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Abstract

It was recently shown that the symmetric multiple-description (MD) quadratic
rate-distortion function for memoryless Gaussian sourcesand two descriptions can
be achieved by dithered Delta-Sigma quantization combinedwith memoryless entropy
coding. In this paper, we generalize this result to stationary (colored) Gaussian sources
by combining noise shaping and source prediction. We first propose a new represen-
tation for the test channel that realizes the MD rate-distortion function of a Gaussian
source, both in the white and in the colored source case. We then show that this test
channel can be materialized by embedding two source prediction loops, one for each
description, within a common noise shaping loop. While the noise shaping loop con-
trols the tradeoff between the side and the central distortions, the role of prediction
(like in differential pulse code modulation) is to extract the source innovations from
the reconstruction at each of the side decoders, and thus reduce the coding rate. Finally,
we show that this scheme achieves the MD rate-distortion function at all resolutions
and all side-to-central distortion ratios, in the limit of high dimensional quantization.

1 Introduction
The traditional multiple description (MD) problem [1] describes a source sequenceX[n]
which is encoded into two descriptions,Y1[n] andY2[n], using ratesR1 andR2 respectively.
Given one of these descriptions, the decoder produces a reconstructionX̂1[n] or X̂2[n]. If
both descriptions are available, the reconstruction isX̂C [n]. The achieved distortion triplet

is D1
∆
= E{d(X, X̂1)}, D2

∆
= E{d(X, X̂2)}, andDC

∆
= E{d(X, X̂C)}, whered(·, ·) is a

distortion measure, and(·) denotes time-averaging over the source sequence.
The MD quadratic rate-distortion function (RDF) for memoryless Gaussian sources

was found by Ozarow [1] and the extension to stationary Gaussian sources was recently
completed by Chen et al. [2].

In [3], it was shown that Ozarow’s white Gaussian MD RDF can beachieved by
dithered Delta-Sigma quantization (DSQ) and memoryless entropy coding. Furthermore,
by exploiting the fact that Ozarow’s test channel becomes asymptotically optimal for sta-
tionary sources in the high-rate regime [4], it was shown in [3] that, at high resolution, the
stationary MD RDF is achievable by DSQ andjoint entropy coding.

In [2] it is demonstrated how one can achieve any point on the boundary of the col-
ored Gaussian achievable rates region by a frequency-domain scheme, where the source is
divided into sub-bands, and in each sub-band the scheme of [5] is applied. In this paper,
we apply atime domainapproach: We show that these optimum points can be achieved at
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all resolutions, in the symmetric case, using noise-shaping predictive coding andmemory-
lessentropy coding. We establish this result by forming a nestedprediction / noise-shaping
structure containing a dithered DSQ scheme similar to [3] inthe outer loop and a predictive
coder per each description in the inner loop, see for exampleFig. 5. Each of the predictive
coders has the structure of the DPCM scheme, shown to be optimal in the single-description
(SD) setting in [6].

The idea of exploiting prediction in MD coding has previously been proposed by other
authors, see for example the following related works [7–10]. All these works faced the
basic problem: Since DPCM uses prediction from the reconstruction rather than from the
source itself, and this prediction should be reproduced at the decoder, it is not clear which of
the possible reconstructions should be used for prediction. This work solves this problem.

The role of the DSQ loop is to shape the quantization noise so that a desired tradeoff
between the side distortions and the central distortion is achieved. It was shown in [3]
that the central distortion is given by the power of the noisethat falls within the in-band
spectrum (i.e. the part of the frequency spectrum which overlaps the source spectrum)
whereas the side distortion is given by the power of the complete noise spectrum, i.e. the
in-band and the out-of-band noise spectrum. It was furthermore shown that any ratio of
side-to-central distortion can be obtained by proper shaping of the quantization noise. We
establish a similar result here.

To summarize, the predictive coders take care of the source memory and thereby mini-
mize the coding rate and make sure that memoryless entropy coding is optimal. Moreover,
the DSQ loop performs the noise shaping which is required in order to achieve any desired
pair of distortions(DS, DC).

This paper is organized as follows. In Section 2 we describe the main problem which
is considered in this work. Then, in Section 3, we propose a test channel which provides a
new interpretation of the MD quadratic Gaussian RDF. With this test channel in mind, we
present, in Section 4, an SD scheme which encodes a source subject to a distortion mask.
Finally, in Section 5, we extend the SD scheme of Section 4 to the MD case.

