
A Strong Converse for Joint Source-Channel Coding

Da Wang
EECS Dept., MIT

Cambridge, MA 02139, USA
Email: dawang@mit.edu

Amir Ingber
Dept. of EE-Systems, TAU

Tel Aviv 69978, Israel
Email: ingber@eng.tau.ac.il

Yuval Kochman
EECS Dept., MIT

Cambridge, MA 02139, USA
Email: yuvalko@mit.edu

Abstract—We consider a discrete memoryless joint source-
channel setting. Let D be some distortion level, lower than
the optimum performance theoretically attainable according to
the separation theorem. We prove that for any joint source-
channel scheme, the probability that the distortion is at most
D approaches zero as the block length increases. Furthermore,
we show that the probability has an exponential behavior, and
evaluate the optimal exponent.

I. I NTRODUCTION

Information Theory produces sharp results: if the required
performance is below a threshold, set by the problem param-
eters, then it may be achieved reliably, i.e., with probability
that approaches one; otherwise, it can not. Converse results
may be divided into categories, according to their strength,
measured asymptotically as the block length goes to infinity.
A weak converse indicates it is impossible for the probability
of success to approach one. A strong converse further states
that the success probability must approach zero. Beyond that,
one may be interested in the rate in which this happens;
specifically, an “exponentially-strong” converse states that
the probability of success must approach zero exponentially.
Indeed, for source and channel coding exponentially strong
converses are known.

For a discrete memoryless source (DMC)W , when the
required channel rateR is above the channel capacityC,
the probability of correct decoding decays with the following
exponent [1] (Earlier in [2] it appears in a different form and
proven to be a lower bound on the exponent):1

Ēsp (R,W ) = max
Φ

min
V

[

D (V ‖W |Φ) + |R− I (Φ, V )|+
]

.

(1)
This exponent is closely related the sphere-packing exponent,
which is an upper bound on the exponent of the error proba-
bility when R < C [3] (in this form, [4]):

Esp (R,W ) , max
Φ

min
V :I(Φ,V )≤R

D (V ‖W |Φ) .

In lossy source coding, dual results can be obtained where
the excess-distortion probabilityplays the role of error prob-
ability. Specifically, for some single-letter distortion measure
d(·, ·) and distortion thresholdD, we say that the scheme was
successful if

1

n

n
∑

i=1

d(S, Ŝ) ≤ D.

1For definition of of divergence and mutual information, see notation
section in the sequel

For a discrete memoryless source (DMS)P , when the rate
R is below the rate-distortion function (RDF)R(P,D), the
success probability has exponent [5, Problem 9.6]:

ĒS (R,D, P ) = min
Q

[

D (Q ‖P ) + |R(Q,D)−R|
+
]

, (2)

Similar to the channel coding case, this exponent is closely
related to the lossy source coding excess-distortion exponent
for R > R(P,D) [6]:

ES (R,D, P ) = inf
Q:R(Q,D)>R

D (Q ‖P ) .

In joint source-channel coding (JSCC), an average distortion
D is achievable ifR(D) < ρC and not achievable if the
opposite holds, whereρ is the bandwidth expansion factor
(number of channel uses per source sample). This result,
due to Shannon [7] immediately implies a weak converse for
the excess-distortion probability. However, to the best ofour
knowledge, a strong converse has not been presented, except
for [8] , where Zhong et al. use very specific arguments
to prove it for the Quadratic-Gaussian setting. Indeed, such
a strong converse may be derived using previously known
results. One way to do so, is to use equivalence to channel
coding [9] and the strong channel converse. Alternatively,
JSCC dispersion [10] implies a strong converse. Information
spectrum methods, such as used by Han [11] to derive a strong
converse to lossless JSCC.

In this work we take a direct path that allows us not only
to prove a strong converse, but also derive the exponential
behavior of the probability of success. Specifically, we show
that wheneverR(D) > ρC, the probability of not having
excess distortion for the optimal JSCC scheme decays with
exponent

ĒJSCC (P,D,W, ρ)

=min
R

[ĒS (R,D, P ) + ρĒsp (R/ρ,W )], (3)

where the channel and source exponents are given by (1) and
(2), respectively. This is analogous to the exponent of the error
probability: the JSCC excess-distortion exponent forR(D) <
ρC is upper-bounded by [12], [13]

min
R

[ES (R,D, P ) + ρEsp (R,W )] . (4)



II. N OTATIONS

This paper uses lower case letters (e.g.x) to denote a
particular value of the corresponding random variable denoted
in capital letters (e.g.X). Vectors are denoted in bold (e.g.x

or X). Calligraphic fonts (e.g.X ) represent a set andP (X )
denotes all the probability distributions on the alphabetX . We
useZ+ andR+ to denote the set of non-negative integer and
real numbers respectively.

