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Toward Photon-Efficient Key Distribution over

Optical Channels

Yuval Kochman, Ligong Wang and Gregory W. Wornell

Abstract

This work considers the distribution of a secret key over an optical (bosonic) channel in the regime

of high photon efficiency, i.e., when the number of secret key bits generated per transmitted photon is

high. While in principle the photon efficiency is unbounded, there is an inherent tradeoff between this

efficiency and the key generation rate (with respect to the channel bandwidth). We derive asymptotic

expressions for the optimal generation rates in the photon-efficient limit, and propose schemes that

approach these limits up to certain approximations. The schemes are practical, in the sense that they use

coherent or temporally-entangled optical states and direct photodetection, all of which are reasonably

easy to realize in practice, in conjunction with off-the-shelf classical codes.

I. INTRODUCTION

Information-theoretic key distribution [1], [2] involves the generation of a sequence between

the participating terminals, such that the mutual information between this sequence and any data

obtained by other terminals is close to zero in an appropriate sense. Unlike secure communication

through the wiretap channel [3], the sequence need not be known a priori to any of the

terminals. Like the latter, however, the information-theoretic approach to key distribution hinges

on knowledge of the channel through which an adversarial terminal listens to the communication,

as opposed to computational approaches where the assumption is the inability of the adversary

to perform certain computations in reasonable time. The computational hardness assumption
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may no longer be valid when future technology, e.g., quantum computers, becomes available,

causing the computational approaches to fail. But the information-theoretic approach also has

its drawback: the information obtained by the legitimate terminals cannot prove or disprove

the channel assumption on which the key-distribution protocol is based, inhibiting security in a

realistic setting.

The situation is much different when a quantum channel is employed [4], [5]. Loosely

speaking, the “no-cloning” theorem [6] guarantees that information “stolen” by an eavesdropper

will not reach the legitimate terminal, thus the situation where the adversary is stronger than

initially assumed can be detected. In fact, even eavesdroppers that can actively transmit into

the quantum channel can be detected, at the cost of key-rate loss, using measurements based

on local randomness. We shall come back to these issues in the discussion at the end of the

paper. For the main part of the paper, we rely on the existence of good detection methods to

assume that the eavesdropper is passive, and that the complete statistical characterization of the

eavesdropper’s channel is known to the legitimate terminals.

Two-terminal quantum key distribution (QKD) protocols can be roughly divided into two

classes. In “prepare and measure” protocols, one legitimate terminal (Alice) prepares quantum

states that are sent via a quantum channel to the other terminal (Bob) and to the eavesdropper

(Eve). In contrast, in entanglement-based protocols, a quantum source emits entangled states,

which are observed by all terminals via quantum channels. These two classes are parallel to the

“C” (channel) and “S” (source) models of [1]; in this work we will use the C/S notation. In

either approach, the quantum stage is followed by the use of a classical communication channel.

This channel is assumed to be public, i.e., all information sent is received by Eve; however, it is

assumed that Eve cannot transmit into this public channel. The performance of a QKD scheme

is measured in terms of the size of the secret key normalized by the quantum-channel resources

used. The classical channel is thus “free”, although its use is limited by the assumption that Eve

has full access to this channel.

A quantum channel most often encountered in practice is the optical channel, which is modeled

in quantum mechanics as a bosonic channel. When used for communicating classical data, this

channel has a “Gaussian regime” and “Poisson regime”, corresponding to high and low average

input power, respectively, see e.g. [7]. In the Poisson regime, it is asymptotically optimal to

use a direct-detection receiver, which ignores the phase of the optical signal. This results in
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an equivalent classical channel where the output has a Poisson distribution whose mean is

proportional to the channel’s input. Some of the first important works on this channel model are in

[8]–[10]. The low-input-power Poisson regime can be thought of as a “photon-efficient regime”.

This is because, in the limit of low average photon number per channel use, the communication

rate per photon is unbounded.

In this work we consider QKD over the bosonic channel in the photon-efficient regime. We

consider both C and S models, and show that in both, as happens in communication, the photon

efficiency is unbounded and direct-detection receivers are asymptotically optimal. We further

consider specific QKD protocols. We discuss the difficulty of finding code constructions that

allow us to approach the theoretical performance, since in the photon-efficient regime they have

to operate over highly-skewed sequences. We present protocols that overcome this difficulty:

in the C model we use pulse-position modulation (PPM), while in the S model we parse the

sequence of detections into frames. In both cases, coding over frames is an easier task than

coding directly over the detection sequence.

The rest of the paper is organized as follows. We introduce our notation in Section II. In

Section III we formally describe the problem setting. Then in Section IV we discuss, as a point

of reference, photon-efficient communication. Sections V and VI include our main results for key

distribution, regarding the C and S models, respectively. We conclude this paper in Section VII

by discussing the gap between our results and fully quantum security proofs.

II. NOTATION

We use a font like A to denote a Hilbert space. Throughout this paper we shall focus on bosonic

Hilbert spaces. We adopt Dirac’s notation to use |ψ〉 to denote a vector in a Hilbert space, which

can describe a pure quantum state, and use 〈ψ| to denote the conjugate of |ψ〉. We follow most of

the physics literature to slightly abuse our notation: we shall not make typographical distinctions

between number states and coherent states. Hence |n〉, n ∈ Z
+
0 , (usually) denotes the number

state that contains n photons; while |α〉, α ∈ C, (almost everywhere) denotes a coherent state,

whose exact characterization is given later. This abuse of notation will not cause confusion

within the scope of this paper. We use a Greek letter like ρ to denote a density operator (i.e., a

trace-one semidefinite operator) on a Hilbert space, which can describe a pure or mixed quantum

state. Note that the density-operator description of a pure state |ψ〉 is |ψ〉〈ψ|. When considering
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a system such as a beamsplitter, we reserve the letters |ψ〉 and ρ for input states, and |φ〉 and σ

for output states. Sometimes, to be explicit, we add a superscript to a state to indicate its Hilbert

space so it looks like |ψ〉A or σB. We use the notation â to denote the annihilation operator on

A (so â† is the creation operator on A); similarly, b̂ denotes the annihilation operator on B, etc.

For a quantum state σAB on the Hilbert spaces A and B, we use H(σA), H(σA|σB), and

I(σA; σB) to denote the corresponding entropy, conditional entropy, and mutual information,

respectively. For classical or mixed classical-quantum states, we simply replace the density

operator by the classical random variable for the classical part in these expressions, so they

look like, e.g., H(X), H(X|σB), and I(σA; Y ). Sometimes, to be more precise, we also write

the mutual information as I(A;B)|σ, indicating that it is the mutual information between space

A and B evaluated for the joint state σ.

Throughout this paper, we use natural logarithms, and measure information in nats, though

sometimes we do talk about “bits” and “binary representation”.

We use the usual notation O(·) and o(·) to describe behaviors of functions of E in the limit

where E approaches zero with other variables, if any, held fixed. Specifically, given a reference

function f(·) (which might be the constant 1), a function denoted as O(f(E)) satisfies

lim
E↓0

∣
∣
∣
∣

O(f(E))
f(E)

∣
∣
∣
∣
<∞, (1)

while a function denoted as o(f(E)) satisfies

lim
E↓0

o(f(E))
f(E) = 0. (2)

III. PROBLEM SETTING

In this section we describe our setups for optical communication and key distribution. To do

so, we first recall some basic results in quantum optics.

