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Abstract—We investigate modulation and coding tech- a result of the Poisson statistics effectively constrajnin
niques that approach the fundamental limits of commu- the channel output to a finite alphabet; however, even
nication and key distribution over OptiC&' Channels, in if quantum_optima| measurements are used rather than
the regime of simultaneously high photon and bandwidth yn610n detection, the capacity is still finite. In Section I

efficiencies. First, we develop a simple and robust system,, o wie 4 short account of the “clean” channel capacity
design for free-space optical communication that incor- .

porates pulse-position modulation (PPM) over multiple the low-energy limit, and present pulse-position mod-

spatial degrees of freedom in order to achieve high photon Ulation (PPM) as a way to aid the task of coding for that
and Spectra| efﬁciency_ Further, in the context of key Channel by IntI’OdUCIng Useful structure Into the COde.

distribution, we determine the optimal rate using a Poisson ~ Highly energy-efficient communication is inherently
source of entangled photon pairs and photon detectors, bandwidth-inefficient. Even in free-space communica-
and show how to approach it using PPM parsing of the tions where bandwidth may be abundant, it is still
detected photon stream. practically limited by the switching speed of the trans-
mitter and receiver used. Thus, if both high transmission

) ) o rates and high photon efficiency are required, one needs
Classical optical communication can be roughly di resort to multiple modes: the most evident source

vided into two regimes, according to the number qf s js space. However, multiplexing the data over
photons sent per channel use. If this number is highy tipie parallel modes requires either very large spatial
homodyne or heterodyne detection may be used to effegnaration (thus large apertures), or the use of high-
tlve_ly transform the_channel into an equivalent additivg,qer orthogonal beams that are difficult to produce
white Gaussian noise (AWGN) channel. On the othehy gegrade easily over poor atmospheric conditions. In
hand, if the number is low, then photon detection, alsgs(ion |11 we propose to solve this problem using simple
knc_)wn as dlrect.detectlon, produces at the decodelyg,se (thus non-orthogonal) Gaussian beams; by using
Poisson count, with mean equal to the energy sent - thisiia| PPM modulation, interference between the beams
it is known as the Poisson regime. _ is transformed into a simple noisy channel. We present
In the Poisson regime, which is the focus of this workye ,ndamental hardware tradeoffs for this solution.
the quantum nature of light is more evident, leading |, section IV we turn to key distribution over optical
to somewhat results that defy common AWGN-basg§\annels; still with high photon efficiency. The basic
engineering intuition. The role of noise is played bynciples of quantum mechanics help facilitate secure
spontaneous counts known as dark current. The capagitnmunications, see e.g. [5]. When applied to the optical
of t_he resulting cIassn_:al channel under various COBRannel, the “no-cloning” principle means that a photon
straints has been studied for the last half century, S§gected at the destination could not be also detected by
e.g. [1]__[‘,1]' ) ] an eavesdropper. Furthermore, the terminals can detect
Surprisingly, even without any noise (dark currentyqie attacks, i.e., photons detected by the eavesdropper
the channel capacity is finite. One may think of it ag,q then “replaced” by new ones. Popular key distribu-
rgion algorithm are based on these principles, but typically
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to generate the key. For this, we find the optimal kdgast once, “0” otherwise. Per pulse, a classical Z channel
generation rate, and show how to construct a PPN created, where the probability to receive “0” given
based coding scheme that is optimal in the limit dhat “1” was transmitted isxp{—n/p}, according to
low photon count. Section V concludes the paper lifie Poisson statistics. If a classical capacity-approachi
discussing extensions to the work. code is used over this channel, a rate of

ll. BACKGROUND: PHOTON EFFICIENCY VIA PPM <p, <1 — exp {_ﬁ})) —p-hg (exp {_ﬁ})
We consider a discrete-time lossy bosonic channel, p p

which serves as a good model for free-space optica@n be achieved, whergg(-) is the binary entropy
communications. This channel is best described in teriiugction. The exact analytical optimization of this rate
of its effect oncoherentstates of light, which are theoverp is complicated, but in the high-efficiency regime
states generated by a classical laser. One of the importiet approximate optimum (which yields the best rate up
properties of a coherent state), is that when fed to to the approximation of interest) is given by:
a photodetector it will produce a Poisson number of a1

