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Abstract

In this work we investigate the behavior of the minimal rageded in order to guarantee a
given probability that the distortion exceeds a prescribeelshold, at some fixed finite quantization
block length. We show that the excess coding rate above teedistortion function is inversely
proportional (to the first order) to the square root of thechliength. We give an explicit expression
for the proportion constant, which is given by the invergefunction of the allowed excess
distortion probability, times the square root of a constéarmed the=xcess distortion dispersion.
This result is the dual of a corresponding channel codinglteshere the dispersion above is
the dual of the channel dispersion. The work treats disareeoryless sources, as well as the
quadratic-Gaussian case.

I. INTRODUCTION

Rate-distortion theory [1] tells us that in the limit of la&glock-lengthn, a discrete mem-
oryless source (DMS) with distributiop can be represented with some average distortion
D by a code of any rate smaller than the rate-distortion fomc(RDF)

R(p, D) = min _ I(p, W), (1)
W:Ep wld(X,X)]|<D
where d(z, z) is the distortion measurd)/(z|z) is any channel from the source to the
reproduction alphabet andl(-,-) denotes the mutual information. However, beyond the

expected distortion, one may be interested in ensuring that the disto for one source
block is below some threshold. To that end, we seeasss distortion event&(D) as

&D) = {d(x,%) > D}, )

whered(x,x) = £ 3" d(x;,#;) is the distortion between the source and reproduction
wordsx andx.

A natural question to ask is how fast can this probability kedeto decay as a function
of the block length. An asymptotic answer is given by Marsoexcess distortion exponent
[7]: for the best code of rat&,

1
lim ——log Pr{&(D)} = in D £ F(R,p,D 3
Jim = logPrif(D)} = min  Dldllp) = F(R,p, D), (3)
where D(-||-) is the divergence between the two distributidnstuitively speaking, this re-
sult means that, asymptotically, the error probabilityeserned by the first-order empirical
statistics of the source sequence; if the sequence happdres “too rich” to be quantized
with rate R, en error (excess distortion event) will occur.

Throughout the paper logarithms are taken with the natuaaéb and rates are given in nats.



We are interested in the following related question: foraegiexcess distortion probabil-
ity ¢, what is the optimal (minimal) rate required to achieve itiisTquestion is unanswered
by Marton’s exponent, and even the asymptotical behavigh@foptimal rate is unknown.

A similar question can be asked in the context of channelngpdior a given error
probability £, what is the maximal communication rate that can be achiefegdin, this
guestion is unanswered by the channel error exponent [4§. &dymptotics of the rate
behavior was first studied in the 1960’s [10] using the noraggroximation. This result
was recently tightened and extended to the Gaussian champal with nonasymptotic
results, in a comprehensive work by Polyanskiy et al. [8]channel coding the maximal
rate that can be achieved over a chanels approximately given by

r=omw) -/ T Mo-1e) (4)

whereC' (W) is the channel capacityy is the complementary Gaussian cumulative distri-
bution function, and the quantity (17) is a constant that depends on the channel only,
termed the channel dispersion. See [8] for details and nedmeements of (4).

Our main result is the following. Suppose the soupcs to be quantized with distortion
thresholdD, and a fixed probability for excess distortien> 0. Then the minimal rate?
needed for quantization in blocks of lengthis given by

V(p, D)

n

R=R(p,D)+ Q7' (e), )
whereV (p, D) is a constant which we call thexcess distortion dispersion, given in detail
later on. We show that (5) holds for any DMS under some smasihrconditions on
R(p, D), and for a Gaussian source with quadratic distortion measee Theorems 1 and
2 respectively.

It is worth noting that that there is a large body of previouskwegarding the redundancy
of lossy source coding in related setting. However, theseksvare mostly concerned with
two questions: the behavior of the word-length of variatale codes where the distortion
should always be below some threshold (a.lasemifaithful codes) [11], or the average
excess distortion of fixed-rate codes; see e.g. [12],[6]thadeferences therein. We consider
the excess-distortion probability, thus bridging betwéleese works and the concepts of
excess-distortion exponent and dispersion discussedealiovthis context, the work by
Kontoyiannis [6] is of special interest, since it introdaa@e constant which equals(p, D),
see in the sequel.