2 Problem Formulation and Notation
In this work, we are interested in the symmetric case, whereR1 = R2

∆
= R andD1 =

D2
∆
= DS. We will consider a discrete-time stationary Gaussian sourceX[n] with spectrum

SX(ej2πf), |f | ≤ 1/2. We assume that the spectrum obeys the Paley-Wiener conditions
[12], such that it has a positive entropy-power0 < Pe(X) < ∞, where the entropy power
of a spectrumS(ej2πf) is defined as:1

Pe(S)
∆
= exp

∫ 1

2

−
1

2

log
(

S(ej2πf)
)

df (1)

and where here and onwards all logarithms are taken to the natural base. Using this nota-
tion, a spectrum has a spectral decomposition:

S(ej2πf) = Pe(S) · A(z)A∗

(

1

z∗

)
∣

∣

∣

∣

z=ej2πf

, (2)

1For arbitrary distributed sources with finite differentialentropyh(X), Pe(X) , 1
2πe

e2h(X). For station-
ary Gaussian sources,h(X) = 1

2 log(2πe) + 1
2

∫

log(SX(ej2πf ))df from which (1) follows.



where the causal and monicA(z) is theoptimal predictorassociated with the spectrumS.
We consider the coding problem of this source under a mean squared error (MSE)

distortion criterion.
We will be using entropy-constrained dithered (latttice) quantizers (ECDQs) for which

it is known that the additive noise model is exact at all resolutions [13]. We will furthermore
assume the existence of a large numberK of identical and mutually independent sources
(or e.g. a single source which is divided intoK long blocks and jointly encoded asK
parallel sources, see [6] for details). These sources are treated independently, except for
the actual ECDQ which processes them jointly. Thus we will only present the scheme
for one source, but the quantization noise has the properties of a high-dimensional ECDQ
(cf. [6]). We provide an asymptotic analysis in the limitK → ∞. In this asymptotic
case, the quantization noise becomes approximately Gaussian distributed (in a divergence
sense) [14]. Thus, for analysis purposes, we can replace thequantizer with a white additive
noise model where the noise is approximately Gaussian distributed.

3 The Quadratic Gaussian Symmetric MD Rate Revisited
In this section we re-state known results about the quadratic Gaussian MD achievable rate in
the symmetric case, in order to gain some insight and preparethe ground for what follows.
In the high resolution limit, these results also hold for general sources with finite differential
entropy rate [11].

For a white Gaussian source of varianceσ2
X , the minimum achievable symmetric side-

descriptions rate was given by Ozarow [1]: [5]):

Rwhite(σ
2
X , DC , DS)

∆
=

1

4
log

σ2
X(σ2

X − DC)2

4DC(DS − DC)(σ2
X − DS)

(3)

as long as 1
DC

≥ 1
DC,max

= 2
DS

− 1
σ2

X

. Under high-resolution conditions, i.e.DS ≪ σ2
X , the

above rate becomes:
Rwhite,HR =

1

2
log

σ2
X

2
√

DC(DS − DC)
(4)

as long asDC ≤ DC,max,HR
∆
= DS

2
.

If the central decoder was to linearly combine two side descriptions of mutually inde-
pendent distortions of variancesDS, it would achieve exactly the distortionDC,max. This
gives the motivation to the model ofnegatively correlatedside distortions (see [4]). In the
high resolution limit, the relation between the side and central distortions can be explained
by the side distortions having a correlation matrix:

Φ = DS

[

1 ρ
ρ 1

]

(5)

whereρ = −DS−2DC

DS
≤ 0. With this notation, (4) becomes:

Rwhite,HR =
1

2
log

σ2
X

√

|Φ|
=

1

2
log

σ2
X

DS

+
1

2
log

1
√

1 − ρ2

∆
=

1

2
log

σ2
X

DS

+
1

2
δHR (6)

whereδHR is the high-resolution excess rate [11]. Still in the high-resolution case, we take
another step: Without loss of generality, we can represent the correlated noises as the sum
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Figure 1: A differential form of Ozarow’s double-branch test channelfor high resolution coding.

of two mutually independent noises, one is added to both branches while the other is added
to one branch and subtracted from the other, as depicted in Fig. 1. Note that the averaging
eliminatesZ− from the central description. If we denote the variances of the noisesZ+ and
Z− asΘ+ andΘ−, respectively, then we can re-write (5) as:

Φ =

[

Θ+ + Θ− Θ+ − Θ−

Θ+ − Θ− Θ+ + Θ−

]

, (7)

where the negative correlationρ < 0 implies thatΘ− ≥ Θ+. In terms of these variances,
we can define a spectrum:

Θ̃(ej2πf )
∆
=

{

2Θ+, |f | ≤ 1
4

2Θ−, 1
4
≤ |f | ≤ 1

2
.

