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Abstract—This paper introduces the problem of joint source-
channel coding in the setup where channel errors are adversarial
and the distortion is worst case. Unlike the situation in the
case of stochastic source-channel model, the separation principle
does not hold in adversarial setup. This surprising observation
demonstrates that designing good distortion-correcting codes
cannot be done by serially concatenating good covering codes
with good error-correcting codes. The problem of the joint code
design is addressed and some initial results are offered.

I. I NTRODUCTION

One of the great contributions of Shannon [1] was creation
of tractable and highly descriptive stochastic models for the
signal sources and communication systems. Shortly after, his
work was followed up by Hamming [2], who proposed a
combinatorial variation of the channel coding part. This com-
binatorial formulation has become universally accepted inthe
coding-theoretic community. Similarly, for the case of lossy
compression Shannon [3] proposed a stochastic model and the
rate-distortion formula, while shortly after Kolmogorov fol-
lowed up with a non-stochastic definition of theǫ-entropy [4].
The research that followed demonstrated how both ways of
thinking, stochastic and combinatorial, naturally complement
each other, reinforcing intuition and yielding new results.

To the best of our knowledge, in the setup of joint source-
channel coding, however, only the stochastic approach has
been investigated so far, starting with [1], [3]. This paperaims
to fill in this omission.

In Section II we define the adversarial separate source and
channel coding problems and present known results about
them. Then, we build on these definitions to define the
adversarialjoint source channel coding(JSCC) problem. Next,
in Section III we prove asymptotic bounds on the performance
limits of adversarial JSSC codes. It turns out that the celebrated
separation principle [1], [3] does not hold in the adversarial
model. Therefore, the problem of constructing asymptotically
optimal adversarial JSSC codes requires a joint approach
and cannot be solved by combining good compressors with
good error-correcting codes. In Section IV we focus on the
binary case and propose methods for designing such codes
and analyzing their performance.

II. PRELIMINARIES

A. Source coding

A source problem is specified by a source and reproduction
alphabetsS, Ŝ, a distributionP on S and a distortion metric
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d : S × Ŝ → R+. The distortion between a source stringsk

and a reproduction̂sk is given by:

d(sk, ŝk)
△
=

1

k

k
∑

j=1

d(sj , ŝj) . (1)

In the stochastic setting, an(k,Mk, D)-source code is
specified by a surjective mapφ : Sk → C for someC ⊆ Ŝk

such that|C| = Mk and the expected distortion is at mostD,
where the mean is taken withSk ∼ P k (memoryless source).
The rate of the source code is defined by1/k · logMk and
asymptotically, the best possible rate for the distortionD is
given by [3]:

R(P,D)
△
= min

P
Ŝ|S :E [d(S,Ŝ)]≤D

I(S; Ŝ) .

In the adversarial setting, asource setF ⊆ Sk is selected
and then the smallest cardinality of a covering ofF upto
distortionD is sought; cf. [4]. Here we restrict ourselves to
the case ofF being the set of all source sequences that are
strongly typical1 with respect to the source distributionP .

The adversarial(k,Mk, D) source code is defined by a
collection of Mk points C ⊂ Ŝk such that for anyP -
typical source sequencesk there exists a point̂sk in C such
that d(sk, ŝk) ≤ D. The asymptotic fundamental limit of
adversarial source coding is defined to be

Rad(P,D)
△
= lim

k→∞

1

k
logmax{Mk : ∃(k,Mk, D)

-adversarial source code} .

Not only does this limit exist, but remarkably it coincides with
R(P,D):

Theorem 1 (Berger’s type covering [6]):

Rad(P,D) = R(P,D).

As an example, takeS = Ŝ = F2 and P is the uniform
distribution, with the Hamming distortion measure. It is known
that

Rad(P,D) = R(P,D) = 1− h2(D),

whereh2(x) = −x log x − (1 − x) log(1 − x) is the binary
entropy function. Indeed the same rate is achievable even if
the source set is entireFk

2 [7].

1Here and in the sequel, strong typicality is in the sense of [5, Chapter 2].



B. Channel coding

A channel problem is specified by input2 and output alpha-
betsX , Y, and a conditional distributionW : X → Y.

