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Abstract—We consider the error exponent of the memoryless
multiple-access (MAC) channel. We show that if the MAC
channel is modulo-additive, then any error probability, and
hence any error exponent, achievable by a linear code for the
corresponding single-user channel, is also achievable for the MAC
channel. Specifically, for an alphabet of prime cardinality, where
linear codes achieve the best known exponents in the single-user
setting (and the optimal exponent above the critical rate), this
performance carries over to the MAC setting. At least at low
rates, where expurgation is needed, our approach strictly im-
proves performance over previous results, where expurgation was
used at most for one of the users. Even when the MAC channel
is not additive, it may be transformed into such a channel. While
the transformation is lossy, we show that the distributed structure
gain in some “nearly additive” cases outweighs the loss, and thus
we can improve upon the best known exponent for these cases as
well. This approach is related to that previously proposed for the
Gaussian MAC channel, and is based on “distributed structure”.

I. INTRODUCTION

The error exponent of the multiple access (MAC) channel
is a long-standing open problem. While superposition and
successive decoding methods lead to capacity, they may not
be optimal in the sense of error probability: the decoding
process may be improved by considering that the transmission
of other users is a codeword, rather than noise. However,
finding the optimal performance is a difficult task. Early results
include the works of Slepian and Wolf [1], Gallager [2] and
Pokorny and Wallmeier [3]. Applying the results of [2] to the
important special case of a (modulo) additive MAC channel,
e.g., the binary symmetric case, it follows that the random-
coding exponent of the corresponding single-user channel is
achievable for the MAC channel. This exponent is optimal
above the critical rate [4] and gives the best known perfor-
mance above the expurgation rate. However, for yet lower
rates it is outperformed by the expurgated exponent (in the
single-user case). The reason that the expurgated exponent
is not achieved in [2] is that the sum of such two good
(expurgated) single-user codebooks does not result in a good
single-user one, and in particular, the sum of two codebooks
with good minimum-distance properties may not be good
in that respect. Liu and Hughes [5] and recently Nazari et
al. [6] have proposed improvements over the previous results.

∗ This work was supported in part by the U.S. - Israel Binational Science
Foundation under grant 2008/455.

Specifically, Nazari et al. suggest to use expurgation on one
of the codebooks. While this certainly improves performance,
it still does not allow to achieve the single-user expurgated
exponent for additive MAC channels.
In [7] the exponent of a Gaussian MAC channel is consid-

ered. It is suggested to use “distributed structure”: the users use
lattice codebooks, where the codebook of one user is nested in
that of the other. This scheme has the advantage that the sum of
the codebooks, as seen by the decoder, is a single linear code;
since linear codes are inherently expurgated, the exponent at
low rates is improved. However, the exponent obtained is
inferior to the single-user exponent. It can be explained by
viewing the joint codebook as tiling of the codebook of the
user with weaker power (finest lattice) in the shaping region
of the associated single-user channel. There is a loss since it is
not a perfect tiling, i.e. not filling this whole shaping region.
Favorably, when considering a discrete memoryless MAC

channel without a cost constraint, the situation is more simple.
For additive MAC channels we make the basic observation,
that by “splitting” a linear codebook between the users, any
error probability achievable in the corresponding single-user
channel using linear codebooks is achievable for the MAC
channel as well. This implies for prime (e.g. binary) alphabets,
that the best currently known single-user error exponents
for any code (not necessarily linear) are achievable for the
MAC channel, including the random-coding and expurgated
exponents. The improvement over previous results stems from
the use of linear codes, which are inherently expurgated; thus
using them provides “joint expurgation” even in a distributed
setting. In comparison, [2] performs no expurgation, and in [6]
expurgation is performed only for one user.
But what happens outside the special case of additive

channels? We are inspired by the fact that in the context of
first-order (capacity) analysis of networks, the advantage of
linear codes has indeed been extended to some non-additive
channels [8].
The application of linear codes to additive communication

networks has a capacity advantage in many interesting scenar-
ios, see e.g. [9], [10], [11]. In [8], a modulo-lattice transforma-
tion is derived, that allows to obtain a virtual additive channel
from any original MAC channel, albeit with a loss of capacity.
It is shown in [8] that in some situations, the gain offered by
the ability to use linear codes outweighs the loss inflicted by
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the transformation. In this work we adopt the same ideas to
the MAC exponent problem: we show that for MAC channels
that are “nearly additive”, indeed the transformation improves
over the best known exponents so far at low rates. We note
that when one considers less symmetric channels, the results
of [6] outperform those of the new scheme.

