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Abstract— We consider the problem of agents which observe
a noisy version of a source, and communicate with a central
decoder (“CEO”) through a multiple access channel (MAC). We
assume that the source, the observation noises and the channel
noise are all Gaussian, and we are interested in reconstruction
under a mean squared error distortion measure. The solution
by separation (combination of CEO and MAC coding) is sub-
optimal. When the source and channel bandwidth (BW) are
equal, analog transmission is optimal. We present a scheme
for non-equal BW which becomes asymptotically optimal in the
limit of low observation noise. We use this scheme to improve
our recently presented Rematch and Forward approach for the
parallel relay network, and thus extend the achievable rate.

I. I NTRODUCTION

The emerging field of communication over networks wit-
nesses the collapse of the traditional distinction betweenchan-
nel, source and joint source/channel problems. Specifically,
consider relay-type problems, in which a message source node
wishes to pass information to a destination node, while other
nodes act as relays, whose sole purpose is to help in this
data transfer. Though this is a channel problem, the techniques
used to solve it are diverse. Consider the best known relaying
techniques (see e.g. [3]), where each one is known to be
optimal under different conditions of network topology and
signal-to-noise ratios:

1. A channel coding approach:Decode and Forward (D&F),
where a relay decodes the message, and then re-encodes it.

2. A source and channel coding approach:Compress and
Forward (C&F), where a relay treats its input as a source,
compresses it, and then uses a channel code to forward it.

3. A joint source/channel coding (JSCC) approach:Amplify
and Forward (A&F), where a relay simply forwards its input,
only applying power adjustment.

The last is indeed a JSCC approach, since it does not opt
to decode the input, thus it treats it as a source, and then
the analog treatment of this source, reminiscent of analog
transmission in Gaussian point-to-point communications [7],
relies upon matching between the statistics of that “source”
and of the channel which initiates at the relay.

As a simple test-case, consider the Gaussian parallel relay
network, first introduced by Schein and Gallager [18]. In this
network, all the relays are ordered in a parallel manner; The
source is connected to the relays by a Gaussian broadcast
channel (BC), while the relays are connected to the destination
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by a Gaussian multiple access channel (MAC). In the original
setting, all noises are white and the channels all have the
same bandwidth (BW). In the limit of high signal to noise
ratio (SNR) in the MAC section, as well as in the limit
of many relays [6], the A&F approach is optimal. A recent
work [8] extended the view to networks where the noises
are colored, and specifically to the important case of BW
mismatch between the BC and MAC sections, by introducing
a new relaying strategy, a JSCC approach namedRematch and
Forward (R&F): The encoder uses a codebook of the MAC
section BW; Between the encoder and the relays, a JSCC
scheme suitable for BW mismatch translates the BC into an
equivalent BC with the MAC BW and a “mutual-information-
preserving” SNR.

In this paper we further enhance the R&F approach by con-
sidering the dual strategy, where the encoder uses a codecook
of the BC section BW, thus the task of BW conversion shifts
to the MAC section.

In the quadratic-Gaussian CEO problem [19], agents ob-
serve a Gaussian source contaminated by Gaussian noise,
independent between agents. These agents communicate with
a central decoder through rate-limited channels, and the goal
is to enable that decoder to estimate the source with minimum
mean squared error (MMSE). As noted by Gastpar and Vetterli
[6], the joint source/channel problem of the CEO and MAC
is connected with the parallel relay network. Namely, this
approach treats the transmitted codeword as a source, the
relays as agents which receive noisy versions of that source,
and the final decoder as a central processor which needs
to achieve a good estimation of the source in the MMSE
sense (in order to decode the codeword). Remaining in the
equal-BW case, [6] shows how the superiority of analog
transmission over separate CEO and MAC coding leads to
asymptotic optimality of the A&F strategy. In [12], Nazer
and Gastpar consider this JSCC problem with unequal BW,
and consider a scheme which outperforms any separation-
based scheme. Their scheme builds upon the Modulo-Lattice
Modulation (MLM) approach [10], using two of its features:
The analog nature of the signal which is transmitted modulo-
lattice, and the structure of the lattice. In this paper we use
a similar approach but show that in many interesting cases,
an even better performance may be obtained, approaching the
cooperation outer bound for the problem.

The rest of this paper is organized as follows: In Section II
we address the joint CEO/MAC problem in the equal BW case,
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ŜY

ZMAC

XM

X2

X1

Figure 1: The joint CEO/MAC problem.

and discuss the reasons for the sub-optimality of separation. In
Section III we present our scheme for BW mismatch. Finally
in Section IV we apply these results to the parallel relay
network, to arrive at new achievable rates.

