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Abstract

The Gaussian parallel relay network, introduced by Scheth@allager, consists of a concatenation
of a Gaussian additive broadcast channel from a single emncimda layer of relays followed by a
Gaussian multiple-access channel from the relays to thé diestination (decoder), where all noises
are independent. This setup exhibits an inherent conflibivden digital and analog relaying; while
analog relaying (known as “amplify-and-forward”, A&F) $eifs from noise accumulation, digital relaying
(known as “decode-and-forward”) looses the potential &reince gain” in combining the relay noises
at the decoder. For a large number of relays the coherennegkirge, thus analog relaying has better
performance; however it is limited to white channels of dduendwidth. In this work, we present a
generalization of the analog approach to the bandwidth mtishmcase. Our strategy, coined “Rematch and
Forward” (R&F), is based upon applying joint source—chdnding techniques that belong to a certain
“maximally analog” class. Using such techniques, R&F cots/the bandwidth of the broadcast section to
that of the multiple-access section, creating an equivateiched-bandwidth network over which A&F
is applied. It is shown that this strategy exploits the fudhdwidth of the individual channels, without
sacrificing the coherence gain offered by A&F. Specificdlty, given individual-link capacities, R&F
remains within a constant gap from the network capacity for aumber of relays and any bandwidth

ratio between the sections. Finally, the approach is ex@nd the case of colored channels.
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. INTRODUCTION

The emerging field of communication over networks witnesisesollapse of the traditional distinction
between channel, source and joint source—channel probl&nspecial class of problems has a relay
structure, in which a message source node wishes to pasmatfon to a destination node, while other
nodes act as relays, whose sole purpose is to help in thigrdatster. Although the end-to-end problem
is a channel coding one, the techniques used to solve it aegsdi. Consider the best known relaying
techniques (see e.g. [1]), where each one is known to berheitker different conditions of network
topology and signal-to-noise ratios:

1. A channel coding approacbecode-and-ForwardD&F), where a relay decodes the message, and
then re-encodes it.

2. A source and channel coding approaCbmpress-and-Forwar(C&F), where a relay treats its input
as an “analog” source, compresses it, and then uses a chadeto forward it.

3. A joint source—channel coding (JSCC) approdanplify-and-Forward A&F), where a relay simply
forwards its input, only applying power adjustment.

The last is indeed a non-digital JSCC approach. It does nibtcogecode the input, but rather treats
it as a source; furthermore, the analog processing of thiscep reminiscent of analog transmission in
Gaussian point-to-point communications [2], relies ugma natural matching that exists in the quadratic-
Gaussian case between the “source” statistics, chanristismand distortion measure.

In this work we concentrate on a simple test-case: The Gaugsirallel relay network, first introduced
by Schein and Gallager [3]. In this network, depicted in Fegl, all the relays are ordered in a parallel
manner; the message source node is connected to the relay&ayssian broadcast channel (BC), while
the relays are connected to the destination node by a Gaussiliple access channel (MAC). In the
original setting, all noises are white and the channels aliehithe same bandwidth (BW). Surprisingly,
the capacity of this relatively simple network is unknowrg¢ept when the signal-to-noise ratio (SNR) of
the BC section is high enough relative to the SNR of the MAQisadin which case D&F is optimal).

If the network only contained one relay, then D&F would beafs optimal, and the resulting network

capacity would be the minimum between the capacity of thetlinthe relay and the link from the relay.
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Fig. 1: The Parallel Relay Network.

The advantage of a digital scheme in such a situation wastgzbiaut early in the development of
Information Theory [4], and it stems from the ability of thelay to recover the original message of the
encoder, thus avoidingoise accumulatiobetween network sections. If this relay had multiple anésnn
then the scheme could enjoy additional gains: multipleeiveantennas mean that the relay can perform
maximum-ratio combining (MRC) of its inputs, resulting ingain also known as receive beamforming
gain; multipletransmit antennas mean that the relay can perform transmit beamfgrmesulting in a
gain also known as array gain. We refer to these two gaigslasrence gainwith respect to both network
sections. Unfortunately, if the multiple-antenna relayéplaced by multiple single-antenna relays, it is
not possible to avoid noise accumulation and enjoy cohergrain w.r.t. the BC section at the same
time. This is since in a digital scheme the BC noises have teeb®wved at the relays — but due to the
distributed setting, the potential coherence gain in caimbi the noises is lost. Using the A&F strategy,
the task of removing the BC noise is left for the final decoddrere MRC can be performed, with
the penalty of noise accumulation. It is not surprising nthimat in the limit of high SNR in the MAC
section, as well as in the limit of many relays [5], the A&F apgch is optimal.

In this work we extend the view to networks where the noises alored, and specifically to the
important case of BW mismatch between the BC and MAC sectionsuch cases, there is no hope for
the A&F strategy to be optimal; for instance, in the presesica BW mismatch, any linear processing
in the relays can only result in an end-to-end channel of ti@nmum BW, so that the extra BW is
not utilized. This disadvantage is particularly criticalthe case where the section with the higher BW
has a worse SNR, thus the extra BW could serve to “open théebetk.” Still, in order to enjoy the
coherence gain we must preserve as much as possible thegaraloe of the transmission. In order

to overcome this problem we introduce a new relaying stgated'maximally analog” JSCC approach



namedRematch-and-ForwardR&F). We show that it enjoys the same coherence gains as Agdsd
yet it exploits the BW of both sections and the noise memoeyobd what is achievable by A&F.

The R&F approach is based upon treating the channel codeas@ Gaussian process having the
same BW as the MAC section. A JSCC scheme is used to transfosnisource” into a signal having
the BW of the BC section, which allows each relay to obtain stmeate of that codeword. The relays
now transmit their estimates (now back in the original BWgiothe MAC section. It turns out, that if
the overall scheme is to achieve the simultaneous BW uiilimaand coherence gain properties discussed
above, this JISCC scheme needs to satisfy two conditions:

1. The estimation MSE at each relay should be optimal witlpaesto the capacity of the channel
from the transmitter to that relay.

2. The estimation errors at the relays should be mutuallyuetated.

The first condition cannot be satisfied by analog transmissidnich does not exploit the full channel
capacity (unless the “source” is transmitted over a whitenciel of matched BW). The second condition
rules out digital transmission, where the estimation errare all identical, being the error of some
guantization applied at the encoder. We show that some J86€&€hes — variants of hybrid digital—
analog schemes (HDA, [6],[7]) and of modulo-lattice modiola schemes (MLM,[8]) — satisfy the
second property at all SNR, and the first condition in thetliofihigh SNR.

Based on these conditions, we show that the R&F approadfieatihat for given single-link capacities
(i.e., a given capacity of the point-to-point channel frame £ncoder to a single relay, and of the point-
to-point channel from a single relay to the decoder), the R&f€ remains within @onstant gapgrom
an upper bound on the network capacity, for any number of/sedand for any ratio between the BW of
the MAC and BC sections.

When using HDA techniques, R&F amounts to using superpos#ind frequency-division for trans-
mitting digital and analog components over the networkisest Interestingly, a similar structure [9]
was recently proposed for the same problem using a diffengptoach. Although both points of view are
valid (and lead to similar results, see Section VI), the J3p@roach has the benefit of encapsulation:
it treats each link on its own, without resorting to complézhglobal optimization of the network.

The rest of this paper is organized as follows: We start irti®edl by formally introducing the problem
and the notation used. In Section Il we present the concéghannel coding over JSCC schemes.
Section IV contains a new view of the A&F strategy which matas our approach. In Section V we
present the R&F strategy and use it to prove an achievabdylt for the parallel relay network with BW

mismatch. In Section VI we analyze the resulting perforneaaicd compare it with alternative strategies



and with outer bounds. In Section VIl we extend the resultedtmred noises, using a modulo-lattice
modulation implementation. In Section VIII we discuss tlee wf the R&F strategy as a building block

for more general networks.

Il. PROBLEM FORMULATION AND NOTATION

In the network model of interest (recall Figure 1), a mesd&geeeds to be recovered at the destination
decoder. We describe here the setting where all noises aite, vaithough there may be a mismatch
between the bandwidths of the two sections; we shall bregktive whiteness assumption in Section VII.
We assume a symmetric model, under which the noises in allMhieranches of the BC section have
the same power spectral density (PSD), and the transmiBSdmand power constraints are equal for all
the M relays.