II. CHANNEL MODEL AND EXPONENTS

A. Single-User Channel

Consider the single-user discrete memoryless channel
(DMC) defined by PY |X(·|·), where X and Y are the channel
input and output, respectively, with discrete alphabets X and
Y . We recall some results regarding the error exponent of this
channel, see [4].
The error exponent is defined as

ESU(R) = lim sup
n→∞

−
1

n
log εn, (1)

where εn is the minimal possible error probability of codes
(averaged over the codewords) with block length n and rate R.
The best known achievable error exponent for this channel,

denoted by ESU(R), is given by the maximum between the
expurgated error exponent ESU

ex (R) and the random-coding
error exponent ESU

r (R). The expurgated exponent is larger
than the random-coding exponent below some rate Rex (this
range is thus called “the expurgation region”). Above the
critical rate Rcr, the random-coding exponent is known to be
optimal.

B. MAC Channel

Consider a two-user discrete memoryless MAC channel
PY |X1,X2

, where X1, X2 are the channel inputs and Y is its
output. Denote the codebook of user i by Ci, and its rate by
Ri = 1/n log|Ci|.
The error event is defined as the event that at least one of

the messages from the message pair is decoded in error.1 The
error exponent of the MAC channel is defined as

EMAC(R1, R2) = lim sup
n→∞

−
1

n
log εn, (2)

where εn is the minimal possible error probability for codes
of length n, with the rate-pair (R1, R2).
Gallager [2] found an achievable error exponent that is

the minimum of three random coding error exponents cor-
responding to different error events. The first two correspond
to making a erroneous decision on one message, by a “genie”
aided decoder, i.e., one that has knowledge of the message
of the other user as side information. The third error event
corresponds to making an erroneous decision regarding the
two messages as a combined message. Each of these amounts
to an error event over a single-user channel. Therefore, each
exponent is equal to by Gallager’s random coding error
exponent [4] for the associated single-user channel.

1Other definitions, leading to an error exponent region, were considered
in [12].

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Rate (nats)

E
rr

or
 E

xp
on

en
t

 

 

Random coding
Best known

Fig. 1. Comparing the random coding error exponent of a additive-noise
single-user channel, with the best known error exponent. The channel is
additive binary MAC with noise ∼ Bernulli(0.02). The two dots show the
expurgation rate and the critical rate of this channel respectively.

The best known error-exponent of this channel is given by
Nazari et al. [6]. This bound however is not given in closed
form and is hard to compute.

C. Additive-Noise Single-User Channel

Consider the following channel:

Y = X ⊕N, (3)

where all variables are defined over the alphabet Zm =
{0, 1, . . . ,m− 1} and ⊕ denotes addition over this alphabet,
i.e., modulo an integer number m. The noise N is additive,
i.e., statistically independent of the channel input X .
In the expurgation region, the best known error exponent of

this channel is larger than the random coding error exponent,
as can be seen in Figure 1.
In the context of additive channels, it is important to

consider linear codes. We define a linear code C via a k × n
generating matrix G,2 by

C = {c : c = uG, u ∈ Z
k
m}, (4)

The rate is equal to R = k/n · logm. Clearly, every rate is
possible asymptotically as n → ∞. We define ESU

L (R) to be
the error exponent of linear codes, i.e., as (1), except that εn
is the minimal possible error probability of linear codes only.
We note that for single-user additive channels of the form (3),
when the alphabet size m is a prime, the best known error
exponent of linear codes, denoted by ESU

L (R), is equal to the
best known error exponent of the channel ESU(R) (see [13],
[4], [14]), and in particular is optimal above the critical rate.
In addition, we note that for linear codes the average error
probability (over the codewords) is equal to the maximal error
probability, due to their structure.