(8)

With the above definitions, we have that the entropy-power (1) of Θ̃(ej2πf) is given by:

Pe(Θ̃) =
√

|Φ| = 2
√

Θ+Θ−

and consequently the MD rate is:

R =
1

2
log

σ2
X

Pe(Θ̃)
. (9)

The following proposition states this formally:

Proposition 1. In the scheme of Fig. 1, letσ2
X ≥ Θ− ≥ Θ+. The distortions are given by:

DS = Θ+ + Θ−

DC = Θ+. (10)

In the high resolution limit, for these distortions, the minimum rate(4) is given by(9).

Generalizing our view to all distortion levels, the equivalent channel is depicted in Fig.
2. A similar correlated-noises model to (5) can be obtained by expressingρ in a rather
complicated form. However, we can greatly simplify such an expression by proper use
of pre- and post-factors as we show next. In a point-to-pointscenario, it is convenient to
make these factors equal [15], [13]. However, this is generally not possible in MD coding
because the optimal post-factors (Wiener coefficients) aredifferent for the side and central
reconstructions. We choose the pre-factor to be equal to thesidepost-factor. While this
choice seems arbitrary, it will prove useful when we turn to colored sources. Thus we have:
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Figure 2: Ozarow’s test channel with pre and post factors.

αS
∆
=

√

σ2
X − Θ+ − Θ−

σ2
X

αC
∆
=

αSσ2
X

α2
Sσ2

X + Θ+
=

√

σ2
X(σ2

X − Θ+ − Θ−)

(σ2
X − Θ−)2

. (11)

Proposition 2. In the scheme of Fig. 2, letσ2
X ≥ Θ− ≥ Θ+. The distortions are given by:

DS = Θ+ + Θ−

DC =
σ2

XΘ+

σ2
X − Θ−

. (12)

For these distortions, the minimum achievable rate(3) is given by(9).

Note that at high resolution conditionsσ2
x ≫ Θ−, so (12) reduces to (10).

Proof: BetweenU and{V1, V2, VC} we have exactly the high-resolution scheme of
Prop. 1, i.e. we haveV1 = U + Z1, V2 = U + Z2, VC = U + ZC , where{Z1, Z2, ZC}
are independent ofU , and whereE{Z2

1} = E{Z2
2} = Θ+ + Θ− andE{Z2

C} = Θ+.
SinceX̂i = αSVi and X̂c = αCVC it is, by use of (11), straightforward to show that
DS = E{(X̂i − X)2} andDC = E{(X̂C − X)2} are given by (12). Now substitute these
distortions in (3) to establish (9).

We now turn to general (colored) stationary Gaussian sources. In the high resolution
limit, it was shown in [4] that the minimum rate is given by Ozarow’s rate (3) with the
source varianceσ2

X replaced by its entropy-powerPe(X) (1). Recalling (9) we define:

Rcolored
∆
=

1

2
log

Pe(X)

Pe(Θ̃)
. (13)

Proposition 3. In the high resolution limit, for anyΘ− ≥ Θ+, the minimum achievable
rate for the distortions(10) is given by(13).

For general resolution, the achievable colored Gaussian MDrate region was found by
Chen et al. [2]. They prove, that the optimum rates for stationary Gaussian sources can
be expressed as the sum of rates of parallel channels, each one representing a frequency
band. Each of these channels must be tuned to a minimum Ozarowrate (3) for some dis-
tortions. The working point at each frequency is determinedby a “water-filling” solution:



For all possible spectral distributions of the side and central distortions satisfying the total
distortions, find the one which minimizes the side descriptions rate. No explicit solution
to this optimization problem is presented in [2], and this remains an open problem. How-
ever, in terms of our representation for the white case, we can re-write the result of [2] (for
the symmetric case) in a parametric form. For given source spectrumSX(ej2πf ) and noise
spectraΘ+(ej2πf) andΘ−(ej2πf), we generalize (8) to the form2:

Θ̃(ej2πf) =















2Θ+

(

ej4πf
)

