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Abstract

The combination of source coding with decoder side-infaroma(\Wyner-Ziv problem) and channel
coding with encoder side-information (Gel'fand-Pinskeoldem) can be optimally solved using the
separation principle. In this work we show an alternativhesae for the quadratic-Gaussian case,
which merges source and channel coding. This scheme ashisgeptimal performance by a applying
modulo-lattice modulation to the analog source. Thus iesdlie complexity of quantization and channel
decoding, and remains with the task of “shaping” only. Fentmore, for high signal-to-noise ratio (SNR),
the scheme approaches the optimal performance using anir8Bendent encoder, thus it is robust to

unknown SNR at the encoder.

keywords: joint source/channel coding, analog transmission, WiAterproblem, writing on dirty

paper, modulo lattice modulation, MMSE estimation, unknd@NR, broadcast channel.

. INTRODUCTION

Consider the quadratic-Gaussian joint source/channehgqgatoblem for the Wyner-Ziv (WZ) source
[1] and Gel'fand-Pinsker channel [2], as depicted in Figurén the Wyner-Ziv setup, the source is jointly
distributed with some side information (Sl) known at the ater. In the Gaussian case, the WZ-source
sequencesy, is given by:

Sp=Qr+Jy , 1)

where the unknown source patdy, is Gaussian i.i.d. with varianceé, while Jy is an arbitrary Sl

sequence known at the decoder. In the Gel'fand-Pinskep stta channel transition distribution depends

tParts of this work were presented at ISIT2006, Seattle, Wy 2006. This work was supported by the Israeli Science
Foundation (ISF) under grant # 1259/07, and by the Advanaadr@unication Center (ACC). The first author was also sugplort
by a fellowship of the Yitzhak and Chaya Weinstein Reseanstitute for Signal Processing at Tel Aviv University.
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Figure 1. The Wyner-Ziv / dirty-paper coding problem

on a state that serves as encoder Sl. In the Gaussian case) ksahe dirty paper channel (DPC) [3],
the DPC outputyy, is given by:
Ye=Xe + 2k + I 2)

where X}, is the channel input, the unknown channel noigg,is Gaussian i.i.d. with varianck, while

I, is an arbitrary interference, known at the encoder. Wheaertiefy to I, and J,, we use the terms
interference and Sl interchangeably, since they may be ai#feer as external components added to the
source and to the channel noise, or as known parts of thegiegnErom here onward we use the bold

notation to denotd{-dimensional vectors, i.e.
X = [X1,"' 7ch,"' >XK]

The sequenceQ,J,Z andI are all mutually independent, hence the channel ndise independent of
the channel input sequende. The encoder is some function of the source vector that magrik on
the channel SI vector as well:

and must obey the power constraint
1
—FB{|X|*} <P 4
ZE(XIP} < P, (4)

where|| - | denotes the Euclidean norm. The decoder is some functiomeofhannel output vector that

may depend on the source Sl vector as well:

S=9(Y.J) , (5)
and the reconstruction quality performance criterion & thean-squared error (MSE):

1 .
D= EE{HS—SHQ} : (6)



The setup of Figure 1 described above is a special case obitheVyZ-source and Gel'fand-Pinsker
channel setting. Thus, by Merhave and Shamai [4], Shanseparation principle holds. So a combination

of optimal source and channel codes can approach the optidistortion D°P!, satisfying:
Rwz(D?") = Cppc (7)

where Ryz (D) is the WZ-source rate-distortion function antpc is the dirty paper channel capacity.
However, the optimality of “digital” separation-based enfes comes at the price of large delay and
complexity. Moreover, they suffer from lack of robustnegsthe channel signal-to-noise ratio (SNR)
turns out to be lower than expected, the resulting distortitay be very large, while if the SNR is
higher than expected, there is no improvement in the distof6], [7].

In the special case of white Gaussian source and channawitide informationk=J = 0), it is

well known that analog transmission is optimal [8]. In thase, the encoding and decoding functions

A= B (8)

Sk = GV
are mere scalar factors, whefeis a “zoom in” factor chosen to satisfy the channel power trairg
and« is the channel MMSE (Wiener) coefficient. This scheme adsdhe optimal distortion (7) while
having low complexity (two multiplications per sample)ra&lelay andull robustness: only the receiver
needs to know the channel SNR, while the transmitter is cetalyl ignorant of that. Such a perfect
matching of the source to the channel, which all@ivgle-letter coding, only occurs under very special
conditions [9].

In the quadratic-Gaussian setting in the presence of sideniration, these conditions do not hold [4].
It is interesting to note that in this casByz(D) is just the Gaussian rate-distortion function for the
unknown source paif) [5], while Cppc is just the AWGN capacity for the channel noigd3], i.e. the
S| componentd andJ are “eliminated” as would be done had they been known to bwthethcoder
and the decoder. We see, then, that this perfect interfereaacelation is not achievable by single-letter
coding.

In this work we propose a scheme for the joint Wyner-Zividpaper problem that takes a middle
path, i.e., a “semi-analog” solution which partially gaite complexity and robustness advantages of
analog transmission: It can be made optimal (in the sens&Xff¢r any fixed SNR, with reduced
complexity. Moreover, it allows a good compromise betwels performance at different SNRs, and

becomes SNR-independent at the limit of high SNR.