“clicks” with mean 7, see e.g. [6]. When the input of p'(n) = 5 log —.

a bosonic channel is a coherent stat@, the output
is a coherent staténn), where0 < n < 1 is the

transmissivity of the channel. We see, then, that tﬁ . here the phot fici :
Poisson statistics of the photon count is maintained WEVETIn our case, where the photon et |C|en£:y require-
the channel. ent translates into a constraint on the inpd{n) can

The classical-information capacity of a quantum chaH—e arbitrarily small. The resulting efficiency is given by:

nel is given by the Holevo rate [7]. For a bosonic channel Rz(n) 1 1
under a mean photon-count constrainthis is given by n log n loglog at log2+o(1).  (4)

g(nn) nats per channel use, where: [8] Comparing to the Holevo rate (2), we see that the
g(x) 2 (z + 1) log(z + 1) — log(x). @ efficiency I_oss of the Z-channel scheme withi rgspect
to the optimal performance grows adsglog1/n in
Furthermore, this capacity is achieved by transmittintge high-efficiency limit. This loss is inherent to any
coherent states. We will assume throughout the work ttedassical” transmission scheme, even if general (non-
use of these states. As a consequence, we may withbimary) coherent states are considered, and the receiver
loss of generality constrain the mean photon count at tiseallowed to use feedback between measurements; see
channel output rather than input, or equivalently take].
n = 1. It is important to note, that while the Holevo While the scheme described above is implementable,
capacity is achievable using a “classical” encoder, thiee task of coding is still difficult. Specifically, one needs
decoder must still be “quantum”, i.e., some generatutual-information approaching codes for a Z channel
quantum measurement must be performed jointly oweith a highly skewed input. This can be overcome by
the channel output corresponding to multiple channgét another simplification. Everg binary symbols are
uses in order to approach the capacity. grouped together. We now impose the constraint that any
In some applications, it is interesting to considesuch super-symbol will include exactly one entry that is
the photon efficiencyi.e., the information conveyed per‘1”, i.e., they become PPM symbols. In the limit of large
transmitted photon. Interestingly, in the low-energy timik, the channel input resembles a highly-skewed random
n — 0, while the capacityg(n) approaches zero, thebinary input. Indeed, using a uniform prior over these
photon efficiencyy(n)/n approaches infinity. In fact, PPM symbols, one may achieve efficiency

@ =10gi+1+0(1). (2)
n n

®3)

Note that when a Z channel is used without constraints,
I%e optimal input distribution satisfies > exp(—1);

RppM(ﬁ) _ logk‘ '
n nk

(1—exp{-nk}).  (5)

A simple scheme for high photon efficiency consist/ith the optimum (to the approximation ordek) =
of the encoder using a binary code. We denote the praby*(n) (3), this efficiency satisfies (4), i.e., the further
ability of logical “1” in that code byp. The statesn/p) efficiency loss incurred i®(1). The channel for which
and|0) are sentto represent “1” and “0”, respectively. thene needs to code is now a large-alphabet erasure
receiver will declare logical “1” if the detector clicked atthannel, much like a packet-erasure channel encountered
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parallel, the spectral efficiency may be improved by a
factor m without effecting the photon efficiency. For
the system designer, such a solution implies additional
hardware and space requirements; in the following, we
guantify these costs and show how to reduce them using
spatial modulation, rather than straightforward realiza-
tion of multiple parallel time-modulated modes.