Our proofs make use of the method of types, and follow the
notations in [5]. Specifically, thetype of a sequencex with
length n is denoted byPx, where the type is the empirical
distribution of this sequence, i.e.,Px(a) = N(a|x)/n ∀a ∈ X ,
whereN(a|x) is the number of occurrences ofa in sequence
x. The subset of the probability distributionsP (X ) that can
be types ofn-sequences is denoted as

Pn (X ) , {P ∈ P (X ) : nP (x) ∈ Z+, ∀x ∈ X} (5)

and sometimesPn is used to emphasize the fact thatPn ∈
Pn (X ). A type classT n

Px

is defined as the set of sequences
that have typePx. Given some sequencex, a sequencey of
the same length hasconditional typePy|x if N(a, b|x,y) =
Py|x(a|b)N(a|x). Furthermore, the random variable corre-
sponding to the conditional type of a random vectorY given
x is denoted asPY|x. In addition, the possible conditional
type given an input distributionPx is denoted as

Pn (Y|Px) ,
{

Py|x : Px × Py|x ∈ Pn (X × Y)
}

.

A discrete memoryless channel (DMC)W : X → Y is
defined with its input alphabetX , output alphabetY, and
conditional distributionW ( · |x) of output letterY when the
channel input letterX equalsx ∈ X . Also, we abbreviate
W ( · |x) asWx(·) for notational simplicity. We define mutual
information as

I (Φ,W ) =
∑

x,y

Φ(x)W (y|x) log
Φ(x)W (y|x)

ΦW (y)
,

and the channel capacity is given by

C(W ) = max
Φ

I (Φ,W ) ,

and the set of capacity-achieving distributions isΠ(W ) ,

{Φ : I (Φ,W ) = C(W )}.
A discrete memoryless source (DMS) is defined with source

alphabetS, reproduction alphabet̂S, source distributionP
and a distortion measured : S × Ŝ → R+. Without loss of
generality, we assume that for anys ∈ S there isŝ ∈ Ŝ such
thatd(s, ŝ) = 0. The rate-distortion function (RDF) of a DMS
(S, Ŝ, P, d) is given by

R(P,D) = min
Λ:EP,Λd(S,Ŝ)≤D

I(P,Λ),

where

d(s, ŝ) ,
1

n

n
∑

i=1

d(si, ŝi) (6)

is the distortion between the source and reproduction wordss

and ŝ and I(P,Λ) is the mutual information over a channel
with input distributionP (S) and conditional distributionΛ :
S → Ŝ.

A discrete memoryless joint source-channel coding (JSCC)
problem consists of a DMS(S, Ŝ, P, d), a DMC W : X →
Y and a bandwidth expansion factorρ ∈ R+. A JSCC
schemeC(n)

JSCC is comprised of an encoder mappingfJ;n :
Sn → X ⌊ρn⌋ and decoder mappinggJ;n : Y⌊ρn⌋ → Ŝn.
Given a source blocks, the encoder maps it to a sequence
x = fJ;n(s) ∈ X ⌊ρn⌋ and transmits this sequence through
the channel. The decoder receives a sequencey ∈ Y⌊ρn⌋

distributed according toW (·|x), and maps it to a source
reconstruction̂s. The corresponding distortion is given by (6).
For a given JSCC scheme, we define theerror eventE(D) as

E(D) , E(D, fJ;n, gJ;n) (7)

, E
(

D, C
(n)
JSCC

)

(8)

, {d(S, Ŝ) > D}, (9)

and thecorrect event Ē(D) , E(D)c = {d(S, Ŝ) ≤ D}.
Finally, for block lengthn, we define thebest correct event
Ēn(D) as an event that corresponds to the JSCC scheme that
produces the minimum error probability, i.e.,

Ēn(D) ∈ argmin
{

C
(n)
JSCC

}

P
[

Ē(D)
]

.