In continuous-time notation, let the BC noises have a flab{sided) PSD of levePsc/2, while the
MAC noise has flat PSD of levebyac /2. We may assume without loss of generality, that each reldy an
the source encoder are subject to the same power consftaiper time unit. Each channel is limited
to BW B, that is, no transmission is allowed in frequendigs> B. The BC and MAC sections have
BW p > 0 andp = 1, respectively; is thus the BW expansion ratio of the BC section w.r.t. the MAC
section. We define the SNRs

SNRsc = X (1a)
Psc
MP
SNRusc = 7 o (1b)
MAC

respectively. Note that the MAC SNR is defined w.r.t. the ltpawver of all the relays.

For convenience, we work with a discrete time model, whegh ealay transmits av-dimensional
block and the encoder transmits a block of lengttiv|. Such blocks are denoted in bold, e.g. the
transmitted block of then-th relay isX,,; the n-th element of that block is\,, ,,. In the discrete-time
model, the additive mutually-independent noise sequetdges - ,Z,; and Zyac are i.i.d. Gaussian,

with variances:
E{Z}, ,} = Pac

E{Zjiac.n} = Punc -



The channel power constraints are given by:

L
pN

1
— EB{|IX 2V = Py
N {IXwmac|l*} = Px

Px
E{||Xac|®} = r

A rate R is admissible if a coding scheme exists where eacheep{/NR}| equiprobable messages
can be reconstructed with arbitrarily low probability of@t and the network capacity is the supremum
of all such rates.

We denote byC'(-) the AWGN channel capacity with SNR:

c(A) 2 %log(l + max(4,0)). @)

As stated in the introduction, we shall prove our resultshgigoint source—channel results, thus we
will resort to estimation and distortion, where the usef@asure turns out to be the mean squared error
(MSE). When it comes to MSE distortion, our results are masilg presented in terms afbiased
errors, defined as follows.

Definition 1 CUBE estimation: Let S be an estimator of a random vect8rof size N. S is a

correlation-sense (sample-wise) unbiased estimator ©UB
E{(S, —Sn)S:,} =0 ¥Yn=1,...,N.
Note that any estimator which is unbiased in the strong serse
E{S—S|S} =0 VS,

is CUBE. However, weak-sense unbiased estimator, wﬁé{tfé — S} = 0, is not necessarily CUBE.
Also note that any estimatdf of S can be transformed into a CUBE estimafoby multiplication by

a suitable constant:
N E{S%V .
S = { N}S.
E{SS}
In the extreme case of an estimator which is uncorrelatedl Wie source, this constant approaches

infinity and so does the CUBE MSE, unlike the biased MSE whieadnot exceed the source variance.

We define the signal-to-distortion ratio w.r.t. a CUBE estior:
2
E{||s —S|]?}
Note that this definition is different than the standard b@) definition of SDR. In terms of this CUBE

SDR, the unbiased quadratic-Gaussian white rate—distoftinction (see also [10]):

R(D)2 ~inf ) 1(5;9) (4)
w(S|S):E{(S—S5)2}<D,E{(S—S)S}=0



equalsC'(SDR). We use this rate—distortion function (rather than the neoramon biased one) throughout

the papet.

[1l. DATA TRANSMISSION OVER JSCC $HEMES

In this section we present some results that will be neededersequel, connecting the performance
of a JSCC scheme with achievable rates of a channel encateder pair which encapsulates it.
Proposition 1: Let S be some memoryless source. Let eaékdimensional reconstruction block
be drawn according to some conditional distributiogs|s), i.i.d. between blocks. Denote the (scalar)

distortion measure by(Si,S‘i) and the corresponding distortion between the bidglkendS — by

N
1
d(S.8) = + ;d(&, S:)
If the expected distortion satisfies
E{d(S,S)} < NDy, (5)

then there exists a channel coding scheme of any rate
R < R(Dy) (6)

over the channel frons' to S, whereR(D) is the rate—distortion function & w.r.t. the distortion measure
a(-,-).
Proof: According to the rate—distortion theorem,

I(S,8) > NR(Dy) . (7)

Consider now the “block channel” betwe&nand S, described by the conditional distributian(s|s).
Let Ry be a coding rate for this channel, i.e., a rate per a “blockith. According to the channel

coding theorem, any
Ry < I(8S,S)
is achievable. Re-normalizing per a single (scalar) input,have that any rate

1 1 5

This biased RDF is achievable, since it is exactly the SDRinbtl when removing the bias from a reconstruction that ®bey
the optimal (biased) quadratic-Gaussian test channelh&ccontrary, it cannot be exceeded, or introducing an MMSfofa

would result in surpassing the performance of the quad@siassian (biased) RDF.



message [ Channel JSCC JSCC Channl message
Encode Encoder Decode Decode)

Fig. 2: Channel coding using a JSCC scheme

is achievable. Combining the results of (7) and (8) we caheltihat any rate satisfying
R < R(Dy) ©)

is achievable. [ |

Remark 1:When working in this encapsulated manner, the irfpug not drawn according to a mem-
oryless distribution, but instead it is a symbol of the blatiannel codebook. Nevertheless, considering
the distortiond(S, S) averaged over the memoryless source distribution is serffici

We now specialize this result to the white Gaussian RDF. imseof the CUBE performance (see
Definition 1) of the JSCC scheme, Proposition 1 becomes thaniog.

Corollary 1: If the CUBE SDR satisfies

SDR> SDR,,
then there exists a channel coding scheme for any rate
R < C(SDRy)

over the channel fron$ to S.

We give this result the following interpretation (see Fig@): For some communication network, if we
can find a scheme, containing any block functions (of dinmmnai) at the network nodes (which we view
as JSCC encoders and decoders), such that the expected $3DRast SDR, then the rate” (SDR;)
can be approached in transmission between these nodeswingithe whole scheme as an equivalent
channel and adding an external channel encoder/decodeiTpairesulting scheme is as follows.

Scheme 1: 1) Use a codebook with® N2 words; each word is composed &f super-symbols, each

super-symboB composed ofV real numbers.

2) Feed each such super-symiSois independently to the JSCC scheme, resulting in a recarsin

S.



3) The decoder recovers the message from the JSCC schematspudgsuming that the outputs
Si,...,Sk were created from the correspondiBg, ..., Sx by a memorylessu(S|S). the (dis-
torted) source-blockS using the JSCC decoder.

Remark 2:One may construct the codebook using randomness as folldvescodebook is drawn as
2KNR » (K'N) ii.d. Gaussian values. Then, in average over these codtebtite CUBE SDR of the
JSCC scheme is at least SpRhus for any rate below'(SDR,) the error probability of the ensemble
approaches zero; consequently, at least one codebook hiing error probability.

Remark 3: This coding strategy is similar to [11, Theorem 10], althioulge approach there suggests
to eliminate the JSCC encoder and decoder rather than useabeart of the scheme.

Remark 4:1n general this approach may require a highly complex decatiéch takes into account
the (possibly non-white) transition distributimf(S|S). In the Gaussian case, however, super-symbols are
not required and a simple Euclidean decoder is always saiffictee e.g. [12, Theorem 2]. Interestingly,
a similar result to Proposition 1 was proven for discretehalgets in [13] without resorting to super-

symbols.

IV. A&F AS A JOINT SOURCE-CHANNEL APPROACH

In the simple case where both sections have the same BW 1) and the noises are white, we can
use a codebook which is good for transmission over an AWGNMNidlain conjunction with the A&F

strategy. In this strategy, each relay simply forwards descaersion of its input:
Xm = ’YYm = ’Y(XBC + Zm) (10)
where the relay amplification factor is set by the channelgrosonstraint:
- \/ Px - \/ SNRsc
T Px +Psc V 1+SNRsc

Consequently, the decoder receives

M
Yuac = > X + Ziac

m=1
M
=Y(MXgc+ Y Zm) + Zuac -

m=1

From the point of view of the decoder, this is equivalent toomnpto-point AWGN channel with SNR:

E{|lyMXec|*}
SDRy e =
" B M, Zanl?) + E{Zwac 2} (11)

= M (SNRsc1ISNRuac)
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Fig. 3: A&F strategy as the transmission of a codeword overdbncatenation of JSCC schemes

where
AB

AlB& ————
I 1+A+B

(12)

is the equivalent SNR in transmitting a signal through thacatenation of additive noise channels of

SNRs A and B.2 The resulting achievable rate of the network is as in [3]:
Rar = C (SDRag) . (13)

This rate reflects the coherence gain w.r.t. the noises df settions, as explained in the introduction.
However, when we leave the white equal-BW case, the A&F egsaftails to fully exploit the capacity
of the individual channels; for example, it is restrictedthhe minimal BW of the two sections, since it
is fully analog.