The scheme we present subtracts the channel interfefeat¢he encoder modulo-lattice, then uses
again subtraction of the source known phit conjunction with modulo-lattice arithmetic at the deead
Thus it achieves arequivalent single-letter channel with I = J = 0. Since the processing is applied
to the analog signal, without using any information-begqraode, we call this approaahodulo-lattice
modulation (MLM).

Modulo-lattice codes were suggested as a tool for side rimdition source and channel problems;
see [10], [11], where a lattice is used for shaping of a digitade (which may itself have a lattice
structure as well, yielding a nested lattice structure)dilo-lattice transmission of an analog signal in
the WZ setting was first introduced in [12], in the contextaih} source/channel coding with bandwidth
expansion, i.e. when there are several channel uses perseacte sample. Here we generalize and
formalize this approach, and apply it to S| problems. In dimiaary version of this work [13], we used
the MLM scheme as a building block #nalog Matching of colored sources to colored channels. Later,
Wilson et al. [14], [15] used transmission of an analog signadulo arandom code to arrive at similar
results. Recently, MLM was used in network settings for catapon over the Gaussian MAC [16] or
for coding for the colored Gaussian relay network [17].

The rest of the paper is organized as follows: In Section |l wieg preliminaries about multi-
dimensional lattices, and discuss the existence of |attitat are asymptotically suitable for joint WZ/DPC
coding. In Section lll we present the joint WZ/DPC scheme pral/e its optimality. In Section IV we
examine the scheme in an unknown SNR setting and show itspsyimrobustness. Finally, Section V

discusses complexity reduction issues.

[I. BACKGROUND: GOOD SHAPING LATTICES FORANALOG TRANSMISSION

Before we present the scheme, we need some definitions aulisresncerning multi-dimensional
lattices. LetA be a K-dimensional lattice, defined by the generator matiixe RX*X. The lattice
includes all points{l = G -i : i € ZX} whereZ = {0,+1,42,...}. The nearest neighbor quantizer

associated with\ is defined by

= 1 —1
Q(x) argrg{lHX I,

where|| - || denotes the Euclidian norm and ties are broken in a systemmatnner. Let the basic Voronoi
cell of A be

Vo={x:Q(kx) =0}



The second moment of a lattice is given by the variance of Boumidistribution over the basic Voronoi

cell;
1

2 —_
U(A)_K Vo

I[[2dx . 9)
The modulo-lattice operation is defined by:
xmod A =x— Q(x) .
By definition, this operation satisfies the “distributivavlia
[x mod A +y] mod A =[x +y] mod A . (10)
The covering radius of a lattice is given by

r(A) = max|x|| . (11)

For a dither vectorl, the dithered modulo-lattice operation is:
y = [x+d] mod A .

If the dither vectorD is independent ok and uniformly distributed over the basic Voronoi cgj), then
Y = [x+ D] mod A is uniformly distributed oved, as well, and independent &f [18]. Consequently,
the second moment &f per element isr2(A).

The loss factor (A, p.) of a lattice w.r.t. Gaussian noise at error probabilityis defined as follows.

Let Z be Gaussian i.i.d. vector with element variance equal tdatiee second moment?(A). Then

php) =minfrs pef{ Z g <p} (12)

For small enouglp,. this factor is at least one. By [19, Theorem 5], there existe@uence of lattices

which possesses a vanishing loss at the limit of high dineehsi.e.:

lim lim L(Ag,p.) =1 . (13)

pe—0 K—o0
Moreover, there exists a sequence of such lattices thatdsgabd for covering, i.e. defining:

~ r2(A
E) = s

wherer(A) was defined in (11), the sequence also sat&fiésix .., L(Ax) = 1. However, for this

(14)

work we need a slightly modified result, which allows to regldhe Gaussian noise by a combination

These lattices are simultaneously good for source and ehamding; see more on this in Appendix I.

Note that by definitionL(Ax) > 1 always.



of Gaussian and “self-noise” components. To that end, waeddir any0 < o < 1 the a-mixture noise

as.
Zo=y1-(1-a)®W—-(1-a)D ,

where W is Gaussian i.i.d. with element varianeé(A), and D is uniform over), and independent
of W. Note that sincei|D|> = o2(A), the resulting mixture also has average per-element \@ian

a?(A). We re-define the loss factor w.r.t. this mixture noise as

Vi

Note that this definition reduces to (12) far= 1. Using this definition, we have the following, which

LA pea) =minf1s prfZe gyl <pf (15)

is a direct consequence of [20].

Proposition 1. (Existence of good lattices) For any error probability. > 0, and for any0 < o < 1,

there exists a sequence Af-dimensional lattices\ i satisfying:

plelg() I(h—H>100 L(AK7p6> Oé) =1 ) (16)
and
Jim L(Ag)=1 . (17)

Note that since by definition], (A, pe, ) IS non-increasing i, it follows that forany p. > 0 this
sequence of lattices satisfies:

limsup L(Ag, pe, ) <1 . (18)

K—o0
In Appendix | we elaborate more on the significance of thisultiesand on its connection to more

commonly used measures of goodness of lattices.

