On Uncoded Transmission and Blocklength

Yuval Kochman
School of CSE, HUJI
Jerusalem, Israel
Email: yuvalko@cs.huji.ac.il

Abstract—This work considers the definition of the excess-
distortion exponent, used to measure the asymptotic finitelbck-
length behavior of joint source-channel coding. We arrive &the
conclusion that it is not a meaningful measure for the operabnal
tradeoffs of a scheme. We propose a new definition, which magke
a distinction between the processing block of the coding seme
(which implies delay and may be connected to complexity), #
fidelity blocklength (reflecting the quality of the reconstruction
as required by the application), and the resource blocklentp
(depending on hardware or shared medium considerations). &

an aside, the exponent of uncoded schemes is analyzed. Thisgoyrce blockS

results in finding the joint source-channel coding excessistortion
exponent in some cases where it was not known previously.
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LetS, S, X and be the source, reconstruction, channel in-
put and channel output alphabets, respectively, all assume
be finite. The source is defined by some i.i.d. distribufiofi)
and a non-negative single-letter distortion measd(§, S).
The channel is defined by a conditional distributiofl”| X)
and a non-negative cost functietiX). All of these quantities
are defined over the obvious alphabets. bet = (f.n, gm)
be a JSCC scheme of lengih: the encoderf,, maps a
= S7* into channel inputsX = X" while
the decoder,, maps a block of channel outpu¥ = Y
into the reconstructio = 57".2

We can further consider the concatenation of many

Shannon’s separation principle establishes that there is [ocks and obtain infinite-duration procesdes}, {S}, {X},

loss in the conceptually and practically convenient decosip

{Y'}. The scheme parses the procésg into m-blocks that

tion of the transmission problem into digital compressiod a We denote as processing blocks. Regardless of this pavseng,

communication problems: in the infinite-blocklength linthe

can check whether the JSCC scheme satisfies the distortibn an

expected distortion of a separation-based scheme is dptird@st constraints with respect to the processes. Speayfitiadi

among all schemes. This optimal expected distortiDi
satisfiesR(D*) = C.t

In spite of the optimality of separation in the asymptotic 1

expected-distortion sense, joint source-channel codiBEC)

is the focus of ever-growing research. This is largely due to
the sub-optimality of separation in network settings andeaisn Similarly.

channel uncertainty; however, even in a point-to-poinhace

with full channel knowledge, JSCC is advantageous in terms 1

of finite-blocklength performance.

It is long known that for some combinations of source

statistics, channel statistics and distortion measuneoded

transmission (i.e., the encoder and decoder process ea
sample independently) can also achieve expected distort
D*; see e.g. [1] for the white quadratic-Gaussian case. Gast|

et al. [2] have found necessary and sufficient conditions
this fortunate situation where uncoded schemes are opti
for memoryless finite-alphabet sources and channels.

An alternative to the expected distortion measure is giv
by the concept oéxcess-distortion probabilifyoorrowed from b
lossy source coding [3]: the situation where the distorti
exceeds some prescribed threshold is seen as an error ev

and the relation between the threshold, the probabilitytaed

distortion of thefidelity block (indexed by its lengthm and
locationnyg) is a time-average of the single-letter distortion:
no+n

> d(Si,S)

1=no+1

dnno ({8}, {5}) = 1)

n
the cost of theesource blockis a time-average of

the single-letter cost:
ko+k

Z Y(Xi) -

i1=ko+1

Vieko {X}) = z 2

As quantifying the exact tradeoff between the blocks
fé‘arametrized bym, n, k, ng, ko), the distortion and cost
tAresholds and the probability of failure is a very compkch
Bk, it is plausible to consider the asymptotic behavidhi

r‘;_fg‘rit of long blocks. The JSCC excess-distortion exponeet,

ed for discrete memoryless source-channel pairs by &sisz
%] and extended to Gaussian source-channel pairs by Zhong
al. [5], takes the processing, fidelity and resource tddok
e the samen = k = m andng = kg = 0. Then, having a

%ngle blocklength, the exponent gives the rate of decahef t

ess-distortion probability as the blocklength incesagor
a fixed distortion threshold.

blocklength is studied. Formally, we can define the problem

as follows.

This work was supported in part by NSF under Grant No. CCF/I02,
AFOSR under Grant No. FA9550-11-1-0183, and by HewletkBat Labo-
ratories.

1Sometimes this is referred to as the “OPTA".