In the stochastic setting, an(n,M, ǫ)-channel code is
specified by a pair of mapsf : {1, . . . ,M} → Xn and
g : Yn → {1, . . . ,M} such that

P[g(Y n) = i|Xn = f(i)] ≥ 1− ǫ , i = 1, . . . ,M ,

wherePY n|Xn = Wn (a memoryless channel). Therate of the
code is defined as1/n · logMn and asymptotically the largest
achievable rate is given by Shannon capacity [1]:

C(W ) = max
PX

I(X ;Y ) .

In the adversarial setting, for each input sequencexn ∈ Xn

the channel output may be arbitrary within a subset ofYn. We
choose this set to beA(xn) ⊆ Sn, the set of strongly typical
sequencesyn given xn with respect toW. The adversarial
(n,Mn) channel code is defined as a collection ofMn points
C ⊂ Xn such that for any pair of different pointsxn, zn ∈ C,
A(xn) ∩ A(zn) = ∅. The asymptotic fundamental limits of
adversarial channel coding are defined to be

Cad(W )
△
= lim sup

n→∞

1

n
logmax{Mn : ∃(n,Mn)

-adversarial channel code} (2)

Cad(W )
△
= lim inf

n→∞

1

n
logmax{Mn : ∃(n,Mn)

-adversarial channel code} . (3)

Note that because the limits are not known to coincide for
most channels of interest, we have to define both upper and
lower limits.

It is known thatCad(W ) ≤ C(W ). Furthermore, in contrast
to source coding, this inequality is known to be strict in the
next example.

The most studied case of the adversarial channel coding is
that of a binary symmetric channel with crossover probability
δ, BSC(δ). LetA(n, d) be the cardinality of a largest set inFn

2

with minimal Hamming distance between any pair of elements
not smaller thand. We have3:

Cad = lim sup
n→∞

1

n
logA(n, 2nδ + 1) ,

and similarly forCad. Therefore, by the classical results on
A(n, d):

RGV (δ) ≤ Cad(δ) ≤ Cad(δ) ≤ RMRRW (δ) < C(δ), (4)

where the MRRW II bound [8] is

RMRRW (δ) = min
0<α≤1−4δ

1+ ĥ(α2)− ĥ(α2+4δα+4δ) , (5)

2A cost function onX may also be present. We omit it to save space.
3Traditionally, one considers the case when the adversary isfree to choose

noise vectorse satisfyingwt(e) ≤ δn, whereas in our setting the typicality
constrainswt(e) = δn ± o(n). This is asymptotically immaterial, since in
Hamming space two spheres of the same radius are disjoint if and only if the
corresponding balls are.

with ĥ(x) = h2(1/2 − 1/2
√
1− x), and the Gilbert-

Varshamov bound [9] is

RGV (δ) = 1− h2(2δ). (6)

C. Adversarial JSCC

A JSCC problem is specified by:

• Adversarial source:S, Ŝ, PS , d(·, ·)
• Adversarial channel:X , Y, WY |X .

At source and channel blocklengths(k, n), a JSCC scheme is
specified by:

• an encoder mapSk → Xn from the source to channel
input: xn = f(sk).

• a decoder mapYn → Ŝk from the channel output to
reconstruction:̂sk = g(yn).

We say that a JSSC scheme is(k, n,D) adversarial if for
all P -typical source sequencesk and corresponding channel
outputsyn ∈ A(f(sk)), d(sk, g(yn)) ≤ D.

The asymptotically optimal tradeoff between the achievable
distortion and the bandwidth expansion factorρ = n

k
is given

by

D
∗

ad(ρ) = lim sup
k→∞

inf{D : ∃(k, ⌊ρk⌋, D)

adversarial JSCC} , (7)

D∗
ad(ρ) = lim inf

k→∞
inf{D : ∃(k, ⌊ρk⌋, D)

adversarial JSCC} . (8)

As in the source and channel cases, we use the stochastic
setting performance as a benchmark. In this setting, the source
and channel are i.i.d. according toP = PS andW = WY |X ,
and the requirement is for expected distortion to be at mostD.
It is well known that anyk-to-n stochastic JSCC must satisfy
[3],

k ·R(P,D) ≤ n · C(W ). (9)

In the asymptotic limit this can be approached, yielding the
asymptotic fundamental limit:

D∗(ρ) = inf{D : R(P,D) ≤ ρC(W )} .
D. The separation principle

We say that an(k, n) JSCC scheme is separation-based if
for some spaceM (“the message space”) the encoder consists
of a source encoderfS : Sk → M and a channel encoder
fC : M → Xn. The decoder consists of a channel decoder
gC : Yn → M and a source decoderM → Ŝk. Furthermore,
following e.g. [10] we introduce a bijectionσ : M → M that
is applied at the encoder and reversed in the decoder, which
is meant to ensure that there the mapping of source messages
to channel ones is arbitrary. The encoder and decoder are thus
given by

f = fS ◦ σ ◦ fC ; g = gC ◦ σ−1 ◦ gS (10)

where performance is required to hold forany bijection σ.
The asymptotic performance limits of the separation

schemes are denoted asD
∗

ad,sep(ρ) andD∗
ad,sep(ρ) and defined



in complete analogy with (7) and (8). In the stochastic setting,
the asymptotic performance of the optimal separation scheme
coincides with D∗(ρ) and thus does not need a special
notation.

III. B OUNDS ON ADVERSARIAL JSCC

We start this section with an immediate lower bound on the
fundamental limit of adversarial asymptotic distortion.

Theorem 2 (Converse):

D∗
ad(ρ) ≥ D∗(ρ) .

Proof: Any adversarial JSCC can be used as a usual
(probabilistic) JSCC, in which case by typicality arguments
it will achieve (maximal) distortionD with vanishing excess
probability (namely, we assume excess distortion wheneverthe
source or channel behavior are not strongly typical). ThusD
must not be smaller thanD∗(ρ).

A. Separated schemes

Theorem 3 (Separated schemes):If R(P,D) > ρCad(W )
then

D∗
ad,sep(ρ) ≥ D . (11)

If R(P,D) ≤ ρCad(W ) then

D
∗

ad,sep(ρ) ≤ D . (12)

We will show shortly, that (11) demonstrates (in special
cases) thatD∗

ad,sep > D∗
ad.

B. Single-letter schemes

Another special class of JSCC schemes is single-letter
codes. In that case, the mappingsf(·) and g(·) are scalar,
and when applied to a block they are computed in parallel
for each entry. Some examples where single-letter schemes
yield the optimumD∗ have been known for a long time, and
Gastpar et al. [11] give the sufficient and necessary conditions
for that to hold.

Theorem 4:If in the stochastic setting a single-letter
scheme achieves someDsl, then

D
∗

ad(1) ≤ Dsl. (13)

We omit a simple proof of this result, but its essence will
be clear from the example in the next section.

Corollary 5: Whenever single-letter codes are optimal in
the stochastic setting, i.e.,Dsl = D∗(1) we have

D
∗

ad(1) = D∗
ad(1) = D∗(1).

Using Theorems 3 and 4, one may find examples in
which single-letter schemes achieveD∗ while separation-
based scheme do not, leading to the surprising conclusion that
separation is not optimal in the adversarial setting.

C. Binary example

We now combine the binary examples presented in sections
II-A and II-B: the source is binary symmetric with Ham-
ming distortion, and the channel is BSC(δ). The information-
theoretic optimumD∗(ρ) is given by the solutionD to:

1− h2(D) = ρ(1− h2(δ))

whenever the r.h.s. is lower than one, zero otherwise. Bounds
on the performance of separation-based schemes are given by
the solutions to:

1− h2(D) = ρ · RMRRW (δ)

1− h2(D) = ρ · RGV (δ),

where again the bounds are zero for r.h.s. above one. Since
RMRRW < 1 − h2(δ) for all δ > 0, it follows that
D∗

ad,sep(ρ) > D∗(ρ) strictly wheneverρRMRRW (δ) < 1.
For ρ = 1 the optimumD∗(1) is achievable by a trivial

single-letter scheme (namely, the identity encoder and de-
coder). Therefore, forρ = 1 and anyδ > 0,

D∗(1) = D∗
ad(1) < D∗

ad,sep(ρ).

For other values ofρ, separation may also be suboptimal:

Proposition 6: For any positive integerρ, repetition coding
(i.e., xn is constructed byρ repetitions of sk) achieves
asymptotically:

Drep(ρ) =
2ρδ

1 + ρ
(14)

By (4) and Theorem 3, it is easy to see thatD
∗

ad,sep(ρ) =
D∗

ad,sep(ρ) = 1/2 whenever δ = 1/4. Thus, comparing
with (14) and by continuity for any positive integerρ there is
an interval ofδ for which simple repetition coding outperforms
any separation-based scheme.

