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Abstract—We consider a discrete memoryless joint source- For a discrete memoryless source (DMB) when the rate

channel setting. Let D be some distortion level, lower than R is below the rate-distortion function (RDH}(P, D), the

the optimum performance theoretically attainable accordng to success probability has exponeBt Problem 9.6]:
the separation theorem. We prove that for any joint source- P y P te 6]

channel scheme, the probability that the distortion is at mat _ n
D approaches zero as the block length increases. Furthermare  Fs (R, D, P) =min |D (Q || P) + |R(Q, D) — R| } , (2)
we show that the probability has an exponential behavior, ad Q

evaluate the optimal exponent. . . . .
P P Similar to the channel coding case, this exponent is closely

|. INTRODUCTION related to the lossy source coding excess-distortion expton
Information Theory produces sharp results: if the requirddr R > R(P, D) [6]:

performance is below a threshold, set by the problem param-
eters, then it may be achieved reliably, i.e., with prohkigpbil Es(R,D,P) = in D(QJP).
that approaches one; otherwise, it can not. Converse sesult @R@QD)>R
may be divided into categories, according to their strength
measured asymptotically as the block length goes to infini%
A weak converse indicates it is impossible for the probspili
of success to approach one. A strong converse further st

In joint source-channel coding (JSCC), an average distorti
is achievable ifR(D) < pC and not achievable if the
opposite holds, where is the bandwidth expansion factor
mber of channel uses per source sample). This result,

h bability of h ._knowledge, a strong converse has not been presented, except
the probability of success must approach zero expongntiag, [8] , where Zhong et al. use very specific arguments

Indeed, for source and channel coding exponentially stropg prove it for the Quadratic-Gaussian setting. Indeedhsuc

Cog\é?rzezii?elfgoﬂg.lnor less source (DM@), when the a strong converse may be derived using previously known
y ' results. One way to do so, is to use equivalence to channel

required chgnnel ratdi is aboye the chann.el capacny,. coding P] and the strong channel converse. Alternatively,
the probability of correct decoding decays with the followi JSCC dispersionif] implies a strong converse. Information

exponent ] (Earlier in [2] it appears in a diﬁer?nt form and spectrum methods, such as used by Hei} {o derive a strong

proven to be a lower bound on the exponéent): converse to lossless JSCC.

Eg (R,W) = maxmin [D (V| W|®) + |R—1(®,V)|"|. In this work we take a direct path that allows us not only
* v (1) to prove a strong converse, but also derive the exponential

which is an upper bound on the exponent of the error prof@at wheneverk(D) > pC, the probability of not having
bility when R < C [3] (in this form, [4]): excess distortion for the optimal JSCC scheme decays with

R . exponent
Ep (R,W)=Zmax min D (V||W|D).
o V(@ V)<R _
In lossy source coding, dual results can be obtained where EJ.SCC_ (P, D, W, p) _
the excess-distortion probabilitplays the role of error prob- =min[Es (R, D, P) + pEsp (R/p, W), 3)
ability. Specifically, for some single-letter distortioneasure
d(-,-) and distortion threshold®, we say that the scheme wasvhere the channel and source exponents are giver)ognd

successful if . (2), respectively. This is analogous to the exponent of thererr
1 Zd(g g) <D probability: the JSCC excess-distortion exponentRdD) <
ni T pC' is upper-bounded by1p], [13]

IFor definition of of divergence and mutual information, semtation min [Es (R7 D, P) + pEsp (R7 W)] . (4)
section in the sequel R



Il. NOTATIONS is the distortion between the source and reproduction werds
ands and I(P, A) is the mutual information over a channel
with input distribution P(.S) and conditional distribution\ :

- 8.