II. CEO AND MAC: SEPARATION VS. ANALOG

TRANSMISSION

The CEO and MAC problems are both defined withM

encoders and a single decoder. We use subscript for the
index m = 1, . . . , M , and bold forM -dimensional vectors.
Superscript denotes time indexes, which will be omitted when
possible, for simplicity.

The quadratic-Gaussian CEO problem [19] is defined as
follows: A Gaussian i.i.d. sourceS is observed byM encoders.
These observations are contaminated by mutually-independent
i.i.d. Gaussian noise sequences:

Sm = S + Zm , m = 1, . . . , M . (1)

We denote the signal to observation-noise ratios as:

SORm
∆
=

Var{S}
Var{Zm} . (2)

Each of these encoders (“agents”) translates a source observa-
tion block of lengthNCEO to digital messages of rates{Rm}.
These messages are sent to a central decoder(“CEO”), so
that the decoder should produce a source reconstructionŜ(n)

with minimum mean-squared error (MSE). We measure the
performance by the signal to distortion ratio:

SDR
∆
=

Var{S}
1

NCEO

∑NCEO

n=1 Var{S(n) − Ŝ(n)}
. (3)

The Gaussian MAC problem [2] is a channel coding problem
where the decoder observes the sum of the decoder outputs
and AWGN:

Y =

M
∑

m=1

Xm + ZMAC . (4)

The encoders translate independent messages of rates{Rm} to
channel input blocks of lengthNMAC. We choose to consider
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Figure 2: The CEO sum-rate as a function of the number
of agents. In this example, SDR= 31. The different curves
correspond to SOR= 3, SOR= 5 and SOR= 10, resulting
in M0 = 10, 6 and3, respectively. The lower line corresponds
with “clean” measurements (SOR→ ∞, thus∆R(M) = 0).

an input sum-power constraint

P =

M
∑

m=1

1

NMAC

NMAC
∑

n=1

Var{X(n)
m } ,

and define the channel signal to noise ratio as:

SNR=
P

Var{ZMAC}
. (5)

The joint CEO/MAC problem is depicted in Fig. 1. We assume
in this section that one channel use is allowed per source
input, i.e. the block lengthsNCEO and NMAC are equal; For
this setting, we compare the performance of separation-based
schemes and simple analog transmission.

For any separation-based scheme, the CEO agent rates
{Rm} must be within the MAC rate-region, and specifically
the CEO sum-rate is bounded by the MAC sum-rate. For
independent messages and a fixed total power constraint, the
MAC sum-rate does not depend upon the number of terminals
M . The resulting necessary condition is:

R
∆
=

M
∑

m=1

Rm < CMAC =
1

2
log (1 + SNR) . (6)

Here and onward, logarithms are taken to the natural base, and
rates are in nats. We turn, then, to consider the CEO sum-rate.
In the symmetric case (SOR1 = · · · = SORM

∆
= SOR), this
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sum-rate is given by [1], [14]:

R =
1

2
log(SDR) +

M

2
log

(

1

1 − [SDR−1]+

M·SOR

)

∆
=

1

2
log(SDR) + ∆R(M) . (7)

In this expression[·]+ meansmax(·, 0), and in the sequel we
assume non-trivial distortion (SDR> 1). The rate is only
defined forM > M0 agents, where

M0
∆
=

SDR− 1

SOR
, (8)

since M0 agents would be needed in order to achieve the
desired SDR even if the CEO could see the agents observations
directly, i.e.R → ∞. The second term in (7) reflects excess
rate due to the observation noises and the distributed encoding
setting. This term does not vanish even when the number of
agents is large. In fact, we have that

∆R
∆
= lim

M→∞

∆R(M) =
SDR− 1

2 · SOR
, (9)

resulting in the longer-known rate for infinite number of agents
[15]. See Fig. II for an example of the behavior of the sum-rate
as a function of the number of agents.

Substituting (7) and (9) in (6), we find a condition for the
SDR of a separation-based scheme, even with an unlimited
number of terminals:

log

(

1 + SNR
SDRsep

)

>
SDRsep− 1

SOR
. (10)

The resulting SDR can be analyzed using known results about
Lambert’s W-function, but for our purposes two immediate
upper bounds suffice:

SDRsep< 1 + SNR (11a)

SDRsep< SOR· log(1 + SNR) . (11b)

The first bound becomes tight when SOR≫ SNR, i.e.
when the performance is limited by the channel noise, and
it is the same as if asingle agent observed the source. The
second bound is significant under the opposite condition,
SOR ≪ SNR. These results are particularly disappointing
when compared with the performance of a simple analog
scheme, which only applies scalar operations: power adjust-
ment at the encoders and MMSE estimation at the decoder.
Such a scheme is optimal, as proven by Gastpar in [5],
following a technique of Lapidoth and Tinguely [11]. This
optimal performance is given by:

