < 1:

lim
SNRMAC
SNRBC

→∞
lim

SNRBC→∞
[Router−RRF] = 0 .

We see, then, that the R&F strategy is optimal in the limit of high SNR and when the single-relay

capacity of the narrower section is much lower than that of the wider section.

C. Other Relaying Strategies

In comparison, we present lower bounds on the network capacity given by well known strategies for

relaying (see e.g. [1]) applied to this network. We will see that all of these strategies fail to achieve

universality, either with respect to the number of relays orto the bandwidth expansion ratio.

Amplify-and-Forward: For the equal-BW case (ρ = 1), this strategy was described in Section IV,

and the achievable rate is given by (13). It is not obvious what should be considered the extension to

ρ 6= 1. A natural choice, is to restrict the relays to any linear operation. This means that the excess BW

cannot be exploited, and we may as well work with a codebook which has the lower BW of the two

sections. The resulting performance is given by

RAF =





C
(
M · (SNRBC↿↾SNRMAC)

)
ρ > 1

ρC
(
M ·

(
SNRBC

ρ ↿↾SNRMAC
ρ

))
ρ < 1

. (30)

This has an unbounded gap from the outer bounds, when eitherρ → 0 or ρ → ∞.

Decode-and-Forward: In this strategy, we use a low enough rate such that each relaycan reliably

decode the codeword. In the second stage all the relays use the same transmission, enjoying the MAC

coherence gain. Consequently:

RDF = min

{
ρC

(
SNRBC

ρ

)
, C (MSNRMAC)

}
. (31)

The lack of coherence gain with respect to the BC noises causes an unbounded loss as the number of

relaysM grows, when the first term in the minimization is the limitingone.
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Compress-and-Forward:The relays digitally compress their estimations of the codeword, and subse-

quently send the digital data over the MAC section. The performance is given by comparing the minimal

rate of the symmetric quadratic Gaussian CEO problem [19], [20] with the Gaussian MAC capacity, see

e.g. [18]. This combination is suboptimal, since by using source–channel separation it fails to achieve

the coherence gain (see e.g. [5], [21]). Using this strategy, the achievable rate isRCF = ρC(SDRCF/ρ),

whereSDRCF is given by the solution of:

C

(
SDRCF

ρ

)
−MC

(
− SDRCF

M · SNRBC

)
=

1

ρ
C(SNRMAC) , (32)

as long as the equation has a positive solution. This rate approaches a finite limit asM → ∞, since the

CEO rate has a finite limit, found in [22]. Consequently, we can boundSDRCF for any number of relays

M by the solution of:

C

(
SDRCF

ρ

)
+

SDRCF

2 · SNRBC
=

1

ρ
C(SNRMAC) . (33)

Simple algebraic manipulation shows that suchSDRCF must satisfy:

SDRCF < ρ(1 + SNRMAC)
1

ρ (34a)

SDRCF <
log(1 + SNRMAC) · SNRBC

ρ
. (34b)

The first inequality shows, that there is no coherence gain w.r.t. the MAC noise. According to the second

one, the MAC SNR needs to be very high, if the scheme is to achieve a gain w.r.t. the BC SNR. This

causes an unbounded loss as the number of relays grows, whenρ > 1.

The graphs of Figure 8 show the different bounds for two cases, as a function ofM : in the first case

the BC section is wider but of lower SNR, and in the second casethe roles change. It is evident, that

R&F achieves the coherence gain of A&F for anyM , resulting in a similar behavior as a function of

the number of relays, but with a higher rate.

D. Performance Comparison

In order to compare the various bounds forρ 6= 1, we consider the high SNR limitSNRBC ≫ 1,

SNRMAC ≫ 1. Within this limit, we further consider four limiting cases, in order of rising SNRMAC :

1) Decodable:SNRBC ≫ M · SNRMAC .

2) MAC-limited: MSNRBC ≫ M · SNRMAC ≫ SNRBC.

3) BC-limited: exp{ρ ·M} > SNRMAC ≫ SNRBC.

4) Recoverable: SNRMAC > exp{ρ ·M} ≫ SNRBC .
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Fig. 8: Rate vs. number of relays. solid = RF, dashed = AF, dash-dotted = CF, starred = DF, dotted =

outer bound.