We present here an alternative view of the A&F strategy. g/s¢ire analysis in Section I, we think
of the scheme as a joint source—channel coding (JSCC) scheenahe relay network, surrounded by
a channel encoder—decoder pair. The sole purpose of thi€ 38keme is to produce a “good” estimate
of the codewordS at the decoder; in light of Corollary 1, the relevant measafrgoodness is MSE
distortion. For the purpose of this schenfeis treated as an i.i.d. Gaussian signal (drawn from an i.i.d.
source rather than from a codebook). For the parallel rektyaork topology, the JSCC scheme is a
concatenation of two schemes, from the encoder to the relagisfrom the relays to the decoder. The
A&F strategy uses the simplest JSCC schemes, i.e. analogntiasion, for both sections. While this
choice is not optimal in general, we show in the sequel thagifrestrictoneof the sections to be analog,

then the other may be analog as well without further loss.

2Here for each channel, the SNR is defined as the ratio of itstitppnoise power, i.e. for the second channel the “signal”
includes the noise of the first channel. This causes theiadditterm “1” in the denominator, without which this wouldwe
been a scaled harmonic mean of the SNRs.
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Fig. 4: Sensor network problems and the parallel relay netwo

A classic result by Goblick [2] states that analog transioisss optimal in the white quadratic-
Gaussian point-to-point setting. Recent works, e.g. [1#3], extend this property to some network
settings. Gastpar [16] shows the optimality of analog tnsiasion in a problem of particular interest to
us: a sensor network problem, where agents observe a whiies@a source contaminated by white
Gaussian noise (i.i.d. between the agents), and commenigét a central decoder through a Gaussian
MAC; the aim of the decoder is to reconstruct the source,esuiltp an MMSE criterion. Thus, this is a
combination of the quadratic-Gaussian CEO problem withGlagissian MAC problem.

This setting is equivalent to the joint source—channel fembbetweerS and S in Figure 3, under
the constraint that the JSCC scheme over the BC section mushdlog, see Figure 4a. We present the
result, then, in the relay network notation.

Theorem 1 Collection / “Sensors Network’ [16]): In the white Gaussian relay network, ¥ is a
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white Gaussian source aXlzc = S for someg satisfying the power constraint, the CUBE SDR of
the reconstructior$ satisfies

SDR < SDRy,

where SDRg was defined in (11).

We now look at a dual problem: Suppose that we can distriButethe relays using any JSCC scheme,
but the estimation o8 at the final decoder is obtained by an analog operation. Bhagain equivalent
to the joint source—channel problem betwéeands in Figure 3, only now under the constraint that the
JSCC scheme over the MAC section must be analog, see Figukeodkhis problem, we have a similar
result.

Theorem 2 Distribution / “Emitters Network”): In the white Gaussian relay network,Sfis a white

Gaussian source arffl= a'Yyac for somea, the CUBE SDR of the reconstructich satisfies
SDR < SDRyf,

where SDRg was defined in (11).

The proof is given in Appendix A. It is based upon consideting joint statistics of the CUBE errors
at the relays, denoted b¥,, = S,, — S. The proof shows that errors which are uncorrelated and have
fixed variance, both in time and in the spatial dimension,agrtamal, with a minimum SDR that equals
the BC SNR. Thus, from the point of view of a linear decoderarma quadratic distortion measure,
these errors are equivalent to the BC noises. In the whitald8jy case, they may as well be these
noises themselves. In the following sections, we define &mgdination of this principaladditive JSCC
schemes.

We see, then, that if either the encoder or the decoder atgcted to be scalar and linear, then the
whole scheme fron$ to S may be scalar and linear as well, without increasing theoish. The A&F
strategy can be thus described as follows.

Scheme 2Amplify-and-Forward):

1) Channel Encoding Choose a codeworfl from an i.i.d. Gaussian codebook.

2) Distribution: Over the BC section, use the optimum strategy that obtaitr:mmructions{ém} at

the relays, under the assumptions tBais a sequence from a white Gaussian source and that the
final decoder is linear and scalar.

3) Collection: Over the MAC section, use the optimum strategy that obtaifisad reconstructiors,

under the assumptions th@tis a sequence from a white Gaussian source, that the es$ir{r§m,§g}

are the BC channel outputs and the encoder is linear andr.scala
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Fig. 5: The R&F Strategy for the parallel relay network.

4) Channel Decoding:Treat the estimatio$ as the output of a channel, and decode the message.

We shall see in the sequel, that the rematch-and-forwaategly extends these principles beyond the

white equal-BW case.

V. REMATCH-AND-FORWARD FORBANDWIDTH MISMATCH

We now turn to present the Rematch-and-Forward (R&F) gjydier the BW mismatch case. We follow
the steps of the A&F strategy, as defined in Scheme 2. We usedamawhite Gaussian codebook, and
choose it to have the BW of the MAC section. Consequentlylognazansmission remains optimal for
the collection stage (over the MAC section). However, fa thstribution stage (over the BC section)
we need to replace the analog transmission by an adequate &@me. Figure 5 shows the resulting
structure of the R&F strategy: Some JSCC scheme, to be smkddier, is used over the BC section,
while analog transmission is used over the MAC section.r8ettie CUBE errors (recall Definition 1) of
the JSCC decoders at the relays as “channel noises”, we hanegjiivalent channel of Figure 5b, which
in turn is just the AF strategy applied to a white relay netwavhere all the links have the original BW
of the MAC section. The following theorem states our mainiegdbility result, using that approach.

Our rate expression makes use of the equivalent, (or “miuné@mation preserving”) SNR of the BC
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section, denoted b$NRsc, satisfying

C(SWRec) = p (222 (14)
which is equivalent to
P
SNRsc — <1 + SN;B‘:) Y (15)

Theorem 3 R&F Performance for BW Mismatch: The capacity of the Gaussian parallel relay net-

work (per MAC section use) is lower-bounded Byr, where forp > 1:

Ree = C (M (SNRecI[SNRuac) ). (16)

where the operatolf was defined in (12) and:

B SNRec)” ' SNRsc  SNRsc NS
SNF(BC = (1 + p ) ) = P SNRBC(l + SNRBC) , (17)
while for p < 1:
Rre = p- C(M(SNReclSNRuac) ) + (1 = p) - C(SNRecll(MSNRuac) ). (18)

The rest of this section is devoted to proving this resultctia V-A and Section V-B contain the

proofs of (16) and (18), respectively.

A. Transmission over the BC Section with BW Expansion

For p > 1, the JSCC scheme used to materialize the distribution sth§eheme 2 must be a “good”
scheme for BW expansion. Recall that the coherence gain &F was achieved due to the mutual
independence of the BC section noises; the following déimiand lemma provide us with a sufficient
condition for a scheme to produce such an equivalent channel

Definition 2 Additive JSCC scheme A JSCC scheme for a sour&eis additive with error probabil-
ity pe, if there exists an evert of probability at least — p,, such that the CUBE errdf is statistically
independent o8 given the encoding and decoding functions and the egent

In this definition, the error probability corresponds to aat#ing failure of some digital element of
the scheme, if such an element exists. It is understood bthaaking a large enough block length this
probability can be made arbitrarily small. The additivity this definition is in a point-to-point setting;

the following lemma translates this to the BC setting.
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Note that the independence #fin S, given the encoding and decoding functipimsplies thatZ and
S are independent given any common randomness shared by ¢bderrand the decoder.

Lemma 1 Additive JSCC scheme over a BCA JSCC scheme for a sour&is used over a BC

M
wr(Yy,- - Yulx) = H W(Y, %) (19)
m=1

by applying the decoding function of the JSCC scheme to eaahnrel outputY,,. If the scheme is
additive with error probability., then there exists an eveiit; of probability at least — Mp,. such that
the CUBE errors{Z,,} are mutually independent givah,; and the encoding and decoding functions.