, |f | ≤ 1
4

2Θ−

(

ej4π(f− 1

4)
)

, 1
4

< f ≤ 1
2

2Θ−

(

ej4π(f+ 1

4)
)

, −1
2
≤ f < −1

4

(14)

and define the distortion spectra:

DS(ej2πf)
∆
= Θ+(ej2πf) + Θ−(ej2πf)

DC(ej2πf)
∆
=

SX(ej2πf)Θ+(ej2πf)

SX(ej2πf) − Θ−(ej2πf)
, (15)

reflecting the use of pre- and post-filters. Then the result of[2] is equivalent in the sym-
metric case to the following Proposition and Corollary:

Proposition 4. For any spectra

SX(ej2πf) ≥ Θ−(ej2πf) ≥ Θ+(ej2πf) ≥ 0 ∀f,

the minimum achievable side-description rate in symmetricMD coding of a Gaussian
source with spectrumSX(ej2πf) with the side and central distortion spectra(15) is given
by (13).

Corollary 1. The optimum symmetric MD side-description rate is given by the minimiza-
tion of (13)over allΘ+(ej2πf), Θ−(ej2πf ) such that the distortion spectra(15)satisfy:

∫ 1

2

−
1

2

DS(ej2πf)df ≤ DS

∫ 1

2

−
1

2

DC(ej2πf)df ≤ DC .

Note that in the high resolution limit, the spectrumΘ(ej2πf) becomes a two-step spec-
trum, as in [3].

4 Source Coding Subject to a Distortion Mask
We take a detour to a problem that is suggested by Proposition4; coding of a source subject
to a maximum distortionmaskD(ej2πf), rather than subject to a total distortion constraint.
This is an SD problem, but the solution will be extended to theMD problem in the following

2Notice that the lowpass and highpass spectra ofΘ̃(ej2πf ) are formed byΘ+(ej4πf ) andΘ
−
(ej4πf ),

which are compressed versions (by a factor of two) of the spectraΘ
−

(ej2πf ) andΘ+(ej2πf ), respectively.



section. Without loss of generality3, we assume thatD(ej2πf) ≤ SX(ej2πf) ∀f . It is easy
to verify, that the minimum rate for this problem is given by (recall (13)):

R
(

SX(ej2πf), D(ej2πf)
)

=
1

2
log

Pe(X)

Pe

(

D(ej2πf)
) . (16)
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Figure 3: A DSQ/DPCM equivalent channel for SD coding subject to a distortion mask.

Fig. 3 presents atime domainscheme which achieves this rate. Motivated by the
ratio of entropy powers (16), we strive to achieve the optimal rate by the combination of
source predictionin order to present the quantizer with a prediction error of powerPe(X),
and noise shapingin order to shape the white quantization noise of powerPe(D) into
the spectrumD(ej2πf)4. These two tasks, we perform by a DPCM loop [6] and a noise-
prediction loop [3], respectively. In this scheme,Z[n] is AWGN of variancePe(D), A(z)
andC(z) are the optimal predictors (2) of the source spectrumSX(ej2πf) and the equivalent
distortion spectrumD(ej2πf), respectively. Note thatE[n], the input to the noise-shaping
filter, is equal toZ[n]. The pre-filterF (ej2πf) satisfies:

|F (ej2πf)|2 =
SX(ej2πf) − D(ej2πf)

SX(ej2πf )
. (17)

Theorem 1. The channel of Fig. 3 with the choices above, satisfies:

SX̂−X(ej2πf) = SV −U(ej2πf) = D(ej2πf) (18)

with thescalarmutual informationI(D[n]; Y [n]) = R
(

SX(ej2πf), D(ej2πf)
)

of (16).

Proof: SinceE[n] = Z[n], we have thatV [n] = U [n] + Z[n] ∗ c[n] so V [n] and
U [n] are connected by an additive noise channel with noise spectrum D(ej2πf). From
here, using the pre/post filter given by (17), the distortions follow immediately. Since
SV (ej2πf) = SX(ej2πf), it also means that the mutual information rateĪ(U [n]; V [n]) equals
the desired rate (16). SinceV [n] = A[n] + Z[n] the mutual information ratēI(A[n]; V [n])
is the same. Applying [6, Thm.1], the scalar mutual information follows.

3Otherwise, there is just wasted allowed distortion which does not serve to reduce the rate.
4An alternative time-domain approach, is to accommodate forthe distortion mask by changing the pre

and post-filters. However, we choose the noise-shaping approach for the sake of extending this scheme to the
MD setting.