[11. MobuLO-LATTICE WZ/DPC CODING

We now present the joint source/channel scheme for the 3llgmoof Figure 1. As explained in the
Introduction, the quadratic-Gaussian rate-distortiomcfion (RDF) of the WZ source (1) is equal to the

RDF of the source&); (without the known part/y), given by:

2

1 90
Rwz(D) = B logf : (19)
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Figure 2: Analog Wyner-Ziv / dirty-paper coding schense= source,S = reconstructionZ = channel

noise,I = interference known at the encoddr= source component known at the decod®er= dither

Similarly, the capacity of the Gaussian DPC (2) is equal ®AWGN capacity (without the interference
Ik):

1 P
Cbpc = 5 log <1 + N) . (20)

Recalling that the separation principle holds for this peab[4], the optimum distortion (7) is thus given

by:
_ N
“PinN@

We show how to approach°P! using the joint source/channel coding scheme depictedgnr€i2.

opt

(21)

In this scheme, thé{-dimensional encoding and decoding functions (3),(5) arergby:
X =[S + D — aI] mod A (22a)
A~ aS
S:F“%N—D—mhme+J, (22b)

respectively, where the second moment (9) of the latticeg\) = P, and the dither vectoD is
uniformly distributed over), and independent of the source and of the channel. The chapomedr
constraint is satisfied automatically by the propertiesitifested lattice quantization discussed in Section
II. The factorsag, ac and 3 will be chosen in the sequel. For optimum performangeyhich is used

at the encoder will depend upon the variance of the sourcaawnk part, whileac used at the decoder
will depend upon the channel SNR. It is assumed, then, thiit the encoder and the decoder have full
knowledge of the source and channel statistics; we will loreih this assumption in the next section.

The following theorem gives the performance of the schemggrims of the lattice parametets-, -, -)

in (15) and inL(-) (14), and the quantities:

A P
o)) —P n N (233)
~ A L(A7pe7a0) -1
= — . 23b
& = max (ao L(A, pe. 0g) ,0 (23b)



We will also use these quantities in the sequel to specifyctiwce of factorsyg, ac andg.

Theorem 1: (Performance of the MLM scheme with any lattice) For any latticeA and any error
probability p. > 0, there exists a choice of factorg, ag, 5 such that the system of (22) (depicted in
Figure 2) satisfies:

D S L(Aapeaa())Dopt +peDmax )

where the optimum distortio®°?* was defined in (21), and

D™ = Ao, (1 + @) . (24)

(07

We prove this theorem in the sequel. As a direct corollaryfig taking p. to be an arbitrarily small
probability and using the properties of good lattices (1@l 418), we have the following asymptotic

optimality result

Theorem 2: (Optimality of the MLM scheme) Let D(A ) be the distortion achievable by the system
of (22) with a lattice from a sequendeé\ x } that is simultaneously good for source and channel coding
in the sense of Proposition 1. Then for any- 0, there exists a choice of factorg, ag and 3, such
that

limsup D (Ag) < D +¢ .

K—oo

For proving Theorem 1 we start with a lemma, showing equivaein probability to a real-additive

noise channel (see Figure 3b). The equivalent additiveenisis
Zeg=aclZ—(1—ac)X (25)

whereZ andX are the physical channel input and AWGN, respectively. Byptoperties of the dithered
modulo-lattice operation, the physical channel inguts uniformly distributed oved)y and independent

of the source. ThusZ,, is indeed additive and has per-element variance:

02 =aiN+(1—ac)*P . (26)

6(]:

3The explicit derivation ofD™*® is not necessary for proving Theorem 2; see Appendix II-B.
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Figure 3: Equivalent channels for the WZ/WDP coding scheme

Lemma 1: (Equivalent additive noise channel) Fix somep, > 0. In the system defined by (1),(2)

and (22), the decoder modulo outpME (see Figure 2) satisfies:

M = 3Q + Z¢; W.p.(1—pe), (27)
provided that
P
2 2 2 <
/8 UQ + Ueq o L(A7pe7 OZC) ’ (28)

whereZ,.,, defined in (25), is independent @f andJ and has per-element varian@g (26), andL(, -, -)

was defined in (15).

Consequently, as long as (28) holds, the whole system is/@gut with probability(1 — p.) to the

channel depicted in Figure 3b:

S = J—l—%zeq—l—aSQ
- S+%zeq—(1—aS)Q . (29)

Proof: We will first prove equivalence to the channel of Figure 3a:
M = [Q+ Z.y) mod A (30)

whereZ., was defined in (25). To that end, |@t = acY — D — 3J denote the input of the decoder



modulo operation (see (22b) and Figure 2). Combine (2) a@d)(® assert:
T = ac(X+Z+I)-D—3J
= [fS+D—-acljmod A+Z.+acI-D—-p3J .
Now, using (1) and the “distributive law” (10):
T mod A = [Q + Z¢y) mod A |
and sinceT = M mod A, we establish (30). Now we note that
BQ+ Zey = BQ+acZ — (1 - ac)X = /1= (1 - ac?W = (1 - ac)X

whereW is Gaussian i.i.d.X is uniform over the basic celW, of the lattice A, and the total variance