III. M AIN RESULT

The following formally states the exponential decay rate of
the probability of success at distortion thresholdsR(D) > ρC,
thus also serves as a strong converse for JSCC coding.

Theorem 1 (Strong Converse for JSCC). Given a dis-
crete memoryless JSCC problem with DMS(S, Ŝ, P, d)
DMC (X ,Y,W ) and bandwidth expansion factorρ, when
ρC(W ) < R(P,D), let Ē (P,D,W, ρ) be the exponent of the
success probability for the best sequence of JSCC schemes

Ē (P,D,W, ρ) , lim
n→∞

−
1

n
logP

[

Ēn(D)
]

.

ThenĒ (P,D,W, ρ) is given byĒJSCC (P,D,W, ρ) (3).

Remark 1 (Direct part of the theorem). The achievability
of the exponent̄EJSCC (P,D,W, ρ) may be proven by using
unequal error protection (UEP), as done by Csiszár for the
JSCC exponent whereR(D) < ρC [13]. Loosely speaking,
each source type-classQ is quantized by a codebook of rate
R(Q,D), and then a UEP scheme is used to transmit these
codebooks over the channel. The achievability proof [1] of the
channel exponent̄Esp (R,W ) in (1) can be extended to the
UEP setting, completing the proof. As this is a rather trivial
extension of previous results, we concentrate in this work on
proving the converse.

Remark 2 (Alternative form). The exponent
ĒJSCC (P,D,W, ρ) may be written explicitly as a function of



ρC R(P,D)

ĒJSCC (P,D,W, ρ)

R

Fig. 1. WhenR(P,D) > ρC, (3) is always minimized by a rateR such that
R(P,D) > R > ρC, where in the plot the dashed curve is̄Esp (R,W ),
the dotted curve isĒS (R,D, P ) and the solid curve isĒS (R,D,P ) +
ρĒsp (R,W ).

the source and channel parameters, as follows.

ĒJSCC (P,D,W, ρ)

= min
Q∈P(S)

[

D (Q ‖P ) + max
Φ∈P(X )

min
V ∈P(Y|X )

(

ρD (V ‖W |Φ)

+ |R(Q,D)− ρI(Φ, V )|
+

)]

. (10)

We prove the equivalence of this form to (3) in SectionIV-C.
We use this form in the proof of Theorem1, rather than the
form (3).

Remark 3 (Minimizing rate). WhenR(P,D) > ρC, the rate
minimizing (3) satisfiesR(P,D) ≥ R ≥ ρC, as shown in
Fig. 1. This is parallel to the excess-distortion exponent where
R(P,D) < ρC, where(4) is minimized by a rateR(P,D) <
R < ρC.

The proof of our main result builds on the following key
lemma.

Lemma 2 (Joint source channel coding converse with fixed
types). For a JSCC problem, given a source typeQ ∈ Pn (S)
and a channel input typeΦ ∈ Pn (X ), define all the channel
outputs that coverss with distortionD as B̂(s, D), i.e.,

B̂(s, D) , {y ∈ Ym : d(s, gJ;n(y)) ≤ D} (11)

wherem = ⌊ρn⌋ and gJ;n is the JSCC decoder. Then for a
given distortionD and a channel with constant composition
conditional distributionV ∈ Pm(Y|Φ), we have

1

|G(Q,Φ)|

∑

si∈G(Q,Φ)

∣

∣

∣
T m
V (f(si)) ∩ B̂(si, D)

∣

∣

∣

|T m
V (f(si))|

≤
p(n)

α(Q,Φ)
exp−n[R(Q,D)−ρI(Φ,V )]+ , (12)

wherep(n) is a polynomial that depends only on the source,
channel and reconstruction alphabet sizes andρ.

The proof of this lemma is based upon the exponential
channel coding converse [1], combined with the following.

0 C R(P,D)1

0.2
0.3

0.9

ĒJSCC (P,D,W ) = 0.2

R

Fig. 2. ĒJSCC (P,D,W, ρ) with Hb (D) = 0.1 andHb (ε) = 0.3, where
in the plot the dashed curve is̄Esp (R,W ), the dotted curve is̄ES (R,D,P )
and the solid curve is̄ES (R,D,P ) + Ēsp (R,W ).
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Fig. 3. Ē (P,D,W, ρ) with Hb (ε) = 0.3.