Proof: The probability thatll {Zm} are independent d is lower-bounded by the union-bound
P(CM) > 1_Mpe-

Given the event,; and the encoding and decoding functiofis,) andg(-), we have

P <{Zm < zm}f:1 ‘CM,f, g> = /P ({Zm < zm}le ‘CM,f,g, S = 8) fs(s)ds

where fg(-) is the probability distribution function of the sour& Under this conditioningZ,,, is a
function of the channel noisé,,, only, and hence independent of all other CUBE err fsn} , due

i#m
to the BC structure (19). Thus,

M M
P <{Zm < Zm}mzl ‘CMafag> :/ H P (Zm < Zm‘CM,f,g,S = S) fS(S)dS
m=1

M
— H P(Zm < zm‘CM,fy) ;
m=1

where the last equality holds true sin{ém} are independent o8 given C,; and the decoding and
encoding functions. [ |

The additivity allows us to express the SDR $fin terms of the point-to-point performance of the
BC section JSCC scheme as follows.

Lemma 2: Consider using over the BC section a sequence of additive€ J®Bemes, indexed by the
block lengthV, with error probabilitiesp. ,,, and with CUBE SDR oSNRsc (when there is no error).
If limpy— o0 Pey = 0, thenlimy_.o SDR= M (SNRsc|SNRyac)-

Proof: Forp. = 0, the result follows with an appropriate choice of factoustjas in A&F. It remains
to show that the effect of errors is small in the limit of small this follows from basic probability-
theoretic arguments; see the proof of [17, (5.2)]. [ |

Recall that by Corollary 1, any channel rate beloWSDR,) is achievable over a general channel that

has CUBE SDR of SDRfor a white Gaussian input. Thus, Lemma 2 proves the achiidyabf the
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Fig. 6: HDA Scheme for BW Expansion.

rate of (16), if SNR is the CUBE SDR of an additive JSCC scheme with a white Ganssjaut. It
remains to demonstrate that there exists a scheme thatvast88NR of (17). To that end, we use an
additive variant of a scheme by Mittal and Phamdo, depicted @ Figure 6; later in Section VII we
present an alternative which has the same performance ihigheSNR limit.

In this section, we denote the firgh — 1) N samples of anV-dimensional vector and the rest of the
vector by subscripts ‘out’ and ‘in’, respectively. For exalm X,,; and Xj, denote the firs{p — 1)V
and the lastV entries of the vectoX of length pN.

Scheme 3HDA Scheme for BW expansiaonafter [6, System 3]):
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Encoding:
1) Quantize the source vectBrof length V, i.e., splitS into a quantized valu8, and a quantization
error Zg.
2) Use a digital channel code (satisfying the average chamoveer constraintx/p) to obtain(p—1) N
channel inputs representir§y), denoted byXyt.
3) Apply power adjustment to the quantization error vedeyr (of length V), i.e., multiply it by /«,
where

a Px/p
S L
O'ZQ

o (20)

and send the resulting inflated error sigdal, = /aZg over the remainingV samples, in an
analog manner.

Decoding

1) Decode the channel code from the fifst— 1) N output sample& o (corresponding t&X,,), and
then the source code, to recover the quantized source eemadsnSQ.

2) Reverse the power adjustment applied to the remaininghannel outputdi,, i.e., multiply Yi,

by \/1/a:
1 1
\/iYin =2qQ+\/ —Zin.
(7 (0%

3) Add /Yin/a to SQ to arrive at the (unbiased) reconstructed signal

N N 1 - 1
S:SQ-i-\/gYin :SQ-i-ZQ-l-\/gZin. (22)

Proposition 2: For a white Gaussian source, Scheme 3 is additive with vemngisdrror probability as

N — oo. Furthermore,

_ p—1

SDR= <1 N %) SNR (22)
p p

whereSDR is the scheme CUBE SDR given that no error event occuaredi SNR is the channel SNR.

Proof: By the separation principle (see, e.g., [18]), a distor{\in. average power df.) satisfying
2
log % =(p—1)log <1 + %> , (23)
%7 p
is achievable, with vanishing error probability.

Assuming no decoding error was made, the reconstructedlsigh) is equal to

S—s+ Lz —s J%Qz-
= +ﬁ in=»+ m in s
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which implies in turn an unbiased distortion of

. 2 %
E {(5 =) ] = S (24)
By combining (23) and (24) the desired (unbiased) SDR isexelt:
_ 2 p—1
SDR= 0—52 - <1 + %) SNR (25)
E [( - S) } P P
[ |

Since, when substituting SNR SNRsc, the SDR of (22) is equal to SNR of (17), the proof of
Theorem 3 forp > 1 is completed. Note that SNR < SNRsc, where the difference, which can be seen
as a penalty for additivity, vanishes in the high-SNR linhit.the original scheme of Mittal and Phamdo
[6], the full mutual information of the channel is exploitbgl multiplying the analog channel outputs by
an MMSE factor, before adding them to the quantized valuesiléAthis reduces the estimation error,
it causes it to depend on the quantization error, thus tgrtiie scheme unto a non-additive one. We
conjecture that no additive JSCC scheme over a Gaussiamehaith BW expansion can exploit the

full mutual information.

B. Transmission over the BC Section with BW Compression

We now show how (18) can be approached. Note, that in thisepgieession the coherence gain w.r.t.
the BC noises is achieved only over a portjpof the BW. This occurs since now the JSCC scheme over
the BC section needs to perform BW compression rather thparsion. Intuitively speaking, such a
scheme cannot be additive in the sense of Definition 2, simeehannel does not supply enough degrees
of freedom. Consequently, the equivalent noise seen byttherel coding scheme is not white, and the
channel scheme must be chosen accordingly. We start, tgatefining the additivity property which is
applicable to this case.

Definition 3 (-Additive JSCC scheme A JSCC scheme ig-additive with error probabilityp., if the
lastpN elements of the CUBE errd are additive with error probability,, in the sense of Definition 2.

In this section, we denote the fir§t — p)N samples of anV-dimensional vector and the rest of
the vector by subscripts ‘out’” and ‘in’, respectively. Inrag that we have @-additive JSCC scheme,
which achieves the same error-free CUBE SDRSBIRsc for both S andS;,. By Lemma 1,{Zin7m}
are mutually independen{ioum}, on the other hand, may be arbitrarily correlated. This deimdthe

following.
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Lemma 3:Consider using over the BC section a sequence-afiditive JSCC schemes with error
probabilitiesp, ;, and with CUBE SDR ofSNRsc (when there is no error), equal for both sub-vectors

lim SDR, =M (SNRs¢]|SNRyac)

N—oo

lim SDR)ut :W:‘)BCW [(MSNR\AA(;) .

N—oo

Proof: As in the proof of Lemma 2, we only need to verify fpr = 0. The result for SDR follows
from the analysis of A&F; for SDRy, make the worst-case assumption tlaﬁit)ut,m} are identical to
derive the desired result. [ |

Again, in order to approach the performance promised by fdmd we must have a scheme that
achievesSNRsc of (15) for a white Gaussian input. Another HDA scheme by Mitand Phamdo,
depicted in Figure 7, qualifies.

Scheme 4HDA Scheme for BW compressigrafter [6, System 4]):

Encoding:

1) Quantize the vector composed of the fifst p) N source sampleS,,;, and denote the corresponding

reconstructed signal b§,.; then use a digital channel code, to obtaiN channel inputs denoted
by Xdigital representingSout, of average powefl — «)Px/p, where

o — (1 + SNR/p)p - 1’ (26)

SNR/p

which satisfied) < a <1 forall p < 1.

2) Multiply the remainingp N source samples, by @/az);/”, to form Xanaog Of average power
S
(1 = a)Px/p:

Xanalog = 040—2 Sin -
S

3) Transmit the sum o0KXgigitar and Xanalng NAMely X = Xgigital + Xanalog Whose length iss N and
average power —Fx/p.

Decoding

1) Decode the channel cod€yigital, treatingXanang as noise, then decode the source code to recover
Sout.

2) Subtract the decode¥,,; from Y and multiply the result by a;f—;j/p to attain the unbiased

reconstruction ofS;, which equals to (assuming no channel decoding errors wede)ma

i o2
Sin - Sin + aP—)(//)Z .
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Fig. 7: HDA Scheme for BW Compression.

