The Adversarial Joint Source-Channel Problem

Yuval Kochman, Arya Mazumdar and Yury Polyanskiy

Abstract—This paper introduces the problem of joint source- d : S x S — R.,. The distortion between a source strisfy
channel coding in the setup where channel errors are adversal  and a reproductiog” is given by:
and the distortion is worst case. Unlike the situation in the

case of stochastic source-channel model, the separationipeiple 1 k

does not hold in adversarial setup. This surprising obsenton kogky & L oAl

demonstrates that designing good distortion-correcting ades d(s”,5) k Z;d(s-”s])' (1)
j=

cannot be done by serially concatenating good covering cosle
with good error-correcting codes. The problem of the joint @de ) ) .
design is addressed and some initial results are offered. In the stochastic setting, a(k, My, D)-source code is
specified by a surjective map : S* — C for someC C S*
such thatlC| = M}, and the expected distortion is at mdst
One of the great contributions of Shannon [1] was creatiavhere the mean is taken wits* ~ P* (memoryless source).
of tractable and highly descriptive stochastic models fa& t The rate of the source code is defined Byx - log M;, and
signal sources and communication systems. Shortly afier, Asymptotically, the best possible rate for the distortidris
work was followed up by Hamming [2], who proposed ajiven by [3]:
combinatorial variation of the channel coding part. Thisneo

|. INTRODUCTION

binatorial formulation has become universally acceptethé R(P,D) 2 min 1(S;9) .
coding-theoretic community. Similarly, for the case ofdps Pgs:E[d(S,9)]<D

compression Shannon [3] proposed a stochastic model and the

rate-distortion formula, while shortly after Kolmogorowlf In the adversarial setting, source setF C S* is selected

lowed up with a non-stochastic definition of thentropy [4]. and then the smallest cardinality of a covering Bf upto
The research that followed demonstrated how both ways diktortion D is sought; cf. [4]. Here we restrict ourselves to
thinking, stochastic and combinatorial, naturally comméat the case ofF being the set of all source sequences that are
each other, reinforcing intuition and yielding new results  strongly typicat with respect to the source distributidn

To the best of our knowledge, in the setup of joint source- The adversarialk, My, D) source code is defined by a
channel coding, however, only the stochastic approach hasllection of M, points C C Sk such that for anyP-
been investigated so far, starting with [1], [3]. This papens  typical source sequence there exists a point* in C such

to fill in this omission. that d(s*,s*) < D. The asymptotic fundamental limit of
In Section Il we define the adversarial separate source agdlersarial source coding is defined to be

channel coding problems and present known results about
them. Then, we build on these definitions to define the
adversariajoint source channel codin@SCC) problem. Next,

in Section Il we prove asymptotic bounds on the performance -adversarial source cofle

limits of adversarial JSSC codes. It turns out that the catekl

separation principle [1], [3] does not hold in the adveariNot only does this limit exist, but remarkably it coincidegiw
model. Therefore, the problem of constructing asympttifica R(P, D):

optimal adversarial JSSC codes requires a joint approachTheorem 1 (Berger's type covering [6]):

and cannot be solved by combining good compressors with

1
Raa(P,D) £ Jlim - log max{Mj : 3(k, My, D)
—00

good error-correcting codes. In Section IV we focus on the R.i(P,D) = R(P, D).
binary case and propose methods for designing such codes
and analyzing their performance. As an example, tak&s = S = F, and P is the uniform
distribution, with the Hamming distortion measure. It iokm
[1. PRELIMINARIES that

A. Source coding

A source problem is specified by a source and reproduction
alphabetsS, S, a distribution” on S and a distortion metric

Roa(P,D) = R(P,D) = 1~ hy(D),

wherehy(z) = —zlogx — (1 — x)log(1l — x) is the binary
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B. Channel coding with h(z) = hy(1/2 — 1/2y/T—2z), and the Gilbert-