Lemma 3 (RestrictedD-ball size). Given source typeP and
a reconstruction sequencês, define restrictedD-ball as

B(ŝ, P,D) , {s ∈ T n
P : d(s, ŝ) ≤ D} .

Then

|B(ŝ, P,D)| ≤ (n+ 1)|S||Ŝ| exp {n [H(P )−R(P,D)]}

This last lemma is similar to Lemma 3 in [14]. However,
it provides auniform bound over the size of the restricted
D-ball. We prove this lemma, as well as Lemma2 and the
converse part of Theorem1 in the next section. We conclude
this section by presenting the following example.

Example 1. Transmitting a binary symmetric source (BSS)
over a binary symmetric channel (BSC) subject to the Ham-
ming distortion with the bandwidth expansion factorρ = 1.

For a BSS, the RDF is given byR(P,D) = 1 − Hb(D),
whereHb(·) is the binary entropy function. It can be shown
that (1) is always minimized by a uniform distribution and:

ĒS (R,D, P ) = |1−Hb(D)−R|+.

For a BSC with cross over probabilityε, the capacity is
given by C(W ) = 1 − Hb(ε). it can be shown that the
optimizingΦ andV in (1) are always symmetric and:

Ēsp (R,W ) = |R− 1 +Hb(ε)|
+.



Therefore, whenR(P,D) > C(W ), i.e. D < ε,

ĒJSCC (P,D,W ) = inf
R
[ĒS (R,D, P ) + Ēsp (R,W )]

= R(P,D) − C(W )

= Hb (ε)−Hb (D) .

For the case ofHb (D) = 0.1 and Hb (ε) = 0.3, we plot the
ĒS (R,D, P ), Ēsp (R,W ) and ĒJSCC (P,D,W ) in Fig. 2.
Finally, we show howĒJSCC (P,D,W ) as a function ofD
whenHb (ε) = 0.3 in Fig. 3.

IV. PROOFS

A. Proof of Key Lemmas

Proof of Lemma3: Let P ∈ Pn (S) be a given type
and letQ be the type of̂s. Then the size of the set of source
codewords with typeP that areD-covered bŷs is

|B(ŝ, P,D)| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

⋃

Λ:E[d(S,Ŝ)]≤D,

PΛ=Q

{s ∈ T n
P : Ps,ŝ = P × Λ}

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Note there are at most(n+ 1)|S||Ŝ| joint types, and

{s ∈ T n
P : Ps,ŝ = P × Λ} = T n

Λ̃
(ŝ) ,

whereΛ̃ is the reverse channel from̂S to S such thatQ×Λ̃ =
P × Λ. Therefore,

|B(ŝ, P,D)|

≤
∑

Λ̃:E
Q,Λ̃[d(Ŝ,S)]≤D,

∣

∣T n

Λ̃
(ŝ)

∣

∣

≤(n+ 1)|S||Ŝ| exp

[

n max
Λ̃:EQ,Λ̃[d(Ŝ,S)]≤D,

H
(

Λ̃|Q
)

]

.

Note

R(P,D) = min
Λ:EP,Λ[d(S,Ŝ)]≤D

I (P,Λ)

= H(P )− max
Λ̃:E

Q,Λ̃[d(Ŝ,S)]≤D

H
(

Λ̃|Q
)

,

hence

|B(ŝ, P,D)| ≤ (n+ 1)|S||Ŝ| exp {n [H(P )−R(P,D)]} .

Proof for Lemma2: In our proof, we first bound the
denominator in (12) uniformly for all si, and then bound the
sum of the numerator over allsi, as done in [1] for the channel
error exponent.

a) Bounding the denominator:Based on standard results
in method of types [5], for f(s) ∈ T n

Φ ,

(m+ 1)−|X ||Y| exp {mH (V |Φ)} ≤ |T m
V (f(s))| .