For these cases, the effective SNRs (i.e., the ones satisfying C(SNR) = R whereR is the corresponding

rate) according to the different strategies are summarizedin the following table, along with the outer
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bounds of Proposition 4. The expression for C&F in the BC-limited case is according to the bounds (34),

so the C&F performance for finiteM is worse.

Bound Decodable MAC-limited BC-limited Recoverable

AF (M · SNRMAC/r)
r (M · SNRBC/r)

r

RF
M ·
SNRMAC

(
M · SNRMAC

(
SNRBC

ρ

)1−r
)r

M r
(

SNRBC
ρ

)ρ

DF
(

SNRBC
ρ

)ρ

CF SNRMAC

(
log(SNR

1

ρ

MAC) · SNRBC
ρ

)ρ (
M·SNRBC

ρ

)ρ

outer M · SNRMAC

(
M·SNRBC

ρ

)ρ

Fig. 9: Comparison of bounds on the effective SNR.r = min(ρ, 1).

The first and last limits correspond to extremes, where either the SNR of the BC section or the SNR

of the MAC section are so high, that no coherence gain is required for that section. In these limits,

D&F and C&F are optimal, respectively. The intermediate limits are more interesting from a practical

point of view, since the capacities of both sections, given by the cut-set bounds of Proposition 4, are

closer to each other. In these limits, it is evident that evenA&F is better than both C&F and D&F for

large enoughM , since these digital methods do not posses the relevant coherence gains. R&F has the

same coherence gain as A&F,Mmin(1,ρ), but makes better use of the BW, resulting in (generally) better

SNR-dependent factors. We also note that in the MAC-limitedcase whereρ > 1, and in the BC-limited

case whereρ < 1, the asymptotic performance of R&F approaches the outer bound; this corresponds to

the optimality claim of Corollary 2.

E. Improvements of R&F

The R&F scheme, as presented here, is not necessarily optimal beyond the asymptotic sense. In fact,

we can point out some possible improvements.

• Global optimization of the estimation: Consider the R&F scheme when using the HDA JSCC

approach of Mittal and Phamdo over the BC section as presented in Section V. We may view the

operation of this specific HDA scheme as decomposing the chosen channel codeword (seen as a

source) into two JSSC codewords, so that their sum is equal tothe codeword: the quantized value is

a “digital” word, while the quantization error is an “analog” one. At the relays, the digital codeword

is decoded, while the analog one is left with the corresponding channel noise. Alternatively, one
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may start with achannelcodebook obtained as a superposition (sum) of two codebooks, which are

processed as the digital and analog codebooks above, i.e., only one is decoded. Hence, one codebook

is relayed using a D&F approach, while the other — using A&F; these codebooks are superimposed

over the narrower section, while over the wider section theyoccupy separate bands. From this

perspective, one is left with the task of determining the power allocation when superimposing the

analog and digital layers. Following the R&F approach, these weights are taken so as to produce

the optimal reconstruction of of the original codeword (thesum of the two). However, one may

ask whether a different power allocation may result in a better performance at thedestinationnode.

Indeed, as recently proposed by Saeed et al. [9], performance may be enhanced by optimization of

the power allocation.

• Non-white transmission: While white transmission is optimal over a single white section, there

is no guarantee that it is also optimal for the parallel relaynetwork. In fact, if transmission over

one band enjoys a coherence gain while transmission over another band does not, it is plausible to

increase the transmission PSD in the band that does.

Common to both points above, is thatglobal (power) optimization is needed, i.e., the transmission

scheme over one section depends upon the parameters of the whole network. Since the simpler local

optimization approach is sufficient for understanding the basic gains and tradeoffs in the network, and on

the other hand no optimality claim can be made about the scheme even after global optimization, we do

not pursue these directions in this work. However, we do point out the potential benefit in combining R&F

with D&F and A&F by means of time-sharing, as suggested For A&F and D&F in [23] for the equal-

BW case. The sharing strategy allocates different power to the R&F and D&F relay transmissions, such

that they effectively function with different SNRs, satisfying the total power constraint. The following

specifies rates which are achievable by time-sharing.