2We exclude the case where the number of channel uses diftars the
source blocklength, since it is not needed for the main ngesséthis work.

3An alternative approach is the JSCC dispersion [6] where féilare
probability is held fixed, while the threshold is allowed tbaoge. Due to
space constraints, we do not consider dispersion in thisrpapt most of the
conclusions regarding the exponent are valid for both.



Uncoded transmission is of special practical importancehereq is a distribution overS, R, (D) is its rate-distortion
As mentioned above, it can achiey#", the optimum in the function andD(:||-) is the divergence. The channel sphere-
expected sense. But what is the JSCC exponent of uncogedking exponent [7] is
transmission? In terms of the definitions above, such a sehem

1 Sp _ .
has processing blocklength = 1, which is in contradiction to E*(R,T) = ¢:Erf(35)(§p U:I(%%SRD(UHMW ’ 7

settingn = =m and considering asymptotics. The natur%lvherw is a distribution overt andD(-||-|-) is the conditional

workaround is to define am-dimensional scheme as one veraence. The channel random-coding exoonent is aiven b
operating independently over each symbol, and then apply t(fl1 9 ‘ g exp 9 y

exponent framework. As this procedure assigns an incrgasing™(R ') = max min|D(v||w|¢) + |I(¢,v) — R|T| |
processing blocklengthn to a scheme that operationally ¢:Eg(v)<I v g
has processing blocklength one, it clearly cannot refleet th (8)

\Mwere| -|T means limiting to non-negative values. The critical
rate R“" < C'is the rate threshold above whidi"(R) =
SE;SP(R). The achievable channel exponent is given by:

true tradeoff between that blocklength and performance.
particular, it obscures the advantage of using a short peicg
blocklength. Indeed we demonstrate, that while in somesca
following this procedure shows that uncoded transmission E%(R,T) :maX(Er(R’F)vEI(R’F)) (9)
achieves the optimal exponent (including cases where the
exponent was not previously known), in others it is infetior where £*(R,T) is the expurgated error exponent [8]. The ex-
digital schemes. purgated exponent is higher than the random-coding expgonen
Since the unnecessary coupling between the processifoy,rates belowRr” (which, in turn, is at mosR*"). We do not
fidelity and resource blocklengths prohibits one from dagv give the expressions fag* and R* due to space limitations.
meaningful operational tradeoffs, we conclude the paper byThe bounds on the exponents (4) are summarized in the

suggesting an alternative definition. following.

Theorem 1:Bounds on the JSCC excess-distortion expo-
1. NOTATION AND BACKGROUND nents [4]

A. JSCC Exponents — =
Recall that for the sake of the JSCC exponent, the process- E(D,T) < E(D,I') < E(D,T) < E(D,T)

ing, fidelity and resource blocks are the same. Consequentere

we can treat distortion and cost violations in a unified manne E(D,T) = iréf [F(R, D) + E“(R, F)} (10)
for some threshold$D,T"), we consider the case where a .
schemeh,, has either excess distortion or a cost violation as E(D,T) = i%f [F(R, D) + E*P(R, F)} (11)

an “error”. The error probability is thus: S N
If (10) is minimized by some&Rk above the channel critical

€(hn, D,T) = Pr{dn0({S},{5}) > D or v,0({X}) > T},  rateRer, then the limits coincide and the exponent (5) is well-
_ _ (3) defined. This happens when the distortion threshblis not
whered,, ,, and-y x, were defined in (1), (2). too far aboveD*, i.e. D < D° for somectitical distortion
LetH = {h, : n=1,2,...} be some sequence of schemegycr

The upper and lower excess-distortion exponents are defineghe pound (11) may be re-written as minimization over

as [4]* source types rather than over rates, as follows: (a sinekult
E(D,T) = sup lim sup 1 loge(hy,, D,T) holds fOF_(lO) as well)
oo E(D,T) = inf [D(q]lp) + B (R,(D), )] (12)
E(D,T) = supliminf —=loge(hn, D,T) . (4) _ “ _
H o onooo N We define a separation-based scheme as one that is com-
When these two are equal, then the following limit exists arifised of source and channel parts, separated by a a digital
the JSCC excess-distortion exponent is well-defined: interface between the source and channel parts which has
1 fixed rate and isarbitrary. The first requirement forbids an
E(D,T) = nli_}n(los%p—ﬁloge(hn,D,F) . (5) interface where the rate depends on the source sequence,