Proposition 3: For a white Gaussian input, Scheme 4iadditive with vanishing error probability as

N — oo. Furthermore,
__ — SNR
C(SBRw) = C(SBRy) = pC (7) | (27)

WhereS/DvR)ut and §Dan are the CUBE SDRs of the scheme for both source parts giveamtharror
event occurred, and SNR is the channel SNR.

Proof: Since the worst noise distribution subject to a given powmrstraint is Gaussian and due
to the separation principle (see, e.g., [18] for both), thiéoiving CUBE SDR is achievable (assuming
no channel decoding errors were made) for the fiist p) N samples, with vanishing decoding error

probability:

(1-pC (S/B/R)ut) = pC (SNRyigital) (28)
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where
(1—a)Px/p (1 —a)SNR/p
aPx/p+ Pac  aSNRp+1°

Assuming no decoding error of the channel code was maderastiny Xgigitas Of Y and multiplying

of
aPx/p!

SNRyigital =

the result by results the unbiased estimation $)f;, namely

o3
aPX/p '

Thus, the CUBE SDR (assuming no decoding errors were madéeatmainingg N samples satisfies:

gin = Sin +

C(SDRy) = C <a %Q) . (29)

The p-additivity of the scheme follows sinc®y, is effectively transmitted in an analog manner over an
AWGN channel (again, assuming no errors were made). Finafl\substitutingx (26) in (28) and (29),
(27) follows. Note thatp < 1 impies

SNR\” SNR
1<|{14+— | <1+ —
p

= 9

which is in turn equivalent t@ < o < 1. [ |
In order to complete the proof of Theorem 3 fpr< 1, we note that we can compo$e of two
codebooks, one which gives the ‘out’ samples and another —th#o‘in’ ones. By applying Corollary 1

to each codebook separately, we have that rates approaching

(1 = p)C(SDRou) + pC(SDRn)

are achievable. Substituting the results of Lemma 3 andditipn 3, we arrive at (18) as desired.

VI. STRATEGIES FOR THEPARALLEL RELAY NETWORK: PERFORMANCE COMPARISON

In this section we consider the rate expresditg of Theorem 3. We start by presenting a simple upper
bound, as well as lower bounds by previously known stragegie the network capacity. In Section VI-D
we compare these bounds, concentrating on limiting casgslaowing the asymptotic optimality of the
RF strategy. Finally in Section VI-E we discuss variatiomstioe RF strategy, among them time-sharing

which allows us to improve the best known performance everthfie equal-BW case.
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A. Upper Bound on the Network Capacity

The network capacity is upper-bounded by cut-set bounds lmvil sections, as follows.

Proposition 4: The network capacity’ is upper-bounded byRouier Where

Router= min{pc <%> ,C (M - SNR\/IAC)} .

Proof: We prove that each of the two terms in the minimization is apeugoound on the capacity.
The first term follows by a cut-set bound on the BC sectionmadizing the rate by the BW ratip
(recall that the MAC BW is chosen to bB. For the second — we use a cut-set bound on the MAC
section: Consider the AWGN betwe@jn”f:1 X, andYyac. For a given power, the mutual information
is maximized by a Gaussian input, and the maximal input pawWéPx is achieved when all the relays

transmit the same signal. [ |

B. Universality and Asymptotic Optimality of R&F

This outer bound allows us to show that the R&F strategy isermsal in the following way: for all
the networks that possess the same single-relay capaeitytioe two sections, i.e., the saiBdlRsc and
SNRuac, there exists a uniform bound on the gap from optimality.

Theorem 4:For any parallel relay network with SNRs ShRRand SNRyac, number of relays\/ and
BW expansion ratiq:

Router— Rrr < A(SNRsc, SNRyac) < 00.

For p > 1, this holds provided that SNR > p.
Proof: For p > 1:

Router— Rre < C (M - SNRuac) — C<M(SNR'BCWSNR\AAC))

< 1log ( SNRuac )
- 2 SN%CW {SNRMAC

gC(z-M) ,
SNRsc — 1

where the last transition is justified by the assumption §NR p. On the other hand, fop < 1:
M - SNRBC>
P

Router— Rrr < pC < —pC (M( NRBC”SNRVIAC)) — (1 = p)C (SNRsc1ISNRyac)

110g( (SNRsc/p)? )
2 SNRsc1[SNRyac

IN

7N
n
Z
&
@]

)+ (sme)
— SR p—
NRsc1ISNRuac NRsc
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[ |
As a direct corollary from the bounds derived in the proof,hawe the following asymptotic optimality
result:
Corollary 2: In the parallel relay network, for any fixetll and p, the following limits are taken by

varying SNRyc and SNRyac. Forp > 1:

li li — =0.
WRBICm_}oo SNRwlfcn—)oo[ROUter RRF] 0
SNRviac
Forp < 1:
lim lim [Rou[er_ RRF] == O .

SN;M—)OOMC—)OO
SNRgc
We see, then, that the R&F strategy is optimal in the limit @hhSNR and when the single-relay

capacity of the narrower section is much lower than that efwider section.

C. Other Relaying Strategies

In comparison, we present lower bounds on the network chpgisien by well known strategies for
relaying (see e.g. [1]) applied to this network. We will skattall of these strategies fail to achieve
universality, either with respect to the number of relaydocothe bandwidth expansion ratio.

Amplify-and-Forward: For the equal-BW casep(= 1), this strategy was described in Section 1V,
and the achievable rate is given by (13). It is not obvioustvgteuld be considered the extension to
p # 1. A natural choice, is to restrict the relays to any linearrapien. This means that the excess BW
cannot be exploited, and we may as well work with a codebooichvhas the lower BW of the two

sections. The resulting performance is given by

C(M - (SNRecl[SNRuac)) > 1

ool (388 pe

Rar = (30)

This has an unbounded gap from the outer bounds, when githed or p — cc.
Decode-and-Forward: In this strategy, we use a low enough rate such that each oalayreliably
decode the codeword. In the second stage all the relays asgathe transmission, enjoying the MAC

coherence gain. Consequently:
SNRsc

Rpr = min {pC’ < ) , C (MSNR\/IAC)} : (31)

The lack of coherence gain with respect to the BC noises saaisauinbounded loss as the number of

relays M grows, when the first term in the minimization is the limitioge.
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Compress-and-Forward: The relays digitally compress their estimations of the eantd, and subse-
guently send the digital data over the MAC section. The perémce is given by comparing the minimal
rate of the symmetric quadratic Gaussian CEO problem [2g] With the Gaussian MAC capacity, see
e.g. [18]. This combination is suboptimal, since by usingree—channel separation it fails to achieve
the coherence gain (see e.g. [5], [21]). Using this strattggy achievable rate iBcr = pC(SDRer/p),

where SDRck is given by the solution of:

SDRr SDR 1
C( ) ) - MC (‘m) = ;C(SNR\/IAC) ; (32)

as long as the equation has a positive solution. This rateoappes a finite limit a3/ — oo, since the

CEO rate has a finite limit, found in [22]. Consequently, wa baundSDR-r for any nhumber of relays

M by the solution of:

SDRcr SDRer 1
¢ (P2F) + soanas = 5C(SNRuc). 33)

Simple algebraic manipulation shows that siBIDR-r must satisfy:

SDRer < p(1 + SNRuac) (34a)
m:': < IOg(l + SNRI;/IAC) - SNRsc . (34b)

The first inequality shows, that there is no coherence gaih the MAC noise. According to the second
one, the MAC SNR needs to be very high, if the scheme is to aehaegain w.r.t. the BC SNR. This
causes an unbounded loss as the number of relays grows, pvlen

The graphs of Figure 8 show the different bounds for two caa®s function of\/: in the first case
the BC section is wider but of lower SNR, and in the second tlaseoles change. It is evident, that
R&F achieves the coherence gain of A&F for any, resulting in a similar behavior as a function of

the number of relays, but with a higher rate.

D. Performance Comparison

In order to compare the various bounds forz 1, we consider the high SNR lImBNRsc > 1,

SNRuac > 1. Within this limit, we further consider four limiting casei® order of rising SNRgac:

1) DecodableSNRsc > M - SNRyac.

2) MAC-limited: MSNRsc > M - SNRyac > SNRsc.
3) BC-limited: exp{p - M} > SNRyac > SNRsc.

4) Recoverable: SNigc > exp{p- M} > SNRsc .
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Fig. 8: Rate vs. number of relays. solid = RF, dashed = AF, -diadted = CF, starred = DF, dotted =

outer bound.