IV. B INARY SYMMETRIC SOURCE-CHANNEL (BSSC)

In this section we slightly change the problem definition, in
order to make it closer in spirit to that of traditional approach
taken in the coding-theoretic literature for the Hamming space.
Namely, we drop the strong typicality constraints on the source
and the channel. Instead, we let the source outputs be any
binary sequences inFk

2 , while the (adversarial) channel is
allowed to flip up toδn bits.

Definition 1: A (k, n,D) adversarial JSSC code for the
BSSC(δ) is a pair of mapsf : F

k
2 → F

n
2 , g : Fn

2 → F
k
2

such that
wt(x+ g(f(x) + e)) ≤ kD ,

for all x ∈ F
k
2 and allwt(e) ≤ δn. The asymptotic fundamen-

tal limits D
∗

ad(ρ) andD∗
ad(ρ) are defined as in (7)-(8).

Note that while in channel coding the two definitions lead
to similar results (recall Footnote 3), it is not clear whether the
same holds for JSCC. For example, in Proposition 6, for even
ρ the decoding relies on the fact that the adversarymustflip
approximatelyδn bits, and if this assumption does not hold,
repetition with even expansionρ is equivalent to repetition
with expansionρ − 1 followed by channel uses that can be
ignored.



A. Information theoretic converse

Note that by Theorem 2, we have that any asymptotically
achievable distortionD overBSSC(δ) satisfies

1− h2(D) ≤ ρ(1− h2(δ)). (15)

In fact, if there exists a JSCC that achieves distortionD,
then any ball of radiusδn in F

n
2 must not contain more than

T k
Dk codewords, whereTm

r is the volume of a ball of radius
r in F

m
2 . However there exists a ball of radiusδn in F

n
2 that

contains at least2k−nT n
δn codewords. HenceD must satisfy

2kT n
δn ≤ 2nT k

Dk . (16)

Asymptotically (16) coincides with (15), but otherwise is
tighter.

B. New coding converse

The above lower bound on achievable distortionD can be
improved for a region ofδ if we consider the fact that any
JSCC also gives rise to an error-correcting code. Recalling
the cardinalityA(n, δ) defined in Section II-B, we have the
following.

Theorem 7:If a k-to-n JSCC achieves the distortionD over
BSSC(δ), then

A(k, 2Dk + 1) ≤ A(n, 2nδ + 1).

Proof: Suppose there is a codeD ⊂ F
k
2 that corrects up to

anyDk errors. LetD̂ be the image of this code inFn
2 under

the JSCC encoding. We claim that̂D is a code inFn
2 that

corrects any up toδn errors. Indeed, up toδn errors can be
reduced to at mostDk errors inFk

2 with the JSCC decoding.
These errors are then correctable with the decoding ofD.

Asymptotically, applying (4) to Theorem 7 we obtain:
Corollary 8: For the BSSC(δ) the distortionD∗

ad(ρ) satis-
fies:

RGV (D
∗
ad(ρ)) ≤ ρRMRRW (δ) . (17)

C. Achievability and converse for separation scheme

As explained in Footnote 3, the limits for channel coding
are the same for strongly typical channel and for maximum
number of flips. Thus, by Theorem 3, the asymptotic perfor-
mance of the separation schemes must satisfy

ρRGV (δ) ≤ 1− h2(D
∗
ad,sep(ρ)) ≤ ρRMRRW (δ). (18)

Remark:Note that, although the exact value ofCad or Cad

is unknown, the argument in Theorem 7 demonstrates that in
the regime of distortionD → 0, separation yields an optimal
(but unknown) performance.

Just as in Section III-C it is clear that in the caseρ = 1
separation is strictly suboptimal for allδ > 0. Comparison of
the different bounds for this case is shown in Fig. 1. Next, we
show examples of codes that beat separation for otherρ 6= 1.

D. The optimal decoder for BSSC

Let Bn(x, r) denote a ball of radiusr centered atx in F
n
2 .

For any setS ∈ F
n
2 , the radius of the setrad(S) is defined

to be the smallestr such thatS ⊆ Bn(x, r) for somex ∈ F
n
2 ,

with the optimalx’s called theChebyshev center(s)of S.
Consider some JSSC encoderf : Fk

2 → F
n
2 for the BSSC(δ).

There exists a decoder achieving distortionD for this if and
only if

∀y ∈ F
n
2 : rad(f−1Bn(y, δn)) ≤ Dk .