(per element) is given by the l.h.s. of (28). By the definitminL(,-,-), we have that
T=0Q+Zyc)Vo (31)

w.p. at least(1 — p.). Substituting this in (30), we get (27). [ |
This channel equivalence holds for any choice of dimengigrattice A and factorsac, ag and g,
as long as (28) holds. For the proof of Theorem 1 we make thewirlg choice (using the parameters

of (23)):

ac =ap (32&)
P
B =a— (32b)
g
Q
aP
- " 32¢c
S TEP F agN (32¢)

It will become evident in the sequel, that andas are the MMSE (Wiener) coefficients for estimating

X from X + Z andQ from Q + Zg‘ﬂ respectively, while3 is the maximum zooming factor that allows

to satisfy (28) with equality, whenever possible.

Proof of Theorem 1: For calculating the achievable distortion, first note thyathe properties of MMSE
estimation,

agq =acN =qgN .

Using this, it can be verified that our choice @fsatisfies (28), thus (29) holds with probability— p. ).

Denoting by Deormet and D™eorreet the distortions when (29) holds or does not hold, respdygtivee

10



have:

D = (1 _ pe)Dcorrect + peDincorrect

§ Dcorrect +p8Dincorrect . (33)

We shall now bound both conditional distortions. For thet finse, we have:

2
%Zeq - (1 - aS)Q }

Br
2 2
@ Ogsa—gq = 70-Qo-eq
32 62022 + 02,
Dopt
l—ag+a

= min (L(A>p8>aC)Dopt7o-é) < L(AvpmaC)Dopt )

1
Dcorrect — __E
K {

where (a) stems from the properties of MMSE estimation. mais to show thap™eorreet < pmaz,
which is established in Appendix I1-AJ

As mentioned in the Introduction, a recent work [15] derigesimilar asymptotic result, replacing the
shaping lattice of our scheme byrandom shaping code. Such a choice is less restrictive since ittis no
tied to the properties of good Euclidean lattices, thougleads to higher complexity due to the lack
of structure. The use of lattices also allows analysis intdidimension as in Theorem 1 and in Section
V. Furthermore, structure is essential in network jointrseichannel settings; see e.g. [16]. Lastly, the
dithered lattice formulation allows to treat any interfece signals, see Remark 2 in the sequel.

We conclude this section by the following remarks, intenttedhed more light on the significance of
the results above.

1. Optimal decoding. The decoder we described i®t the MMSE estimator o from Y. This is
for two reasons: First, the decoder ignores the probahilityncorrect lattice decoding. Second, since
Z., is not Gaussian, the modulo-lattice operation w.r.t. thté&ck Voronoi cells is not equivalent to
maximum-likelihood estimation of the lattice point (se®]2or a similar discussion in the context of
channel coding). Consequently, for any finite dimensiondbeoder can be improved. We shall discuss
further the issue of working with finite-dimension latticesSection V.

2. Universality w.r.t. T and J. None of the scheme parameters depend upon the nature ofahaaih
interferencel and source known pad&. Consequently, the scheme is adequate for arbitrary (ohat)
sequences. This has no effect on the asymptotic performainteeorem 2, but for finite-dimensional

lattices the scheme may be improved, e.g. if the interferesignals are known to be Gaussian with low

11



enough variance. A similar argument also holds when thecgoar channel statistics is not perfectly
known, see Section IV in the sequel.

3. Non-Gaussian Setting. If the source unknown paf® or the channel noisg& are not Gaussian, the
optimum quadratic-Gaussian distorti@?’ may still be approached using the MLM scheme, though it
is no longer the optimum performance for the given sourcedrahnel.

4. Asymptotic choice of parameters. In the limiting case wherd.(A, p.,p) — 1, we have that

as = a = aq in (32), i.e. the choice of parameters approaches:

P

ac =0 =g =00 (34a)
P

B =an— - (34b)
2Q

5. Properties of the equivalent additive-noise channel. With high probability, we have the equivalent
real-additive noise channel of (29) and Figure 3b. Thiseddffrom the modulo-additivity of the lattice
strategies of [20], [21]: Closeness of point under a moduilthmetic does not mean closeness under
a difference distortion measure. The condition (28) formsoatput-power constraint: No matter what
the noise level of the channel is, its output must have a pafero more thanP; this replaces the
input-power constraint of the physical channel. Furtheenby the lattice quantization noise properties
[18], the “self noise” componerit —ac)X in (25) is asymptotically Gaussian i.i.d., and consequyesul
is the equivalent nois&.,. Thus the additive equivalent channel (29) is asymptdyicah output-power
constrained AWGN channel.

6. Noise margin. The additivity in (29) is achieved through leaving a “noisargin”. The condition
(28) means that the sum of the (scaled) unknown source pdrequivalent noise should “fit into” the
lattice cell (see (31)). Consequently, the unknown souar¢ Q is inflated to a power strictly smaller
than the lattice powef. In the limit of infinite dimension, when the choice of pardere becomes
(34), this power becoma@%—g2 = apP. In comparison, it is shown in [21] that in a lattice solutitm
a digital S| problem, if the information-bearing code (firmdtice) occupies a portion of powet with
any ag < v < 1, capacity is achievéd This freedom, however, has to do with the modulo-additiait
the equivalent channel; in our joint source/channel sgttirecessarilyy = «y.