Theorem 5:(R&F–D&F Time-Sharing ) The capacity of the parallel relay network satisfies:

C ≥ max{λRRF + (1− λ)RDF} ,

whereRRF is given by Theorem 3 for signal-to-noise ratios SNRRF,BC and SNRRF,MAC and BW expansion

factor ρ̃; RDF is given by (31) for signal-to-noise ratios SNRDF,BC and SNRDF,MAC and for BW expansion

factor ρ−ρ̃λ
1−λ . The maximization is performed over allρ̃, λ, SNRRF,BC, SNRRF,MAC , SNRDF,BC, SNRDF,MAC
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Fig. 10: Time-sharing for the equal-BW case.M = 2, SNRBC = 100.

which satisfy:

0 ≤ λ ≤ 1 (35a)

0 ≤ ρ̃λ ≤ ρ (35b)

SNRRF,BC + SNRDF,BC = SNRBC (35c)

SNRRF,MAC + SNRDF,MAC = SNRMAC . (35d)

The proof is straightforward: This rate can be achieved by constructing two AWGN codebooks where

the first codebook is transmitted on the firstλρ̃N BC section uses andλN MAC section uses, by applying

the R&F strategy, whereas in the remaining(ρ − λρ̃)N BC section uses andλN MAC section uses,

D&F is performed. In each section, we allocate a different power to each transmission scheme, resulting

in a different SNR, such that the average power constraints are met. A rather surprising result is, that

when substituting the caseρ = 1 in the theorem, one gets a slightly improved performance over the

time-sharing between A&F and D&F. This happens since the replacement of A&F by R&F gives another

degree of freedom in the design: The BW allocated to R&F may change between the transmitter and

the relays. In other words, using R&F we may introduce an artificial BW change to the equal-BW case.

Figure 10 demonstrates this improvement for two relays and SNRBC = 20dB. While there is no reason

to believe that the new achievable rates are the optimum, this result demonstrates that the known inner
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bounds of [23] can be improved.

In some other cases, time sharing between R&F and A&F may be plausible. The expressions can be

derived in a similar manner, keeping in mind that A&F works with equal BW in both sections.

VII. C OLORED NOISES AND TIME-DOMAIN PROCESSING

We now abandon the assumption that the noises are white. We keep restricting our analysis to the

symmetric setting, thus we assume that all the BC noises haveidentical spectra. We denote this spectrum

and the MAC noise spectrum bySBC(ej2πf ) andSMAC(ej2πf ), respectively. Without loss of generality,

assume that the noise spectra of both sections are monotonically increasing as a function of|f |. 3 The

BW of a section is defined as the maximal frequency in which thenoise spectrum is finite. In practice,

these frequencies arise from the sampling frequencies used, thus they are always finite.

We assume equal sampling rate at both sections, which is taken to correspond to the maximum of the

two BW; consequently, both the source encoder and the relaysuse transmission blocks of equal length

N . We then define the BW of both sections:

BBC = 2 sup{f : SBC(e
j2πf ) < ∞} (36a)

BMAC = 2 sup{f : SMAC(e
j2πf ) < ∞} . (36b)

We denote byρ the BW ratio:

ρ =
BBC

BMAC
.

By definition, if ρ > 1 or ρ ≤ 1 thenBBC = 1 or BMAC = 1, respectively. Note, that forρ > 1 the time

units used differ from those used thus far in the paper.

Under this notation, we define the SNRs of the BC and MAC sections w.r.t. the total inband noise

power:

SNRBC ,
PX∫

2|f |≤BBC
SBC (ej2πf ) df

SNRMAC ,
MPX∫

2|f |≤BMAC
SMAC (ej2πf ) df

. (37)

Finally, we denote byC(P, S(ej2πf )) the capacity of an additive Gaussian-noise channel with power

input constraintP and noise spectrumS(ej2πf ), given by the water-filling solution, see e.g. [18].

3This is done for convenience of the definition of bandwidth only. Since any node may perform a “frequency-bands swapping”

operation, it is not restrictive.
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The cut-set outer bounds of Proposition 4 can be easily extended to the colored case, as follows.

Proposition 5: The network capacityC is upper-bounded byRouter where

Router= min
{
C
(
MPX , SBC(e

j2πf )
)
, C
(
M2PX , SMAC(e

j2πf )
)}

.

The D&F rate is also easily computed to be:

RDF = min
{
C
(
PX , SBC(e

j2πf )
)
, C
(
M2PX , SMAC(e

j2πf )
)}

. (38)

We see that, as in the white case, D&F is optimal when the performance is limited by the MAC section,

but fails to achieve the coherence gain w.r.t. the BC sectionnoise. Clearly, A&F enjoys both coherence

gains even in the colored setting, so for a large enough number of relaysM it outperforms digital

approaches. However, even forρ = 1, and even if we allowany linear relaying function, generally it

cannot exploit the full capacity offered by links with colored noise; see e.g. [24] for a discussion of this

issue in the point-to-point setting.