_ while the second means that we cannot count on “close”
These JSCC exponents can be bounded in terms of soujgantized source points being mapped to “close” channel

and channel exponents as follows. The source excessitistorinputs; for a formal definition see e.g. [6]. We note that

exponent [3] is although the achievability proof of the lower exponent in
F(R,D)= inf  D(qllp), (6) [4] is based on an unequal error protection (UEP) scheme

¢:Ry(D)>R N . o .

which is fully digital, it is not separation-based, as the

4Csiszar's original definition assumes no channel inpustaimts. Zhong SOUrce-channel interface has source-dependent rate.ctn fa
et al. [5] needed to impose a constraint for dealing with icoiaius alphabets; except in some degenerate cases, the lower exponent is
they chose, similar to the definition of the channel-codirgoment, to require estrictly higher than the exponent achieved by any sequence

each block output off,, to satisfy the constraint. Our definition leads to th .
same results, since a post-encoder device may convertigitdainto errors.  Of separation-based schemes.



B. Symmetric Source-Channel Pairs that achieves the optimum expected distortibfi. Since an

Symmetric sources and channels allow the exponent expr@Btimal uncoded scheme must be “information lossless” [2],
sions to be simplified, and will be used in the sequel. Thek&- (5,5) = I(X,Y), direct mappings capture the essence
are several definitions for a symmetric channel, out of whi@f such schemesin the next sections, we show when direct
we choose Gallager’s definition [8, p. 94]. We also define aPpings that achiev®™, are also optimal in the sense of
symmetric source in a dual way. exponent.

To that end, a matrix is said to l®ymmetricif it can be
divided column-wise into sub-matrices, where in each su
matrix all columns are permutations of each other and all For symmetric pairs, the uncoded scheme exponent (15)
rows are permutations of each other. A source is symmetricsipecializes to (assuming the use of direct mapping):
the distortion-measure matrix (where rows are indexed by th
source value and columns by the reconstruction) is symenetri Epwn(D) = inf  D(v[w[p)]. (16)
and the source distribution is uniform. A channel is symietr viBd(5,5))>D
if the transition matrix (where rows are indexed by the inputhe following result connects optimality of an uncoded
value and columns by the output) is symmetric and the cagtheme in the expected distortion sense, to optimality én th

6\_. Optimality of Uncoded Schemes for Symmetric Pairs

is uniform. excess-distortion sense.
Lemma 1:For a symmetric sourceR,(D) is maximized  Theorem 2:For a symmetric source-channel pair, assume
by the uniform distribution, thus that there exists an uncoded schelmiat achieved*. Then
) the JSCC excess-distortion exponent exists, is given by, (14
Fy(R.D) = 0 if Ry(D)< R (13) and is achieved by the scheme.
oo otherwise Proof outline: For simplicity, consider the compatible case

For a symmetric channel, the conditional divergenc\ghereh is a direct mapping, then we need to show that (14)

D(v||w|¢) is independent ofs and the optimal input distri- and_(1_6) are equivalent. In this case, nec_e_ssariisthe RDF_—
bution for the channel capacity as well as for the exponerft§hi€ving channel. The necessary condition [2] reducesen t

E®*(R) (7), E (R) (8) and E* (R) is uniform. symmetric case to:
We define a symmetric source-channel pair as the com- w(Y|X)

— —c-d(X,Y)+kVX € XY €D,

bination of a symmetric source with a symmetric channellogm =
Yy

Combining the lemma above with (11) we have that for a
symmetric pair: wherec > 0 and k& are normalization constants. However,

= these “local” properties do not suffice, as the exponent may
be governed by an empirical channeffar from w. To that
end, we first notice that the optimalmust lead to the same
marginal onY” asw, and then that for any sucih

Epu(D)= BY(Ry(D) = min  D(vluls) (14)

where¢ is uniform.