A discrete memoryless joint source-channel coding (JSCC)
problem consists of a DM$S,$,P, d),aDMCW : X —

This paper uses lower case letters (ex).to denote a
particular value of the corresponding random variable tkgho
in capital letters (e.gX). Vectors are denoted in bold (ex.
or X). Calligraphic fonts (e.gX’) represent a set ar@ (X)
denotes all the probability distributions on the alphabetVe > )
useZ, andR, to denote the set of non-negative integer any a1d a(E)and_vwdth expansion factop € Ry. A JSCC
real numbers respectively. schemeC - is comprised of an encoder mappirfg;, :

Our proofs make use of the method of types, and follow tiis' — X"/ and decoder mappings;, : Y — &".
notations in B]. Specifically, thetype of a sequencex with Given a source block, the encoder maps it to a sequence
length . is denoted byP,, where the type is the empiricalX = f7a(s) € X7/ and transmits this sequence through
distribution of this sequence, i.6%(a) = N(a|x)/nVa € X, the channel. The decoder receives a sequgnoe yterd

where N (a|x) is the number of occurrences ofin sequence distributed according ta¥(|x), and maps it to a source
x. The subset of the probability distributios(X) that can "€conSstructiors. The corresponding distortion is given bg) (
be types ofr-sequences is denoted as For a given JSCC scheme, we define éner event&(D) as

P (X)2{PeP(X):nP(x)eZy, Ve eX} (5) E(D) 2 E(D, frinsgrin) ()

2 (n)
and sometimes’, is used to emphasize the fact thdt < =¢£ (D’CJSCC) (8)
P (X). A type classTp, is defined as the set of sequences £ 14(s,S) > D}, (9)

that have typePy. Given some sequence a sequencg of - .

the same length hasonditional typePyx if N(a,b|x,y) = and thecorrect event&(D) £ £(D) = {d(S,S) < D}.
Pyx(alb)N(a|x). Furthermore, the random variable correFinally, for block lengthn, we define thebestcorrect event
sponding to the conditional type of a random vec¥omiven &,(D) as an event that corresponds to the JSCC scheme that
x is denoted asPy . In addition, the possible conditionalproduces the minimum error probability, i.e.,

type given an input distributio®, is denoted as £.(D) e P [E(D)]
n arg min .
Pr (VIPx) £ {Pyjx : Px X Pyjx € Pn (X x V)}. {cfsbe

A discrete memoryless channel (DMQY : X — ) is [1l. M AIN RESULT
defined with its input alphabet’, output alphabefy, and
conditional distributionV (- | =) of output letterY” when the
channel input lettetX equalsxz € X. Also, we abbreviate
W (-] x) asW,(-) for notational simplicity. We define mutual
information as Theorem 1 (Strong Converse for JSCC)Given a dis-
(@)W (y|z) crete memoryless JSCC problem with DI\/{S‘,S‘,P,d)
DMC (X,Y,W) and bandwidth expansion factgs, when

The following formally states the exponential decay rate of
the probability of success at distortion threshaltid) > pC,
thus also serves as a strong converse for JSCC coding.

1(@,W) = 3 (@)W (yle) log =

W (y) pC(W) < R(P, D), let E (P, D, W, p) be the exponent of the
and the channel capacity is given by success probability for the best sequence of JSCC schemes
_ 1 _
_ 2 lYim ——
cw) = In(gx[ (@, W), E(P,D,W,p) = nhﬁngo - logP [£,(D)] .

and the set of capacity-achieving distributionsII$iV) £ ThenE (P, D,W,p) is given byEjscc (P, D, W, p) (3).
{®:1(®,W)=C(W)}.

A discrete memoryless source (DMS) is defined with sour
alphabetS, reproduction alphabe$, source distribution”
and a distortion measuré: S x S — R_.. Without loss of
generality, we assume that for arye S there iss € S such

Remark 1 (Direct part of the theorem)The achievability
B the exponenE;scc (P, D, W, p) may be proven by using
unequal error protection (UEP), as done by CsisZor the
JSCC exponent wherB(D) < pC [13]. Loosely speaking,
> _ ) . each source type-clasg is quantized by a codebook of rate
thatd(s, 5) = O._The rate-distortion function (RDF) of a DMSR(Q,D), and then a UEP scheme is used to transmit these
(S,8,P,d) is given by codebooks over the channel. The achievability prapdf the
R(P,D) = min  I(P,A), channel exponenk, (R, W) in (1) can be extended to the
A:Ep Ad(S,8)<D UEP setting, completing the proof. As this is a rather trivia
extension of previous results, we concentrate in this wark o
proving the converse.