A. Beamsplitting and Direct Detection

We briefly describe how number (Fock) states and coherent states evolve when passed through

a beamsplitter, and what outcomes they induce when fed into a direct-detection receiver, i.e., a

photon-counter. We refer to [11] for more details. For some background in quantum physics and

in quantum information theory, we refer to [12].
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Let A and V be the two input spaces to a single-mode beamsplitter, and B and E be the

two output spaces. Let the beamsplitter’s transmissivity from A to B be η ∈ [0, 1]. Then this

beamsplitter is characterized in the Heisenberg picture by

b̂ =
√
η â +

√

1− η v̂ (3a)

ê =
√

1− η â−√
η v̂. (3b)

Throughout this paper we shall only consider situations where the second input space V (the

“noise mode”) is in its vacuum state |0〉.
Ideal direct detection (i.e., photon counting) measures an optical state in the number-state

basis. For direct detection on A, the observable is the Hermitian operator â†â. On state ρ, a

photon-counter gives outcome n ∈ Z
+
0 with probability 〈n|ρ|n〉. Furthermore, if the measurement

outcome is n, then after the detection the state ρ “jumps” into the corresponding (pure) number

state |n〉.
Obviously, when a number state |n〉, n ∈ Z

+
0 , is fed into an ideal photon counter, the outcome

is n with probability one. But passing |n〉 through a beamsplitter is more complicated: if space

A in (3) is in state |n〉, then the output state is an entangled state on B and E:

|φ〉BE =
n∑

i=0

√
(
n

i

)

ηi/2(1− η)(n−i)/2|i〉B|n− i〉E. (4)

This implies that performing direct detection on the output of this beamsplitter will yield a

binomial distribution on the outcome: the probability of detecting m photons on space B is

〈m|σB|m〉 =
(
n

m

)

ηm(1− η)n−m (5)

for 0 ≤ m ≤ n, and is zero otherwise. It also implies that, if direct detection is performed both

on B and on E, then with probability one the sum of the two outcomes is equal to n.

A coherent state |α〉, α ∈ C, can be written in the number-state basis as

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!
|n〉. (6)

Thus, when fed into a photon-counter, the probability of n photons being observed in |α〉 is

〈n|α〉〈α|n〉 = |〈n|α〉|2 = e−|α|2 |α|2n
n!

. (7)

Namely, the number of photons in |α〉 has a Poisson distribution of mean |α|2.
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Coherent states have the nice property that, when passed through a beamsplitter, the outcomes

remain in coherent states. If |α〉 is fed into the beamsplitter (3), the output state is

|φ〉BE = |√η α〉B ⊗ |
√

1− η α〉E. (8)

Therefore, if direct detection is performed both on B and on E, the outcomes will be two

independent Poisson random variables of means η|α|2 and (1− η)|α|2, respectively.

B. Optical Communication

A single-mode pure-loss optical (i.e., bosonic) channel can be described using the beamsplit-

ter (3a), where we ignore the output space E and assume the noise space V to be in its vacuum

state. In this formula, A is the input space controlled by the transmitter which, in consistency

with the key-distribution part, we call Alice; B is the output space obtained by the receiver, Bob;

and η is the transmissivity of the channel. Equivalently, the channel may be described in the

Schrödinger picture as a completely-positive trace-preserving (CPTP) map from the input state

ρA to the output state σB:

σB = C(ρA). (9)

The explicit characterization of C is complicated and is omitted.

We denote the blocklength of a channel code by k. Alice has a message of kR nats1 to convey

to Bob. In order to do this, she prepares a state ρk over Ak, subject to an average-photon-number

constraint E per channel use:

tr

{
k⊗

i=1

â†i âi ρ
k

}

≤ kE (10)

where âi is the annihilation operator on the input space of the ith channel use. The channel is

assumed to be memoryless, so the output is given by

σk = C⊗k(ρk). (11)

Bob may perform any positive-operator valued measure (POVM) on σk to reconstruct the

message. As usual, the capacity of the channel is defined as the supremum of rates for which

there exist sequences of schemes with increasing blocklengths and with the error probabilities

approaching zero.

1We ignore the fact that the number of values that the message can take is not an integer.
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We define the photon efficiency of transmission as the rate normalized by the expected number

of photons that Bob receives per channel use:2

r(η, E) = R(η, E)
ηE . (12)

This quantity is upper-bounded by the channel’s capacity divided by ηE .

C. Key Distribution Using an Optical Channel (Model C)

We next consider the problem where Alice and Bob use the channel of (3) to generate a

secret key between them. The channel from Alice to Bob is still characterized by (3a) or by

the CPTP (9), but we now assume that an eavesdropper, Eve, obtains the Hilbert space E. Note

that this is a worst-case assumption in the sense that Eve obtains the whole ancilla system

of the channel. Also note that we assume Eve to be passive, so she cannot interfere with the

communication; she can only try to distill useful information from her observations. This setting

can be seen as a special case of the quantum version of “Model C” discussed in [1].

The aim of Alice and Bob is to use this channel, together with a two-way, public, but authentic

classical channel, to generate a secret key. Let k denote the total number of uses of the optical

channel. We impose the same average-photon-number constraint (10) on Alice’s inputs. We

assume the public channel is free so we can use it to transmit as many bits as needed (though

all these bits will be known to Eve). By the end of a key-distribution protocol, Alice should be

able to compute a bit-string SA and Bob should be able to compute SB such that

• The probability that SA = SB tends to one as k tends to infinity;

• The key SA (or SB) is almost uniformly distributed and independent of Eve’s observations,

in the sense that
H(SA|ρEve)

log |S|
tends to one as k tends to infinity, where ρEve summarizes all of Eve’s observations, and

where S denotes the alphabet for SA and SB .

We define the secret-key rate of a scheme to be

R(E) , log |S|
k

(13)

2We adopt this definition rather than normalizing by transmitted photons, because this allows us to derive expressions which

are less influenced by the transmissivity of the channel.
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nats per use of the optical channel. The parameter E is the average photon number in (10).

A typical (and rather general) protocol to accomplish this task consists of the following steps:

Step 1: Alice generates random variables X1, X2, . . . which are known to neither Bob nor

Eve. She then prepares an optical state ρk on A
k based on X and sends the state into the channel,

spread over k channel uses.

Step 2: Bob makes measurements on his output state to obtain a sequence Y1, Y2, . . ..
3

Step 3: (Information Reconciliation) Alice and Bob exchange messages M1,M2, . . . using

the public channel. Then Alice computes her raw key KA as a function of (X,M), and Bob

computes his raw key KB as a function of (Y,M). They try to ensure that KA = KB with high

probability, but Eve might have partial information about the raw key.

Step 4: (Privacy Amplification) Alice and Bob randomly pick one from a set of universal

hashing functions. They apply the chosen function to their raw keys KA and KB to obtain the

secret keys SA and SB, respectively.

Privacy amplification has been extensively studied in literature. Denote the quantum state that

Eve obtained in Step 1 from the optical channel by σEk

. It is shown in [13] that, provided

KA = KB with probability close to one, the privacy amplification step (i.e., Step 4) can be done

successfully with high probability, and the length of the secret key in nats, i.e., log |S|, can be

made arbitrarily close to4

H(KA|M, σEk

). (14)

Hence, in this paper, we shall not discuss how to accomplish Step 4. As we shall see, in

some cases Step 4 can be omitted. If not, then we shall concentrate on Steps 1 to 3, try to

maximize (14), and compute the secret-key rate as

R(E) = H(KA|M, σEk

)

k
. (15)

In Step 1, we impose the same average-photon-number constraint on Alice (10) as in the

communications case. Consequently, we define the photon efficiency (of key distribution) r(η, E)

3We do not consider feedback from Bob to Alice during the first two steps. As in channel coding, feedback cannot increase

the maximum key rate.

4To be precise, to achieve (14), Alice and Bob should repeat Steps 1 to 3 many times, and then do Step 4 on all the raw keys

together.
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in the same way as in communications, namely, as in (12), except that now R(η, E) is the secret-

key rate.

D. Key Distribution Using an Entangled Photon Source (Model S)

In some key-distribution protocols, Alice and Bob make use of a random source, rather than

Alice preparing states, to generate a secret key, as in the “Model S” discussed in [1]. In optical

applications one can, for instance, generate a uniform stream of random, temporally-entangled

photon pairs, which are very useful for key distribution. See, e.g., [14].