For these cases, the effective SNRs (i.e., the ones satisfy(iSNR) = R whereR is the corresponding

rate) according to the different strategies are summarigetie following table, along with the outer
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bounds of Proposition 4. The expression for C&F in the BCitkioh case is according to the bounds (34),

so the C&F performance for finitd/ is worse.

Bound || Decodable MAC-limited BC-limited Recoverable
AF (M - SNRyac /7)" (M - SNRec /)"

M - 1—r\ "
RF (M - SNRyac ((Sec ) ) ()’

SNRvac .

SNRs
o ()
- SNRec ) M-SNRec |

CF SNRyac (log(SNR'\’jIAC). pC) (Tc)
outer M - SNRuac (%)p

Fig. 9: Comparison of bounds on the effective SNR= min(p, 1).

The first and last limits correspond to extremes, where eitiee SNR of the BC section or the SNR
of the MAC section are so high, that no coherence gain is reduior that section. In these limits,
D&F and C&F are optimal, respectively. The intermediateiténare more interesting from a practical
point of view, since the capacities of both sections, givgrttie cut-set bounds of Proposition 4, are
closer to each other. In these limits, it is evident that e&é&fr is better than both C&F and D&F for
large enoughV/, since these digital methods do not posses the relevantat® gains. R&F has the
same coherence gain as A&F™"(1-») but makes better use of the BW, resulting in (generally)ebet
SNR-dependent factors. We also note that in the MAC-limitede where > 1, and in the BC-limited
case wherg < 1, the asymptotic performance of R&F approaches the outendiathis corresponds to

the optimality claim of Corollary 2.

E. Improvements of R&F

The R&F scheme, as presented here, is not necessarily ofteyiand the asymptotic sense. In fact,

we can point out some possible improvements.

o Global optimization of the estimation: Consider the R&F scheme when using the HDA JSCC
approach of Mittal and Phamdo over the BC section as presént8ection V. We may view the
operation of this specific HDA scheme as decomposing theethokannel codeword (seen as a
source) into two JSSC codewords, so that their sum is equhktocodeword: the quantized value is
a “digital” word, while the quantization error is an “analagne. At the relays, the digital codeword

is decoded, while the analog one is left with the correspmpdihannel noise. Alternatively, one



27

may start with achannelcodebook obtained as a superposition (sum) of two codebadksh are
processed as the digital and analog codebooks above rlg oe is decoded. Hence, one codebook
is relayed using a D&F approach, while the other — using A&fese codebooks are superimposed
over the narrower section, while over the wider section tbegupy separate bands. From this
perspective, one is left with the task of determining the @oallocation when superimposing the
analog and digital layers. Following the R&F approach, ¢heights are taken so as to produce
the optimal reconstruction of of the original codeword ($en of the two). However, one may
ask whether a different power allocation may result in advgierformance at theéestinationnode.
Indeed, as recently proposed by Saeed et al. [9], perforenaray be enhanced by optimization of
the power allocation.

« Non-white transmission: While white transmission is optimal over a single white ggttthere
is no guarantee that it is also optimal for the parallel red@pwork. In fact, if transmission over
one band enjoys a coherence gain while transmission ovéhemnband does not, it is plausible to

increase the transmission PSD in the band that does.

Common to both points above, is thglobal (power) optimization is needed, i.e., the transmission
scheme over one section depends upon the parameters of tle métwork. Since the simpler local
optimization approach is sufficient for understanding thsib gains and tradeoffs in the network, and on
the other hand no optimality claim can be made about the setex®n after global optimization, we do
not pursue these directions in this work. However, we do tomim the potential benefit in combining R&F
with D&F and A&F by means of time-sharing, as suggested Foi-Aadd D&F in [23] for the equal-
BW case. The sharing strategy allocates different poweh¢oR&F and D&F relay transmissions, such
that they effectively function with different SNRs, sayisig the total power constraint. The following
specifies rates which are achievable by time-sharing.

Theorem 5:(R&F-D&F Time-Sharing ) The capacity of the parallel relay network satisfies:
c> IHaX{/\RRF + (1 — /\)RDF} R

whereRgr is given by Theorem 3 for signal-to-noise ratios SiBc and SNRrvac and BW expansion
factor p; Rpr is given by (31) for signal-to-noise ratios SNfsc and SNRe mac and for BW expansion

factor%. The maximization is performed over @ll A\, SNRrrec, SNRrrmac, SNRor e, SNRoF Mac
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Fig. 10: Time-sharing for the equal-BW casd. = 2, SNRsc = 100.

which satisfy:

0<pA<p
SNRrrgc + SNRorgc = SNRsc

SNRrrmac + SNRormac = SNRuac -
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(35a)
(35b)
(35¢)

(35d)

The proof is straightforward: This rate can be achieved mstrocting two AWGN codebooks where

the first codebook is transmitted on the fikgt?vV BC section uses antlN MAC section uses, by applying

the R&F strategy, whereas in the remainifig— A\p)N BC section uses andN MAC section uses,

D&F is performed. In each section, we allocate a differentgioto each transmission scheme, resulting

in a different SNR, such that the average power constramggreet. A rather surprising result is, that

when substituting the case = 1 in the theorem, one gets a slightly improved performance tve

time-sharing between A&F and D&F. This happens since theaogment of A&F by R&F gives another

degree of freedom in the design: The BW allocated to R&F magngk between the transmitter and

the relays. In other words, using R&F we may introduce arficietl BW change to the equal-BW case.

Figure 10 demonstrates this improvement for two relays aNBgs = 20dB. While there is no reason

to believe that the new achievable rates are the optimurs,rédsult demonstrates that the known inner
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bounds of [23] can be improved.
In some other cases, time sharing between R&F and A&F may dnesille. The expressions can be

derived in a similar manner, keeping in mind that A&F workghmequal BW in both sections.

VIlI. COLOREDNOISES AND TIME-DOMAIN PROCESSING

We now abandon the assumption that the noises are white. Afe flestricting our analysis to the
symmetric setting, thus we assume that all the BC noisesidawntical spectra. We denote this spectrum
and the MAC noise spectrum bsc(e/2™) and Syac (€/27/), respectively. Without loss of generality,
assume that the noise spectra of both sections are monalgriitcreasing as a function df|. 2 The
BW of a section is defined as the maximal frequency in whichnibise spectrum is finite. In practice,
these frequencies arise from the sampling frequencies tisesl they are always finite.

We assume equal sampling rate at both sections, which is takeorrespond to the maximum of the
two BW,; consequently, both the source encoder and the relsggransmission blocks of equal length

N. We then define the BW of both sections:

Bgc = 2sup{f : Spc(¢/™) < o0} (36a)
Buac = 2sup{f : Swac(¢*™) < oo} . (36Db)
We denote by the BW ratio:
_ Bsc
Buvac

By definition, if p > 1 or p < 1 then Bgc = 1 or Byac = 1, respectively. Note, that fog > 1 the time
units used differ from those used thus far in the paper.

Under this notation, we define the SNRs of the BC and MAC sestiw.r.t. the total inband noise

power:
Px
SNRsc 2 :
f2‘f|§BBC Sec (3727rf) df
MP
SNRyac 2 X (37)

f2‘f|§BMAC Smac (eﬂﬂf) df .
Finally, we denote byC(P, S(e/?"f)) the capacity of an additive Gaussian-noise channel withegpow

input constraintP and noise spectrurfi(e/2™/), given by the water-filling solution, see e.g. [18].

3This is done for convenience of the definition of bandwidtlyoSince any node may perform a “frequency-bands swapping”

operation, it is not restrictive.
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The cut-set outer bounds of Proposition 4 can be easily dgtbito the colored case, as follows.

Proposition 5: The network capacity’ is upper-bounded byroyer Where
Rouer=min{C (MPx, Ssc(€™) ) ,C (M>Py, Suac(6*™)) }.
The D&F rate is also easily computed to be:
Ror = min{c (PX, Sgc(e/2™ )) .C <M2PX, Swac (€127 ))} : (38)

We see that, as in the white case, D&F is optimal when the pedoce is limited by the MAC section,
but fails to achieve the coherence gain w.r.t. the BC seatimige. Clearly, A&F enjoys both coherence
gains even in the colored setting, so for a large enough numbeelays M it outperforms digital
approaches. However, even for= 1, and even if we allonany linear relaying function, generally it
cannot exploit the full capacity offered by links with codal noise; see e.g. [24] for a discussion of this
issue in the point-to-point setting.