A channel problem is specified by infuind output alpha- Varshamov bound [9] is
bets X, ¥, and a conditional distributiofl” : & — Y. _ Rev(8) = 1 — hy(20). (6)

In the stochastic setting, afn, M, ¢)-channel code is .
specified by a pair of mapé : {1,...,M} — x" and C. Adversarial JSCC
g: V" —{1,...,M} such that A JSCC problem is specified by:

Plg(Y™) = i| X" = f(i)] > 1 —e, i=1,.... M,  Adversarial sourceS, S, Pg, d(-,-)
- o Adversarial channelt’, J, Wy x.

wherePy» x» = W™ (a memoryless channel). Thate of the At source and channel blocklengthis ), a JSCC scheme is
code is defined ag/» - log M,, and asymptotically the largestgpecified by:

achievable rate is given by Shannon capacity [1]: « an encoder mag* — A" from the source to channel

C(W) = max I(X;Y). input: 2" = f(s). )
Px « a decoder map" — S* from the channel output to
In the adversarial setting, for each input sequetite X™ reconstructions® = g(y").

the channel output may be arbitrary within a subsey6fWe We say that a JSSC scheme (i,n, D) adversarial if for
choose this set to bd(z") C S", the set of strongly typical all P-typical source sequenc€ and corresponding channel
sequenceg™ given z" with respect toW. The adversarial outputsy” € A(f(s*)), d(s*, g(y™)) < D.

(n, M) channel code is defined as a collectionidf, points ~ The asymptotically optimal tradeoff between the achiesabl
C C & such that for any pair of different points’, 2" € C,  distortion and the bandwidth expansion factor= % is given
A(z™) N A(z") = 0. The asymptotic fundamental limits ofpy

adversarial channel coding are defined to be s
) D, .(p) =limsupinf{D : 3(k, | pk|, D)
— A . . k—o00
Caa(W) = hff;ip 7108 max{My : 3(n, M) adversarial JSCE, 7
-adversarial channel cogle (2) D:.(p) = likm inf inf{D : 3(k, | pk], D)
1 o
CLa(W) 2 liminf — log max{M,, : I(n, M,,) adversarial JSCE. (8)
n—oo N
-adversarial channel cofle 3 As in the source and channel cases, we use the stochastic

. o setting performance as a benchmark. In this setting, theceou
Note that because the limits are not known to coincide f%rn channel are i.i.d. according = Ps and W = Wy,
d.U. — — YIX»

P(:\?vsetr (I:irrfi?snels of interest, we have to define both upper 55\92 the requirement is for expected distortion to be at most
. ) — . It is well known that anyk-to-n stochastic JSCC must satisf
It is known thatC',4 (W) < C(W). Furthermore, in contrast 3]| W W W-to-n I N S
to source coding, this inequality is known to be strict in thL} '
next example.
The most studied case of the adversarial channel codingnsthe asymptotic limit this can be approached, yielding the
that of a binary symmetric channel with crossover probgbiliasymptotic fundamental limit:
J, BSCQ). Let A(n,d) be the cardinality of a largest setlit§ I .
with minimal Hamming distance between any pair of elements D*(p) = inf{D : R(P, D) < pC(W)}.

k-R(P,D) < n-C(W). 9)

not smaller thani. We havé: D. The separation principle
Ca = limsup 1 log A(n, 2nd + 1) We say that arn(k,n) JSCC scheme is separation-based if
n—oo M ' ' for some spacé1 (“the message space”) the encoder consists
and similarly forC,,. Therefore, by the classical results oPf @ source encodefs : S* — M and a channel encoder
A(n,d): fc : M — &™. The decoder consists of a channel decoder

. gc : Y" — M and a source decodeévl — S*. Furthermore,
Rav(0) < Cuq(6) < Caa(d) < Rurrw (0) < C(6), (4)  following e.g. [10] we introduce a bijection : M — M that
where the MRRW 1l bound [8] is is applied at the encoder and reversedl in the decoder, which
is meant to ensure that there the mapping of source messages