In this paper, we consider a slightly simplified and idealized model for the temporally-

entangled photon source. Let the timeline be divided into slots, where each slot can be thought

of as one “use” of the source. We assume that none of Alice, Bob, and Eve can measure the

arrival time of a photon with a higher accuracy than the duration of one slot.5 Let the two output

modes of the source be C and D. The optical state emitted by the source in every source use is

given by

|ψ〉CD =
∞∑

i=0

√

E ie−E

i!
|i〉C|i〉D, (16)

which is similar to the single-mode coherent state (6), but with every number state in the

expansion replaced by a two-mode number state.

The assumption behind this model is that a single slot consists of many “physical” temporal

modes, where each temporal mode is in an entangled state on the two output spaces, with a

Bose-Einstein (i.e., geometric) distribution of a very small mean photon number. When the total

number of temporal modes is large enough, the photon number (in either output space) in one

source use has approximately a Poisson distribution, whose mean E equals the total number of

temporal modes times the mean photon number in each mode. However, unlike for a product

coherent state |
√
E〉C ⊗ |

√
E〉D which also yields Poisson distributions on both parts, for the

state (16) the photons in C and in D are entangled. Hence, if direct detection is performed both

on C and on D, then the photon numbers will equal with probability one.

5In fact, if both Alice and Bob only measure the photon-arrival times at length-of-a-slot accuracy, then it is easy to show that

Eve cannot have any advantage by making finer measurements. Thus the slots model the accuracy, i.e., the reciprocal of the

bandwidth, of the measurement equipment of Alice and Bob (but not necessarily of Eve).
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We assume that the source is collocated with Alice, who keeps C; while the photons in D

are sent to Bob through a lossy optical channel. To account for coupling losses, we can assume

that Alice also only has access to a lossy version of C. Specifically, ρC is passed through a

beamsplitter, like the one in (3), of transmissivity ηA before it reaches Alice:

â =
√
ηA ĉ+

√

1− ηA v̂ (17a)

f̂ =
√

1− ηA ĉ−
√
ηA v̂. (17b)

But, except for Section VI-D, we shall ignore coupling losses and take ηA = 1. Similarly ρD is

passed through a beamsplitter of transmissivity ηB before it reaches Bob:

b̂ =
√
ηB d̂+

√

1− ηB û (18a)

ê =
√

1− ηB d̂−
√
ηB û. (18b)

We assume ηB < 1 throughout. Both noise modes V and U are assumed to be in their vacuum

states. Note that the two beamsplitters behave independently of each other.

Since the source is collocated with Alice, we know the photons that are lost from C to A (in

case ηA < 1) should not reach Eve; Eve only has access to the Hilbert space E.

We now describe a scheme (which is again rather general) for Alice and Bob to use this

source k times to generate a secret key. In this scheme, Steps 3 and 4 are exactly the same as

in Section III-C, but Steps 1 and 2 are now replaced by:

Step 1’: Alice makes measurements on her state σAk

to obtain the sequence X1, X2, . . ..

Step 2’: Bob makes measurements on his state σBk

to obtain the sequence Y1, Y2, . . ..

As in Section III-C, we shall concentrate on Steps 1’, 2’, and 3. The secret-key rate, denoted

by R(ηA, ηB, E) is again given by the right-hand side of (15), with unit “nats per source use”.

But the photon efficiency in this setting is defined as

r(ηA, ηB, E) ,
R(ηA, ηB, E)
ηAηBE

. (19)

We choose this definition because ηAηBE is the expected number of photons in each source

use that reach both Alice and Bob. When ηA = 1, we omit the subscript in ηB , and denote the

secret-key rate and photon efficiency simply by R(η, E) and r(η, E), respectively. Obviously,

they are now again related by (12).
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IV. BACKGROUND: PHOTON-EFFICIENT COMMUNICATIONS USING PULSE-POSITION

MODULATION

Before we address key distribution, we give some results regarding communications over the

bosonic channel described in Section III-B. These results serve as a point of reference, and the

derivation provides tools later used in key distribution. See also [15]–[17].

The capacity of a quantum channel is characterized by the formula found by Holevo [18]

and by Schumacher and Westmoreland [19]. For the pure-loss bosonic channel (3a) under

constraint (10), this capacity is g(ηE) nats per channel use [20], where

g(x) , (x+ 1) log(x+ 1)− x log(x), x > 0. (20)

This immediately implies that the photon efficiency (12) satisfies:

rquantum(η, E) =
g(ηE)
ηE = log

1

ηE + 1 + o(1). (21)

Note that the efficiency is not bounded, that is,

lim
E↓0

rquantum(η, E) = ∞. (22)

Hence, in terms of [21], [22], the capacity per unit cost supE r(η, E) of the channel (9) is infinite.

Consequently, we call the regime where E ≪ 1 the photon-efficient regime.

The capacity g(ηE) is achievable by Alice using product (i.e., nonentangled), pure input states

|ψk〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψk〉. (23)

Indeed, in this paper we limit our attention to such mode of operation, where the average-photon-

number constraint becomes

1

k

k∑

i=1

〈ψi|â†i âi|ψi〉 ≤ E . (24)

For the degenerate case η = 1, a simple capacity-achieving codebook consists only of number

states, where the photon numbers’ empirical distribution is independent and identically distributed

(i.i.d.) geometric (i.e., Bose-Einstein). Bob’s optimal measurement for this codebook is simply

per-channel-use direct detection. We shall see in Section IV-A that, in the photon-efficient regime,

this code construction can be further simplified and can be used also when η < 1, without

sacrificing much photon efficiency.
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For the general case where η may not be one, the capacity can be achieved if Alice’s codebook

consists of coherent states

|ψk〉 = |α1〉 ⊗ |α2〉 ⊗ · · · ⊗ |αk〉, (25)

and if Bob performs a general (not per-channel-use) POVM on the output state, which is

|φk〉 = |ηα1〉 ⊗ |ηα2〉 ⊗ · · · ⊗ |ηαk〉. (26)

In this case, the average-photon-number constraint (10) becomes

k∑

i=1

|αi|2 ≤ kE . (27)

It is known that capacity-achieving codebooks of coherent states should have empirical distri-

butions that resemble i.i.d. complex-Gaussian with mean zero and variance E [20]. The main

problem with such a code is that Bob’s POVM is almost impossible to implement using today’s

technology. Hence we are interested in “practical” schemes, in particular, in schemes where

Bob uses per-channel-use direct detection while Alice sends coherent states. As we shall see in

Section IV-B, this restriction induces a second-order-term loss in photon efficiency.

A. Alice Sends Binary Number States

Consider the case where the sequence of states sent by Alice consists only of the number

states |0〉 and |1〉, and where Bob uses direct detection. Recalling (5), for input |0〉 Bob will

always detect no photon, while for input |1〉 Bob detects one photon with probability η, and

detects no photon otherwise. Thus the scheme induces a classical Z channel. The maximum

achievable rate is, according to the classical channel coding theorem [23], the maximum mutual

information over this channel.

Let

IZ(q, µ) , H2(qµ)− qH2(µ) (28)

be the mutual information over a Z channel with input probability PX(1) = q and transition

probability PY |X(1|1) = µ, where H2(·) is the binary entropy function

H2(x) , x log
1

x
+ (1− x) log

1

1− x
, 0 < x < 1. (29)

DRAFT



13

Due to the photon-number constraint, the input distribution must satisfy q ≤ E .6 It is easy to see

that IZ(q, µ) is monotonically increasing in q for small enough q, and hence, in the regime of

interest, we should choose q = E , achieving rate IZ(E , η). The resulting photon efficiency can

be readily shown to satisfy:

rnum,Z(E) =
IZ(E , η)
ηE = rquantum(E)−

H2(η)

η
+ o(1), (30)

reflecting a constant efficiency loss with respect to the optimum (21).

For the scheme described above, the task of (classical) coding is difficult: one needs mutual-

information-approaching codes for a Z channel with a highly skewed input. We can solve this

problem by replacing the i.i.d. binary codebook by pulse-position modulation (PPM): the input

sequence consists of “frames” of length ⌈1/E⌉, where each frame includes exactly one photon,

whose position is uniformly chosen inside the frame. (If the blocklength is not divisible by ⌈1/E⌉,

then we ignore the remainder.) This scheme converts the channel to a ⌈1/E⌉-ary erasure channel.