. 1 . .
d(s,8) = — Zd(si’si) (6) Remark 2  (Alternative form) The  exponent
i Ejscc (P, D, W, p) may be written explicitly as a function of

where



0.9

Ejscc (P, D, W, p)
EJSCC (1’:)71)7 W) =0.2

1
oo
oo

Fig. 1. WhenR(P, D) > pC, (3) is always minimized by a rat® such that
R(P,D) > R > pC, where in the plot the dashed curve i, (R, W),
the dotted curve ists (R, D, P) and the solid curve iss (R, D, P) +
pEsp (R, W).

Fig. 2. Ejscc (P, D, W, p) with Hy, (D) = 0.1 and H, (¢) = 0.3, where
in the plot the dashed curve I5, (R, W), the dotted curve i&s (R, D, P)
and the solid curve i€s (R, D, P) + Esp (R, W).

the source and channel parameters, as follows. Ejsce (P, D, W)

_ 0.4
Ejsce (P, D, W, p)
Hy, () |
= mi D P i D (V|| W|®
i [P @iP - m iy (s VIwi)
+IR(Q.D) - p1(e. )" )] (10) 01|
. . . . 0 1 1 ‘ 1
We prove the equivalence of this form t8) {n SectionlV-C. 0 0.02 0.04 €006 p
We use this form in the proof of Theordmrather than the

form (3).

Remark 3 (Minimizing rate) WhenR(P, D) > pC, the rate
minimizing (3) satisfiesR(P,D) > R > pC, as shown in
Fig. 1. This is parallel to the excess-distortion exponent whefgmma 3 (RestrictedD-ball size) Given source typé> and

R(P, D) < pC, where(4) is minimized by a rate?(P, D) < a reconstruction sequende define restrictedD-ball as
R < pC.

Fig. 3. E(P,D,W,p) with Hy () = 0.3.

B(§,P,D) = {se T :d(s,8) <D}.
The proof of our main result builds on the following key 8 ) SiseTp1d(s,8) < Dy

lemma. Then

Lemma 2 (Joint source channel coding converse with fixed |B(8, P, D)| < (n+ 1)\$I|5| exp{n[H(P)— R(P,D)|}
types) For a JSCC problem, given a source ty@ec P, (S)
and a channel input typ® € P,, (X), define all the channel
outputs that covers with distortion D as B(s, D), i.e.,

This last lemma is similar to Lemma 3 i14]. However,
it provides auniform bound over the size of the restricted
D-ball. We prove this lemma, as well as Lemriaand the
(11) converse part of Theorethin the next section. We conclude

B(s,D) £ {y € Y™ : d(s,9:(y)) < D}
, this section by presenting the following example.
wherem = |pn| and g;., is the JSCC decoder. Then for a

given distortionD and a channel with constant compositiofExample 1. Transmitting a binary symmetric source (BSS)

conditional distributionV" € P,,,(Y|®), we have

Ly |7 (£(s0)) (1 Blsi, D)
Q. 2 e
p(n) —n[R(Q,D)—pI(®,V)]*
SQ(Q7¢)GXP R(Q.D)=pI(®,V)]*

wherep(n)
channel and reconstruction alphabet sizes and

is a polynomial that depends only on the source,,

over a binary symmetric channel (BSC) subject to the Ham-
ming distortion with the bandwidth expansion facjoe 1.

For a BSS, the RDF is given bR(P, D) = 1 — Hy(D),
where H,(-) is the binary entropy function. It can be shown
that (1) is always minimized by a uniform distribution and:

(12) Es(R,D,P) = |1 — Hy(D) — R|*".

For a BSC with cross over probability, the capacity is
given byC(W) = 1 — Hy(e). it can be shown that the
optimizing® and V in (1) are always symmetric and:

The proof of this lemma is based upon the exponential

channel coding conversé][ combined with the following.

Eqy (R,W) = |R -1+ Hy(e)|™.