Ruyrrw(6) = min 1+ h(a®) —h(a®+46a+46), (5) to channel ones is arbitrary. The encoder and decoder ase thu
0<a<1—45 given by
2A cost function onX may also be present. We omit it to save space. f=fsooofo;g=gco clo gs (10)

STraditionally, one considers the case when the adversdrgdsto choose
noise vectors satisfyingwt(e) < on, whereas in our setting the typicality \yhere performance is required to hold fmny bijection c.

constrainswt(e) = dn £ o(n). This is asymptotically immaterial, since in Th . " limi f th .
Hamming space two spheres of the same radius are disjoindibaly if the e asymptotic performance limits of the separation

corresponding balls are. schemes are denotedﬁ%d_’sep(p) andD;; ..,(p) and defined



in complete analogy with (7) and (8). In the stochastic sgiti C. Binary example

the asymptotic performance of the optimal separation sehem \we now combine the binary examples presented in sections

coincides with D*(p) and thus does not need a specigl.A and II-B: the source is binary symmetric with Ham-

notation. ming distortion, and the channel is BS{(The information-
theoretic optimumD*(p) is given by the solutiorD to:

1 —hs(D) = p(1 —h2())

We start this section with an immediate lower bound on t%henever the rh.s. is lower than one. zero otherwise. Bound

fundamental limit of adversarial asymptotic distortion. on the performance of separation-based schemes are given by
Theorem 2 (Converse): the solutions to:

IIl. BOUNDS ON ADVERSARIALJSCC

D:a(p) = D(p). 1 —hy(D) = p- Rmrrw ()
Proof: Any adversarial JSCC can be used as a usual L= hy(D) = p- Rav(9),
(probabilistic) JSCC, in which case by typicality argunsentvhere again the bounds are zero for r.h.s. above one. Since
it will achieve (maximal) distortionD with vanishing excess mrrw < 1 — h(d) for all & > 0, it follows that
probability (namely, we assume excess distortion whertieer Do, sc, () > D*(p) strictly whenevep Ry rrw (6) < 1.
source or channel behavior are not strongly typical). Thus For p = 1 the optimumD*(1) is achievable by a trivial

must not be smaller thab*(p). m Single-letter scheme (namely, the identity encoder and de-
coder). Therefore, fop = 1 and anys > 0,
A. Separated schemes D*(1) = D} 4(1) < Dji g cep(p)-
Theorem 3 (Separated schemel):R(P, D) > pCoq(W) For other values of), separation may also be suboptimal:
then

. Proposition 6: For any positive integep, repetition coding
Daasep(p) 2 D (11) (i.e., =™ is constructed byp repetitions of s*) achieves
asymptotically:

If R(P,D) < pC,,(W) then 2p6
. Drep(p) = T+, (14)
Dad,sep(p) S D. (12) p -
By (4) and Theorem 3, it is easy to see thaf, ..,(p) =
We will show shortly, that (11) demonstrates (in speci D, .p(p) = 1/2 whenevers = 1/a. Thus, comparing
cases) thaDy, .., > D7, with (14) and by continuity for any positive integgrthere is
an interval of for which simple repetition coding outperforms
B. Single-letter schemes any separation-based scheme.

Another special class of JSCC schemes is single-letter V. BINARY SYMMETRIC SOURCECHANNEL (BSSC)
codes. In that case, the mappingié) and () are scalar, |n this section we slightly change the problem definition, in
and when applied to a block they are computed in paraligider to make it closer in spirit to that of traditional apach
for each entry. Some examples where single-letter schemgigen in the coding-theoretic literature for the Hammingcsp
yield the optimumD* have been known for a long time, andyamely, we drop the strong typicality constraints on therseu
Gastpar et al. [11] give the sufficient and necessary camtiti and the channel. Instead, we let the source outputs be any

