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Abstract—This work considers the definition of the excess-
distortion exponent, used to measure the asymptotic finite block-
length behavior of joint source-channel coding. We arrive at the
conclusion that it is not a meaningful measure for the operational
tradeoffs of a scheme. We propose a new definition, which makes
a distinction between the processing block of the coding scheme
(which implies delay and may be connected to complexity), the
fidelity blocklength (reflecting the quality of the reconstruction
as required by the application), and the resource blocklength
(depending on hardware or shared medium considerations). As
an aside, the exponent of uncoded schemes is analyzed. This
results in finding the joint source-channel coding excess-distortion
exponent in some cases where it was not known previously.

I. I NTRODUCTION

Shannon’s separation principle establishes that there is no
loss in the conceptually and practically convenient decomposi-
tion of the transmission problem into digital compression and
communication problems: in the infinite-blocklength limit, the
expected distortion of a separation-based scheme is optimal
among all schemes. This optimal expected distortionD∗

satisfiesR(D∗) = C.1

In spite of the optimality of separation in the asymptotic
expected-distortion sense, joint source-channel coding (JSCC)
is the focus of ever-growing research. This is largely due to
the sub-optimality of separation in network settings and under
channel uncertainty; however, even in a point-to-point scenario
with full channel knowledge, JSCC is advantageous in terms
of finite-blocklength performance.

It is long known that for some combinations of source
statistics, channel statistics and distortion measure,uncoded
transmission (i.e., the encoder and decoder process each
sample independently) can also achieve expected distortion
D∗; see e.g. [1] for the white quadratic-Gaussian case. Gastpar
et al. [2] have found necessary and sufficient conditions for
this fortunate situation where uncoded schemes are optimal,
for memoryless finite-alphabet sources and channels.

An alternative to the expected distortion measure is given
by the concept ofexcess-distortion probability, borrowed from
lossy source coding [3]: the situation where the distortion
exceeds some prescribed threshold is seen as an error event,
and the relation between the threshold, the probability andthe
blocklength is studied. Formally, we can define the problem
as follows.
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ratories.

1Sometimes this is referred to as the “OPTA”.

Let S, Ŝ, X andY be the source, reconstruction, channel in-
put and channel output alphabets, respectively, all assumed to
be finite. The source is defined by some i.i.d. distributionp(S)
and a non-negative single-letter distortion measured(S, Ŝ).
The channel is defined by a conditional distributionw(Y |X)
and a non-negative cost functionγ(X). All of these quantities
are defined over the obvious alphabets. Lethm = (fm, gm)
be a JSCC scheme of lengthm: the encoderfm maps a
source blockS = Sm1 into channel inputsX = Xm

1 while
the decodergm maps a block of channel outputsY = Y m1
into the reconstruction̂S = Ŝm1 .2

We can further consider the concatenation of manym-
blocks and obtain infinite-duration processes{S}, {Ŝ}, {X},
{Y }. The scheme parses the process{S} into m-blocks that
we denote as processing blocks. Regardless of this parsing,we
can check whether the JSCC scheme satisfies the distortion and
cost constraints with respect to the processes. Specifically, the
distortion of thefidelity block (indexed by its lengthn and
locationn0) is a time-average of the single-letter distortion:

dn,n0
({S}, {Ŝ}) =

1

n

n0+n
∑

i=n0+1

d(Si, Ŝi) . (1)

Similarly, the cost of theresource blockis a time-average of
the single-letter cost:

γk,k0 ({X}) =
1

k

k0+k
∑

i=k0+1

γ(Xi) . (2)

As quantifying the exact tradeoff between the blocks
(parametrized bym, n, k, n0, k0), the distortion and cost
thresholds and the probability of failure is a very complicated
task, it is plausible to consider the asymptotic behavior inthe
limit of long blocks. The JSCC excess-distortion exponent,de-
fined for discrete memoryless source-channel pairs by Csiszár
[4] and extended to Gaussian source-channel pairs by Zhong
et al. [5], takes the processing, fidelity and resource blocks to
be the same:n = k = m andn0 = k0 = 0. Then, having a
single blocklength, the exponent gives the rate of decay of the
excess-distortion probability as the blocklength increases, for
a fixed distortion threshold.3

2We exclude the case where the number of channel uses differs from the
source blocklength, since it is not needed for the main message of this work.