I, THEJSCC EXPONENT OFUNCODED TRANSMISSION

Any uncoded schemke = h; = (f1, g1) induces a sequence
of schemes/, formed by independently applying on each |n light of this, the minimizations (14) and (16) are indeed
source sample and channel output. We define the exponestigivalent.
of an uncoded scheme as in (4), with respect to the sequencgomparing to the result of Theorem 1, we see that for
#. In order to evaluate these quantities, tf,(X) and p > pe optimal direct mapping has a better exponent
¥u,n(S]S) be the channel input distribution and the reprodughan E achieved by Csiszar's UEP scheme, and it closes
tion conditional distribution, induced by the source diBttion the gap between the lower and upper exponents. For lower

D(v||lwlp) = I(p,v) + ¢ Eppd(z,y) + k.

q(X), the channel distribution(Y'|.X) and the schemé. D, however, the two approaches yield the same exponent. It
Proposition 1: The excess-distortion exponent of an Un jnteresting to note, that in the symmetric case the digita
coded schema is given by: scheme does not require any unequal error protection, but

Epwn(D,T) = inf [D(q||p) + D(v|w|¢gn)] (15) reduces to a separation-based scheme.
avEL Examples for symmetric pairs where an optimal uncoded
where the admissible distribution region is given by: scheme exists include uniform source with difference dis-

A tortion measure, sent over an unconstrained modulo-additi
L=L(DT)=1qv:Eyy,,dS 5) <D, By, ,y(X) < T} channel, where the distortion measure and noise distoibuti

The proof is a direct consequence of Sanov’s Theorem. (gree”, e.g., binary-symmetric source and channel witmHa
special interest is the case where the source and channelmatieg distortion. We choose to present a different case, as
compatiblei.e., X =S and)y = S, and the scheme idirect follows.

mapping i.e., the encoder and decoder are giveryby) = S _ _ _
5In general, optimal uncoded schemes may include operasoich as

andg(AY) =Y, re:SpeCtively' In this Caséqv.h (X) = q(X) ?‘nd randomly mapping the same source symbol to some two chanpetsiz;
Yo (S]S) = v(5]S5). Recall that an optimal scheme is on@ndzs, if w(Y|X =z1) = w(Y|X = 22).
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Fig. 1: Erasure exponents as a functionoffor ¢ = 0.5. Fig. 2: Constrained erasure exponents as a functiob édr
Solid black curve is the JSCC exponeitR) according to e = 0.3, p = 0.3 andT’ = 0.6. Dash-dotted red curve is direct
Theorem 2. Blue dashed curve is the lower exponent accordimgpping exponenE*?(R) according to Proposition 1. Blue
to Theorem 1. It becomes dotted in the expurgated regiatgshed curve is the lower exponent according to Theorem 1.
where the lower exponent was not evaluated. It becomes dotted in the expurgated region, where the lower

exponent was not evaluated. Solid black curve is the upper

Example 1:Symmetric binary erasure source-channel exponent according to the same theorem.
pair. Let the source be uniform ovéf, 1}, the reconstruction )
alphabet be{0, 1, B} and the distortion measure be erasureC. The Effect of an Input Constraint
Introducing a channel input constraint (via a non-uniform

) 0, S =5 cost function) reveals another limitation of uncoded sceem
d(s,8)=491, S=B (17) In a digital scheme, a random codebook which satisfies the
oo, otherwise. constraint in average, may be always replaced by one in

) _which each individual codeword satisfies the constraint (by
Let the channel be a binary erasure channel (BEC) with thg,rgation arguments); in fact, the random-coding expbne
same alphabets (where the erasure symbaB)sand with g 5chieved by a single-decomposition codebook, see €.g. [9
uniform cost. It is easy to see that the optimal expected, wo gther hand, if an iid. source is mapped directly to
distortion D* equals the erasure probabilityand that direct e channel inbuts. then an input sequence of anv lenath has
mapping is optimal. By Theorem 2, the JSCC excess—distortig1 PUts, i np quen y leng
exponent isE(D) — Dy(D|¢) where D, is the binary some probability of preaklng the constraint. Furthermm,_
divergence: uncoded scheme might not use the channel well, i.e., might

work with an input cost that ifower than the constraint. We

(18) demonstrate this in the following.

Example 2:Constrained symmetric binary erasure
source-channe pair.We change Example 1 in the following
way. We add a third input symbdl = B, with w(B|B) =€

E(D) = min {Dy(|le) +|D —€[*log(2)}, and w(1|B) = w(0|B) = (1 —¢€)/2. Sincew(Y|X = B)
- e<e’<D equals the distribution ot” under the optimal (symmetric)
input distribution on(0, 1), this additional input is “useless”.
E)r(ﬁﬁne the cost function(0) = (1) = 1, v(B) = 0, then we

ave thatC(T') = T'(1 — €). We also add to the source a third
letter S = B, with d(B,Y) = 0 for all Y, thus this source
letter is “insignificant”. LetB have probabilityl — p, while 0
and1 have probabilityp/2. The RDF of this source is given