By computing the capacity of this erasure channel, we easily see that the photon efficiency of

the PPM scheme is:

rnum,PPM(E) = log
1

E + o(1), (31)

which again reflects only a constant loss compared to the optimal efficiency (21). The large-

alphabet erasure channel is much like a packet-erasure channel encountered in internet applica-

tions, and good off-the-shelf codes are available.

B. Alice Sends Binary Coherent States

Generating the number state |1〉 is hard in practice. We hence turn to coherent states, which

are a good model for light coming out of laser sources [7].

We consider a simple binary-coherent-state scheme. In this scheme, Alice first generates a

classical binary codebook where the probability of 1 is q. She then maps 0 and 1 to the coherent

states |0〉 and |E/q〉, respectively. Note that doing this satisfies the average-power constraint

(27). Bob uses direct detection that is not photon-number resolving (PNR), i.e., he views a

measurement with no photon as a logical 0, and views any measurement with at least one

6The expected number of photons translates to a per-codeword constraint via a standard expurgation argument.
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photon as a logical 1. (Such a detector is easier to build than a PNR detector, which outputs the

exact number of detected photons.) This results again in a classical Z channel, with

PY |X(1|1) = µcoh(q, E) , 1− exp

(

−ηE
q

)

. (32)

We can thus achieve IZ(q, µcoh) nats per channel use, where q should be chosen to maximize

IZ(q, µcoh). The exact analytical optimization is complicated, but in the photon-efficient regime

the approximate optimum (which yields the best rate up to the approximation of interest) is

given by

q∗(E) = ηE
2

log
1

E . (33)

The resulting photon efficiency is given by:

rcoh,Z(E) =
IZ

(
q∗(E), µcoh(q

∗(E), E)
)

ηE (34)

= log
1

ηE − log log
1

E + log 2− 1 + o(1). (35)

Comparing to the quantum limit (21), we see that the efficiency loss of the coherent-state-

and-direct-detection scheme with respect to the optimal performance grows as log log 1/E as E
decreases in the photon-efficient regime. This loss is inherent to any “classical” transmission

scheme, even if general (non-binary) coherent states are sent [17], or if the receiver is allowed

to use feedback between measurements [24]. The loss can be seen as resulting from the fact

that even for a logical 1, the transmitter may end up sending no photon. Another effect is that

multiple detections may occur, “wasting” photons; however, this can be shown to only affect the

constant term in photon efficiency.

Similarly to the case of Alice sending number states, we can alleviate the difficulty of coding

by replacing the i.i.d. codebooks with PPM frames, an idea already exploited in [25], [26].

Indeed, using PPM frames of length b with the optimum (to the approximation order) choice

of (33) and b = ⌈1/q∗(E)⌉, this efficiency is

rcoh,PPM(E) =
µcoh

(
q∗(E), E

)
log b

ηbE , (36)

and has the same expression as on the right-hand side of (35), i.e., the further efficiency loss

incurred by restricting to PPM is o(1).

Figure 1 depicts the photon efficiency in the different cases discussed in this section. It can be

appreciated that, while the loss of using coherent states with direct detection is large, the further
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Fig. 1. Photon efficiency in the different cases discussed in Section IV. Efficiency in the quantum case rquantum is computed

from (21); efficiency for coherent-state inputs and Z-channel model rcoh,Z from (34); and efficiency for coherent-state inputs and

PPM rcoh,PPM from (36). For all three we let the channel be lossless, i.e., we choose η = 1.

loss of PPM is small. As we shall see, similar phenomena are also observed in key-distribution

scenarios.

V. KEY DISTRIBUTION IN MODEL C

In this section we study the key-distribution problem in Model C, which we set up in

Section III-C.

To the best of our knowledge, the maximum secret-key rate, and hence also the maximum

photon efficiency, in this setting is not yet known. However, in the photon-efficient regime we

have the following asymptotic upper bound (later we show that this upper bound is tight within

a constant term).

Proposition 5.1: The maximum photon efficiency for key distribution in Model C as described

in Section III-C satisfies

rmax(E) ≤ log
1

ηE + 1 + o(1). (37)

DRAFT



16

Proof: We use the fact that the maximum secret-key rate over a quantum channel cannot

exceed the communication capacity of the same channel. This follows, e.g., from [27, Chapter

I, Theorem 5.1]. Recalling (21), the proof is completed.

As in the communication setting, we shall mostly focus on key-distribution schemes in which

Bob only employs direct detection. As we shall see in Section V-A, if Alice can send number

states—even only binary number states—the photon-efficiency loss of direct detection is at most

a constant term in the photon-efficient regime. However, in Section V-B we show that if Alice

can only send coherent states, then the loss in photon efficiency scales like log log 1/E. These

results are similar to their optical-communication counterparts. Also similar to the communication

scenario is the fact that PPM is nearly optimal in terms of photon efficiency; in the context of

key distribution, PPM allows to greatly simplify the coding task in the information-reconciliation

step.

A. Alice Sends Binary Number States

Consider the following key-distribution scheme.

Scheme C-1: 1) Let b , ⌈1/E⌉. We divide the whole block of k channel uses into frames

each consisting of b consecutive uses (and ignore the remainder).

2) Alice generates a sequence of integers X̃1, X̃2, . . . i.i.d. uniformly in {1, . . . , b}. These are

the “pulse-positions”. Within the ith frame, i ∈ {1, 2, . . .}, she sends the number state |1〉
in the X̃ith channel use, and sends |0〉 in all other channel uses.

3) Bob makes direct detection on every channel-output. Since Alice sends one photon per

frame, Bob will either detect a single photon or no photon per frame. Let the set of frames

where Bob had a detection be denoted as {i1, i2, . . .}, and denote the detection positions

inside these bins by Ỹi1, Ỹi2, . . .. Bob tells Alice the values of i1, i2, . . . using the public

channel.

4) Alice generates the secret key from X̃i1 , X̃i2, . . ., and Bob generates the secret key from

Ỹi1 , Ỹi2, . . ., both by directly taking the binary representation of these integers.

The average-photon-number constraint (10) is clearly satisfied. Scheme C-1 is rather simple

in the sense that

• Alice’s input states are either |0〉 or |1〉;
• Alice performs simple PPM;
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• Bob’s detector can be non-PNR;

• The information-reconciliation step is uncoded, and only involves one-way communication

from Bob to Alice;

• There is no privacy-amplification step.

As the next proposition shows, this simple scheme performs very well in the photon-efficient

regime: it is at most a constant term away from optimum. Compared to the communication

case (21), this proposition also shows that the loss in photon efficiency due to the secrecy

requirement is at most a constant term.

Proposition 5.2: Scheme C-1 generates a secret key between Alice and Bob, and its photon

efficiency is

rC-1(η, E) = log
1

E + o(1) (38)

for all η ∈ (0, 1].

Proof: We first verify that Scheme C-1 indeed generates a secret key. To this end, first note

that X̃ij = Ỹij for all j ∈ {1, 2, . . .}. This is because Alice sends only one non-vacuum state

in each frame, and because Bob cannot detect any photon in a channel use where Alice sends

|0〉. Hence the keys obtained by Alice and by Bob are the same. Second, by the way Alice

chooses X̃, every X̃ij (or, equivalently, Ỹij ) is uniformly distributed in {1, . . . , b}, independently

of X̃ij′
where j′ 6= j. This shows that the key is uniformly distributed. It now remains to

verify that the key is dependent neither of Eve’s output states from the optical channel nor of

the messages which Bob sends to Alice. It is independent of Eve’s optical states because, in

every selected frame, Bob detects the only photon that Alice transmits, so Eve’s state in this

frame “jumps” to the all-vacuum state. It is independent of Bob’s messages because Bob only

sends the labels of the selected frames to Alice, and because Alice chooses the pulse-positions

independently of the frame-labels.