As in the white BW-mismatch case, the R&F strategy aims to make better use of the individual link

capacities than A&F does, while maintaining the coherence gains. We use the same scheme of Figure 5,

adjusting the JSCC and channel encoder/decoder pairs to thecolored setting. We now state an achievable

rate using this strategy in terms ofCwhite(P, S(ej2πf )), the mutual information over an additive channel

with a noise spectrumS(ej2πf ) of BW B, using a white input of the same BW:

Cwhite(P, S(e
j2πf )) ,

1

2

∫

2|f |<B
log

(
1 +

P

BS(ej2πf )

)
(39)

and ofΓ(S(ej2πf )), the prediction gain of a spectrumS(ej2πf ) of BW B: (see e.g. [25]):

Γ
(
S(ej2πf )

)
,

1
B

∫
2|f |<B SS(ej2πf )df

exp 1
B

∫
2|f |<B log

(
SS(ej2πf )

)
df

. (40)

Theorem 6:(R&F Performance for colored noise) The capacity of the Gaussian parallel relay

network with colored noises. is lower-bounded byRRF , Cwhite
(
PX , SRF(ej2πf )

)
, where

SRF(e
j2πf ) =





M
(

SNRBC↿↾
MPX

SMAC(ej2πf )

)
, 2|f | ≤ min(BBC, BMAC)

SNRBC↿↾
M2PX

SMAC(ej2πf ) , otherwise



 ,

with the equivalent BC SNR being:

SNRBC =
[
Γ
(
SBC(e

j2πf )
)

SNRBC

]ρ
− 1, (41)

as long asSNRBC > 0.
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Before proceeding to prove the theorem, we analyze this rateexpression. While we show in the

sequel that further adjustments of the R&F scheme may improve the achievability result, this closed-

form expression already possesses the main gains achievable by the scheme. As in the white case of

Theorem 3, it shows coherence gain w.r.t. both sections inside the BW of the BC section, and w.r.t. the

MAC section for all the codebook BW. It also exploits most of the gain offered by the noise color, in the

high-SNR limit where a white channel input is asymptotically optimal. Takingρ = 1 (no BW mismatch),

the following result can be proven by straightforward calculations.

Proposition 6: (Near-optimality of R&F for colored channels) Let SDRRF, SDRDF and SDRouter be

the SNRs corresponding toRRF, RDF andRouter of Theorem 6, (38) and Proposition 5, respectively. For

ρ = 1, consider the high-SNR bound where all the parameters are held fixed except forPX . Then:

lim
PX→∞

SDRouter

SDRRF
≤ 2

lim
PX→∞

SDRDF

SDRRF
≤ 1 +

1

M
. (42)

The proof of Theorem 6 relies upon the existence of a JSCC scheme which exploits the full mutual

information available over a link (asymptotically in high SNR), while being additive over the minimum

between the source and channel BW. Then, Corollary 1 is invoked, as in the proof of Theorem 3. In

order to use additivity in the colored setting, we need to extend the definition ofρ-additivity as follows.

Definition 4: (ρ-Additive JSCC scheme — generalized) A JSCC scheme isρ-additive with error

probability pe, if for some unitary transformationS′ of the sourceS, the firstρN elements of the CUBE

error Z̃ of S′ are additive with error probabilitype, in the sense of Definition 2.

W.l.o.g. we assume that the unitary transformation, under which the JSCC scheme isρ-additive, is the

DFT, since otherwise one could concatenate the DFT with another unitary transformation. Parallel to the

exposition in Section V-B, we divide the source signalS of lengthN into an “in” part filtered to BW

r = min(1, ρ) and an “out” part with the remaining signal.

Proposition 7: For any white Gaussian source of BWBS and for any additive Gaussian channel with

power constraintPX and noise spectrumS(ej2πf ), letBC be the channel BW. DefineB , min(BS , BC),

and

SNR,
PX∫

2|f |≤BC
S (ej2πf ) df

.

Then there exists aB-additive JSCC scheme with vanishing error probability asN → ∞ that satisfies:

SDRin = SDRout =
[
Γ
(
S(ej2πf )

)
SNR

]BC
BS − 1 ,
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Fig. 11: Analog Matching encoder and decoder for R&F

whereSDRin and SDRout are the CUBE SDRs of the scheme for both source parts given that no error

event occurred. Furthermore, given that no error event occurred, the samples of the CUBE error are

mutually independent.