For channels that are not symmetric, the optimal (exponebly R(D) = p(1 — D). It is easy to see that fgr = I, direct

achieving) input distribution may be rate-dependent, dred tmapping achieves the optimum* = .
same also applies for the test channel that the source code m&onsidering the exponent, note that for any finite block
terializes. For such settings the UEP scheme has the irthedength, the probability of direct mapping to break the input
advantage that the digital codes may be adjusted according®st constrainf® = p is about1/2, thus this scheme has a
the rate required by the source type. However, these scher&@¥ €xponent! A non-zero exponent can be achieved when
may still be inferior above the critical distortion, wheneth direct mapping is not optimal, i.e., V_Vhéh> p. In that case,
sphere-packing bound is not known to be tight. An uncoddlfect mapping will achieve foD > e:
scheme may therefore perform better or worse than the bo

(10), depending on the distortion threshold. [Do(qllp) +q- Db(D|6)]} :

1—a
1-0
For comparison, the random-coding exponent gives:

Dy(allb) = alog% +(1-a)log

for any D below the expurgation regimé& < 1— R"(¢)/10g(2).
The gap between the optimal exponent and the lower expon
is demonstrated in Figure 1.

B. Asymmetric Pairs

“09 (D) = min {Dbmp),

min
p<q<T’



This reflects a loss compared to the lower exponent: the upper exponent. Furthermore, we have shown an example
— . q where, while the single-letter scheme fails, a variant dloies
Ep(D,T) = min [Db(fJHP) +1'- Dy (1 —pd- D)HE)} » achieve the upper exponent.

, B Considering the cases where the exponent of the optimal
and indeed may be even worse than the lower exponent gy@{zoded scheme is worse than that of the UEP scheme, we
anEEd by2Tf|1De_0retm 1 fo_r someh_or ;%rié)l, at‘ﬁ de_rtnﬁnstrated argue that this happens only because of the definition of the
In Figure 2. Uirect mapping achieves = c, thus it has zero exponent. After all, the uncoded scheme always operates at

exponent forD < e. The digital UEP scheme, in contrast, can . .
usg the channel input witgh COEL resulting inD — 0. For processing blocklengthh = 1, while the UEP scheme needs

high distortions, the exponent of direct mapping is limited a long processing blocklength. It is true, that the uncoded
that of the source weight being higher than scheme may require larger fidelity blocklengthor resource
blocklengthk, in order to average over the randomness of the

V. OPTIMAL SCHEME FOR THECOST-CONSTRAINED source and channel. These blocklengths have a very differen
ERASUREPAIR significance, and there is no operational reason to equate

Although in the example above an uncoded scheme ddBgm as the exponent definition [4] does. This equating of
not achieve the upper exponent, we show that a modificatiBlpcklength may be legacy from digital (separate source and
of it does. This approach may be extended to apply to otHdannel) problems, where such an operation does not ingur an
cases of logarithmic distortion measures (see [10]), bettdu l0ss; for example, expurgation of channel codebooks avoids
space constraints we do not define these here. input constraint violations altogether, while keeping tiage

Theorem 3:For the cost-constrained erasure pair of Exangnd error probability the same as for an average consftaint.
ple 2, the JSCC exponent exists and equals the upper exponerin order to solve this problem, we propose to define an

Proof outline: The encoder can measure the portion afxponent triplet (or pair in the absence of an input constyai
source letters different fronB. Denote that binary type by where the different blocklengths de-coupled. For any finite
q. It then uses direct mapping of the source to the chanridcklength (e.g. uncoded) scheme, the processing exponen
input, except that if; > T then the last(q — I')n source is always infinite. Specifically, when uncoded transmission
samples which are ndt are still mapped td@. Now first make achieves the “traditional” JSCC exponefitD) (as in The-
the (unrealistic) assumption that the decoder also knows horem 2), that would result in infinite processing exponent,
many samples at the end of block were mappedtdn that together with a fidelity exponent which equalg D), thus
case, it can ignore these outputs and produce reconstuctiemonstrating the advantage of uncoded transmissionhér ot
B. One may verify, that this leads to the upper exponent, dases, the infinite processing exponent may come at the cost
remains to show how the decoder can be made aware of tbisa lower fidelity or resource one. Our new definition, not
number. This can be achieved using a prefix, e.g. one usingneluded in this version, will appear in the full paper.
concatenation of the Alias coding of the integers with some

channel code; this small amount of information can be sent ) S N
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