We next compute the photon efficiency achieved by Scheme C-1. Let N(k) be the total number

of frames selected by Bob within k channel uses. Since each frame is selected when Bob detects

a photon in that frame, which happens with probability η, we have from the Law of Large

Numbers that

lim
k→∞

N(k)

k
= lim

k→∞

η⌊k/b⌋
k

= ηE with probability 1. (39)
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Each detected photon (or, equivalently, each selected frame) provides log b nats of secret key.

So, as k tends to infinity, the achieved photon efficiency tends to

lim
k→∞

N(k) log b

kηE = log b = log
1

E + o(1). (40)

B. Alice Sends Coherent States

We now restrict Alice to sending coherent states since, as discussed previously, generating

the number state |1〉 is hard in practice. Under this restriction, Alice generates a sequence of

complex numbers α1, α2, . . . , αk satisfying (27), prepares the coherent states |α1〉, |α2〉, . . . , |αk〉,
and sends them over the channel. As the next proposition shows, this restriction induces a loss

of log log 1/E in the photon efficiency, even if the scheme employed is more sophisticated than

Scheme C-1.

Proposition 5.3: The maximum photon efficiency in Model C when Alice sends only coherent

states and when Bob uses only direct detection satisfies

rcoh(η, E) ≤ log
1

E − log log
1

E +O(1) (41)

for all η ∈ (0, 1].

Proof: We note that, when Alice sends the coherent state |α〉, Bob’s measurement outcome

Y has a Poisson distribution of mean η|α|2. We can bound the achievable secret-key rate as

Rcoh(η, E) ≤ max
E[|X|2]≤E

I(X ; Y ) (42)

= max
E[|X|2]≤E

I(|X|2; Y ), (43)

where (42) follows because the secret-key rate over a channel cannot be larger than the com-

munication capacity of the channel (see, e.g., [1]); and where (43) follows because |X|2 is a

deterministic function of X , and because X⊸−−|X|2⊸−−Y forms a Markov chain. Finally, the

right-hand side of (43), which is the maximum mutual information over a Poisson channel under

an average-photon-number constraint, is shown in [17] to satisfy

max
E[|X|2]≤E

I(|X|2; Y ) ≤ ηE
{

log
1

E − log log
1

E +O(1)

}

. (44)
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We do not specify the O(1) term, as the derivation of (44) in [17] yields expressions that are

rather involved. In the sequel we show that the bound (41) is tight within a constant term.

As in Section IV-B, to simplify the coding task for the information-reconciliation step, Alice

and Bob can use a PPM-based scheme. We choose the PPM frame-length to be:

b ,

⌈
1

E log 1/E

⌉

. (45)

This choice is optimal up to the order of approximation of interest. Note that b in (45) is half

the frame-length chosen for the communication setting, where the latter is ⌈1/q∗(E)⌉ with q∗(E)
given in (33).

Scheme C-2: 1) We divide the whole block of k channel uses into frames each consisting

of b consecutive uses (and ignore the remainder).

2) Alice generates a sequence of integers X̃1, X̃2, . . . i.i.d. uniformly in {1, . . . , b}. Within

the ith frame, i ∈ {1, 2, . . .}, she sends the coherent state |
√
bE〉 in the X̃ith channel use,

and sends the vacuum state |0〉 in all other channel uses.

3) Bob makes direct detection on every channel-output. Since all channel input-states but one

are in vacuum state, he will have detections in at most one output. Let the set of frames

where Bob had a detection be denoted as {i1, i2, . . .}, and denote the detection positions

inside these bins by Ỹi1, Ỹi2, . . .. He tells Alice the values of i1, i2, . . . using the public

channel.

4) Alice generates the raw key KA from X̃i1 , X̃i2, . . ., and Bob generates the raw key KB

from Ỹi1, Ỹi2, . . ., both by directly taking the binary representation of these integers.

5) Alice and Bob perform privacy amplification on their raw keys to obtain the secret keys.

The average-photon-number constraint (10) or (27) is clearly satisfied. Also note that, in this

scheme,

• Alice’s input states are binary: either |0〉 or |
√
bE〉;

• Alice performs simple PPM;

• Bob’s detector can be non-PNR;

• The information-reconciliation step is uncoded, and only involves one-way communication

from Bob to Alice.

In contrast to the restriction on Alice to sending only coherent states, which results in a loss

of log log 1/E in photon efficiency, the further simplifications employed in Scheme C-2 induce at
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most a constant-term loss.

Proposition 5.4: Scheme C-2 achieves photon efficiency

rC-2(η, E) ≥ log
1

E − log log
1

E − (1− η) + o(1) (46)

for all η ∈ (0, 1].

The proof, which appears in Appendix A, is more involved than that of Scheme C-1, since

in the case of coherent states, the raw key depends upon Eve’s optical states (since, if Bob and

Eve both see a detection in some frame, then it must be in the same location). However, we

bound the information leakage and show that it leads to at most a constant key-efficiency loss.

VI. KEY DISTRIBUTION IN MODEL S

In this section we study the key-distribution problem in Model S, which we set up in Sec-

tion III-D. Apart from Section VI-D, we shall focus on the case where ηA = 1. In this case, we

omit the subscript of ηB to denote it simply as η.

Let σ be the result of passing the temporally-entangled state (16) through the beamsplitters

(17) and (18), where the first beamsplitter is now trivial. Provided that Alice and Bob can perform

the optimal quantum measurements on A and on B, respectively, we have the following simple

expression and asymptotic upper bound (which we later show to be tight within a constant term)

for their maximum key rate.

Proposition 6.1: The maximum key rate between Alice and Bob is given by the mutual

information

Rquantum(η, E) = I(A;B)
∣
∣
σ
. (47)

Furthermore, for all η ∈ (0, 1],

rquantum(η, E) ≤ log
1

ηE + 1 + o(1). (48)

Proof: We first prove (47). The converse part of (47) follows immediately from [27, Chapter

I, Theorem 5.3]. The achievability part of (47) follows from [27, Chapter III, Theorem 2.2]: when

we eliminate the “helper subalgebra”, then the theorem says that the forward key-capacity (i.e.,

the maximum key rate when Alice does not communicate to Bob) is lower-bounded by

I(A;B)− I(B;E)
∣
∣
σ
. (49)
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From (16) and (18) it follows that σBE is in a product state, thus

I(B;E)
∣
∣
σ
= 0, (50)

yielding the desired lower bound on maximum key rate.

Finally, we show that (48) follows from the converse part of (47):

I(A;B)
∣
∣
σ
≤ H(σB) (51)

≤ g(ηE) (52)

= ηE log
1

ηE + ηE + o(E) (53)

where (52) follows because the average number of photons in σB is ηE , and because the thermal

state maximizes the entropy to g(ηE) given this photon number.

Note: The above proof shows that the maximum key rate (and hence also the maximum

photon efficiency) is achievable when the information-reconciliation step only involves one-way

communication from Bob to Alice.

For practicality, for the rest of this section we restrict both Alice and Bob to using only direct

detection on their quantum states. In fact, Alice and Bob will only use non-PNR direct detection.

In contrast, we do not impose any constraint on Eve’s measurement, thus our schemes are secure

against a fully-quantum (though passive) Eve.

A. Direct Detection Combined with Optimal Binary Slepian-Wolf Codes

After Alice and Bob perform direct detection on their optical states, each of them has a binary

sequence where 1 indicates photons are detected in the corresponding source use. Denote their

sequences by A and B, respectively. Due to our source model, A and B are distributed i.i.d. in

time, while each pair (A,B) has joint distribution according to a Z channel with

q , PA(1) = 1− e−E (54a)

µ , PB|A(1|1) =
1− e−ηE

1− e−E
. (54b)

Bob can help Alice to know B by sending her a Slepian-Wolf code [28]. For the moment, we

assume that Alice and Bob have an optimal Slepian-Wolf code for the joint distribution PAB

(Later we drop this assumption to find more realistic code constructions.) Then they can use the

following key-distribution scheme.

DRAFT



22

Scheme S-1: 1) Alice and Bob perform non-PNR direct detection to obtain binary se-

quences A and B, respectively.