7. Comparison with analog transmission. Lastly, consider the similarity between our asymptotic

AWGN channel and the optimal analog transmission schemeowitS| (8): Since we have “eliminated

“In [22] a similar observation is made, and a code of powgP is presented as a preferred choice, since it allows easy

iterative decoding between the information-bearing could the coarse lattice.

12



from the picture” the SI componenisandJ, we are left with the transmission of the source unknown
component through an equivalent additive noise channem@stioned above, the unknown source part
Q is only adjusted to powetky P (in the limit of high dimension), while in (8) the sour&eis adjusted to

power P; but since the equivalent noigk, has variancey N, the equivalent channel has signal-to-noise

ratio of P/N, just as the physical channel.

IV. TRANSMISSION UNDERUNCERTAINTY CONDITIONS

We now turn to case where either the variance of the channsé o, or the variance of the source
unknown partaé, are unknown at the encodetn Section IV-A we assume thaf(g2 is known at both
sides, but the channel SNR is unknown at the encoder. We gtaivintthe limit of high SNR, optimality
can still be approached. In Section IV-B, we address thergéB&R case, as well as the case of unknown
022; for that, we adopt an alternative broadcast-channel pfiview.

For convenience, we present our results in terms of the elaignal-to-noise ratio

AP
SNR= — 35
¥ (35)
and the achieved signal-to-distortion ratio
2
A 0Q
DR= — . 36
SDRZ — (36)

Denoting the theoretically optimal SDR as SBR (21) becomes:
SDR”" =1+ SNR . (37)

Our achievability results in this section are based uponiegtjn of the MLM scheme, generally
with a sub-optimal choice of parameters due to the unceytdile only bring asymptotic results, using
high-dimensional “good” lattices. We present, then, théofang lemma, using the definition:

P
B == . (38)
9Q
Lemma 2: Let SDRAx) be the distortion achievable by the system of (22) with acetfrom a
sequencd A} that is good in the sense of Proposition 1. For any choice a@bfaac, ag andj3,

lim inf SDR(A) > —— —
(1—0[5) ﬁ —|—OZS [SNCR"i'(l_O‘C) ]ﬁo

: (39)

*We do not treat uncertainty at the decoder, siféean be learnt, while the major insight into the matter of wwn aé

is gained already by assuming uncertainty at the encoder.

13



provided that
3 O‘% 2
?—I_WQ_F(I_OZC) <1 . (40)
0

Proof: This is a direct application of Lemma 1 and of (18). First wedbmep. > 0, and note that
(40) is equivalent to (28). The SDR of the equivalent char{@8), at the limitL(Ax, p.,ac) — 1 is
then given by (39). Then fop. — 0 the effect of decoding errors vanishes, as shown in Appeldix

[
Note, that by substituting the asymptotically optimal aw®oiof parameters (34) in (39), the limit

becomes SDR!.

A. Asymptotic Robustness for Unknown SNR

Imagine that we know that SNR SNR,, for some specific SNR and thato—g2 is known. Suppose
that we set the scheme parameters such that the correctidgamnhdition (40) holds for SNR Since
the variance of the equivalent noise can only decrease WihSNR, correct lattice decoding will hold
for any SNR> SNR,, and we are left with the equivalent additive-noise chawietre the resulting
SDR is a strictly decreasing function of the SNR. We use thiseovation to derive an asymptotic result,
showing that for high SNR aingle encoder can approach optimality simultaneously for allalcENR.
To that end, we replace the choice given in (32), which leadsptimality at one SNR, by the high-SNR

choiceac = ag = 1, whereg is chosen to ensure correct decoding even at the minimal,SNR

Theorem 3: (Robustnessat high SNR) Let the source and channel be given by (1) and (2), respéctive

Then for anye > 0, there exists an SNR-independeseguence of encoding-decoding schemes (each one

achieving SDR) that satisfies:

lim inf SDRg > (1 — ¢)SDR?" | (41)

K—oo

for all sufficiently large (but finite) SNR. l.e., (41) holdsrfall SNR > SNRy(¢), where SNR(e) is

finite for all € > 0.

A limit of a sequence of schemes is needed in the theorem, rather than a singlens¢lsince for any
single scheme we have > 0, thus the effect of incorrect decoding cannot be negleatethe limit
SNR — oo (meaning that the convergence in Lemma 2 in not uniform). df restricted our attention to

SNRs bounded by some arbitrarily high value, a single schemdd be sufficient.

14



77777777777777777777777 l-]l

! Z1 SNR; A
1 a> 'Y, | DECODER| S
! ! 1 SDR;

S | ENcODER
! DECODER| S,
| BROADCAST | 2 SDR;
| CHANNEL  Z5 ISNR,!
'3,

Figure 4: A broadcast presentation of the uncertainty embl

Proof: We use a sequence of MLM schemes with good lattices in theesehBroposition 1. If

ac = 1, then any
SNRy — 1
SNR,

satisfies the condition (40) for SNRthus for any SNR> SNR,. Here we assume that SR 1, w.l.0.g.