We prove this using a time-domain approach, based upon the Analog Matching (AM) scheme of [25];

in the sequel we discuss an alternative, namely the application of HDA schemes in the spirit of the

exposition in Section V. In our context, the AM scheme consists of predictors (either at the encoder side,

the decoder side or both, according to the BW expansion factor and the noise spectrum), modulo-lattice

operations at both sides, and a linear filter pair, one at eachside, taken to be ideal low-pass filters (LPFs),

which may become redundant depending on the BW expansion factor. For simplicity, our choice of filters

reflects a “zero-forcing” approach (targeting the high-SNRregime); even when using optimized filters,

there is an inherent loss in using the Analog Matching scheme, which vanishes at the limit of high SNR.

The encoder and the decoder are depicted in Figure 11. We use the notation of Section VII; under this

notation, either the source signalS is white, or it is flat inside the MAC BW and zero outside. Note that

besides the components in Figure 11, the scheme must employ interleaving; see [25]. We assume that

the lattice has a second moment equal to the channel power constraintPX .
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Proof: Following the considerations made in [25], as long as a correct decoding condition holds,

we have at each time instantn (see Figure 11):

Vn − Sn =
1

β
En ∗ (δn − pCn) ,

where

En = [g1n ∗ g2n − δn] ∗ X̃n + g2n ∗ Zn ,

and whereg1n, g2n andpCn are the time responses of the filtersG1(ej2πf ), G2(ej2πf ) andPC(ej2πf ),

respectively,δn is the unit impulse function,̃Xn andZn are the encoder modulo-lattice output and channel

noise, respectively, and∗ denotes convolution. If the ditherD is independent of the source and uniformly

distributed over the basic cell of the latticeΛ thenX̃ has powerPX and is statistically independent ofX.

As a consequence, we have that the channel power constraint is satisfied, and also thatE is independent

of S.

Denote the spectrum ofEn by SE(ej2πf ). If we choosePC(ej2πf ) to be the optimal predictor of that

spectrum, the resulting prediction errorVn − Sn is white with variance

D̃ =
exp

∫
2|f |<1 log SE(ej2πf )

β2
.

Now we takeG1(ej2πf) andG2(ej2πf ) to be LPFs of height
√

1
BC

and
√
BC , respectively, and width

BC , to assert that

SE(e
j2πf ) =





BCSZ(ej2πf ), 2|f | < BC

PX , otherwise



 .

Thus:

β2D̃ = BBC

C P 1−BC exp

∫

2|f |<BC

logSZ(e
j2πf )df =

PX

(Γ(S(ej2πf ))SNR)BC
.

Following [25] again, if an optimalPS(ej2πf ) is used, then for large enough blocks correct decoding

holds with arbitrarily small error probability as long as the power ofTn is at mostPX , i.e.,

β2

(
P

BS
+ D̃

)BS

D̃1−BS < P .

Algebraic manipulation shows that anỹD satisfying:

P

BSD̃
<
(
Γ(S(ej2πf ))SNR

)BC
BS − 1

is achievable. Now if we takeF (ej2πf ) to be an LPF of bandwidthBS and unit height, we arrive at the

desired result sinceD = BSD̃. We also have that the scheme isBC-additive as long as correct decoding

holds, since the inband component is a filtered version of thechannel noise.
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Note that, for high SNR, this performance approaches the Shannon upper bound on the channel capacity

(see e.g. [26]), thus using the AM scheme is optimal in this limit. For general SNR, it has a loss w.r.t.

the optimum performance of the AM scheme presented in [25]. This happens since the equivalent noise

of the optimum AM scheme contains a “self noise” component, i.e. a filtered version of the channel

input; such a component prohibits the scheme from being additive.4 For additivity, we had to choose

here sub-optimal “zero-forcing” filters inside the channelBW.

Calculating the total distortion of both sections, as done in Section V, shows that the decoder can

achieve a CUBE error of spectrumSRF(ej2πf ). In order to complete the proof, we need to extend

Corollary 1 to colored estimation error; the extension follows directly from substituting the colored

Gaussian RDF in Proposition 1.

Corollary 3: Let S be a Gaussian i.i.d. vector of element powerP . Denote the CUBE error PSD by

S(ej2πf ). Then there exists a channel coding scheme of any rate

R < C
(
P, S(ej2πf )

)

over the channel fromS to Ŝ.