2) Bob sends Alice an optimal Slepian-Wolf code so that Alice knows B with high probability.

They use B as the raw key.

3) Alice and Bob perform privacy amplification on B to obtain the secret key.

The key rate and photon efficiency of Scheme S-1 satisfy the following.

Proposition 6.2: Scheme S-1 achieves the key rate

RS-1(η, E) = I(A;B) (55)

where the mutual information is computed on the joint distribution PAB given by (54). Further-

more, for all η ∈ (0, 1], the photon efficiency of Scheme S-1 satisfies

rS-1(η, E) = log
1

ηE + 1− H2(η)

η
+ o(1). (56)

Proof: We first prove (55). This follows from [27] in the same way as (47): one simply

needs to consider the joint state consisting of the measurement outcomes A and B, and of

Eve’s quantum state σE, instead of the fully-quantum state σABE considered when proving (47).

Note that, since B is a processing of σB which is independent of σE, we know that B is also

independent of σE.

We next prove (56). Direct evaluation for the Z-channel mutual information (28) for the

channel parameters q and µ of (54) gives:

I(A;B) = IZ(q, µ) (57)

= H2(e
−ηE)−

(
1− e−E

)
H2

(
1− e−ηE

1− e−E

)

(58)

= ηE log
1

ηE + ηE − EH2(η) + o(E). (59)

Substituting in (55) and dividing by ηE yields (56).

Note: If both Alice and Bob make PNR detection, then Eve’s optical state “jumps” into a

sequence of uncorrelated number states, which is equivalent to a sequence of integers that is

independent of Bob’s sequence. The above proof can then be based on the classical version of

(49) which is in [1].

Hence the conceptually simple Scheme S-1, which only uses non-PNR direct detection both

at Alice and at Bob, is at most a constant term away from the optimal quantum efficiency whose
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upper bound is given in (48) . Comparing this with (21) and (37) we see that the differences

between the optimal photon efficiencies in communication, in Model C, and in Model S are at

most constants. Also note that rS-1(η, E) is asymptotically the same as the photon efficiency in

the communication scenario where Alice sends binary number states (30).

The problem with Scheme S-1 is, though, that the source distribution PAB is highly skewed,

which makes it difficult to find a good Slepian-Wolf code, much like the difficulty to obtain

a channel code in the communication setting of Section IV. While in communication and in

Model C Alice can use PPM to simplify code design, in Model S this is no longer possible,

as the sequences A and B are governed by the source, over which neither Alice nor Bob have

control. Nevertheless, Alice and Bob can use a PPM-like scheme by parsing the sequences into

frames, as we next propose.

B. Simple Frame-Parsing

In a simple PPM-like scheme, Alice and Bob parse the source uses into frames, and only use

the frames where each of them has exactly one detection to generate the key.

Scheme S-2: 1) Alice and Bob perform non-PNR direct detection to obtain binary se-

quences A and B, respectively.

2) Let b be as in (45). We divide the whole block of k source uses into frames each consisting

of b consecutive uses (and ignore the remainder).

3) Bob selects all the frames in which he detects at least one photon (A = 1 for at least one

source use). Denote the labels of these frames by {i1, i2, . . .}, and denote Bob’s detection

positions within these frames by {Xi1 , Xi2, . . .}. He tells Alice the values of i1, i2, . . .

using the public channel.

4) Alice selects the frames among i1, i2, . . . in which A = 1 for exactly one source use.

Denote the labels of these frames by {ij1 , ij2 . . .}, and denote Alice’s detection positions

within these frames by {Yij1 , Yij2 , . . .}. She tells Bob the values of j1, j2, . . . using the

public channel.

5) Alice and Bob generate the raw key by taking the binary representations of {Xij1
, Xij2

, . . .}
and of {Yij1 , Yij2 , . . .}, respectively.

6) Alice and Bob perform privacy amplification on the raw key to obtain the secret key.
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As in Schemes C-1 and C-2, the information-reconciliation step in Scheme S-2 is uncoded

and hence very simple. The performance of Scheme S-2 is similar to that of Scheme C-2 where

Alice sends coherent states, in the sense that it loses a log log 1/E term in photon efficiency

compared to the optimum (48). Interestingly, here the loss does not come from the input states

used, as they are identical to those in Scheme C-1, but rather from the parsing process.

Proposition 6.3: The photon efficiency of Scheme S-2 satisfies

rS-2(η, E) = log
1

E − log log
1

E − 1 + o(1). (60)

The scheme has some information leakage, since Eve can use her knowledge about the

frames which were selected for key generation (obtained by listening to the public channel), in

conjunction with the measurements she performs on the same from. The proof, which appears

in Appendix B, shows that this leakage is vanishing in the photon-efficient limit.

Note: If Alice uses PNR direct detection (which is technically more difficult than non-PNR),

then Scheme S-2 can be simplified so that it does not contain an information-reconciliation step.

Indeed, Alice can select those frames in which she detects only one photon. In this case, since

Bob also detects photons (in fact, only one photon) in every such frame, we know that Eve’s

quantum state in these frames are all vacuum. Hence Eve has no information about X̃ , and

taking the binary representation of X̃ already gives Alice and Bob a secret key.

The information loss of Scheme S-2 compared to Scheme S-1 comes from two sources. First,

the sequence {i1, i2, . . .} itself contains useful information that can be used to generate secret

bits, but is not exploited in Scheme S-2. Second, frames in which Alice detects photons in two or

more source uses are discarded. As it turns out, the first source of information loss is dominant

in the photon-efficient regime; we next show how this loss can be recovered. (Loss from the

second source can also be partially recovered, e.g., by varying the frame-lengths [29].)

C. Enhanced Frame-Parsing

Our idea of enhancing the frame-parsing scheme S-2 is to extract secret-key bits also from the

sequence {i1, i2, . . .}, which indicates the positions of frames selected by Bob. To this end, instead

of sending this sequence uncoded, Bob uses a binary Slepian-Wolf code to send this information

to Alice. Note that such a code is much easier to construct than the one in Scheme S-1, as the

zeros (frames not selected by Bob) and ones (frames selected by Bob) are much more balanced
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than in the original binary sequence B (recall (45)). Assuming that an optimal Slepian-Wolf can

be found, we can completely recover the log log 1/E term and reduce the loss in photon efficiency

to a constant term.

Scheme S-3: 1) Alice and Bob use non-PNR direct detection to obtain binary sequences

A and B, respectively.

2) Let b be as in (45). We divide the whole block of k source uses into frames each consisting

of b consecutive uses (and ignore the remainder).

3) Let B̃i be the indicator that Bob detects at least one photon within the ith frame, and let

Ãi be the same indicator for Alice. Bob sends a Slepian-Wolf code to Alice using the

public channel, so that Alice can recover B̃ based on the codeword together with Ã with

high probability.

4) Corresponding to every i such that B̃i = 1, Alice sends a binary symbol Ci to Bob:

Ci = 1 if within the ith frame there is exactly one source use where A = 1, and Ci = 0

otherwise. Note that since Alice knows B̃ with high probability, she can send Cis simply

as a bitstream in an increasing order in i (and skip the is for which B̃i = 0).

5) Alice and Bob perform privacy amplification on B̃ to obtain the first part of the secret

key.

6) For every i such that B̃i = Ci = 1, let Xi be the position where A = 1, and let Yi be the

(unique) position where B = 1. Alice and Bob generate the second part of the secret key

by taking the binary representations of Xi and of Yi, respectively, for all such is, and by

then performing privacy amplification.

Proposition 6.4: Scheme S-3 achieves photon efficiency

rS-3(η, E) ≥ log
1

E − H2(η)

η
+ o(1) (61)

for all η ∈ (0, 1].