II. MAIN RESULT FORDISCRETEMEMORYLESS SOURCES

Let the sourceX be drawn from an i.i.d. distributiop over the alphabet’ = {1, ..., L},
and let the reproduction alphabet Be= {1, ..., K'}. The distributionp can be seen as a
vectorp = [py,...,pz]’ € Pr, wherep; = Pr(X =) and P, is the probability simplex:

L
P, £ {q € Rfg; > 0vi € {1..L}; ZQi = 1} . (6)

1=1

Letd : X x X — R* denote a general nonnegative single-letter distortionsamea bounded
by some finiteD,,... Denote the rate distortion function for the sougcand the distortion



measurel(-, ) at some levelD by R(p, D). Whenever this function is differentiable w.r.t.
its coordinatey;, define the partial derivatives by

88 R(q,D)| . (7)
4 a=p

Note thatR'(i) implicitly depends onp and D as well. For a random source symh#bl
we may look atR'(i) as the values that a random varialsté X') takes.

Let x € X" and% € X" denote the source and reproduction words respectively. An
excess distortion evew{ D) is when the distortionl(x,x) £ 1 3"  d(x;, 2;) exceeds the
given valueD. Let R, p.(n) as the optimal (minimal) code rate at lengtts.t. the excess
distortion probability is at most.

It is known thatR, p .(n) — R(p, D) asn — co. This can be deduced e.g. by Marton’s
excess distortion exponent [7]. Our main result quantifiesrate of this convergence.

Theorem 1: A DMS with probability p is to be quantized with distortion threshald,
block lengthn and excess distortion probability Assume thatR(q, D) is differentiable
w.r.t. D and twice differentiable w.r.tg in some neighborhood dip, D). Then

o) = R(p, D)+ “ g ) 0 (151 ) ®

R(i) =

whereV (p, D) is the excess distortion dispersion, given by
2

V(p, D) & VarlR'(X)] = 3 pi(R0))” - [szﬁ”(i) ()

This result is closely related to the following centraldirtheorem (CLT) result of [6].
If we allow a code with variable rate(x) = [(x)/n, wherel(x) is the length of codeword
needed to describe, then for the best code:

where{G,} converge in distribution to a Gaussian random variable dbwaeV (p, D).?

If GG, are exactly Gaussian, and then we truncate this variabhlgthecode by assuming an
excess-distortion event at each time that the length is a¥&rthen the excess distortion
probability exactly satisfies the achievability bound ofedbhem 1. However, this is not
immediate, as one needs to take into account the rate of mnee of the sequence
{G,.}.

We follow a different direction, which is closer in spirit tbe derivation of the excess
distortion exponent in [7]. Specifically, we show that €l /,/n) redundancy term comes
only from the probability that the source will produce a seaee whose type is too complex
to be covered with rate.

The proof is based on the method of types. We adopt the notafi€siszar and Korner
[2]: The type of a sequenca € X" is the vectorP, € P, whose elements are the relative
frequencies of the alphabet lettersin 7,, denotes all the types of sequences of length
We say that a sequencehas typeq € 7, if P, = q. Thetype class of the typeq € 7,,

2The variance has a different expression in [6], we show irti&edlI-B that the forms are equivalent.



denoted?y, is the set of all sequences € X" with type q. For a reconstruction word
X € X, we say thai is D-covered byx if d(x,%x) < D.

Proposition 1 (Type covering): Let q € 7, with a corresponding type clasg,. Let
A(q,C, D) be the intersection of, with the set of source sequencese X™ which
are D-covered by at least one of the words in a codeb6okith rate R (i.e. |C| = ).
Then:

1) If |0R(q, D)/0D| is bounded in some neighborhoodgfthen there exists a codebook

Cq4 that completelyD-coversTy (i.e. A(q,Cq, D) = Ty), where for large enough,

1 1
~log|Cq| = R < R(q, D) + h——. (10)

where J; = J,(L, K) is a constant.
2) For any typeq € 7, s.t. R(q, D) > R, the fraction of the type class thati%-covered
by any code with rate? is bounded by

[A(a. 6o, D) < exp {—n [R(q, D) — R+ JQIOgn] } ; (11)
| Tal "

where J, = J5(L, K) is a constant.

The first part of this proposition is a refinement of Bergeype-covering lemma [1],
found in [11]. The second part is a corollary of [12, LemmaBEgjth parts of the proposition
are stronger versions than needed in [7], due to the nonrexpial treatment of the excess
distortion probability> Equipped with this, the missing ingredient is an analysisthef
relation between the rat& and the probability of the source to produce a type which
requires a description rate higher thah It is given in the following lemma which is
proved in Section V.

Lemma 1 (Rate Redundancy): Consider a DM$ and a distortion thresholf). Assume
that R(p, D) is differentiable w.r.tD and twice differentiable w.r.p at some neighborhood
of (p, D). A random source word is denoted kyand its type byP,. Let ¢ be a given
probability and letAR be chosen s.t.

Pr{R(Px,D) — R(p,D) > AR} = .