After establishing Theorem 6, we note that this is not the tightest inner bound on capacity that we can

give. We restricted the input to both sections to be white, although the water-filling spectrum of both may

be colored. However, taking the input of an individual link to have the water-filling spectrum of that link

does not guarantee global optimality either. For example, the water-filling solution over the BC section

may have a lower BW thanBBC. Outside that water-filling BW, there will be no coherence gain w.r.t. the

BC noise. Obviously, for large enoughM this has greater effect than that of the water-filling gain. The

optimum spectra can be computed by a straightforward, though cumbersome, optimization; given such

spectra, a modified scheme adding filters at the relays may be materialized. Choosing a white input, as

we did, simplifies on matters. Nevertheless, in the limit of large number of relays or of high SNR, the

choice becomes optimal.

In Section V we have thus far proven our achievablity resultsfor the white BW-mismatch case using

specific hybrid digital–analog (HDA) schemes. In fact, we could use also for the colored case an additive

variant of an HDA scheme proposed by Prabhakaran et al. [7], which splits the source and the channel

into frequency bands, and then applies to each band the HDA techniques by Mittal and Phamdo that we

suggested to use for the white case in Section V. This approach may have slightly better performance than

4The self noise is indeed independent of the sourceS, but is not independent of it given the encoding function, i.e., given

the dither vectorD.
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the modulo-lattice approach for the parallel relay network(as, when substituting in the analog-matching

performance the special case of BW mismatch, performance isworse than the HDA performance), but

this advantage vanishes at the limit of high SNR. We chose notto pursue it in this work, since computing

the performance of the additive variant turns out to be a cumbersome task, and we believe that insight

into exploiting the noise memory is better gained using a time-domain approach.

In addition, note that the HDA approach calls for partitioning the frequency band into multiple bins,

and using multiple source and channel codes (of different rates) for these bins. From the practical point of

view, this may be a drawback when the frequency response exhibits significant variation, corresponding

with many bins. This motivates looking at time-domain approaches; the considerations are reminiscent

of those concerning the difference between DMT and FFE–DFE in point-to-point channel coding [27].

VIII. D ISCUSSION: EXTENSIONS TOLAYERED NETWORKS AND TOMIMO CHANNELS

We conclude the paper by pointing out how the R&F approach canbe used beyond the colored parallel

relay network scenario. We first look at more complex networks, and then we turn to replacing the BW

mismatch by a mismatch in the number of antennas (degrees of freedom) in a MIMO setting.

A. R&F as a Building Stone for Relayed Networks

Turning our view to more complex networks, the ideas presented in this paper are most easily applied

tolayered networks, which are directed acyclic graphs (DAGs) where the nodes can be divided into layers,

and nodes in each layer receive the (noisy) sum of transmissions from the adjacent preceding layer only.

We index the relay layers asl = 1, · · · , L, where layerL consists of the destinations. Specifically we

consider the symmetric case, where the noise spectra, as well as the number of received transmissions

(“fan-in”) and the number of destinations in the next layer (“fan-out”) are identical at all nodes in the

same layer. In the white symmetric case with BW mismatch between layers, each layer is characterized

by its SNR SNRl and BWρl. Figure 12 shows two examples of networks which fall under this category.

In the sequel, we show how combining the R&F and C&F strategies is beneficial in the first example,

while recursive use of the R&F strategy is the key to the treatment of the second one.

Consider the network of Figure 12a. We use a codebook BW according to layer4, i.e. ρ4 = 1. From

layer 1 to layer 3 there are no MACs, thus analog transmission produces no coherence gain. Hence,

the noise accumulation in these layers can be avoided by having each of the nodes in layer1 compress

their estimation ofV according to the ratemin
(
ρ2C(SNR2), ρ3C(SNR3)

)
and send it digitally, making

sure that the resulting quantization errors are mutually independent (c.f. by using mutually-independent
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Fig. 12: BW-mismatched symmetric layered networks. Each node denoted by a full circle contains a

MAC channel.

dither in each node). For the outer layers, we use the R&F scheme. The decoder “sees” a parallel relay

network, where the MAC noise is the sum of the noise of layer4 and the quantization noises. Thus we

achieve the coherence gain w.r.t. all the noises in the network.