3% < 3

since we can always choose SINR of the theorem accordingly. With this choice and with = 1, we

have by Lemma 2 that the SDR may approach (for any SN&NR):

3 SNR, — 1 SNR,—1  SNR . SNRy—1 .
—SNR= ———— - SNR= . -.SDRP* > ——— . SDRP* |
ﬂg SNR,y SNRy SNR+1 ~— SNRy +1

Now takee = % — 1. Sincelimsng, o0 € = 0, One may find SNRfor anye > 0 as required. m

Note that we have here also a fixed decoder; if we are onlyasted in a fixed encoder we can adjust

ag at the decoder and reduce the margin from optimality.

B. Joint Source/Channel Broadcasting

Abandoning the high SNR assumption, we can no longer simedtasly approach the optimal perfor-
mance (37) for multiple SNRs. However, in many cases we c#lndetbetter than a separation-based
scheme. In order to demonstrate that, we choose to alteonatgew to abroadcast scenario, where the
same source needs to be transmitted to multiple decodexs,ceee with different conditions; yet all the
decoders share the same channel interfer&nsee Figure 4. The variation of the source SI component

J between decoders means that the source has two decompasitio
S=Q+J1=Q2+J2 , (42)

and we define the per-element variances of the unknown part€ @nd o2, respectively. Note that

this variation does not imply any uncertainty from the paifitview of the MLM encoder, as long as
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Figure 5: Broadcast performance. Solid line: Achievablesbgaration for arbitrar§y andJ. Dash-dotted
line: Achievable by MLM for arbitraryI andJ. Dashed line: Achievable by MLM for arbitrary, with

I = 0. Dotted line: Outer bound of ideal matching to both SNRs i@aable by analog transmission
whenI =J = 0).

0? = 03; see [23] for a similar observation in the context of sourodirg. We denote the signal-to-
noise ratios at the decoders as SNR SNR,, and find achievable corresponding signal-to-distortion
ratio {SDR;, SDR,} pairs. It will become evident from the exposition, that tajgproach is also good
for a continuum of possible SNRs.

We start from the case? = o3, for which we have the following.

Theorem 4: In the broadcast WZ/DPC channel of Figure 4 with= 03, the signal-to-distortions pair

@ - SNR @- SNR,
1+ 1+ :
a2 +(1—ac)?SNR"" " o + (1 — ac)?SNR,

where

(43)

- < SNR; +1 >
a=ac|2— ———a¢ )

SNRy

can be approached for aly< ¢ < min (1, ff‘s“,‘\lﬁl). In addition, if there is no channel interference

(I = 0), then the pair{l + SNRy, 1 + %ﬁy&)} can be approached as well.

Proof: As in the proof of Theorem 3, we use Lemma 2 with a choicesafthich allows correct

decoding in the lower SNR. For the first part of the theorem,aiy o according to the theorem
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conditions, and choose any
P
2 —
p*<a— ,
o

o

where@ was defined in (43), in order to satisfy (40). In each decooletimize a,s in (39) to approach
the desired distortion. For the second part of the theorkethere is no channel interference, the encoder
is ac-independent, thus each decoder may work with a diffetehtvalue. We can therefore make the
encoder and the first decoder optimal for SNR/hile the second decoder only suffers from the choice
of 3 at the encoder. Again we substitute in (39) to arrive at theirdd result [ |

By standard time-sharing arguments, the achievable SDRnmegnclude the convex hull (in the
distortions plane) defined by these points and the trilal SNR;, 1} and{1,1+ SNR,} points. Figure
5 demonstrates these regions, compared to the ideal (@vathe) region of simultaneous optimality
for both SNRs, and the separation-based region achievetidogdncatenation of successive-refinement
source code (see e.g. [24]) with broadcast channel codggPbt the sub-optimality of this combination
without S, see e.g. [26]). It is evident, that in most cades tise of the MLM scheme significantly
improves the SDR tradeoff over the performance offered kysttparation principle, and that the scheme
approaches simultaneous optimality where both SNRs ate kg promised by Theorem 3. Note that,
unlike the separation-based approach, the MLM approaahdifers reasonable SDRs for intermediate
SNRs. Moreover, note that this region is achievable whenssoiraption is made about the statistics of
I andJ. If these interferences are not very strong comparing’ tand 022, respectively, then one may
further extend the achievable region by allowing some tediéhterference.

To conclude, we briefly discuss the case whefe o2. We define the SDR of each decoder relative
to its own variance, and ask what are the achievable SDRs pairaof SNRs, which may be equal or
different. Assume here the simple case, where there is nonehanterference, i.el = 0. In this case,
the encoder only needs to agree updmvith the decoders, thus (by Lemma 2) we may approach for
n=1,2:

62
SDR, =1+ 5—SNR, , (44)

opt,n
where . is the optimum choice of for SNR, according to (34). It follows, that if the two decoders

require the same value gf they may be both approach the theoretically optimal distor This translates

to the optimality condition:

T7SNR, 727 SNR,

This scenario was presented in [27], where simultaneoumality using hybrid digital/analog schemes
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was proven under a different condition:

2 2
71 03

SNR, _ SNR,

Both conditions reflect the fact that better source comi:i;ti(bowera%) can compensate for worse channel
conditions (lower SNR). It follows from the difference be&t®n the conditions, that for some parameter

values the MLM scheme outperforms the approach of [27], #xisnding the achievable SDRs region.