3An alternative approach is the JSCC dispersion [6] where thefailure
probability is held fixed, while the threshold is allowed to change. Due to
space constraints, we do not consider dispersion in this paper, but most of the
conclusions regarding the exponent are valid for both.



Uncoded transmission is of special practical importance.
As mentioned above, it can achieveD∗, the optimum in the
expected sense. But what is the JSCC exponent of uncoded
transmission? In terms of the definitions above, such a scheme
has processing blocklengthm = 1, which is in contradiction to
settingn = k = m and considering asymptotics. The natural
workaround is to define anm-dimensional scheme as one
operating independently over each symbol, and then apply the
exponent framework. As this procedure assigns an increasing
processing blocklengthm to a scheme that operationally
has processing blocklength one, it clearly cannot reflect the
true tradeoff between that blocklength and performance. In
particular, it obscures the advantage of using a short processing
blocklength. Indeed we demonstrate, that while in some cases
following this procedure shows that uncoded transmission
achieves the optimal exponent (including cases where the
exponent was not previously known), in others it is inferiorto
digital schemes.

Since the unnecessary coupling between the processing,
fidelity and resource blocklengths prohibits one from deriving
meaningful operational tradeoffs, we conclude the paper by
suggesting an alternative definition.

II. N OTATION AND BACKGROUND

A. JSCC Exponents

Recall that for the sake of the JSCC exponent, the process-
ing, fidelity and resource blocks are the same. Consequently,
we can treat distortion and cost violations in a unified manner:
for some thresholds(D,Γ), we consider the case where a
schemehn has either excess distortion or a cost violation as
an “error”. The error probability is thus:

ǫ(hn, D,Γ) = Pr{dn,0({S}, {Ŝ}) > D or γn,0({X}) > Γ},
(3)

wheredn,n0
andγk,k0 were defined in (1), (2).

Let H = {hn : n = 1, 2, . . .} be some sequence of schemes.
The upper and lower excess-distortion exponents are defined
as [4]:4

E(D,Γ) = sup
H

lim sup
n→∞

−
1

n
log ǫ(hn, D,Γ)

E(D,Γ) = sup
H

lim inf
n→∞

−
1

n
log ǫ(hn, D,Γ) . (4)

When these two are equal, then the following limit exists and
the JSCC excess-distortion exponent is well-defined:

E(D,Γ) = lim
n→∞

sup
H

−
1

n
log ǫ(hn, D,Γ) . (5)

These JSCC exponents can be bounded in terms of source
and channel exponents as follows. The source excess-distortion
exponent [3] is

F (R,D) = inf
q:Rq(D)≥R

D(q‖p) , (6)

4Csiszár’s original definition assumes no channel input constraints. Zhong
et al. [5] needed to impose a constraint for dealing with continuous alphabets;
they chose, similar to the definition of the channel-coding exponent, to require
each block output offn to satisfy the constraint. Our definition leads to the
same results, since a post-encoder device may convert violations into errors.

whereq is a distribution overS, Rq(D) is its rate-distortion
function andD(·‖·) is the divergence. The channel sphere-
packing exponent [7] is

Esp(R,Γ) = max
φ:Eφ(γ)≤Γ

min
v:I(Φ,v)≤R

D(v‖w|φ) , (7)

whereφ is a distribution overX andD(·‖·|·) is the conditional
divergence. The channel random-coding exponent is given by

Er(R,Γ) = max
φ:Eφ(γ)≤Γ

min
v

[

D(v‖w|φ) + |I(φ, v) −R|+
]

,

(8)
where| · |+ means limiting to non-negative values. The critical
rateRcr ≤ C is the rate threshold above whichEr(R) =
Esp(R). The achievable channel exponent is given by:

Ea(R,Γ) = max
(

Er(R,Γ), Ex(R,Γ)
)

(9)

whereEx(R,Γ) is the expurgated error exponent [8]. The ex-
purgated exponent is higher than the random-coding exponent
for rates belowRx (which, in turn, is at mostRcr). We do not
give the expressions forEx andRx due to space limitations.