2We assume a full-rank matrix G.
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D. Additive-Noise MAC Channel

A channel which is of particular interest in this work is the
additive MAC channel

Y = X1 ⊕X2 ⊕N, (5)

where all variables are defined over the alphabet Zm =
{0, 1, . . . ,m− 1} and ⊕ denotes addition over this alphabet,
i.e., modulo an integer number m. The noise N is additive,
i.e., statistically independent of the pair (X1, X2).
Viewing the joint codebook X = X1 ⊕ X2 as a single-

user codebook, we get the following channel (over the same
alphabet)

Y = X ⊕N, (6)

which we call the associated single-user channel of (5). Notice
that when comparing the MAC channel to its associated single-
user one,

EMAC(R1, R2) ≤ ESU(R1 +R2),

since the last is equivalent to cooperation between the en-
coders. In [2] it is shown that3

EMAC(R1, R2) ≥ ESU
r (R1 +R2).

Thus, it is equal to ESU(R1 +R2) above the expurgation rate
and optimal above the critical rate. However, the best known
error exponent for the associated single-user though, is larger
in the expurgation region, as was shown in Figure 1.
We note that simple time sharing, where every user uses an

expurgated codebook, improves on Gallager’s random-coding
bound in some cases, particularly for small enough rates and
as the channel noise become smaller. Since [2], there were
several improvements [5], [6] to the achievable error exponent.
However these do not close the gap to the best known error
exponent of the associated single-user channel. In the next
section, we close this gap (for modulo-additiveMAC channels)
by attaining expurgation for all users.

III. CODING FOR MODULO-ADDITIVE DISCRETE MAC
CHANNELS

In this section we first describe a coding scheme for
additive-noise MAC channels with prime alphabet size, which
achieves the best known error exponent of its associated
single-user channel. This is equivalent to full cooperation of
the encoders, and thus it is optimal (in terms of error exponent)
whenever the optimum is known for the single-user channel
(i.e., above its critical rate).
Consider the additive-noise MAC channel, as given in (5),

with prime alphabet size m. We construct a codebook pair for
the MAC channel using linear codes. We use a good linear
code for the associated single-user channel (6), which we
decompose into two sub linear codes, one for each user.
Let G be a k × n generating matrix of a linear code

C (see (4)) with rate R = k/n · logm. For some integers

3Since it is shown that for the discrete additive MAC channel, out of the
three error exponents discussed above, the third always dominates.

k1 + k2 = k, define the rates

Ri =
ki
n

logm, i = 1, 2.

Decompose the codeword c into two codewords:

c = c1 ⊕ c2 = (u1×k1
| u1×k2

)

(
Gk1×n

Gk2×n

)
(7)

�
= u1G1 ⊕ u2G2. (8)

Thus, we have a pair of codebooks:

Ci = {ci : ci = uiGi, ui ∈ Z
ki

m}; i = 1, 2. (9)

Therefore, the sum of codewords is indistinguishable from
a codeword of the single-user code with R = R1 + R2.
Clearly, for every rate pair such a construction is possible
asymptotically as n→∞. A similar claim holds for a general
number of users as well.
Proposition 1: The coding technique above achieves the

best error probability of linear codes for the single-user
channel. Thus, it achieves the exponentESU

L (R), and for prime
m it achieves ESU(R) as well.
The previously best known error exponent for general mem-

oryless discrete MAC channels is given by Nazari et al. [6].
In their derivation, codewords are expurgated from only one
of the codebooks. Since our bound achieves the best known
error exponent of the associated single-user channel (for the
special case of additive MAC channels with prime alphabet
size), it must be at least as good the one found by Nazari
et al. Moreover, for small enough rate-pairs we expect our
bound to be strictly better, since full expurgation is required
in order to achieve the error exponent of the associated single-
user channel. When considering more than two users, the gap
is expected to increase since expurgation of one user becomes
less significant. In the sequel, we show how this advantage
can be leveraged to non-additive MAC channels.