V. DiscussioN DELAY AND COMPLEXITY

We have presented the joint source/channel MLM scheme eprit¢ optimality for joint WZ/DPC
setting with known SNR and shown its improved robustness aveeparation-based scheme. We now
discuss the potential complexity and delay advantages ofapproach relative to separation-based
schemes, first considering the complexity at high dimensaioth then suggesting a scalar variant.

Consider a separation-based solution, with source andnehamncoder/decoder pairs. An optimal
channel coding scheme typically consists of two codes: mrimation-bearing code and a shaping code,
both of which require a nearest-neighbor search at the @ecéth optimal source coding scheme also
consists of both a quantization code and a shaping code &r ¢odachieve the full vector quantization
gain (see e.g. [28]), thus two nearest-neighbor searcleenesrded at the encoder. The MLM approach
omits the information-bearing channel code and the quaitntiz code, and merges the channel and source
shaping codes into one. It is convenient to compare thiscgmbr with the nested lattices approach to
channel and source coding with SI [10], since in that apgrdaath the channel and source information
bearing/shaping code pairs are materialized by nestdddattin comparison, our scheme require only
a single lattice (parallel to the coarse lattice of nestdies®s), and in addition the source and channel
lattices collapse into a single one.

There is a price to pay, however: For the WZ problem, the eokattice should be good for channel
coding, while for the WDP problem the coarse lattice sho@dybod for source coding [10]. The lattice
used for MLM needs to be simultaneously good for sownog channel coding (see Appendix I). While
the existence of such lattices in the high dimension limiassured by [19], in finite dimension the
lattice that is best in one sense is not necessarily bestanother sense [29], resulting in a larger
implementation loss. Quantitively, whereas for sourceirmpdhe lattice should have a low normalized

second moment, and for channel coding it should have a lownvelto-noise ratio, for joint source
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Figure 6: Scalar MLM/companding scheme for joint sourcaretel coding over a high-SNR dirty-paper
channel:S = source,S = reconstruction,Z = channel noise/ = interference known at the encoder,

g(-) = companding function.

channel coding theroduct L(A,p.) (12) should be lof (see Appendix I). The study of such lattices
is currently under research. Exact comparison of schemésgim dimension will involve studying the
achievedoint source/channel excess distortion exponent (see [30] for a recent work about this exponent
in the Gaussian setting).

From the practical point of view, the question of a low-dirsi@mal scheme is very important, since
it implies both low complexity and low delay. One may ask themat can be achieved using low-
dimensional lattices, e.g. a scalar lattice? The difficultgwever, is that in low dimensions a low
probability of incorrect decoding. implies a high loss factof.(A, p.), thus the distortion promised
by Theorem 1 grows. Some improvement may be achieved by asirgptimal decoder rather than the
one described in this work (see Remark 1 at the end of Sedfiprah issue which is left for further
research. A recent work [31] suggests an alternative, ferctise of channel interference onlly € 0),
by also changing the encoder: The scalar zooming fagwwirthe MLM scheme is replaced by non-linear
companding of the signal; see Figure 6. At high SNR, the disto loss of such a scalar MLM scheme
with optimal companding comparing to (7) is shown to be

Dcompanding \/371’

Her = " = 4.3dB

In comparison, the loss of a separation-based scalar scloamgsting of a scalar quantizer and a scalar
(uncoded) channel constellation usbounded in the limit SNR— oo. This is since in a separation-based

scheme the mapping of quantized source values to channdkiigarbitrary; consequently, keeping the

®In Theorem 1 we show that the figure of meritligA, p., ) (15), but for reasonably high SNR it seems that the effect of

self noise should not be too dominant, so we cancset 1.
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loss bounded implies that the error probability must go t@ e the high-SNR limit, and the gap of a
scalar constellation from capacity grows.
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APPENDIX |
MEASURES OFGOODNESS OFLATTICES

In this appendix we discuss measures of goodness of lafticeource and channel coding, and their
connection with the loss factor relevant to our joint solobannel scheme.

When a lattice is used as a quantization codebook in the gtiadBaussian setting, the figure of merit
is the latticenormalized second moment:

G(A) 2 (D)
V(A)x

where the cell volume i¥ (A) = fvo dx. By the isoperimetric inequality7(A) > G, whereG, is the

(45)

normalized second moment of a ball with the same dimensioas the lattice. This quantity satisfies
Gy > ﬁ with asymptotic equality in the limit of large dimension. gequence ofK -dimensional

lattices is said to bgood for MSE quantization if
1

dm G40 = 9

thus it asymptotically achieves the minimum possible datsecond moment for a given volume.