The proof, which appears in Appendix C, evaluates the key rate that step 4) adds over the

rate of Scheme S-2. This part of the key consists of frame labels, thus it is obviously correlated

with the messages sent over the public channel. However, we show that in the photon-efficient

limit Eve must “lose synchronization” with the frame locations, thus the leakage is vanishing.
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D. Extension to the Case ηA < 1

The results for the case where ηA in (17) is equal to one can be extended to the case where

ηA < 1, though the expressions become considerably more cumbersome. We hence only give

some heuristic explanations how our schemes should be modified, and how they perform. Note

that for the following discussions the photon efficiency is defined in (19). Also recall, that we

assume that the source is co-located with Alice, such that the photons lost do not reach Eve.

Quantum Limit: The same results as in Proposition 6.1 hold also when ηA < 1. The same

proof ideas apply, though evaluating the right-hand side of (47) is now more involved.

Direct Detection: Scheme S-1 can be directly applied to the case where ηA < 1 without

modification, and its photon efficiency is different from the right-hand side of (56) by a constant

term, i.e., it is again at most a constant away from the quantum limit.

Simple Frame-Parsing: Scheme S-2 needs some modifications in order to work when ηA < 1.

First, in Step 2) Bob should select only those frames in which there is exactly one source use

where B = 1. This is because there can be frames in which Bob has more detections than Alice,

due to the loss to Alice. Second, after Step 3) Bob needs to send Alice a b-ary Slepian-Wolf

code on his detection positions inside the selected frames, so that Alice will know this positions

with high probability. (This is a large-alphabet code for symmetric errors, and is relatively easy

to construct.) This step is needed because, since both Alice and Bob only observe lossy versions

of the source, their detection positions inside the selected frames might be different. Indeed, the

two positions are equal if they come from the same source photon-pair, and are independent

of each other if they come from two different source photon-pairs. Finally, for Step 5) (privacy

amplification), Eve’s side information needs to be examined more carefully compared to the case

where ηA = 1. After these modifications, one can show that the photon efficiency is the same as

the right-hand side of (60) up to the second term, i.e., the loss in photon efficiency scales like

log log 1/E.

Enhanced Frame-Parsing: If we incorporate the above-mentioned modifications for Scheme S-

2 to Scheme S-3, then Scheme S-3 also works for the case ηA < 1, and its photon efficiency is

different from the right-hand side of (61) by a constant.

We finally note that, for all three cases in which we restrict Alice and Bob to using direct

detection, we can also take detector dark counts into account. Statistically, a dark count at Alice
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can be treated as a source photon-pair that reaches Alice but not Bob; similarly for a dark

count at Bob. Therefore, by modifying the parameters ηA, ηB , and E , one can easily model

dark counts without introducing any new elements to the model. Furthermore, this observation

combined with the above results shows that dark counts only affect the constant term in photon

efficiency, which is again similar to the previous results in optical communications [17].

VII. DISCUSSION: TOWARD SECRECY WITH A GENERAL ADVERSARY

In this work we have presented schemes that approach the optimal key rate in the photon-

efficient limit, up to a constant efficiency loss. Moreover, these schemes are practical, both in

the physical sense (utilizing realizable transmissions and measurements) and in the algorithmic

sense (using simple protocols and off-the-shelf codes). However, throughout the work we have

assumed that Eve is limited to passive eavesdropping through a beamsplitter channel. We now

comment on the problems that may arise when this model does not hold, and point out ways to

overcome them.

First, suppose that Eve is still passive, but is free to change the beamsplitter transmissivity

η as a function of time, as long as it satisfies some average constraint η̄. We now distinguish

between two strategies that Eve can use:

1) Pre-scheduled transmissivity. Take, for example, Scheme C-2, and imagine that for each

PPM frame, Eve uses η = 0 for half the block, and η = 1 for the other half. Then she

knows that the key pertaining to this frame must correspond to the part where η = 1,

gaining one bit per detected photon (thus reducing the key efficiency by log 2). This kind

of attack can go undetected, provided that Eve randomizes the schedule. However, it is

plausible that the efficiency loss is bounded by a constant for any schedule.

2) Measurement-dependent transmissivity. In principle, Eve can change η in a causal manner,

based upon her measurement outcomes. However, we believe that the gain from using

measurements can be shown to vanish in the photon-efficient limit, by the same techniques

used to show that the information leakage is small.

It however still remains to be investigated whether our intuitions above are correct, i.e., whether

Eve indeed cannot gain from changing the beamsplitter transmissivity.

If Eve is allowed to transmit as well, other types of attacks are possible. A very simple and

efficient one is “intercept and resend”: Eve uses direct detection on the channel meant for Bob,
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and then upon detection of a photon, transmits a substitute one to Bob. This way Eve can obtain

information about Bob’s sequence of detections, and if she uses much higher bandwidth than

Bob, the delay will not be detected.

In fact, all QKD protocols face this problem. For example, in the BB84 protocol [4], the key

is generated using the polarization of a photon; Eve can make a measurement, then transmit to

Bob a photon with the same polarization. The solution for BB84 is that Alice and Bob measure

in either of two mutually unbiased bases, according to local randomness. Only if they happened

to measure in the same basis, the measurement results are used, inflicting a rate loss of factor 2.

By sacrificing rate, they can now a posteriori find out whether they used the same basis, and

compare the correlation of the polarizations to the expected statistics, thus authenticating the

received photons.

Extending this idea to schemes based on photon arrival times involves an extension of the

concept of mutually unbiased bases to continuous variables; see [30]. Specifically, in model

C the modulation and measurements can be performed either in the time or in the frequency

domain, see [31]. Alternatively, in model S, one can use interferometry to verify that the photons

received by Alice and Bob are indeed entangled, see [32].

APPENDIX

A. Proof of Proposition 5.4

By the same argument as in the proof of Proposition 5.2, we know that the raw keys generated

by Alice and Bob (before privacy amplification) are the same, and are independent of Bob’s

messages in the information-reconciliation step. It is, however, dependent of Eve’s optical states.

We thus need to determine how much secret key can be distilled from the raw key.

The quantum states in different frames are mutually independent, so we need only to analyze

one frame that is selected by Bob. We note that, when Alice sends the coherent state |
√
bE〉, Eve’s

output state is |
√

(1− η)bE〉, and is independent of Bob’s measurement outcome conditional on

Alice’s input. Thus, using (14), we know that the number of secret nats we can obtain in each

selected frame can be arbitrarily close to H(X̃|ρEb

), where X̃ is uniformly distributed over

{1, . . . , b}, and where ρE
b

is a b-mode bosonic state described as follows: conditional on X̃ = i,

i ∈ {1, . . . , b}, ρE
b

has the coherent state |
√

(1− η)bE〉 in the ith mode and has the vacuum
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state |0〉 in all other modes. Note that the total number of photons in ρE
b

is (1− η)bE , so

H(ρE
b

) ≤ b
{(

1 + (1− η)E
)
log

(
1 + (1− η)E

)
− (1− η)E log

(
(1− η)E

)}
(62)

=

⌈
1

E log 1/E

⌉{

(1− η)E log
1

E +O(E)
}

(63)

= (1− η) + o(1). (64)

Here, (62) follows from the well-known fact that the maximum entropy of a b-mode bosonic

state with a certain average photon number is achieved by the state consisting of b i.i.d. thermal

states, see [33]. Now the number of secret nats per selected frame satisfies

H(X̃|ρEb

) = H(X̃)− I(X̃ ; ρE
b

) (65)

≥ H(X̃)−H(ρE
b

) (66)

= log b−H(ρE
b

) (67)

= log
1

E − log log
1

E − (1− η) + o(1). (68)

We next consider the number of frames per k channel uses that will be selected by Bob, which

we denote by N(k). When Alice sends |
√
bE〉, Bob’s output has a Poisson distribution of mean

ηbE , so the probability that Bob detects at least one photon is 1− e−ηbE . Hence, by the Law of

Large Numbers,

lim
k→∞

N(k)

k
= lim

k→∞

(1− e−ηbE)⌈k/b⌉
k

=
1− e−ηbE

b
with probability 1. (69)

Using

e−x ≤ 1− x+
x2

2
, x ≥ 0, (70)

the right-hand side of (69) can be lower-bounded as

1− e−ηbE

b
≥ ηE

(

1− ηbE
2

)

. (71)

The photon efficiency of the proposed scheme can now be lower-bounded as

rC-2 =
1

ηE · 1− e−ηbE

b
·H(X̃|ρEb

) (72)

≥
(

1− ηbE
2

){

log
1

E − log log
1

E − (1− η) + o(1)

}

(73)

=



1−
η
⌈

1
E log 1/E

⌉

E
2





{

log
1

E − log log
1

E − (1− η) + o(1)

}

(74)

= log
1

E − log log
1

E − (1− η) + o(1), (75)

DRAFT



30

which is as claimed.