IV. TRANSFORMING A GENERAL DISCRETE MAC
CHANNEL INTO AN ADDITIVE CHANNEL

With the aim of applying a similar scheme to general (non-
additive) discrete memoryless MAC channels PY |X1,X2

, in this
section we describe a method for transforming such channels
into additive-noise MAC channels. We denote the obtained
channel after the transformation as the resulting virtual chan-
nel. The transformation is a discrete and scalar modification
of the Modulo-Lattice Transformation for continuous MAC
channels [8].
The transformation is defined for any finite alphabet size

m. Let vi ∈ Zm be the input of the ith user to the virtual
channel, and Ui ∼ Uniform(Zm) be its dither (i.e., common
randomness at the ith transmitter and at the receiver), which
is statistically independent of the dither of the other user and
of v1, v2. Each encoder computes X ′

i = vi ⊕ Ui and applies
a scalar precoding function fi : Zm → X on it. The inputs to
the channel are therefore given by

Xi = fi(X
′
i). (10)
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Note that due to the dither, X ′
i is uniformly distributed over

Zm and is statistically independent of v1, v2. Let

S = k1X
′
1
+ k2X

′
2
,

where ki ∈ Zm , and let Ŝ = g(Y ) be some scalar
estimator function of S from the channel output Y . Denote
the estimation error by N = Ŝ − S. We define the output of
the virtual channel as

Y ′ �
= [Ŝ − (k1U1 + k2U2)] mod m

= [Ŝ − S + S − (k1U1 + k2U2)] mod m

= [(k1(v1 + U1) mod m) + (k2(v2 + U2) mod m)

+N − (k1U1 + k2U2)] mod m

= (k1v1 + k2v2 +N) mod m

= k1v1 ⊕ k2v2 ⊕ (N mod m)

= k1v1 ⊕ k2v2 ⊕ Ñ ,

where Ñ = N mod m.
Proposition 2 (The virtual MAC channel): Applying the

transformation leads to the following virtual channel:

Y ′ = k1v1 ⊕ k2v2 ⊕ Ñ , (11)

where N = Ŝ − S is statistically independent of the channel
inputs (v1, v2), and Ñ = N mod m.
Notice that the transformation is not unique, and one is free

to choose the alphabet size m, the precoding functions fi(·)
and the estimator of S. We call any virtual MAC channel
(11) that can be obtained by some choice of parameters, a
feasible virtual MAC channel. Applying this transformation
to any MAC channel, we have the following.
Proposition 3: Let εn be the best error probability achiev-

able with a code of length n on a MAC channel. Then

εn ≤ ε̃n,

where ε̃n is the best error probability achievable by a linear
code of the same length on a feasible virtual MAC chan-
nel (11).
A feasible single-user channel:

Y = X ⊕ Ñ, (12)

is the associated single-user channel of a feasible virtual MAC
channel (11). Applying Proposition 3 to exponents, leads to
our main result:
Theorem 1: For any MAC channel, and any feasible single-

user channel (12) of that channel,

EMAC(R1, R2) ≥ ESU
L (R1 +R2). (13)

This has great significance when linear codes are known to
perform well:
Corollary 1: For any MAC channel, and any feasible

single-user channel (12) of that channel with alphabet of prime
cardinality,

EMAC(R1, R2) ≥ ESU(R1 +R2).

Remarks:

• Notice that this transformation is lossy in terms of capac-
ity. However, since the resulting channel is an additive-
noise channel, efficient coding techniques and known
bounds can be easily applied. In particular, for MAC
channels, expurgation in all the users can be applied by
using linear codes as in Section III.

• We expect the benefit from this coding technique to
outweigh the loss when the channel is “close” to additive.
In the next section, after studying the binary case, we give
a binary example which illustrates this property with a
single parameter.