Next consider the network of Figure 12b, which contains MACsin both layer2 and layer4. On one

hand, the coherence gain is only known to be achieved for analog transmission over the MACs, but on

the other hand using analog transmission for both does not enable to utilize the full BW ifρ2 6= ρ4. This

difficulty can be circumvented by using two information-bearing signals of different BW. We use again a

codebook BW according to layer4, applying a JSCC method to re-match it to BWρ2. This re-matched

codeword is sent using the RF scheme to layer2, where instead of the codebook decoder, the “source

signal” associated with the outer JSCC scheme is reproduced. Note that this way the estimation errors in

both relays of layer2 are mutually independent. Next we use RF again to transmit these reproductions

to relay4. In the overall result, again the full coherence gain is achieved.

B. R&F for MIMO Channels

The BW mismatch framework may be thought of as a model for combining channels with a different

number of antennas. For example, it may reflect relays communicating with the end-users using one

antenna, while using multiple antennas for the link with thebase station. For a recent work regarding

parallel relays in the MIMO setting, see [28], which in contrast to the present work, assumes a digital

use of the MAC section, leading to a C&F approach.

Note that the applying the schemes developed in this paper toMIMO channels is not straightforward.

In a practical scenario we need to abandon the the symmetric assumption and allow each relay to have

different channel matrices; but unlike LTI systems, MIMO systems are not diagonalized by the same

transform.
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APPENDIX A

PROOF OFTHEOREM 2

For the sake of simplicity we prove the theorem assuming the use of encoders which produce stationary

channel inputs. The general case follows by similar arguments.

Assume w.l.o.g. thatS has per-element varianceP . Denote the CUBE estimate at each relay by

Ŝm = S+ Z̃m and define by SDRm , P
E{Z̃2

m,n}
the unbiased signal-to-distortion ratio at relaym. Now

we have that:

C(SDRm) ≤ I(S; Ŝm) ≤ I(XBC;Ym) ≤ C(SNRBC) ,

where the inequalities are justified by the (unbiased) source rate-distortion function (4), the separation

principle and the channel capacity, respectively. Consequently, we have that

SDRm ≤ SNRBC ∀m = 1, . . . ,M . (43)

We can also consider a joint decoder which observes{Ym} and obtains an estimatêSBC of S with

CUBE signal-to-distortion ratio SDRBC. Since this is a point-to-point scenario, we can repeat the above

considerations, now replacing the point-to-point capacity by the BC capacity12 log(1 + M · SNRBC),

obtaining:

SDRBC ≤ M · SNRBC , (44)

where SDR is the CUBE SDR ofS. Now we describe a specific joint decoder, which must obey this

bound. The decoder first obtains the CUBE estimates at each relay, and then combines them:

ŜBC =

∑M
m=1 γmŜm∑M
m=1 γm

.

This is a CUBE estimator, with:

SDRBC =
(
∑M

m=1 γm)2P

E{(∑M
m=1 γmZ̃m)2}

. (45)

Equipped with these bounds, we now turn to the relay functionality in the original setting. Without

loss of generality, we assume that the relays transmit:

Xm = γmŜm

where the gains must satisfy the power constraints:

γ2m(P + E{Z̃2
m}) ≤ P ∀1 ≤ m ≤ M . (46)
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The optimal CUBE estimate ofS from Y1, . . . , YM , where

Ym = Xm + Zm = γmŜm + ZMAC = γm(Sm + Z̃m) + ZMAC

is given by maximum-ratio combining (MRC), with performance:

1

SDR
=





1

SDRBC
+

M
(∑M

m=1 γm

)2
SNRMAC





, (47)

where SDRBC is given by (45). Any SDR achieved by the scheme is thus according to (47), where the

constraints (43)–(46) must be met. Using this, we have:

1

SDR
≥ 1

M · SNRBC
+

M
(∑M

m=1 γm

)2
SNRMAC

.

Now we are left with the task of bounding the performance w.r.t. the optimum choice of{γm}. This is a

convex optimization problem in the parameters{γ2m}, { 1
SDRm

} under the2M constraints given by (43),

(46); the solution is uniform, with

γ2m =
SNRBC

1 + SNRBC
∀m = 1, · · · ,M .

Consequently:

1

SDR
≥ 1

M · SNRBC
+

1 + SNRBC

M · SNRBCSNRMAC
=

1

M (SNRBC↿↾SNRMAC)
,

and the proof under the stationarity assumption is completed.
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