As in the white BW-mismatch case, the R&F strategy aims toemadtter use of the individual link
capacities than A&F does, while maintaining the cohereraiegy We use the same scheme of Figure 5,
adjusting the JSCC and channel encoder/decoder pairs tolbeed setting. We now state an achievable
rate using this strategy in terms 6fnie( P, S(€/277)), the mutual information over an additive channel
with a noise spectruns(e/2"/) of BW B, using a white input of the same BW:

. 1 P
_ anfyy & 1 ——
CWh|te(P> S(e’ )) 5 /2f|<B log <1 + BS(ejzwf)> (39)

and of T'(S(e/>f)), the prediction gain of a spectrus{e’>™f) of BW B: (see e.g. [25]):
% f2|f\<B Ss(e?")df
exp & fy <5 108 (Sg(ei%f))df

Theorem 6:(R&F Performance for colored nois§ The capacity of the Gaussian parallel relay

r(S(eﬁ”f)) 2 (40)

network with colored noises. is lower-bounded By £ Cunite (Px, Sre(€/2™/)), where

SN MPx .
Snr(&77) = { M (SNF\’BCHW>, 2| f| < min(Bgc, Buac) }’

SNRsc] f%, otherwise

with the equivalent BC SNR being:

SNRsc = [r (SBc(eﬁ”f))sr\lFeBCr _1, (41)

as long asSNRs¢c > 0.
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Before proceeding to prove the theorem, we analyze this eégpression. While we show in the
sequel that further adjustments of the R&F scheme may ingptbe achievability result, this closed-
form expression already possesses the main gains acheebglthe scheme. As in the white case of
Theorem 3, it shows coherence gain w.r.t. both sectiondéniie BW of the BC section, and w.r.t. the
MAC section for all the codebook BW. It also exploits most loé¢ tgain offered by the noise color, in the
high-SNR limit where a white channel input is asymptotigaptimal. Takingp = 1 (no BW mismatch),
the following result can be proven by straightforward cédtions.

Proposition 6: (Near-optimality of R&F for colored channels) Let SDRsg, SDRyr and SDRer be
the SNRs corresponding tBgr, Rpr and Rouer Of Theorem 6, (38) and Proposition 5, respectively. For

p = 1, consider the high-SNR bound where all the parameters ddefilxed except forPx. Then:

. SDPouter
<
P;lglinoo SDR:e — 2
. SDRor 1
< e
P SDRe = LTI (42)

The proof of Theorem 6 relies upon the existence of a JSCCnsetvehich exploits the full mutual
information available over a link (asymptotically in higiNR), while being additive over the minimum
between the source and channel BW. Then, Corollary 1 is edpks in the proof of Theorem 3. In
order to use additivity in the colored setting, we need terdtthe definition ofp-additivity as follows.

Definition 4: (p-Additive JSCC scheme — generalizedA JSCC scheme ig-additive with error
probability p,, if for some unitary transformatiofi’ of the sourceS, the firstpN elements of the CUBE
error Z of S’ are additive with error probability., in the sense of Definition 2.

W.l.o.g. we assume that the unitary transformation, undgclvthe JSCC scheme jsadditive, is the
DFT, since otherwise one could concatenate the DFT withhematnitary transformation. Parallel to the
exposition in Section V-B, we divide the source sig8abf length V into an “in” part filtered to BW
r =min(1, p) and an “out” part with the remaining signal.

Proposition 7: For any white Gaussian source of BBt and for any additive Gaussian channel with
power constrainPx and noise spectruifi(e’?™/), let B¢ be the channel BW. DefinB £ min(Bg, Bc),

and
Px

Jaiizne S (@) df-

Then there exists #-additive JSCC scheme with vanishing error probabilitydas+ co that satisfies:

SNR£

SDR;, = SDRoyt = [r (S(eJ?“f))SNR} g
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Fig. 11: Analog Matching encoder and decoder for R&F

where SDR,, and SDR,; are the CUBE SDRs of the scheme for both source parts giveamtharror
event occurred. Furthermore, given that no error event roeduthe samples of the CUBE error are
mutually independent.

We prove this using a time-domain approach, based upon tiaédogmatching (AM) scheme of [25];
in the sequel we discuss an alternative, namely the apiplicatf HDA schemes in the spirit of the
exposition in Section V. In our context, the AM scheme cassis predictors (either at the encoder side,
the decoder side or both, according to the BW expansionifactd the noise spectrum), modulo-lattice
operations at both sides, and a linear filter pair, one at siaeh taken to be ideal low-pass filters (LPFs),
which may become redundant depending on the BW expansitor.f&or simplicity, our choice of filters
reflects a “zero-forcing” approach (targeting the high-Si¢gime); even when using optimized filters,
there is an inherent loss in using the Analog Matching schevh&h vanishes at the limit of high SNR.

The encoder and the decoder are depicted in Figure 11. Wdes®tation of Section VII; under this
notation, either the source sigrtalis white, or it is flat inside the MAC BW and zero outside. Ndtett
besides the components in Figure 11, the scheme must empkneaving; see [25]. We assume that

the lattice has a second moment equal to the channel powstraom Py .
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Proof: Following the considerations made in [25], as long as a cbmecoding condition holds,
we have at each time instant(see Figure 11):

Vn - Sn = %En * (5n —Pcn) )

where

En:[gln*g2n_6n]*Xn+g2n*Zna

and wheregy,,, g2, andpc,, are the time responses of the filtats (e/27/), Go(€/2™/) and Po(e/?™/),
respectivelys,, is the unitimpulse functionX,, andZ, are the encoder modulo-lattice output and channel
noise, respectively, anddenotes convolution. If the dithd is independent of the source and uniformly
distributed over the basic cell of the lattidethenX has powerPx and is statistically independent &.
As a consequence, we have that the channel power conssaatisfied, and also th#t is independent
of S.

Denote the spectrum df,, by Sz (e/2™f). If we chooseP:(e/2™f) to be the optimal predictor of that
spectrum, the resulting prediction errgy — S,, is white with variance
exp f2|f\<1 log S (e2™/)

B2 '

Now we takeG,(e/>™f) and G»(e/>"f) to be LPFs of height\/BIC and /Bc, respectively, and width

B¢, to assert that

D=

. BeSz (€% ), 2|f| < B
Sp(e27) = cSz(&°™), 2|f| < Bc

Px, otherwise

Thus:

- B ' Py
,82D = BBCPI Be exp/ log S e]27rf df — ' .
C olfl<Be gSz( )df (T'(S(e727/))SNR)Be

Following [25] again, if an optimalPs(e/?™/) is used, then for large enough blocks correct decoding
holds with arbitrarily small error probability as long asthower ofT), is at mostPy, i.e.,
P\
B2 <— +D> D'=Bs < p.
Bg
Algebraic manipulation shows that ady satisfying:
P : <
< (P(S(eﬂ“f))SNR) s 1
BsD
is achievable. Now if we tak&'(e/2"/) to be an LPF of bandwidtBs and unit height, we arrive at the
desired result sinc® = BgD. We also have that the schemelis--additive as long as correct decoding

holds, since the inband component is a filtered version ottianel noise. [ |
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Note that, for high SNR, this performance approaches thaBiraupper bound on the channel capacity
(see e.g. [26]), thus using the AM scheme is optimal in thigtli For general SNR, it has a loss w.r.t.
the optimum performance of the AM scheme presented in [2bis Tiappens since the equivalent noise
of the optimum AM scheme contains a “self noise” componest, & filtered version of the channel
input; such a component prohibits the scheme from beingtiaeldi For additivity, we had to choose
here sub-optimal “zero-forcing” filters inside the chanB&V.

Calculating the total distortion of both sections, as dameSéection V, shows that the decoder can
achieve a CUBE error of spectruske(e/2™/). In order to complete the proof, we need to extend
Corollary 1 to colored estimation error; the extensiondat directly from substituting the colored
Gaussian RDF in Proposition 1.

Corollary 3: Let S be a Gaussian i.i.d. vector of element powerDenote the CUBE error PSD by

S(e/?71). Then there exists a channel coding scheme of any rate
R<C (P, S(eﬂ“f))

over the channel fron$ to S.