Hence
1

|T m
V (f(s))|

≤ (m+ 1)|X ||Y| exp {−mH (V |Φ)} .

b) Bounding the sum of numerator:Sinces ∈ G(Q,Φ),

y ∈ TV (f(s)) ∩ B̂(s, D)

⇒s ∈ B(gJ;n(y), Q,D) ∩G(Q,Φ). (13)

Therefore, any y will be counted at most
|B(gJ;n(y), Q,D) ∩G(Q,Φ)| times. According
to Lemma 3, this is upper bounded byBu =

(n + 1)|S||Ŝ| exp {n [H(Q)−R(Q,D)]} . In addition, it
is obvious that

⋃

si∈G(Q,Φ)

TV (f(si)) ∩ B̂(si, D) ⊂ T n
Ψ ,

whereΨ = ΦV is the channel output distribution correspond-
ing to Φ. Therefore,

α(Q,Φ)

|G(Q,Φ)|

∑

si∈G(Q,Φ)

∣

∣

∣
TV (f(si)) ∩ B̂(si, D)

∣

∣

∣

≤
1

∣

∣

∣
T n
Q

∣

∣

∣

Bu

∣

∣

∣

∣

∣

∣

⋃

si∈T n
Q

TV (f(si)) ∩ B̂(si, D)

∣

∣

∣

∣

∣

∣

≤
1

∣

∣

∣
T n
Q

∣

∣

∣

Bu |T
n
Ψ | .

Noting

(n+ 1)−|S| exp {nH (Q)} ≤
∣

∣T n
Q

∣

∣

|T m
Ψ | ≤ exp {mH (Ψ)} ,

we have

1

n
log





1
∣

∣

∣
T n
Q

∣

∣

∣

Bu |T
n
Ψ |





≤
|S|

n
log(n+ 1)−H (Q)

+
|S|

∣

∣

∣
Ŝ
∣

∣

∣

n
log(n+ 1) +H(Q)−R(Q,D)

+ ρH(Ψ)

≤ρH(Ψ)−R(Q,D)

+
|S|

∣

∣

∣
Ŝ
∣

∣

∣

n
log(n+ 1) +

|S|

n
log(n+ 1).

Combining the bounds for both numerator and denominator,
we have

1

n
log





α(Q,Φ)

|G(Q,Φ)|

∑

si∈G(Q,Φ)

∣

∣

∣
TV (f(si)) ∩ B̂(si, D)

∣

∣

∣

TV (f(si))





≤ ρH(Ψ)− ρH (V |Φ)−R(Q,D) +
|X | |Y|

m
log(m+ 1)

+
|S|

∣

∣

∣
Ŝ
∣

∣

∣

n
log(n+ 1) +

|S|

n
log(n+ 1).

Notem = ⌊ρn⌋ ≤ ρn, let

p(n) = (ρn+ 1)ρ|X ||Y|(n+ 1)(|S||Ŝ|+|S|), (14)

and the proof is completed.



B. Proof of Main Result

Proof for Theorem1 (converse part): Let P
[

Ē(D)
]

=
1−P [E(D)]. By following a similar argument in [1, Proof of
Lemma 5], clearly,

P
[

Ē(D)
]

≤(n+ 1)|S| max
Q∈Pn(S)

P
[

Ē(D)
∣

∣PS = Q
]

e−nD(Q ‖P ). (15)

Let m , ⌊ρm⌋ and letAm denote the channel codebook in
this JSCC scheme. Then conditioning again, we have

P
[

Ē(D)|PS = Q
]

=
∑

Φ∈Am

P [PX = Φ|PS = Q]P
[

Ē(D)|PS = Q,Px = Φ
]

.

Let G(Q,Φ) be the set of source sequences inT n
Q that are

mapped (via JSCC encoderfJ;n) to channel codewords with
typeΦ, i.e.,

G(Q,Φ) ,
{

s ∈ T n
Q : x = fJ;n(s) ∈ T m

Φ

}

,

and letα(Q,Φ) , P [PX = Φ|PS = Q] be the probability of
having channel input typeΦ given that the source type isQ.
Noting that given a source type, all strings within a type class
are equally likely, hence

α(Q,Φ) =
|{s ∈ T n

Q : x = fJ;n(s) ∈ T m
Φ }|

|T n
Q |

=
|G(Q,Φ)|

|T n
Q |

.

Therefore,

P
[

Ē(D)|PS = Q
]

=
∑

Φ∈Am

α(Q,Φ)P
[

Ē(D)|PS = Q,Px = Φ
]

=
∑

Φ∈Am

α(Q,Φ)

(

∑

V ∈Pm(Y|Φ)

P
[

Py|x = V |Px = Φ
]

· P
[

Ē(D)|PS = Q,Px = Φ, Py|x = V
]

)

.