• We note that this transformation is applicable to various
non-additive network problems, where structure can im-
prove the best-known achievable rate region (see e.g. [9],
[10], [11]). In such settings, the gain will appear also as
a “capacity gain” rather than only in the error exponent.

V. BINARY CASE

In this section we confine the discussion to binary MAC
channels, i.e. channels with binary inputs and a binary output.
We denote this general channel PY |X1,X2

as:

Y = X1 ⊕X2 ⊕N, (14)

where the additive noise N = Y ⊕ (X1⊕X2) depends on the
channel input pair (X1, X2).

A. Analysis of the Virtual Channel

A natural choice for the parameter m of the transformation
is clearly m = 2. We select f(x) = x, k1 = k2 = 1 and
Ŝ = g(Y ) = Y . This selection leads to the following effective
additive noise at the virtual channel is

Ñ ∼ Bernulli(p), (15)

with

p =
1

4

∑
x1,x2∈{0,1}

Pr(N = 1|X1 = x1, X2 = x2). (16)

The virtual channel is then an additive MAC channel given
by:

Y = V1 ⊕ V2 ⊕ Ñ , (17)

where Ñ , given in (15)-(16), is statistically independent of
(V1, V2).

B. Example: Almost Additive Binary MAC Channel

We now use the analysis of the previous subsection in order
to study an example of an almost additive-noise binary MAC
channel. Specifically, we consider the MAC channel charac-
terized by Table I, which gives its transition probabilities.
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Fig. 2. Comparing error exponents for the almost additive binary MAC in
Table I (at zero rate). The dashed line is Gallager’s bound [2], while the solid
line is the error exponent of the virtual channel, which is achieved according
to Corollary 1. Here q = 0.1.

x1 x2 PY |X1,X2
(1|x1, x2) PN |X1,X2

(1|x1, x2)
0 0 q q
0 1 1− [p(1 − q) + (1 − p)q] p(1− q) + (1− p)q
1 0 1− [p(1 − q) + (1 − p)q] p(1− q) + (1− p)q
1 1 q q

TABLE I
ALMOST ADDITIVE BINARY MAC. THE VALUE OF p DETERMINES THE

DEVIATION OF THE CHANNEL FROM ADDITIVITY.

The value of p determines the deviation of the channel from
additivity. For small p the channel is nearly an additive MAC
channel.
In Figure 2 we compare the resulting error exponent of the

virtual channel with Gallager’s [2] random coding exponent
for symmetric rate pairs.4 For the comparison we take the
limit of zero rate-pair, where the gain due to expurgation is
maximal. As p increases, the coding technique developed in
this paper gains less since the channel transformation looses
more as the channel is less additive.
For small enough p and for small enough rates we expect

this bound to be strictly larger then the best known error expo-
nent for this channel [6]. This is since [6] applies expurgation
only to the user with larger rate, while the bound presented
here achieves two-user expurgation. Nazari et al. [6] studied
a non-symmetric example, where Pr(N = 1|X1 = 1, X2 =
1) = 1

2
, and all the other conditional probabilities of N are

equal to 0.01. In this case the coding scheme described here
is inferior to the one of [6], as expected since the channel is
far from being an additive.

4For the channel parameter of Fig. 2, the exponent of time sharing between
expurgated codebooks is below Gallager’s random coding exponent.

VI. CONCLUSION

By using linear codes, we have shown that for modulo-
additive MAC channels with a prime alphabet size, the achiev-
able error exponent is equal to the best known exponent
of the associated single-user channel. In addition, we have
demonstrated that linear codes offer improvement to the best
known MAC error exponent region for “almost additive”
channels.
While we chose to present the results using two-user MAC

channels, the approach immediately extends to any number
of users, allowing for full expurgation of the combined linear
code. It is therefore reasonable to expect that at low rates and
at least for modulo-additive channels, the gain over the best
previously known achievable error exponent will increase with
the number of users. The approach of transforming a MAC
channel into an additive one is also applicable to a wide variety
of non-additive network setups, where structure is beneficial
in terms of capacity.
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