B. Proof of Proposition 6.3

We first observe that, in every selected frame, the detection positions of Alice and Bob must

be the same. This is because, due to (54), B = 1 can happen only if A = 1, and because by

our choice each selected frame contains only one source use where A = 1. We thus know that

Alice’s and Bob’s raw keys are the same with probability one.

To obtain the secret-key rate, we need to compute the entropy of the raw key conditional on

Eve’s observations. Note that the quantum states inside different frames are mutually independent.

We consider one frame that is selected by Alice and Bob. Denote the detection position in the

frame by X̃ . It is clear that X̃ is uniformly distributed over {1, . . . , b} and is independent of the

label of this frame. All Eve’s information about X̃ is in her optical state from the b source uses

that form this frame: if the source use where A = B = 1 contains more than one photons, then

Eve could also detect a photon in this source use, hence knowing Alice’s and Bob’s detection

position. But, as we next show, this information leakage is small. To this end, we first note that

in source uses where A = B = 0, Eve’s optical state is vacuum. Indeed, according to our source

model, the number of photons in Alice’s state equals the sum of the numbers of photons in

Bob’s and Eve’s states with probability one. Therefore, once both Alice and Bob make direct

detections on a source use and observe no photon, Eve’s state in the same source use “jumps”

to the vacuum state. In the (unique) source use where A = B = 1, Eve’s optical state can be

derived from (16) and (18) to be

∞∑

i=0

(
(1− η)E

)i
e−(1−η)E

i!
|i〉〈i|. (76)

Note that this is the same as Eve’s state without the condition A = B = 1. This is because A =

B = 1 means nothing but that Bob’s photon number is positive, but Eve’s state is independent

of Bob’s. Denote Eve’s state over the whole frame by σEb

. We now know that it consists of

b− 1 vacuum states and one state of the form (76) whose position inside the frame is random.

The expected number of photons in σEb

is (1− η)E , so the entropy of σEb

is upper-bounded by

[33]

H(σEb

) ≤ b · g
(
(1− η)E

b

)

= o(1). (77)
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Thus the amount of secret information extractable from one selected frame is lower-bounded by

H(X̃|σEb

) = H(X̃)− I(X̃; σEb

) (78)

≥ H(X̃)−H(σEb

) (79)

≥ log

⌈
1

E log 1/E

⌉

+ o(1) (80)

= log
1

E − log log
1

E + o(1). (81)

It now remains to compute the probability that a specific frame will be selected by Alice

and Bob. A simple lower bound on the probability of a frame being selected is the following:

suppose both Bob and Eve make PNR direct detections on their states, then a frame is selected

by Alice and Bob if (but not only if) Bob detects exactly one photon in the frame while Eve

detects no photon. Bob’s photon number has a Poisson distribution of mean ηbE , while Eve’s

photon number has a Poisson distribution of mean b(1 − η)E , and the two photon numbers are

independent. Hence the probability a frame being selected is lower-bounded by

(
ηbEe−ηbE

)
·
(
e−b(1−η)E

)
= ηbE − ηb2E2 + o

(
1

log 1/E

)

. (82)

Multiplying (82) with H(X̃|σEb

) gives us the secret-key nats per frame, where we count both

selected and unselected frames. Simple normalization then yields the photon efficiency

rS-2(η, E) ≥

(

ηbE − ηb2E2 + o

(
1

log 1/E

))(

log
1

E − log log
1

E + o(1)

)

ηbE (83)

= log
1

E − log log
1

E − 1 + o(1). (84)

C. Proof of Proposition 6.4

The second part of the secret key, which is generated in Step 5) in Scheme S-3, is exactly the

(whole) secret key generated by Scheme S-2, and hence contributes to the total photon efficiency

by the right-hand side of (60). It is clear that this is independent of the first part of the key,

as the latter only contains information of the frame labels. We thus only need to evaluate the

contribution to the photon efficiency from the first part of the key which is generated in Step 4).

Consider a block of ℓ length-b frames. To compute the length of the first part of the key

that can be obtained from these frames, we first consider the information leakage due to Bob’s
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message to Alice. Note that (Ãℓ, B̃ℓ) is distributed i.i.d. in time, where each pair (A,B) has

joint distribution according to a Z channel with

q̃ , PA(1) = 1− e−bE (85a)

µ̃ , PB|A(1|1) =
1− e−ηbE

1− e−bE
. (85b)

The optimal Slepian-Wolf code for Bob to convey B̃ℓ to Alice should contain, asymptotically,

H(B̃|Ã) nats per frame [28]. Let MB be the message which Bob sends to Alice, then

H(MB) = ℓH(B̃|Ã) + ℓǫ (86)

where ǫ tends to zero as ℓ tends to infinity.

We next bound the information leakage due to the message which Alice sends to Bob. A

simple upper bound is: for each frame where B̃ = 1, Alice needs to send Bob at most one bit.

From (85) we can obtain

PB̃(1) = 1− e−ηbE . (87)

Let MA be the message which Bob sends to Alice for ℓ frames, then

H(MA) ≤ ℓ
(
1− e−ηbE

)
+ ℓǫ. (88)

We finally consider Eve’s quantum state from the optical channel. Denote this state over ℓ

frames by ρE
bℓ

. Since it is independent of Bob’s quantum state, and since B̃ is a processing of

Bob’s state, we know that

I
(

B̃ℓ; ρE
bℓ
)

= 0. (89)

We now use (87), (88) and (89) to bound the length of the first part of the key for ℓ frames

which, according to (14), is given by

H(B̃ℓ|MA,MB, ρ
Ebℓ

) = H(B̃ℓ)− I(B̃ℓ; ρE
bℓ

)
︸ ︷︷ ︸

=0

− I(MA,MB; B̃
bℓ|ρEbℓ

)
︸ ︷︷ ︸

≤H(MA)+H(MB)

(90)

≥ H(B̃ℓ)
︸ ︷︷ ︸

=ℓH(B̃)

− H(MA)
︸ ︷︷ ︸

≤ℓ(1−e−ηbE)+ℓǫ

− H(MB)
︸ ︷︷ ︸

=ℓH(B̃|Ã)+ℓǫ

(91)

≥ ℓH(B̃)− ℓ
(
1− e−ηbE

)
− ℓH(B̃|Ã)− 2ℓǫ (92)

= ℓI(Ã; B̃) + ℓηbE − 2ℓǫ+ o(E). (93)
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Hence, for large enough ℓ, the length of the first part of the key per frame is given by

I(Ã; B̃) + ℓηbE + o(E). (94)

We next evaluate I(Ã; B̃). Comparing the parameters (85) to (54), we see that I(Ã; B̃) is the

same as I(A;B) (59), replacing E with bE , where, recalling (45),

bE =
1

log 1/E
+ o(E). (95)

Thus,

I(Ã; B̃) = H2(e
−ηbE)−

(
1− e−bE

)
H2

(
1− e−ηbE

1− e−bE

)

(96)

= ηbE log log
1

E + ηbE − bEH2(η) + o

(
1

log 1/E

)

. (97)

We can now compute the photon efficiency coming from the first part of the secret key in

Scheme S-3 by dividing (94) by ηbE (the average number of photons Bob detects per frame),

and by using (97). This photon efficiency is at least

log log
1

E + 1− H2(η)

η
+ o(1). (98)

Adding (98) to the right-hand side of (60), i.e., to the photon efficiency coming from the second

part of the secret key, we conclude that

rS-3(η, E) ≥ log
1

E − H2(η)

η
+ o(1). (99)
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