We remark that, in the special case of a white distortion maskD(ej2πf), the constraint
becomes (by the water-filling principle) equivalent to a regular quadratic distortion con-
straint. Indeed, the channel collapses in this case to the pre/post filtered DPCM channel
of [6]. Much of the analysis there remains valid for this problem as well. In particular,
we can construct an optimal coding scheme using this channel, substituting the AWGN for
an ECDQ, and the scalar mutual informationI(D[n]; Y [n]) is also equal to the directed
mutual informationI(D[n] → Y [n]).

5 Optimal Time-Domain Colored MD Coding
The similarity between the rates (13) and (16) is evident. Wealso note, that Thm. 1 deals
with achieving the minimum rate subject to a distortion maskconstraint, while Proposition
4 tells us that we must minimize the rate subject totwo distortion mask constraints.
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Figure 4: A DSQ/DPCM equivalent channel for MD coding of a colored source.

Fig. 4 shows the adaptation of the distortion-mask equivalent channel to the MD prob-
lem.5 Following [3], we combine upsampling by a factor of two with the noise-prediction
loop, forming a DSQ loop.C(z) andA(z) are the optimal predictors (2) of the spectra
SX(ej2πf) andΘ̃(ej2πf), as before. Note that we apply an upsampled version of the source
predictor, namelyA(z2). Since the two side descriptions consist of the even and odd in-
stances ofV [m], this is equivalent to applying the predictorA(z) to each description in the
original source rate. The DSQ loop, on the other hand, works in the upsampled rate. For a
white source,A(z) = 0 and the channel reduces to the DSQ MD scheme of [3], while for
optimal side distortion,C(z) = 0, and the channel reduces to an upsampled version of the
DPCM equivalent channel of [6].

The filtersF (ej2πf) andG(ej2πf) play the roles of pre/post filters and satisfy:

|F (ej2πf)|2 =
SX(ej2πf) − Θ+(ej2πf) − Θ−(ej2πf)

SX(ej2πf)

G(ej2πf ) =
SX(ej2πf)

SX(ej2πf) − Θ−(ej2πf)
F (ej2πf). (19)

Theorem 2. The channel of Fig. 4 with the choices above, satisfies:

SX̂C−X(ej2πf) = DC(ej2πf)

SX̂S−X(ej2πf) = DS(ej2πf) (20)

5We use the indexn for sequences which are “running” at the source rate, and theindexm when referring
to the upsampled rate.



where the distortion spectra were defined in(15), while thescalarmutual information
I(D[n]; Y [n]) equals twice the rateRcolored of (13).

The proof basically follows from Thm. 1 by taking appropriate care of rate changes.
However, due to lack of space, we omit the details here.
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Figure 5: Nested DSQ/DPCM MD encoder.
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Figure 6: DSQ/DPCM MD decoder.

The encoder and decoder which materialize this equivalent channel are presented in Fig.
5 and Fig. 6, respectively. All of the switches in the encoderand the decoder are synchro-
nized.6 The up sampling operation followed by lowpass filtering introduces a half-sample
delay on the odd samples. This delay is corrected at the decoder by the delay operatorz−1

combined with the pair of up and downsamplers, see Fig. 6. If each quantizer blockQ is
taken to be a high-dimensional ECDQ with the required rate, and the two quantizer dither
sequences are mutually independent, then these quantizersare equivalent to the additive
noiseZ[m] of the equivalent channel. Consequently, the two descriptionsY1[n] andY2[n]

6It is to be understood that the switches change their positions with the upsampled rate (m). Thus, in the
encoder shown in Fig. 5, the even samplesB1[n] of B[m] will go on the upper branch and the odd samples
B2[n] will go on the lower branch.



are equivalent to the odd and even samples, respectively, ofY [m] in the equivalent chan-
nel, and finally the whole scheme from the source to the central and side reconstructions is
equivalent to the channel fromX[n] to X̂C [n] andX̂S[n], respectively.

Since we see that this scheme achieves the optimal rate for any choice of spectra, it
will become globally optimal when its parameters are chosenaccording to the minimizing
spectra of Proposition 4. Thus, the encoder/decoder pair ofFigs. 5 and 6 is able to achieve
the complete quadratic MD RDF for stationary Gaussian sources at all resolutions and for
any desired side-to-central distortion ratio.
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