for that to hold. binary sequences iff§, while the (adversarial) channel is
Theorem 4:1f in the stochastic setting a single-letterallowed to flip up todn bits.
scheme achieves sondgy;, then Definition 1: A (k,n,D) adversarial JSSC code for the
BSSC(5) is a pair of mapsf : F5 — F%, g : F} — F%
Doy(1) < Dg. (13) such tfgaz i sl + 1 SR ’
We omit a simple proof of this result, but its essence will wi@ +g(f(z) +e) < kD,
be clear from the example in the next section. for all = € 5 and allwt(e) < dn. The asymptotic fundamen-
Corollary 5: Whenever single-letter codes are optimal i@l limits D, ,(p) and D;,(p) are defined as in (7)-(8).
the stochastic setting, i.el),; = D*(1) we have Note that while in channel coding the two definitions lead
to similar results (recall Footnote 3), it is not clear wheetthe
ﬁ:dg) = D*,(1) = D*(1). same holds for JSCC. For example, in Proposition 6, for even

p the decoding relies on the fact that the adversanstflip
Using Theorems 3 and 4, one may find examples approximatelyin bits, and if this assumption does not hold,
which single-letter schemes achieve* while separation- repetition with even expansiop is equivalent to repetition
based scheme do not, leading to the surprising conclusain tvith expansionp — 1 followed by channel uses that can be
separation is not optimal in the adversarial setting. ignored.



A. Information theoretic converse D. The optimal decoder for BSSC

Note that by Theorem 2, we have that any asymptotically Let B,,(x,r) denote a ball of radius centered atr in 3.

achievable distortioD over BSSC(d) satisfies For any setS € 7, the radius of the setad(S) is defined
to be the smallest such thatS C B,,(x,r) for somez € Fy,
1 —hy(D) < p(1 = ha(6)). (15) with the optimalz’s called theChebyshev center(sf S.

Consider some JSSC encoderF5 — F% for the BSSCY).

In fact, if there exists a JSCC that achieves distortldn There exists a decoder achieving distortibrfor this if and
then any ball of radiugn in F% must not contain more than only if

Tk, codewords, wherd™ is the volume of a ball of radius
r in F5*. However there exists a ball of radida in F3 that
contains at leas2* "7 codewords. Henc® must satisfy The optimal decoder is then:

Yy € Fy :rad(f B, (y,0n)) < Dk.

kT < 2" T, (16) g(y) = Chebyshev center of ' B,,(y,6n).  (19)
Asymptotically (16) coincides with (15), but otherwise is In other words, the distortion achievable by the encagfler
tighter. is given by
B. New coding converse D(f,0) = %m%xrad(f_llgn(y,én)).
yelry

The above lower bound on achievable distortioncan be
improved for a region ob if we consider the fact that any
JSCC also gives rise to an error-correcting code. Recallingin contrast to channel coding, repetition of a single code
the cardinalityA(n, ) defined in Section II-B, we have theof small block length leads to a non-trivial asymptotic perf

E. Repetition of a small code

following. mance.
Theorem 7:If a k-to-n JSCC achieves the distortidn over Fix an arbitrary encoder given by the mappihgFy — F5.
BSSC), then If there aret errors in the block of length, t =0,...,v the
performance of the optimal decoder (knowit)gs given by

A(k,2DEk+ 1) < A(n,2né + 1).
ro(t) = maxrad(f !B, (y,1)). (20)

Proof: Suppose there is a codeC [FX that corrects up to vels
any Dk errors. LetD be the image of this code ifi; under Consider also an arbitrary decodgr: F; — F% and its
the JSCC encoding. We claim th@t is a code inFy that performance curve:
corrects any up t@n errors. Indeed, up tén errors can be
reduced to at mosbk errors inF4 with the JSCC decoding. 7¢(t) = max maxwt(g(f(z)+e) + ).
These errors are then correctable with the decodinf.ofm wile) St =€F

Asymptotically, applying (4) to Theorem 7 we obtain:  Clearly

Corollary 8: For the BSSG) the distortionD;, ;(p) satis- re(t) > 70(t)

fies:
and the decodey achieving this bound with equality is called

auniversal decoderSome trivial properties:,(0) = 0 if and
only if f is injective,r,(0) = 0 if and only if g is a left inverse
of f, ro(v) =r4(v) = u.