Then, asn grows,
AR = /YD) 4o (—105 ”) , (12)

n

whereV (p, D) is given by (9). In fact, the same holds even if we replacgith ¢ + g,
as longg, = O 1"%‘ :
Proof of Theorem 1: Achievability part.
Let AR > 0. We construct a codé as follows. The code shall consist of the union of

the codes that cover all the typgss ®(n, D, AR), where
®(n,D,AR) ={q: R(q,D) < R(p, D) + AR} N, (13)
whereQ, = {q: ||p — q||* < L'},

3For the first part, Marton uses Berger’s original lemma, wilidr the second part it is proved that the ratio between
|Tq| and|A(q,C, D)| is upper-bounded by a constant.



Lemma 2: For a source worc drawn from thep, we havePr{Py ¢ Q,} < 2.
The proof for this technical lemma is omitted. It can be prbusing techniques similar to
those in [11, Theorem 2].

The size of the code is bounded by

cl< > 1Cl S ITallCql < (n+ 1) Corl, (14)

a€d(n,D,AR)

whereq* is the maximizing type that is covered.

Since we assumed that(p, D) is differentiable w.r.t.D at p, the derivative is bounded
over any small enough neighborhood f In particular, it is bounded over,, for large
enoughn, thus for all types covered by the codebook. We can thus apply 1 of
Proposition 1 and we get a bound on the rate:

1 L 1
R = —log|C| <—log(n+ 1)+ —log|Cq (15)
n n n

<R(p,D)+ AR+ 0O <1°i ”) . (16)

Since we completely cover all the typesdrin, D, AR), we have that the probability of
excess distortion (2) satisfies

Pr{&(D)} =Pr{P, ¢ ®(n, D, AR)}

<Pr{R(Py,D) < R(p, D) + AR} + Pr{P, ¢ Q,} (17)
<Pr{R(Py,D) < R(p,D) + AR} + i_f (18)

where (17) follows from the union bound, and (18) is justifmdLemma 2.
We selectAR s.t. the probability fo{ R(P,, D) > R(p, D) + AR} is exactlye — 2%,
and get a code with excess distortion probability at mo®8y Lemma 1 we have that

AR = MQ‘l(g)Jro(lOg”))

n n

and by plugging into (16) the rat® is bounded by the RHS of (8), as required.
Converse part.
Let C be a code with ratd?, and suppose that its excess distortion probability. i©ur
goal is to lower bound\R = R — R(p, D).
Again, the source word ig and its type isPx. The following holds for anyb:
e =Pr{&D)} =Pr{&D)|R(Px,D) < R+ V}Pr{R(Px,D) < R+ ¥V}
+ Pr{&D)|R(Px,D) > R+ YV} Pr{R(Px,D) > R+ ¥}
>Pr{&D)|R(Pyx, D) > R+ U} Pr{R(P,, D) > R+ ¥} (19)
Take a typeq € 7,, and assume thaRk(q,D) > R + V. By the second part of
Proposition 1, the fraction of the type clagg that is covered by the codeis at most

logn

n

exp {—n {R(q, D) — R+ J; } } <exp{—nV + Jylogn} (20)

By settingU = (J, + 1)%82 we get that the fraction is bounded byn. Since the source

n

sequences within a given type are uniformly distributed, ge¢ that the probability of




covering a sequence from a type thatR&P, D) is too high is at most /n. We therefore
get

e> (1 _ %) Pr{R(Tx, D) > R+ ¥}

>
“ 142

Pr{R(Ty,D) > R+ U}, (21)

where the last inequality follows sinde— = > - for all € [0,1/2].

In fact, we have shown that most of the excess distortionteveccur when the type is
too complex for describing.

We rewrite (21) and get thak R must satisfy

e (1 + %) > Pr{R(Ty, D) — R(p, D) > AR + ¥}. (22)
By Lemma 1 and the fact that = O (£2), we get
ar> YR o104 0 (log”) , (23)
n n
as required. [ |

[1l. EXCESSDISTORTION DISPERSION PROPERTIES ANDEVALUATION
A. Differentiability of the RDF

In the results above, we assumed differentiability of theFREXp, D) with respect to
D (once) andp (twice). In general, the RDF is not differentiable w.r.ttheir. However,
it is differentiable “almost always” in the following senseet K'(p, D) be the “effective
reproduction alphabet size”, i.e., the number of repradadietters of positive probability
for the channel minimizing (1). Then, K'(p, D) is constant in a neighborhood &f, then
R(p, D) is differentiable w.r.t.D and twice differentiable w.r.tp at that point.