Let the required photon and spectral efficienciessbe
nat/photon and? nat/S/Hz, respectively. Assuming PPM
streams, the number of parallel modes needed is given
by the solutionm to

Rppm (%) _ (6)

m
We are interested in the regime > 1, and assume for

_ _ . simplicity thatm is an integer. The number of degrees
Fig. 1. Tradeoff between photon and bandwidth effiCien freedom in an aperture is found by prolate spheroidal
cies. Dashed curve is the Holevo bound, dash-dottedkig,ction analysis [11]. It turns out that the relevant
the Z-channel model, solid is PPM. The first satisfies t%;%ometry to the “spatial bandwidth” is encapsulated in
asymptotic expression (2), while the later two satisfy (4},a Fresnel-number produdsee, e.g. [12])

» . re ™

in internet applications, and good off-the-shelf codes are (AL)?

available. where 4, and A, are the transmit and receive apertures,
Figure 1 depicts the tradeoff between photon andspectively,\ is the carrier wavelength andl is the

bandwidth efficiency, for the different rate expressiongistance between transmitter and receiver. A large value

presented in this section. The BW efficiency is the ratgf 1 translates to hardware cost, e.g., larger aperture.

while the photon efficiency is the same rate divideflowever, in order to support: modes,T' > m is

by the average photon number It can be appreciated required; that is, the total achievable rate is at most the

that the tradeoff is inherent, and that, while the loss pfte per single mode times

“classical” operation (the Z channel model) is large (for a straightforward optimal implementation would in-

fixed photon efficiency, it may be orders of magnitudgge:

in BW efficiency), the further loss of PPM is small. 1) m parallel laser-detector pairs

However, if one is concerned with this additional Ioss,z) Modulation/demodulation in order to carry the par-

it can be reduced by introducing an addlt!onal SUPET ~ allel lasers over an orthogonal set of modes, e.qg.
symbol to the PPM alphabet, where all entries are zero; Hermite-Gaussian ones

see [10
[10] The implementation of a scheme which includes many
[1l. SPECTRAL EFFICIENCY VIA SPATIAL PPM light sources and modulation has a very high cost.

The Holevo-rate expression (2) represents a funddowever, we observe that in the high photon-efficiency
mental tradeoff: if high photon efficiency is requirediegime the orthogonal approach may not be needed: with
the spectral efficiency(), measured in nat per channehigh probability, only a small portion of the modes is
use, or in continuous time nat/S/HZ, must be low. |active, thus the potential interference is low. We use this
applications requiring both high photon- and spectrdP make the following modifications in the system.
efficiency, then, the premise of the problem must bel) Instead of using multiple parallel modes, over each
changed. That is, degrees of freedom must be added in a of which a PPMk constellation is sent, we can
domain other than time or frequency. One possibility is  group & modes together and send the constellation
polarization, but we choose not to consider it as it cannot over these modes at a single channel use. Conse-
improve the spectral efficiency by more than a factor of quently, we are assured that only one of these modes
two. We turn, then, to thepatial domain Obviously, is “active” at any given instant. We can thus replace
if we run m independent transmitter-receiver pairs in &k sources by a single source and a switch which




directs its output according to the data. We coilm this expressionZ is a random variable over the

this transmission methospatial PPM integers, satisfying:

2) We abandon orthogonal modes. Instead, each mode
is simply a laser beam, closely approximated by a Pr{Z =z} =Q ((22 —1) 2 9)
Gaussian intensity profile, and different modes are v B
separated by some translation. Since these modes —Q <(2Z 1) 2 g)
are not orthogonal, some inter-mode interference is v B8’

created; however, the use of spatial PPM, enables , _ _
to translate this effect to noise within a single PPMNere@(:) is the complementary Gaussian cumulative
signal distribution function.