Next we use Lemma2 to assert,

P
[

Ē(D)|PS = Q,Px = Φ, Py|x = V
]

≤
1

|G(Q,Φ)|

∑

si∈G(Q,Φ)

∣

∣

∣
T m
V (f(si)) ∩ B̂(si, D)

∣

∣

∣

|T m
V (f(si))|

≤
p(n)

α(Q,Φ)
exp

{

−n |R(Q,D)− ρI (Φ, V )|+
}

wherep(n) is a polynomial given in (14). Therefore,

P
[

Ē(D)|PS = Q
]

≤
∑

Φ∈Am

α(Q,Φ)
∑

V ∈Pm(Y|Φ)

P
[

Py|x = V |Px = Φ
]

(

p(n)

α(Q,Φ)

· exp{−n[R(Q,D)− ρI(Φ, V )]}

)

≤
∑

Φ∈Am

p(n) exp

{

−m

[

min
V ∈Pm(Y|Φ)

D (V ‖W |Φ)

]}

· exp
{

−n |R(Q,D)− ρI (Φ, V )|
+
}

≤
∑

Φ∈Am

p(n) · exp

{

− n

[

min
V ∈Pm(Y|Φ)

ρD (V ‖W |Φ)

+ |R(Q,D)− ρI(Φ, V )|
+

]}

(16)

Combining (15) and (16), we have

P
[

Ē(D)
]

≤poly(n) exp

{

− n

[

min
Q∈Pn(S)

(

D (Q ‖P )

+ min
Φ∈Am

min
V ∈Pm(Y|Φ)

ρD (V ‖W |Φ)

+ |R(Q,D)− ρI(Φ, V )|
+

)]}

.

Therefore,

Ē (P,D,W, ρ)

= lim inf
n→∞

−
1

n
logP

[

Ēn(D)
]

≥ min
Q∈P(S)

(

D (Q ‖P ) + max
Φ∈P(X )

min
V ∈Pn(Y|Φ)

ρD (V ‖W |Φ)

+ |R(Q,D)− ρI(Φ, V )|
+

)

.

On account of the exponent equivalence, the proof is
completed.

C. Proof of Exponent Equivalence

In this section we prove the equivalence between (10) and
(3).

To that end, let the Φ, V and Q that achieves
ĒJSCC (P,D,W, ρ) be Φ∗, V ∗ and Q∗. Let RS and RC be
the source and channel rate respectively, whereRC = RS/ρ.
If R(Q∗, D)− ρI (Φ∗, V ∗) ≤ 0, then

ĒJSCC (P,D,W, ρ)

=D (Q∗ ‖P ) + ρD (V ∗ ‖W |Φ∗)

=min
Q

D (Q ‖P ) + max
Φ

min
V

ρD (V ‖W |Φ) ,

and for anyR(Q∗, D) ≤ R′
S ≤ ρI (Φ∗, V ∗) andR′

C = R′
S/ρ,

we have

ĒS (R
′
S, D, P ) = min

Q
[D (Q ‖P )] ,

Ēsp (R
′
C,W ) = max

Φ
min
V

D (V ‖W |Φ) ,



and thus

inf
RS

ĒS (RS, D, P ) + ρĒsp (RC,W )

≤ĒS (R
′
S, D, P ) + ρĒsp (R

′
C,W )

=ĒJSCC (P,D,W, ρ) . (17)

Similarly, we can show that whenR(Q∗, D)− ρI (Φ∗, V ∗) >
0,

inf
RS

ĒS (RS, D, P ) + ρĒsp (RC,W )

≤ĒJSCC (P,D,W, ρ) . (18)

However, we also know that for anyR

ĒS (RS, D, P ) + ρĒsp (RC,W )

≥ min
Q∈P(S)

(

D (Q ‖P ) + max
Φ∈P(X )

min
V ∈P(Y|X )

ρD (V ‖W |Φ)

+ |R(Q,D)− ρI(Φ, V )|+
)

,

hence

inf
RS

ĒS (RS, D, P ) + ρĒsp (RC,W ) ≥ ĒJSCC (P,D,W, ρ) .

(19)
Therefore, (17) and(18) and (19) suggest that

ĒJSCC (P,D,W, ρ) = inf
RS

ĒS (RS, D, P ) + ρĒsp (RC,W ) .
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