The bounds on the exponents (4) are summarized in the
following.

Theorem 1:Bounds on the JSCC excess-distortion expo-
nents [4].

E(D,Γ) ≤ E(D,Γ) ≤ E(D,Γ) ≤ E(D,Γ)

where
E(D,Γ) = inf

R

[

F (R,D) + Ea(R,Γ)
]

(10)

E(D,Γ) = inf
R

[

F (R,D) + Esp(R,Γ)
]

(11)

If (10) is minimized by someR above the channel critical
rateRcr, then the limits coincide and the exponent (5) is well-
defined. This happens when the distortion thresholdD is not
too far aboveD∗, i.e. D ≤ Dcr for somecritical distortion
Dcr.

The bound (11) may be re-written as minimization over
source types rather than over rates, as follows: (a similar result
holds for (10) as well)

E(D,Γ) = inf
q
[D(q‖p) + Esp (Rq(D),Γ)] . (12)

We define a separation-based scheme as one that is com-
prised of source and channel parts, separated by a a digital
interface between the source and channel parts which has
fixed rate and isarbitrary. The first requirement forbids an
interface where the rate depends on the source sequence,
while the second means that we cannot count on “close”
quantized source points being mapped to “close” channel
inputs; for a formal definition see e.g. [6]. We note that
although the achievability proof of the lower exponent in
[4] is based on an unequal error protection (UEP) scheme
which is fully digital, it is not separation-based, as the
source-channel interface has source-dependent rate. In fact,
except in some degenerate cases, the lower exponent is
strictly higher than the exponent achieved by any sequence
of separation-based schemes.



B. Symmetric Source-Channel Pairs

Symmetric sources and channels allow the exponent expres-
sions to be simplified, and will be used in the sequel. There
are several definitions for a symmetric channel, out of which
we choose Gallager’s definition [8, p. 94]. We also define a
symmetric source in a dual way.

To that end, a matrix is said to besymmetricif it can be
divided column-wise into sub-matrices, where in each sub-
matrix all columns are permutations of each other and all
rows are permutations of each other. A source is symmetric if
the distortion-measure matrix (where rows are indexed by the
source value and columns by the reconstruction) is symmetric
and the source distribution is uniform. A channel is symmetric
if the transition matrix (where rows are indexed by the input
value and columns by the output) is symmetric and the cost
is uniform.

Lemma 1:For a symmetric source,Rq(D) is maximized
by the uniform distribution, thus

Fp(R,D) =

{

0 if Rp(D) ≤ R

∞ otherwise
. (13)

For a symmetric channel, the conditional divergence
D(v‖w|φ) is independent ofφ and the optimal input distri-
bution for the channel capacity as well as for the exponents
Espw (R) (7), Erw(R) (8) andExw(R) is uniform.

We define a symmetric source-channel pair as the com-
bination of a symmetric source with a symmetric channel.
Combining the lemma above with (11) we have that for a
symmetric pair:

Ep,w(D) = Espw (Rp(D)) = min
v:I(φ,v)≤Rp(D)

D(v‖w|φ) (14)

whereφ is uniform.

III. T HE JSCC EXPONENT OFUNCODED TRANSMISSION

Any uncoded schemeh = h1 = (f1, g1) induces a sequence
of schemesH, formed by independently applyingh on each
source sample and channel output. We define the exponents
of an uncoded scheme as in (4), with respect to the sequence
H. In order to evaluate these quantities, letφq,h(X) and
ψv,h(Ŝ|S) be the channel input distribution and the reproduc-
tion conditional distribution, induced by the source distribution
q(X), the channel distributionv(Y |X) and the schemeh.