. . . , Proof: The optimal transmitter directs a beam to the
The intensity of a Gaussian beam of unit power and , :
width o is given by: (see e.g. [6]) center of one of the detectors. Under the first assumption,
the distribution of the detector having the first click
I(z) = iex _2HzH2 (8) is just as in quadratic amplitude modulation (QAM)
= 7oz P o2 |7 with hard decision. The distance between adjacent QAM

wherez is the two-dimensional displacement from beanfonstellation points” is found using (9):

center, that is, if we place a detector which covers 2

an infinitesimal areals around locationz, the average d= \/—E ‘ B "o (11)

number of detected photons will b¢z) - ds.* The beam

width is related to the geometry of the system via: The difference between the intended detector and the

9 detector with the first click is independent between the

. (AL) _r. ﬁ (9) axes, and in each axis is distributed Aglefined in the

4 A 4 T proposition. For a constellation of size the average
Due to the noise created by the non-orthogonality @umber of photons is7/m. If the detectors correspond-

beams, we can no longer hope to achieve thekatsing ing to the constellation exactly overlap a receive array,

Fresnel-number product and number of detectors thhé corresponding rate is the probability of detection

equalm. Rather, we have higher Fresnel-number produeiultiplied by the QAM rate given that a detection has

(achievable by e.qg. larger apertur&s)- o>m and larger occurred:

number of detector§?m; our goal is to characterize the

0'2_

(ar, B) pairs which supports, R). Rg = <1 — exp {_k_n}) (log Bk — 2H(Z)) .
We make the following assumptions, that greatly sim- m
plify the analysis: We note that the detectors corresponding to a constel-

1) Each detector occupies a square area, and they filhfion may actually only occupy part of the aperture or
Cartesian grid (this reflects a small performance logpan multiple ones, but this has no effect in the limit
with respect to an array of hexagonal detectors). ¢ > 1.2 If the modes were orthogonal, the same aperture

2) The number of detectors is very large, thus we mayea would support a rate of
ignore edge effects and treat each detector as a part B
of an infinite grid. The constellation size is also very R=k-Rppy (ﬁ) ,
large:m, k > 1. m

3) If there is more than one detection, the receiver onlyhere Rppy, is given by (5). RequiringRg = R
makes use of the first one. in order to maintain the efficiencies translates to the

Proposition 1: Under the assumptions above, photogondition (10). [

efficiency s and spectral efficiencyz can be supported We can analytically consider the paifs, 5) on the
by Fresnel-number produatm and number of detectorsboundary of the region (10) in two opposite limits. If
B%m, wherem is found via (6) and o, 3) satisfy:
2Namely, if two constellations share the same aperture, wg ma
log 8 > H(Z) (10) keep a sufficient guard area between them, so that the ireade
between them has arbitrary small level, with vanishing st
'Note that the standard deviation of the “location” of a clisk grows. Similarly, the fact that a constellation may be spétween

o /2 rather than the more intuitive; this is the common way used apertures and thus the noise cannot carry the detection yo an
to describe Gaussian beams in Physics literature. constellation point has a vanishing gain.
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observations of the chosen location, with i.i.d. noises
Z1,...,2Z;. Sincet is known at the decoder, the rate in
Proposition 1 is replaced by the mean mutual information
given the number of detectiorts wheret has Poisson
distribution with raten. In the high-resolution limit

a < f, the decoder averages the detections and the
entropy is reduced by{logt}. Outside this limit we
have a discrete additive channel with multiple looks.
The exact capacity gain is an interesting information-
theoretic problem; fot = 2, the noise entropy{ (2) is
replaced by the smaller

2H(Z) - H(Z),

2 s 4 5 s 7 s ° w  where the distribution ofZ is that of the sum of two
B independent random variables, each one distributed as
Fig. 2: Minimum Fresnel-number product redundancy.
a as a function of the detector number redundapcy

. . . IV. KEY DISTRIBUTION: PARSING A POISSON
Dashed line depicts the asymptotic valug