Therefore, wherR(P, D) > C(W), i.e. D < ¢, b) Bounding the sum of numerato8inces € G(Q, ®),

Ejscc (P,D,W) = inf[Es (R, D, P) + Eq, (R, W) y € Tv (f(s)) N B(s, D)
= R(P,D) — C(W) =s € B(gsn(y),Q, D) NG(Q, P). (13)
=H, (c) — Hy (D). Therefore, any y will be counted at most
|B(9:n(y), @, D) NG(Q, P)| times. According
For the case off, (D) = 0.1 and H, (¢ )— 0.3, we plot the to |emma 3, this is upper bounded byB, =
Eg (R, D, P), Eyp, (R,W) and Ejscc (P, D, W) in Fig. 2. (,, 4 1)S18] oxp (n [H(Q) — R(Q, D)]}. In addition, it

Finally, we show howEjscc (P, D, W) as a function ofD 5 obvious that

henH = 0.3 in Fig. 3. ;
whenH, (¢) in Fig U Tv (f(si)) N B(si, D) C Ty,

IV. PROOFS $1€G(Q,®)
A. Proof of Key Lemmas where¥ = &V is the channel output distribution correspond-
Proof of Lemma3: Let P € P, (S) be a given type ing to ®. Therefore,
and let@ be the type o&. Then the size of the set of source o(Q, ) .
codewords with typeP that areD-covered bys is GO.9) > ’Tv (f(si)) N B(si, D)’
’ si€G(Q,P)
1
B&.P.D)=| |J {s€T#:Ps=PxA}. <—Bu| U Tv(f(s)) N Bsi, D)
AE[a(s,9)]<D, Q si€ThH
PA=Q 1
. <—Bu Tyl
Note there are at mogh + 1)I5/15] joint types, and T8
{s€Tp :Psg=Px A} =T5 (8), Noting
~ R ~ —|S] n
whereA is the reverse channel frodito S such that) x A = (n+ )" exp{nH (Q)} < |73
P x A. Therefore, |Tg"| < exp {mH ()},
|B(§, P,D)| we have

< Y I7e

AEg ;[d(8,9)]<D

1 1

1 B,

nog[‘ ’ T3]
Q

<(n+1 ‘8‘|‘§|e n ma; H (A . <@ _
( ) P A:EQYA[d(g),(S)]SD ( |Q) ~n log(n +1) = H(Q)
Note |S] ‘S‘
+ log(n+1)+ H(Q) — R(Q, D)
R(P,D) = min I(PA)
AEpa[d(S,8)]<D + pH(\IJ)
=H({P)-  max H (m) , <pH(¥) — R(Q, D)
VrasliEol<p g !5 | s
hence + log(n +1) + — log(n +1).
|B(8,P,D)| < (n+ 1)\3||3| exp {n[H(P) — R(P,D)]}. Combining the bounds for both numerator and denominator,
we have
] .
Proof for Lemma2: In our proof, we first bound the 1, | a(Q, &) ’TV (f(s1)) QB(SuD)‘
denominator in 12) uniformly for all s;, and then bound the n o8 1G(Q, )| Z Tv (f(si))
sum of the numerator over al}, as done in{] for the channel :€G(Q.®) N
error exponent. . < pH(W) — pH (V|®) — R(Q, D) + | XY log(m + 1)
a) Bounding the denominatoBased on standard results m
in method of typesH], for f(s) € T2, S| ’3’ |S|
1 1 1 1).
(m+ 1) exp {mH (V1)) < [T (£(5)). Fo sl S s

Notem = Lpnj < pn, let

1 p(n) = (pn + 1)P¥ IV 4 1) ISISIHISD) - (1)
_ m+ DXV exp {—mH (V]®)}.
Ty (f(s))] < (m+1) P Vie)} and the proof is completed. [

Hence



B. Proof of Main Result wherep(n) is a polynomial given in 14). Therefore,

Proof for Theoreml (converse part): Let P [£(D)] = P[E(D)|Fs = Q] -
1—P[£(D)]. By following a similar argument in, Proof of < P PlP.. =VIP. =& ( pn
Lemma 5], clearly, %ZAm (@, )VGPZ(WD) [Py = VIPx = 2] a(Q, ®)