Proposition 1: The excess-distortion exponent of an un-
coded schemeh is given by:

Ep,w,h(D,Γ) = inf
q,v/∈L

[D(q‖p) +D(v‖w|φq,h)] (15)

where the admissible distribution region is given by:

L = L(D,Γ) = {q, v : Eq,ψv,h
d(S, Ŝ) ≤ D,Eφq,h

γ(X) ≤ Γ} .

The proof is a direct consequence of Sanov’s Theorem. Of
special interest is the case where the source and channel are
compatible, i.e.,X = S andY = Ŝ, and the scheme isdirect
mapping, i.e., the encoder and decoder are given byf(S) = S
andg(Y ) = Y , respectively. In this case,φq,h(X) = q(X) and
ψv,h(Ŝ|S) = v(Ŝ|S). Recall that an optimal scheme is one

that achieves the optimum expected distortionD∗. Since an
optimal uncoded scheme must be “information lossless” [2],
i.e., I(S, Ŝ) = I(X,Y ), direct mappings capture the essence
of such schemes.5 In the next sections, we show when direct
mappings that achieveD∗, are also optimal in the sense of
exponent.

A. Optimality of Uncoded Schemes for Symmetric Pairs

For symmetric pairs, the uncoded scheme exponent (15)
specializes to (assuming the use of direct mapping):

Ep,w,h(D) = inf
v:E(d(S,Ŝ))>D

D(v‖w|p)]. (16)

The following result connects optimality of an uncoded
scheme in the expected distortion sense, to optimality in the
excess-distortion sense.

Theorem 2:For a symmetric source-channel pair, assume
that there exists an uncoded schemeh that achievesD∗. Then
the JSCC excess-distortion exponent exists, is given by (14),
and is achieved by the scheme.

Proof outline:For simplicity, consider the compatible case
whereh is a direct mapping, then we need to show that (14)
and (16) are equivalent. In this case, necessarilyw is the RDF-
achieving channel. The necessary condition [2] reduces in the
symmetric case to:

log
w(Y |X)

[p(X)w(Y |X)]y
= −c · d(X,Y ) + k ∀X ∈ X , Y ∈ Y,

where c ≥ 0 and k are normalization constants. However,
these “local” properties do not suffice, as the exponent may
be governed by an empirical channelv far from w. To that
end, we first notice that the optimalv must lead to the same
marginal onY asw, and then that for any suchv,

D(v‖w|p) = I(p, v) + c · Ep,vd(x, y) + k.

In light of this, the minimizations (14) and (16) are indeed
equivalent.

Comparing to the result of Theorem 1, we see that for
D > Dcr optimal direct mapping has a better exponent
than E achieved by Csiszàr’s UEP scheme, and it closes
the gap between the lower and upper exponents. For lower
D, however, the two approaches yield the same exponent. It
is interesting to note, that in the symmetric case the digital
scheme does not require any unequal error protection, but
reduces to a separation-based scheme.

Examples for symmetric pairs where an optimal uncoded
scheme exists include uniform source with difference dis-
tortion measure, sent over an unconstrained modulo-additive
channel, where the distortion measure and noise distribution
“agree”, e.g., binary-symmetric source and channel with Ham-
ming distortion. We choose to present a different case, as
follows.

5In general, optimal uncoded schemes may include operationssuch as
randomly mapping the same source symbol to some two channel inputsx1

andx2, if w(Y |X = x1) = w(Y |X = x2).
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Fig. 1: Erasure exponents as a function ofD for ǫ = 0.5.
Solid black curve is the JSCC exponentE(R) according to
Theorem 2. Blue dashed curve is the lower exponent according
to Theorem 1. It becomes dotted in the expurgated region,
where the lower exponent was not evaluated.