After establishing Theorem 6, we note that this is not thbtégt inner bound on capacity that we can
give. We restricted the input to both sections to be whitiyoaigh the water-filling spectrum of both may
be colored. However, taking the input of an individual litkitave the water-filling spectrum of that link
does not guarantee global optimality either. For exampile water-filling solution over the BC section
may have a lower BW tha®gc. Outside that water-filling BW, there will be no coherencénga.r.t. the
BC noise. Obviously, for large enougWl this has greater effect than that of the water-filling gaihe T
optimum spectra can be computed by a straightforward, thawgnbersome, optimization; given such
spectra, a modified scheme adding filters at the relays mayaeriaized. Choosing a white input, as
we did, simplifies on matters. Nevertheless, in the limitafge number of relays or of high SNR, the
choice becomes optimal.

In Section V we have thus far proven our achievablity residighe white BW-mismatch case using
specific hybrid digital-analog (HDA) schemes. In fact, weilldouse also for the colored case an additive
variant of an HDA scheme proposed by Prabhakaran et al. [dighwsplits the source and the channel
into frequency bands, and then applies to each band the HE#igues by Mittal and Phamdo that we

suggested to use for the white case in Section V. This appnoay have slightly better performance than

“The self noise is indeed independent of the so@céut is not independent of it given the encoding functioa,, igiven
the dither vectoD.
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the modulo-lattice approach for the parallel relay netw@g, when substituting in the analog-matching
performance the special case of BW mismatch, performanemise than the HDA performance), but
this advantage vanishes at the limit of high SNR. We chosémptirsue it in this work, since computing

the performance of the additive variant turns out to be a @rstme task, and we believe that insight
into exploiting the noise memory is better gained using atohomain approach.

In addition, note that the HDA approach calls for partitimpithe frequency band into multiple bins,
and using multiple source and channel codes (of differaasjdor these bins. From the practical point of
view, this may be a drawback when the frequency responséiexisignificant variation, corresponding
with many bins. This motivates looking at time-domain agutees; the considerations are reminiscent

of those concerning the difference between DMT and FFE-DFpoint-to-point channel coding [27].

VIIl. DISCUSSION EXTENSIONS TOLAYERED NETWORKS AND TOMIMO CHANNELS

We conclude the paper by pointing out how the R&F approachbeamsed beyond the colored parallel
relay network scenario. We first look at more complex netwpdnd then we turn to replacing the BW

mismatch by a mismatch in the number of antennas (degreeseddm) in a MIMO setting.

A. R&F as a Building Stone for Relayed Networks

Turning our view to more complex networks, the ideas pre=skim this paper are most easily applied
tolayered networkswhich are directed acyclic graphs (DAGs) where the nodaseadivided into layers,
and nodes in each layer receive the (noisy) sum of transmnisgrom the adjacent preceding layer only.
We index the relay layers ds=1,--- , L, where layerL consists of the destinations. Specifically we
consider the symmetric case, where the noise spectra, aasvéle number of received transmissions
(“fan-in") and the number of destinations in the next lay#ar-out”) are identical at all nodes in the
same layer. In the white symmetric case with BW mismatch betwlayers, each layer is characterized
by its SNR SNR and BW p,. Figure 12 shows two examples of networks which fall under ¢lategory.

In the sequel, we show how combining the R&F and C&F strategebeneficial in the first example,
while recursive use of the R&F strategy is the key to the inegit of the second one.

Consider the network of Figure 12a. We use a codebook BW dioupto layer4, i.e. py = 1. From
layer 1 to layer 3 there are no MACs, thus analog transmission produces noreote gain. Hence,
the noise accumulation in these layers can be avoided bydaach of the nodes in layércompress
their estimation ofV according to the ratenin (ng(SNRg),ng(SNRg,)) and send it digitally, making

sure that the resulting quantization errors are mutualiefrendent (c.f. by using mutually-independent
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Layer 1
Layer 2
Layer 3
Layer 4
@) (b)
Fig. 12: BW-mismatched symmetric layered networks. Eactiendenoted by a full circle contains a

MAC channel.

dither in each node). For the outer layers, we use the R&Fnseh@&he decoder “sees” a parallel relay
network, where the MAC noise is the sum of the noise of layand the quantization noises. Thus we
achieve the coherence gain w.r.t. all the noises in the nmktwo

Next consider the network of Figure 12b, which contains MAC®&oth layer2 and layer4. On one
hand, the coherence gain is only known to be achieved forogrtehnsmission over the MACs, but on
the other hand using analog transmission for both does radtleno utilize the full BW ifpy # p4. This
difficulty can be circumvented by using two information-kieg signals of different BW. We use again a
codebook BW according to layér, applying a JSCC method to re-match it to B¥. This re-matched
codeword is sent using the RF scheme to I&8ewhere instead of the codebook decoder, the “source
signal” associated with the outer JSCC scheme is reproddnse that this way the estimation errors in
both relays of laye2 are mutually independent. Next we use RF again to transregetlieproductions

to relay 4. In the overall result, again the full coherence gain is exddl.

B. R&F for MIMO Channels

The BW mismatch framework may be thought of as a model for éoimép channels with a different
number of antennas. For example, it may reflect relays coriwating with the end-users using one
antenna, while using multiple antennas for the link with bese station. For a recent work regarding
parallel relays in the MIMO setting, see [28], which in ca®trto the present work, assumes a digital
use of the MAC section, leading to a C&F approach.

Note that the applying the schemes developed in this papeiMO channels is not straightforward.
In a practical scenario we need to abandon the the symmesimgtion and allow each relay to have
different channel matrices; but unlike LTI systems, MIMOsgms are not diagonalized by the same

transform.
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APPENDIXA

PROOF OFTHEOREM 2

For the sake of simplicity we prove the theorem assuming #ieeofi encoders which produce stationary
channel inputs. The general case follows by similar argusen

Assume w.l.o.g. thaS has per-element variancB. Denote the CUBE estimate at each relay by

S,, =S + Z,, and define by SDR £ E{Z}Z y the unbiased signal-to-distortion ratio at relay Now
we have that:

C(SDR,) < I(S;Sm) < I(Xac; Yim) < C(SNRec)

where the inequalities are justified by the (unbiased) souate-distortion function (4), the separation

principle and the channel capacity, respectively. Consetlyy we have that
SDR, < SNRs¢ Vm=1,..., M. (43)

We can also consider a joint decoder which obsed/¥s,} and obtains an estimatégc of S with
CUBE signal-to-distortion ratio SDR. Since this is a point-to-point scenario, we can repeat bwe
considerations, now replacing the point-to-point cagabiy the BC capacity% log(1 + M - SNRsc),
obtaining:

SDRsc < M - SNRsc (44)

where SDR is the CUBE SDR of. Now we describe a specific joint decoder, which must obey thi

bound. The decoder first obtains the CUBE estimates at eday) end then combines them:

M R
SBC — Zm:l ’YmSm
2%21 Tm
This is a CUBE estimator, with:
SDRBC — (Zm:l 'Vm) (45)

E{(C =1 tmZm)*}
Equipped with these bounds, we now turn to the relay funatipnin the original setting. Without

loss of generality, we assume that the relays transmit:
Xm = 'VmSm
where the gains must satisfy the power constraints:

TP+ E{Z}) <P Vi<m<M . (46)



38

The optimal CUBE estimate of from Y3,...,Y),, where
Ym - Xm+Z :’Ymgm +ZMAC :’Ym(Sm"i_Zm) +ZMAC
is given by maximume-ratio combining (MRC), with performanc

1 1 M

= + 5
SDR SDRsc (2%21 ’Ym) SNRyac

where SDRc is given by (45). Any SDR achieved by the scheme is thus agupr (47), where the

: (47)

constraints (43)—(46) must be met. Using this, we have:
1 1 M
SDR™ M -SNRec | [war _ \2 ‘
¢ (Zm:l ’Ym) SNRVIAC

Now we are left with the task of bounding the performancetwiie optimum choice of~,,}. This is a

convex optimization problem in the parametérg, }, {ﬁ} under the2M constraints given by (43),

(46); the solution is uniform, with

SNRsc
2
- _ - v =1.--- .M.
777’1, 1 + SNF\)BC \v/m ) )
Consequently:
1 1 1 + SNRsc 1

SDR = M -SNRec | M - SNRecSNRuac M (SNRecl|SNRvac)

and the proof under the stationarity assumption is comghlete
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