B E(D)] exp(-nlR(Q,D) - pI(@. V)]})
< 51 ~nD(Q|P),
<(n+1) Qg;D?(CS)P [ED) | s = Qe (15) < Z p(n) exp {—m [ min D (V| W|<I>)]}
DeA,, VeEPRH(Y|P)
Let m £ |pm| and let.A,, denote the channel codebook in - exp {—n |R(Q, D) — pl(@,V)|+}
this JSCC scheme. Then conditioning again, we have
< Y se{ —n| min oDV W)
B BeA,, VEP,L(Y|P)
P [E(D)|Ps = Q] .
= Y P[Px =9|Ps = QP [E(D)|Ps = Q. Px = 9] +[R(Q, D) — pI(®,V)] }} (16)
PEAm Combining (5) and (L6), we have
Let G(Q, @) be the set of source sequencesTi that are P[E(D)]
:napped_ (via JSCC encodg.,,) to channel codewords with <poly(n) exp{ B n{ i (D Q1 P)
ype @, i.e., QEPL(S)
+ min  min  pD (V|| W|®)
A " m PEAL, VEP(V|P)
G(Q,@):{SETQ:X:f(];n(S)G’]:I) }a n
+ 7@ D) - pr@ V)1 )| |
and leta(Q, ®) £ P[Px = ®|Ps = Q] be the probability of Therefore,

having channel input typ@ given that the source type .
Noting that given a source type, all strings within a typessla £ (P, D, W p)

are equally likely, hence — lim mf—— log P [c‘fn(D)}

{s€Tg :x=Frn(8) €T3} _ |G(Q, D) . <
@@= : 1731 ITq’Jl ' = QER(s) bl )+<I>Iergl<)§c>Ve7>n<y|¢> Dviwie)

FIRQ.D) — pI(@.V)[* )

On account of the exponent equivalence, the proof is
completed. ]

Therefore,

P [£(D)|Ps = Q)]
= 3 aQ.)P[E(D)|Ps = Q, P = @]

C. Proof of Exponent Equivalence

DeA, ( )In this section we prove the equivalence betwe#f) and
3).
= Z OZ(Q,CP)( Z P [Pyjx = V|Px = @] ~To that end, let the® V and Q that achieves
DEA, VEP,,(V|®) Ejscc (P,D,W,p) be &, V* and Q*. Let Rg and Rc be
_ the source and channel rate respectively, where= Rs/p.
P [8(D)|PS = Qan = ®7Py|x = V} ) If R(Q*,D) _ pI ((I)*,V*) S O, then

Ejscc (P, D, W, p)
Next we use Lemma to assert, =D (Q* | P) + pD (V* | W|®*)

_ =min D (Q || P) + maxmin pD (V || W|®),
P[E(D)|Ps = Q,Px = ®, Py = Q T

ylx = }
1 ‘Tm (/i) N Bsi )‘ we have
‘TR, 2 TG

[Ty (f(s0)] Es (RY, D, P) = min[D(Q | P)],

S% exp {—n |R(Q, D) — pI (@, V)I*} Eyp (Re, W) = maxmin D (V | W]®),

and for anyR(Q*, D) < R§ < pI (®*,V*) and R, = Rg/p,




and thus

i}I%leS (Rs, D, P) + pEsp (Rc, W)
s

<Es(R§, D, P) + pEs, (R, W)
:EJSCC (P7D7Wa P) . (17)

Similarly, we can show that wheR(Q*, D) — pI (®*,V*) >

01

inf Es(Rs, D, P) + pEg, (Rc, W)
S
<Ejscc (P,D,W,p). (18)

However, we also know that for ani

ES (Rs,D,P) + pEsp (RC7W)

> min (D P) + i D (V| W|®

—leﬁ?s>< QI P) ST, i P (V[|w|e)
FIRQ.D) — pl(®,V)[* )

hence

i}ngs (Rs, D, P) + pEg, (Rc, W) > Ejscc (P,D, W, p).
S

(19)

Therefore, 17) and (L8) and (L9) suggest that
EJSCC (P7 D7 Wa p) = lll%lstS (R57 Da P) + pESp (R07 W) .
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