Example 1:Symmetric binary erasure source-channel
pair . Let the source be uniform over{0, 1}, the reconstruction
alphabet be{0, 1, B} and the distortion measure be erasure:

d(S, Ŝ) =











0, S = Ŝ

1, Ŝ = B

∞, otherwise.
(17)

Let the channel be a binary erasure channel (BEC) with the
same alphabets (where the erasure symbol isB) and with
uniform cost. It is easy to see that the optimal expected
distortionD∗ equals the erasure probabilityǫ, and that direct
mapping is optimal. By Theorem 2, the JSCC excess-distortion
exponent isE(D) = Db(D‖ǫ) where Db is the binary
divergence:

Db(a‖b) = a log
a

b
+ (1− a) log

1− a

1− b
. (18)

For comparison, the random-coding exponent gives:

E(D) = min
ǫ≤ǫ′≤D

{

Db(ǫ
′‖ǫ) + |D − ǫ′|+ log(2)

}

,

for anyD below the expurgation regime:D ≤ 1−Rx(ǫ)/log(2).
The gap between the optimal exponent and the lower exponent
is demonstrated in Figure 1.

B. Asymmetric Pairs

For channels that are not symmetric, the optimal (exponent-
achieving) input distribution may be rate-dependent, and the
same also applies for the test channel that the source code ma-
terializes. For such settings the UEP scheme has the inherent
advantage that the digital codes may be adjusted according to
the rate required by the source type. However, these schemes
may still be inferior above the critical distortion, when the
sphere-packing bound is not known to be tight. An uncoded
scheme may therefore perform better or worse than the bound
(10), depending on the distortion threshold.
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Fig. 2: Constrained erasure exponents as a function ofD for
ǫ = 0.3, p = 0.3 andΓ = 0.6. Dash-dotted red curve is direct
mapping exponentEsp(R) according to Proposition 1. Blue
dashed curve is the lower exponent according to Theorem 1.
It becomes dotted in the expurgated region, where the lower
exponent was not evaluated. Solid black curve is the upper
exponent according to the same theorem.

C. The Effect of an Input Constraint

Introducing a channel input constraint (via a non-uniform
cost function) reveals another limitation of uncoded schemes.
In a digital scheme, a random codebook which satisfies the
constraint in average, may be always replaced by one in
which each individual codeword satisfies the constraint (by
expurgation arguments); in fact, the random-coding exponent
is achieved by a single-decomposition codebook, see e.g. [9].
On the other hand, if an i.i.d. source is mapped directly to
the channel inputs, then an input sequence of any length has
some probability of breaking the constraint. Furthermore,an
uncoded scheme might not use the channel well, i.e., might
work with an input cost that islower than the constraint. We
demonstrate this in the following.

Example 2:Constrained symmetric binary erasure
source-channe pair.We change Example 1 in the following
way. We add a third input symbolX = B, with w(B|B) = ǫ
and w(1|B) = w(0|B) = (1 − ǫ)/2. Sincew(Y |X = B)
equals the distribution ofY under the optimal (symmetric)
input distribution on(0, 1), this additional input is “useless”.
Define the cost functionγ(0) = γ(1) = 1, γ(B) = 0, then we
have thatC(Γ) = Γ(1− ǫ). We also add to the source a third
letter S = B, with d(B, Y ) = 0 for all Y , thus this source
letter is “insignificant”. LetB have probability1− p, while 0
and1 have probabilityp/2. The RDF of this source is given
by R(D) = p(1−D). It is easy to see that forp = Γ, direct
mapping achieves the optimumD∗ = ǫ.

Considering the exponent, note that for any finite block
length, the probability of direct mapping to break the input
cost constraintΓ = p is about1/2, thus this scheme has a
zero exponent! A non-zero exponent can be achieved when
direct mapping is not optimal, i.e., whenΓ > p. In that case,
direct mapping will achieve forD ≥ ǫ:

Eslp,ǫ(D,Γ) = min

{

Db(Γ‖p), min
p≤q≤Γ

[Db(q‖p) + q ·Db(D‖ǫ)]

}

.