When keeping fixed and changind, such points may represent “jumps” in the excess
distortion dispersioV (p, D). In these points, we can not specify the exact behavior of the
excess rate, but careful derivation should verify that hésweenV (p, D~) andV (p, D).
however, in the process we will encounter at mbst 2 such points.

B. Alternative Representations

The evaluation of the the excess distortion dispersion sdente a difficult task, as it
involves derivatives of the RDF w.r.t. the source distribnt However, we have the following
alternative representations.

First we connect the dispersion to the excess-distortignorent (3), much in the same
way that the channel dispersion constant is related to there error exponent; See [8]
for details on the early origins of this approximation by Shan.

Proposition 2: If R(p, D) is differentiable at distortion leveD, then

2
9 F(R,p,D)

V(p,D) = BIE

-1
R=R(p,D)] .




The proof, not included in this version, follows by directpnsidering the exponent
definition (3) in the limit of small excess rate.

We further show equivalence to the variance of the excessimagit], which is close in
spirit to the dispersion as discussed in Section Il:

Proposition 3: If R(p, D) is differentiable at distortion leveD, thenV (p, D) = Var[f(X)]
where

f(1) = —log Ex exp{—Ald(z;, ) — DI},

where the expectation is taken according to the reprodudistribution induced by the
channel minimizing (1) fop and D, and A = 0R(p, D)/0D at that point.

This form is especially appealing, since it can also be shthahR(p, D) = E{f(X)},
thus presenting the dispersion as a “second-order RDF".eGué/alence can be proven by
starting from the RDF presentation above. Applying (9),

o

L .
: 0
= Var f(Z)"‘ij L910)
= 9g;
Straightforward derivation shows that the term to the righthe addition in the last form
is constant ini, thus it does not effect the variance, as required.

C. Some Special Cases

In some cases the evaluation may be simplified, as follows.
1) Zero distortion. Where R(p,0) = H(p), we have

L
V(p, D) = Var { % >_aif())

q=p

0
R (i) = H = —1 —logp;.
(4) 0 (q) _ gp
Thus,
V(p,0) = Var{logp;}. (24)

This is in agreement with the long known lossless dispersssult [10].
2) Difference distortion measure with low distortion. Assume that

d(z,2) = d([x — &) mod L) £ d(2).

Since we assumed that each source letter has positive plithdbere exists some
Dy(p) > 0 s.t. for all D < Dy the optimum backword channel is= & + z. The
RDF is then given by

where w, is the maximum-entropy distribution such thaf{d(z)} < D [1, Sec.
4.3.1]. Since this distribution i®-independent as long @ < Dy(p), we have that
the second term in (25) is fixed ip in a neighborhood of the source distribution.
Consequently the derivatives only come from the first ternd é&4) holds for all
0< D < Dy.

3) Hamming distortion measure. In this special case of a difference distortion measure,
the optimum backward channel is modulo-additive also akigyewhere the modulo
is taken over a reduced alphabet. Consequently, the dispassthe variance of the
logarithm of a normalized smaller-alphabet distribution.



4) Zerodispersion. The dispersion becomes zero when the source distributzmmizes
the RDF over all possible source distributions among thetiafphabet (thus the rate
redundancy in Lemma 1 is zero). Note that this is in agreemghtthe fact that for
this case the excess-distortion exponent “jumps” from zermfinity at zero excess
rate. For difference measures, this happens if and onlyefstburce is uniform, in
agreement with the observation in [6]. However, in gengraleed not be uniform.

IV. GAUSSIAN SOURCE WITH QUADRATIC DISTORTION MEASURE

In this section we part with the assumption that the sourdéeigete. While the derivation
of the excess distortion dispersion for general continweagplitude sources is left for
future work, we solve the important special case of Gausstamce with MSE (quadratic)
distortion measure.

Let the sourceX be i.i.d. zero-mean Gaussian with variance The distortion measure
is given by:d(x,y) = (x — y)?. For D < ¢?, the quadratic-Gaussian RDF is given by:

R(0% D) = 210 o (26)
T8 (D)
In this case, the excess distortion exponent (3) is giver[Hy:
1[D D AR 1 2A
F(R,0% D) = 5 { — e 1og< 23)} _ ¢ 5 i (27)
g

where AR = R — R(c?, D).

As in the finite alphabet case, we defiffg: , .(n) to be the minimal code rate at length
n S.t. the excess distortion probability is at maestFrom the excess distortion exponent
(27) it follows thatR,2 p.(n) — R(c?, D) asn — oo.