PROCESS

In quantum key distribution (QKD), Alice and Bob
a < [, Z is a high-resolution version of Gaussian n0|3(¥\lant to agree upon a message (‘key”), while keeping
thus the information that Eve has about the message close to
zero. This is carried over in two stages.
—logd = 1 + log 8 1) Quantum stage. Following [13], we distinguish be-
2 2 2v2a tween two models. In model C, Alice prepares
thus (10) yields: states, which are observed by Alice and Bob
through a quantum channel. In model S, a source
1 A . .
exp — £ ap>~1.83. emits random states, which are observed by all three
2\/_ nodes.
This is a minimum value fora at any 3, meaning 2) Classical stage. In this stage, Alice and Bob ex-
that there must be a loss in the Fresnel-number product change information over a classical channel. Eve
with respect to orthogonal modes, even if we use many is a passive listener that can decode all of this
small detectors. If, to the contraryy > §, then Z information.
may have very low entropy. Thus in the limit of a veryPhoton and spectral efficiencies are defined according to
large aperture (almost orthogonal beams) we can faveéhe key rate, and the photon and bandwidth resources
close to one, representing approximately detectors, consumed by the quantum stage. The classical stage is
as expected. Figure 2 depicts a numerical evaluatiassumed to have no cost, still communication will be
of the tradeoff (10). The rather strange curve is du&pt to a minimum since Eve has unlimited access.
to the shape of the Gaussian distribution. A working Various QKD algorithms have been proposed. The
point that seems to be good for practical purposes nsost popular ones, BB84 and E91 (see e.g. [5], use po-
(o, B) = (2.15,1.4). At this point, the radii of the larization for key generation. However, such methods are
transmit and receive apertures need to be multiplied ligited to one bit per photon. For high photon efficiency,
a factor 1.5 each, comparing to the ideal orthogonahe may use time or frequency which may offer more
system, and the number of detectors need to be doubtiegjrees or freedom. We thus take an approach similar
comparing to the same. to the one used for communications in the previous
Finally, we note that there is a potential gain frorsections.

considering more than one detection. While with or- For model C, Alice can choose random information
thogonal beams the extra detections cannot help, wihd transmit it using a PPM communication scheme over
Gaussian beams they can be used to reduce the nasbosonic channel with efficieney. In an implementa-
Let the number of detections be then we havet tion of model S, the source, co-located with Alice, emits

mexp{1}o?

1



entangled photon pairs according to a Poisson proc&sb need to agree upon a kéy of rate R using public
with rate ofy pairs per second. One of the photons isessages, which Eve also receives. As the blocklength
sent locally to Alice and is always detected; the othémcreases, the probability that they agree of the same key
is sent to Bob over the bosonic channel. In principlghould approach one, while the mutual information (per
both models lead to similar results. We choose to analyglement) between Eve’s data and the key must approach
model S; at the end of this section we comment abazgro.

model S. Theorem 1:The secret-key rate for the problem de-
We formalize the model in discrete time. We us#ned above is given by:
short time intervalsr such thatn = ~7. Alice and Ry = I(A; B)

Bob use photon detection to obtain sequendesnd

B, respectively, representing the number of detections in  Proof: Achievability. We describe the public com-
each interval. Eve can make any measurement, or eveunication stage. It consists of two steps. In the first,
perform an active attack, e.g., detect photons, then creBt# sends Alice information such that with high prob-
new ones and send them to Bob with low additionalbility Alice knows B. By the Slepian-Wolf (SW) The-
delay. We formally prove security for the case whererem [14], this can be done with rafésy = H(B|A).
Eve obtains a sequendg in a similar manner to the By the assumed statistics, the sequehoes is indepen-
sequences! and B. Proving that this implies quantumdent of the sequencg&. Thus, after the SW step Eve
security is beyond the scope of this work, but we do nok@s information abouf3 of (curly brackets denote the
the following points. sequences, and the blocklength)s

« Continuous vs. discrete time. If Alice makes dp = I({E}, M;{B}) = I{E};{B}) + I(M;{B}/{E})
measurement that_ is o_pt|mal in the sense of time- _ I(M;{B}{E}) < H(M) = - H(B|A).
frequency uncertainty, i.e., uses narrow-band filters
of width A,, such thatrA,, = 1/2, then Eve cannot The second classical communication step will be secrecy
gain from measurements that have better resolutigmplification, producing fron a key of rate (see e.g.
than 7. [15]):