The optimal decoder is then:

g(y) = Chebyshev center off−1Bn(y, δn) . (19)

In other words, the distortion achievable by the encoderf
is given by

D(f, δ) =
1

k
max
y∈F

n

2

rad(f−1Bn(y, δn)) .

E. Repetition of a small code

In contrast to channel coding, repetition of a single code
of small block length leads to a non-trivial asymptotic perfor-
mance.

Fix an arbitrary encoder given by the mappingf : Fu
2 → F

v
2.

If there aret errors in the block of lengthv, t = 0, . . . , v the
performance of the optimal decoder (knowingt) is given by

r0(t) = max
y∈F

v

2

rad(f−1Bv(y, t)). (20)

Consider also an arbitrary decoderg : F
v
2 → F

u
2 and its

performance curve:

rg(t) = max
wt(e)≤t

max
x∈F

u

2

wt(g(f(x) + e) + x).

Clearly
rg(t) ≥ r0(t)

and the decoderg achieving this bound with equality is called
a universal decoder. Some trivial properties:r0(0) = 0 if and
only if f is injective,rg(0) = 0 if and only if g is a left inverse
of f , r0(v) = rg(v) = u.

Example: Any repetition codeF2 → F
v
2 is universally

decodable with a majority-vote decoderg (resolving ties
arbitrarily):

rg(t) = r0(t) =

{

0, t < v
2 ,

1, t ≥ v
2 .

From a given codef we may construct a longer code by
repetition to obtain anFk

2 → F
n
2 code as follows, whereLu =

k, Lv = n:

fL(x1, . . . , xL) = (f(x1), . . . , f(xL)) .

This yields a sequence of codes withρ = n/k = v/u. We want
to find out the achieved distortionD(δ) as a function of the
maximum crossover portionδ of the adversarial channel.
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Fig. 1. Trade-off betweenδ andD in a BSSC(δ) for ρ = 1. An identity
map (single-letter scheme) is everywhere optimal.

δ

D

ρ =3

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Eqn. (15)
Lower bound of Eqn. (18)
Upper bound on Eqn. (18)
Eqn. (17)
Eqn. (23) with v = 3

Fig. 2. Trade-off betweenδ andD in a BSSC(δ) for ρ = 3. 3-repetition
code achieves better distortion than any separation schemefor δ > 0.22

Theorem 9:The asymptotic distortion achievable byfL
(repetition construction) satisfies

lim inf
L→∞

D(fL, δ) ≥
1

u
r∗∗0 (δv) . (21)

A block-by-block decoderg achieves

lim inf
L→∞

Dg(fL, δ) =
1

u
r∗∗g (δv) , (22)

wherer∗∗0 and r∗∗g are upper convex envelopes ofr0 and rg
respectively.

Example: Repetition code:Consider using a[v, 1, v] repeti-
tion code. Since for such a coderg(t) = r0(t), the upper and
lower bounds of Theorem 9 coincide. For oddv we have:

D =
2δv

v + 1
. (23)

(Compare this with Proposition 6 for the strong-typicality
model of Section II-C.) In Fig. 2 the performance of the

3-repetition code is contrasted with that of the separation
schemes. In the same plot the converse bounds (17) and (15)
are plotted. Forδ > 0.23 it is clear that3-repetition achieves
better performance than any separation scheme.

Example: [5,2,3] linear code forρ = 5/2: Consider the
linear mapf : F2

2 → F
5
2 given by the generator matrix

(

0 0 1 1 1
1 1 0 0 1

)

.

It can be shown thatr0(t) = {0, 0, 1, 2, 2, 2} for t =
{0, 1, 2, 3, 4, 5} and there exists a universal decoderg. Thus
by Theorem 9 this code achievesD = 5δ/3. For δ > 0.22, this
is better than what any separation scheme can achieve. This
example demonstrates that in the JSSC setup one should not
always use a simple decoder that maps to the closest codeword.
In fact, further analysis demonstrates that perfect codes,Golay
and Hamming, are among the worst in terms of distortion
tradeoff.

Remark:Note that there exist [12] linear codes of rateρ−1

decodable with finite list size and capable of correcting all
errors up to the information theoretic limitn h2

−1(1 − ρ−1).
However, by the converse bound (17) it follows that the
radius of the list inFk

2 must beΩ(k) regardless of the map
betweenFk

2 and the codewords. This provides some interesting
complement to the study of the properties of lists of codes
achieving the information theoretic limit [13], [14].
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