We are interested in the behavior Bf: , .(n) asn grows. We show that the quadratic-
Gaussian case behaves according to (5) just like the filpteabet one. Recalling Proposi-
tion 2, one expects the dispersion constant to be
82

——F(R,0° D)

!
OR? '

-1
V(o? D) = 2 ]
R=R(c2,D)

It can also be shown that the value %)fcan be obtained by a continuous version of (9).
We now show that this is the case indeed.
Theorem 2: Let ¢ > 0 be a given excess distortion probability. Then the mdte , .(n)

satisfies
O< )<R R(c* D) \/769 <—logn+0(1) (28)

Proof outline: The proof is similar in spirit to the proof of Theorem 1, whegheres
take the part of types. The type class of types near the salisti@bution is analogous to
a sphere with radius, wherer? is close tono?.

For the achievability part, we define a “typical” sphere wigtdius \/no?(1 + «,,) with
a, — 0 asn — oo. a, is chosen s.t. the probability that the source falls outside
sphere is exactly, so our code needs tb-cover the entire sphere. Note that the radius
is just over the typical radius of the source. We use a sphmrering result by Rogers [9,
Theorem 3], and find a code that canrcover the entire typical sphere with no more than




en®? (0?(1 + an)/D)"/ reconstruction words for some constantBy arguments similar
to those used in the proof of Lemma 1 we get= /2/nQ~! (¢) + O( ) so the rateR
is bounded according to (28).

For the converse part, we follow the proof of the conversé¢ostxcess distortion exponent
in [5]. We get that the excess distortion probability is lovs®unded by the probability to
leave a sphere that has a volumedf® times the volume of a singlé-ball around a
reconstruction point. Again, using the Berry-Esseen t@owe connect excess distortion
probability and the ratio of the radiuses, and get that tke Rais lower bounded according
to (28). [ |

V. PROOF OF THERATE REDUNDANCY LEMMA

Proof of Lemma 1. Let x be a source word with typ&,, drawn from the source.
We prove the more general version of the lemma, with g, being the given probability.
The relation between and AR is given by

€+ go = Pr{R(Py, D) > Ry(D) + AR} . (29)

By the regularity assumptions aR(p, D), we use the Taylor approximation and write

R(Px, D) )+ Z —pi) (i) +7(Px, P). (30)

where R'(-) was defined in (7), and(Py, p) is the correction term for the approximation.
Equation (29) now becomes

L
€+ gn=Pr {Z(Px(i) —pi) (1) +v(Px, p) > AR}- (31)
=1

By the Taylor approximation theorem, and by the assumptfdimite second derivatives
of R(p, D), we have that the correction terq{ P, p) = O(||Px — pl||?). This means that
there exists a constamt s.t. for large enough, (P, p) < n||Px — p||?>. By Lemma 2
there existd’ = O(logn/n) s.t. Pr{y(Px,p) > I'} < 2.

Using simple probability rules, for any random variablésand B and a constant, we
have that for any’;, I's the following holds:

PriA+ B >c¢} <Pr{A>c—-T1}+Pr{B>T} (32)
Pr{A+ B >c¢} > Pr{A > c+ Ty} —Pr{B < I} (33)

In our case, we use (32) (resp. (33)) to show the upper (resr) bound oMAR. By
selectingl’; =T, =T, we get

£+ g, <Pr {Z(PX(Z’) —pi)R'(i) > AR — r} +0 (%) : (34)

1=1

&+ gp > Pr {Z(PX(Z’) ~p)R(i) > AR+ r} ) (%) . (35)

1=1



Now consider the probability expression in (34):
L n L
: ' 1 , .
Pr ;(Px(z) —p)R(i) > AR=T ¢ =Prq— ;R (z1) — ;piR (i) >AR—T
+ 3 n_; R'(z;) can be interpreted as an averagendfi.d. random variables?’ (X ), whose
expectation is given bye[R'(X)] = &, p;R'(i). Their variance is given by (p, D),
defined in (9). By the central limit theorem, the sum of i.rdndom variables normalized

by \/n converges to a Gaussian random variablezagows. Specifically, by the Berry-
Esseen theorem (see, e.g. [3, Ch. XVL5]), we get

Prd—= 3" ((m) ~ EF (X)) > Vi(AR=T) (36)
k=1
—Q ((AR - T) 7‘/(: D)) + \6/—% (37)

where¢ = E[|R'(X) — E[R'(X)][]. By applying the same derivatioAR + T', (34) and
(35) can be written together as

a+o<l(§7_:’) :Q<(ARiF) ﬁ). (38)
By the smoothness ap~'(-) aroundes and the Taylor approximation we have
AR =YL 40 (bﬁ) , (39)
n n
as required. [ |
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