« General measurement vs. photon detection. The Ip
photon-detection measurement by Alice causes thd?(B) — T > H(B) — H(B|A) = I(4; B) = Rk

state that Eve may observe collapse to & numberconyerse. By the upper bound on key generation rate
state. Consequently, Eve can not gain from amy 113 (see there remark 2 after Theorem 2, where we

measurement other than detecting the presence; Qe v/ 1o pe independent of4, B, E) ) to assert that
a photon in a time bin. In principle Eve coultyq rate can not exceddA; B) -

do that using a nondemolition measurement; that|, ihe limit of low average photon numberwe can

would detected by the same means as an actiggject the probability of two photon pairs within the

attack. same interval. Thus all sequences become bindrjs
« Active attack. Such an attack may be detected by &j&noulii (); GivenA = 0, (B, E) = (0,0). GivenA =
ther interferometry, or alternating between measure- (B,E) = (1,0) w.p. 7 (B7 E) = ((’) 1) otherwise.

ment bases (hi_gh—reolution_ time an_d high—resolutiorine mutual information becomes:
frequency) similar to what is done in entanglement-

based QKD. These methods do require that some of I(A; B) = Hy(nn) — nHy(n)
the photon pairs are _dedlcate_d to the task and Aty the photon efficiency is given By:
used for key generation; we ignore these photons, B

i.e., normalize efficiencies w.r.t. photons that are Rk (n) — logl +1-— L1
used for key generation. nn n 1—n

Are model is thus defined as followsl is an i.i.d. Favorably, this reflects ntglog1/n loss; in fact, for
Poisson sequence with average coantGiven that an 77 = 1 it coincides with (2). However, Slepian-Wolf
element of A has valuea, the corresponding elementcoding as well as amplification need to be carried out
of B IS blr.lomlal with parameter@,n); -thg sequence 3Similar to the communication setting where we define photon
E is the dlﬁer_ence betweed and B (this is a WO_rSt' efficiency w.r.t. the photons arriving at the receiver, heee define
case assumption: all losses are due to Eve). Alice aind.r.t. pairs that arrive at both Alice and Bob

log +o(1). (12)



over heavily skewed binary sequences, which may beraeorem 1, a rate AR = I(N4; Ip) may be achieved.
very difficult task. To overcome this we use a PPM ae use as a lower bound a Z channel with{ N4 =
proach, similar to the one described in Section Il. Sindg = knexp{—kn} andPr{Ip = 1|Ny = 1} = n as
we cannot control the source, the actual transmissioniristhe original channel (thus we collapse &y > 1
not PPM, but we can stilparsethe sequencegA, B) to N4 = 0, reducing the mutual information). We have,
into blocks of lengthk that typically contain at most onethen, additional photon efficiency of:
photon-pair. AR 1

In the most naive approach, Alice and Bob first search? > ?Hb (nknexp{—kn}) —
for blocks in which each of them has exactly one e e 1
detection, and then use the indices within the block =loglog— + 1 —
to form the key. Since the location of the blocks is " 1=n
independent of the key, the key rate per such blogkhere the calculation was carried out with= 2/p*(n)
is just logk, and there is no need for SW coding ogs in (13). Comparing (12)-(14), we have:
amplification. The probability that a block is usable is Ri_ppu() . AR N Ry (7)

@Hb(ﬁ)

IL—n

log +o(1), (14)

: ~ e - . . 1 1
given bynkn ixp{ kn}, thus the efficiency is given by: e e +o(1),
M = max [(1 — exp{—Fkin}) log k] showing that we have eliminated thes log 1/7 loss. A
nm k constant efficiency loss of one nat per photon remains;