This reflects a loss compared to the lower exponent:

Ep,ǫ(D,Γ) = min
q≥p

[

Db(q‖p) + Γ ·Db

(

1−
q

Γ
(1 −D)‖ǫ

)]

,

and indeed may be even worse than the lower exponent guar-
anteed by Theorem 1 for some or for allD, as demonstrated
in Figure 2. Direct mapping achievesD = ǫ, thus it has zero
exponent forD < ǫ. The digital UEP scheme, in contrast, can
use the channel input with costΓ, resulting inD = 0. For
high distortions, the exponent of direct mapping is limitedby
that of the source weight being higher thanΓ.

IV. OPTIMAL SCHEME FOR THECOST-CONSTRAINED

ERASURE PAIR

Although in the example above an uncoded scheme does
not achieve the upper exponent, we show that a modification
of it does. This approach may be extended to apply to other
cases of logarithmic distortion measures (see [10]), but due to
space constraints we do not define these here.

Theorem 3:For the cost-constrained erasure pair of Exam-
ple 2, the JSCC exponent exists and equals the upper exponent.

Proof outline: The encoder can measure the portion of
source letters different fromB. Denote that binary type by
q. It then uses direct mapping of the source to the channel
input, except that ifq > Γ then the last(q − Γ)n source
samples which are notB are still mapped toB. Now first make
the (unrealistic) assumption that the decoder also knows how
many samples at the end of block were mapped toB. In that
case, it can ignore these outputs and produce reconstruction
B. One may verify, that this leads to the upper exponent, It
remains to show how the decoder can be made aware of this
number. This can be achieved using a prefix, e.g. one using a
concatenation of the Alias coding of the integers with some
channel code; this small amount of information can be sent
with an error probability decaying faster than the exponent, at
the cost of vanishing excess distortion.

A similar approach can be applied to thequadratic-
Gaussiancase. This continuous-alphabet setting is not for-
mally defined here due to space constraints. Zhong et al.
[5] have shown that an exponent similar to Gallager’s lower
exponent can be achieved in this setting. We can show that
the JSCC exponent indeed exists and equals the equivalent
of the upper exponent. This exponent can be achieved by
applying a scalar factor to the source block that normalizesit
to a fixed radius that satisfies the power constraint. Given the
normalization factor, the decoder can undo this normalization
and the exponent is achieved. The factor, in turn, can be
revealed with sufficient accuracy and vanishing cost, just as in
the erasure case.

V. D ISCUSSION: WHERE IS THEADVANTAGE OF

UNCODED TRANSMISSION?

In this work we have evaluated the excess-distortion expo-
nent achievable by single-letter schemes, and compared it to
the lower exponent of Csiszár [4], proven via UEP coding.
We have shown that in some cases the single-letter scheme
outperforms the UEP exponent, and even closes the gap to

the upper exponent. Furthermore, we have shown an example
where, while the single-letter scheme fails, a variant of itdoes
achieve the upper exponent.

Considering the cases where the exponent of the optimal
uncoded scheme is worse than that of the UEP scheme, we
argue that this happens only because of the definition of the
exponent. After all, the uncoded scheme always operates at
processing blocklengthm = 1, while the UEP scheme needs
a long processing blocklength. It is true, that the uncoded
scheme may require larger fidelity blocklengthn or resource
blocklengthk, in order to average over the randomness of the
source and channel. These blocklengths have a very different
significance, and there is no operational reason to equate
them as the exponent definition [4] does. This equating of
blocklength may be legacy from digital (separate source and
channel) problems, where such an operation does not incur any
loss; for example, expurgation of channel codebooks avoids
input constraint violations altogether, while keeping therate
and error probability the same as for an average constraint.6

In order to solve this problem, we propose to define an
exponent triplet (or pair in the absence of an input constraint),
where the different blocklengths de-coupled. For any finite-
blocklength (e.g. uncoded) scheme, the processing exponent
is always infinite. Specifically, when uncoded transmission
achieves the “traditional” JSCC exponentE(D) (as in The-
orem 2), that would result in infinite processing exponent,
together with a fidelity exponent which equalsE(D), thus
demonstrating the advantage of uncoded transmission. In other
cases, the infinite processing exponent may come at the cost
of a lower fidelity or resource one. Our new definition, not
included in this version, will appear in the full paper.
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