When a lattice is used as an AWGN channel codebook, the figurent is the latticevolume-to-noise
ratio at a given error probability > p. > 0 (see e.qg. [32], [20]):

A V(A%
p(A, pe) = ( 2)
Oy

: (47)

wherecs? is the maximum variance (per element) of a white Gaussiatov&chaving an error probability
PI‘{Z ¢ VO} < Pe -

For any lattice i (A, pe) > i (pe), wherepj (pe) is the volume-to-noise ratio of a ball with the same

dimensionk as the lattice. For any > p. > 0, uj(pe) > 2me, with asymptotic equality in the limit of

large dimension. A sequence éf-dimensional lattices igood for AWGN channel coding if

lim lim p(Ag,pe) = 2me (48)
pe—0 K—o00
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thus it possesses the property of having a minimum poss@lezalume such that the probability of an
i.i.d. Gaussian vector of a given power to fall outside thi anishes.

Combining the definitions (45) and (47), we see that the las®f L(A, p.) (12) satisfies:
L(Aap8) = G(A) . /’L(Aape) .

Furthermore, the existence of a good sequence of latticdgigense of (13) is assured by the existence
of a sequence that simultaneously satisfies @) (48), which was shown in [19, Theorem 5].
Proposition 1 is implicit in the proof of [20, Theorem 5]. & based upon the existence of lattices that
are simultaneously good for AWGN channel coding and for doge[19], where goodness for covering
also implies goodness for MSE quantization; for such lagtjat is shown that the mixture noise cannot
be much worse than a Gaussian noise of the same variance, itatas shown in [33] that, for such
lattices, for small enough error probabilify, the introduction of self noise actually reduces the loss

factor, i.e.L(A,pe, ) < L(A,pe, 1).

APPENDIX Il

THE EFFECT OFDECODING FAILURE ON THE DISTORTION

With probability p., correct lattice decoding fails, i.e. (31) does not holde3én events contribute to

the total distortion a portion of

1>

D De - Dincorrect (49)
e Y

whereDeorrect is the distortion given a decoding failure, as in the prooTbhéorem 1. In this Appendix

we quantify this effect: In the first part we show tHat** of (24) is a (rather loose) bound dpieorrect,

thus completing the proof of Theorem 1. In the second partshwv directly thatD must vanish in the

limit of small p., without resorting to an explicit bound ahcorreet,

In both parts we use the observation that

S-s=Q-Q . (50)
whereQ 2 %[ﬁQ+Zeq] mod A, see also Figure 3b. We note that altho@gls unbounded, we always
have that

Qe %VO . (51)
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A. A Bound on the Conditional Distortion for Any Lattice

In order to complete the proof of Theorem 1, we now bouditd <<t of (33).

incorrec 1 Q
pirrrect — LE(IS — S| [5Q + Zuy Vo)

SE(IQ - QIPIAQ + Zeg ¢ W0}
< 2 (BUQIYSQ + Zey ¢ Vo) + E(IQIPIQ 1 2y ¢ W}) . (52)

where the inequality follows from assuming maximizifigl) correlation coefficient and then applying
the Cauchy-Schwartz inequality. We shall now bound these tevms. For the first one, recalling the
definition of the covering radius (11), we bound the condiibexpectation by the maximum possible
value:

_ag-r*(8)

N N 2A
B{IQI5Q + Zuy # Yo} < max((|QIP) = 5 §r6<2>_ (53)

For the second term, we have:

E{|QIPIBQ+ Zeg ¢ Vo} < E{|QIPIBQ ¢ Vo}
< E{|QI*BQ ¢ Bo} ,

N

whereB, is the circumsphere ofy, of radiusr(A). It follows that

E{QIPIBQ + Zeg ¢ Vo} < o E{VIV > o}

whereV ~ X% andu 2 ’;(UAQ This conditional expectation is given by:
Q

Q(% + 17’00%)
Q(%vvog)

where Q(-, ) is the regularized incomplete Gamma function, and the iaktyucan be shown by means

E{V’V>'UQ}: SUO+2 )

of calculus. This gives the bound on the second term:
r?(A)
ﬁ2

E{||QI18Q + Zeq & Vo} < < + 2KU§2>

Substituting this and (53) in (52), we have that:

2
incorrect T (A) 2

Recalling the choice of in (32b) and the definition of.(-,-) in (14), the bound follows.
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B. Asymptotic Effect of Decoding Failures

In this part we follow the claims used by Wyner in the sourcdieg context to establish [5, (5.2)],
to see thaﬂimpe_,OD = 0, where D was defined in (49), without using the explicit bound derived
Appendix II-A. This serves as a simpler proof of Theorem 2y@ower, it also applies to a non-optimal
choice of parameters, thus it serves in the analysis of paeoce under uncertainty conditions.

Denoting the decoding failure event byand its indicator byl., and recalling (50), we re-write the

contribution to the distortion as:
Zj::E{&'(Q'_an}'

For any value of the source unknown p@)t the distortion is bounded by:

~

d(Q) £ sup(Q - Q)*
Q

The expectatio2{d(Q)} is finite, sinceQ is Gaussian an€) is bounded (see (51)). We now have that
E)S«E{Ls'd“Q)}

Using a simple lemma of Probability Theory [5, Lemma 5.1hcgi E{d(Q)} is finite, this expectation

approaches zero age) = p. — 0.
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