— logi —log logi —1+0(1), (13) in order to also close this gap, while remaining within
n n the parsing framework, one would have to extract infor-
where the maximizer (to the approximation needed) jgation from multiple detections within the same block,
k = 2/p*(n) wherep* was defined in (3). complicating the algorithm considerably.
We see that PPM parsing inflicts theglog(1/n) Extracting the additional rat&AR does require SW
loss, similar to the communication efficiency (4). Thigoding, as in the origina-channel model. However, the
happens because Alice and Bob ignore part of tRequences are far less skewed, making the coding task

common randomness they obtain via the channel, namebsier. In fact, the probability of “1” in the sequende
the number of detections per block and the locatidgehaves as

of detections beyond the first one. As the analysis that L
follows shows, the information that needs to be used in log %’
order to recover most of the loss is whether Bob haq j; qriginally. At reasonable values @, the sequence
any detection in a block or not. The following two-stage may be almost balanced.
strategy efficiently extracts this information. We conclude this section by commenting on the
1) Bob sends Alice a SW code describing the indic@siplementation of model C, where entanglement is not
of blocks in which he has at least one detectioised. For that case, quantum security holds for similar
The first part of the key is generated by applyingirguments to those presented above for model S, except
secrecy amplification to this sequence. that interferometry cannot be used; rather, Alice will
2) Alice replies by stating in which of the blocks whergnust randomly use PPM either in time or frequency, and
Bob has a detection, she has exactly one detectiggb will measure in a random basis, similar to both of
(thus Bob must have exactly one as well). Thg¢yem measuring in random basis for model S. Further,
second part of the key is generated from the indic@sr extracting the additional raté\R, Alice needs to
of the detection within these blocks, as with th@ave side information, specifying in which PPM blocks
original PPM parsing. at least one photon was sent to the channel; this may
As the second part of the key is statistically independdm¢ obtained in principle by a nondemolition quantum
of the first part and of all the information sent over theneasurement, but it is not known in practice how to
public channel, we can find the key rate by evaluatirimplement such a measurement. An alternative that is
the additional rate in the first part of the key. a hybrid between models S and C is to have a source
For calculating the additional key rate, let the numbef entangled pairs with variable Poisson rate. According
of detections per block that Alice and Bob have g to randomness generated by Alice it will be switched to
and Np, respectively. Let/z be an indicator of the generation rate/x for one bin in every PPM block, and
event Ng > 0. By arguments similar to the proof ofwill be kept to zero otherwise.



In Section Il we presented spatial PPM as a simplél]
way to achieve spectral efficiency without sacrificing

V. FUTURE DIRECTIONS

photon efficiency. In Section IV we suggested PPM

parsing of a Poisson source of entangled photon pairs]

for key distribution. A natural goal would be to connect

both: in order to achieve high spectral efficiency in keyas)

distribution, one would need multiple spatial modes.

The channel model we have analyzed is highly ide[—s]

alized. In particular, the following two effects have a

significant impact on performance and coding.

1)

2)

Coupling and detection losses. These are addition

to the path loss). In general they can be included

in n, except that in the key distribution scenario we

have assumed that Alice has perfect access to the
source. When Alice also has losses, the optimal key
rate is still7(A; B). This rate has now an additional [9]

constant asymptotic loss w.r.t. (12). Furthermore,
a variant of the PPM parsing algorithm can b

still used, and the asymptotic gap from the optimal
efficiency is still one nat per photon. However, the
second part of the key cannot be simply Bob’s

indices, since they may differ from the ones that
Alice has in cases where the source generated

multiple pairs, and each terminal received a photon

from a different one; SW coding is now needed fot2

this stage as well.

Dark current. These are detections that are indeprs]

dent of transmission. Although they typically arrive
at a very slow rate, they will dominate performanc
in the limit of high photon efficiency (slow rate
of true detections). In the context of spatial PPM,

detections may appear in a detector independéﬁ]

of the intended one (instead or in addition to the

true one); the code over the PPM symbols shoults]

account now for two kinds of errors: small (due

to the Gaussian beams) and large (due to the dark

current). In the key distribution setting, the effect of
dark current is similar to that of both users having
efficiency smaller than 1, discussed above.

Finally, although the PPM approach is a useful tool
in simplifying the task of coding, we have still not

considered specific codes. In the SW setting, low-density
parity check (LDPC) codes may be useful, see e.g. [16].
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