As explained in Footnote 3, the limits for channel coding Example: Any repetition codeF, — FY is universally

are the same for strongly typical channel and for maximugiecodable with a majority-vote decoder (resolving ties
number of flips. Thus, by Theorem 3, the asymptotic perfogypitrarily):

mance of the separation schemes must satisfy

Rav(D}4(p)) < pRryrrw (6) (7)

C. Achievability and converse for separation scheme

0, t
PRV (6) < 1= bo(Dig ey (p)) < pRarrrw (6).  (18) rolf) = rolt) = {1, '

)

e Nl

<
2

From a given codef we may construct a longer code by

Remark:Note that, although the exact value @f,; or Clod - ) i
repetition to obtain aii’; — Fy code as follows, wheréu =

is unknown, the argument in Theorem 7 demonstrates that
the regime of distortioD — 0, separation yields an optimalk’
(but unknown) performance. _

Just as in Section IlI-C it is clear that in the cgse= 1 fe(@r--son) = (F @), flaw)).
separation is strictly suboptimal for all> 0. Comparison of This yields a sequence of codes wjth= »/k = v/». We want
the different bounds for this case is shown in Fig. 1. Next, we find out the achieved distortioRP(J) as a function of the
show examples of codes that beat separation for gilérl. maximum crossover portioh of the adversarial channel.

V= n.



Eqn. (15)
Lower bound of Egn. (18)
— = Upper bound of Eqgn. (18)
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Fig. 1. Trade-off between and D in a BSSC§) for p = 1. An identity
map (single-letter scheme) is everywhere optimal.
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Fig. 2. Trade-off between and D in a BSSC§) for p = 3. 3-repetition
code achieves better distortion than any separation scli@me> 0.22

Theorem 9:The asymptotic distortion achievable bfy,
(repetition construction) satisfies

liminf D(f1,d) > lré*(&v). (21)
L—oo u
A block-by-block decodey achieves
. . 1 *k
thl)loIéf DQ(.va 5) = Erg (5’0) ) (22)

whererg* andr;* are upper convex envelopes af andr,
respectively.
Example: Repetition cod€onsider using v, 1, v] repeti-

tion code. Since for such a codg(t) = ro(t), the upper and

lower bounds of Theorem 9 coincide. For oddve have:
p- 20V (23)
v+1

3-repetition code is contrasted with that of the separation
schemes. In the same plot the converse bounds (17) and (15)
are plotted. Fow > 0.23 it is clear that3-repetition achieves
better performance than any separation scheme.

Example: [5,2,3] linear code fop = 5/2: Consider the
linear mapf : F2 — 35 given by the generator matrix

(10 1)

110 0 1

It can be shown that((t) = {0,0,1,2,2,2} for ¢ =
{0,1,2,3,4,5} and there exists a universal decoderThus

by Theorem 9 this code achiev&s= 5/3. For¢ > 0.22, this

is better than what any separation scheme can achieve. This
example demonstrates that in the JSSC setup one should not
always use a simple decoder that maps to the closest codeword
In fact, further analysis demonstrates that perfect ca@defay

and Hamming, are among the worst in terms of distortion
tradeoff.

Remark:Note that there exist [12] linear codes of rate!
decodable with finite list size and capable of correcting all
errors up to the information theoretic limithy, ~* (1 — p=1).
However, by the converse bound (17) it follows that the
radius of the list inF5 must be(k) regardless of the map
betweeriFs and the codewords. This provides some interesting
complement to the study of the properties of lists of codes
achieving the information theoretic limit [13], [14].
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