SDRanalog = 1 + M · (SNR↿↾SOR)

≥ 1 +
M

2
[min(SNR, SOR) − 1] , (12)

where

A↿↾B
∆
=

A · B
1 + A + B

(13)
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Ŝ2

Ŝ1

Ŝ1
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Figure 3: The CEO (indirect source coding) problem as a direct
multiterminal source coding problem for the observations.

is the equivalent SNR in transmitting a signal through the
concatenation of additive noise channels of SNRsA andB1.
For any M > 1, the performance of the analog scheme is
strictly better than that of the digital scheme; For example,
if SOR > SNR+ 1 then the lower bound in (12) is already
higher then the upper bound (11a) forM = 2 agents. In the
rest of this section we will try to gain some insight regarding
the origins of this phenomenon, previously discussed in [6].

The fundamental limitation of the digital (CEO) approach,
can be explained by the fact that the optimum rate (7) can be
achieved by solving the direct multiterminal source coding
problem for the sourcesS1, . . . , SM . That is, an optimal
scheme for the CEO problem should also bear optimal re-
production of each of the signals observed by the agents
(under a sum-distortion measure), although they are of no
direct interest in the final reconstruction (see Fig. 3). In
particular, such a scheme “wastes” rate resources on describing
the observation noises to the CEO. In contrast, the analog
approach uses the MAC summation to average the observation
noises; The resulting decoder input already contains the sum
of the observation noises.

Specifically, we demonstrate the “noise transmission” effect
in terms of an optimum successive-encoding implementation.
Consider the test channel depicted in Fig. 4. In this test
channel, the quantizers are represented by the additive noise
channels{Wm}, all of which have the same noise variance,
and we define the signal to quantization-noise ratio as:

SQR
∆
=

Var{Sm}
Var{Wm} . (14)

The multipliers{γm1,m2
} are chosen such that

S̄m
∆
=

m−1
∑

j=1

γm,jŜj (15)

1Here for each channel, the SNR is defined as the ratio of its input to
noise power, i.e. for the second channel the “signal” includes the noise of the
first channel. This causes the additional term “1” in the denominator, without
which this would have been a harmonic mean of the SNRs.
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Figure 4: Sequencial-encoding test channel for the CEO problem.

is the MMSE linear estimator ofSm from Ŝ1, . . . , Ŝm−1, with
estimation gains

Γm
∆
=

Var{Sm}
Var{Sm|Ŝ1, . . . , Ŝm−1}

. (16)

The coefficientα is the MMSE estimation (Wiener) factor for
S from the average of̂S1, . . . , ŜM . The resulting signal to
distortion ratio (3) is given by:

SDR= 1 + M · (SQR↿↾SOR) , (17)

while the sum of mutual information over the AWGNs{Zm}
is:

R =

M
∑

m=1

1

2
log

(

1 +
Var{Sm|Ŝ1, . . . , Ŝm−1}

Var{Wm}

)

=

M
∑

m=1

1

2
log

(

1 +
SQR
Γm

)

. (18)

By using arguments from [21], [20], it can be shown that,
for any choice of the SQR, these SDR and rate are related
according to (7). This test channel leads to an implementation
of the CEO encoders, where the AWGN channels represent
quantizers2. Now consider the signal̃Sm, the “new” infor-
mation quantized by them-th encoder. Since the optimal
estimator ofSm is also optimal forS, we have that:

S̃m = Em + Zm ,

2The AWGN channels are materialized by entropy-constraineddithered
quantization (ECDQ) elements, while the substraction of the estimation is
done at the decoder; In this Gaussian setting, using a Wyner-Ziv (WZ) side-
information approach bears no loss, thus the desired distortion and mutual
informations may be achieved by WZ-ECDQ quantizers (for example by a
nested lattice structure, see [22]). It is worth mentioningthat a sequential
approach to the CEO problem was first suggested by Draper [4]

whereEm is the estimation error ofS, satisfying:

Var{Em} = Var{S|S + Z1 + W1, . . . , S + Zm−1 + Wm−1}

=
Var{S}

1 + m · (SQR↿↾SOR)
. (19)

This variance is inversely proportional tom, thus eventually it
will become much smaller thanVar{Zm}, in which case the
encodersuse almost all their rate to describe the observation
noise. Interestingly, the SDR expression (17) resembles the
analog-transmission expression (12), with the quantization
noise playing the part of channel noise, and the SDR growing
linearly with M ; However, in the sequential scheme, the in-
troduction of each additional agents results in a non-vanishing
rate penalty according to (18), while in analog transmission,
no additional “rate” resources are required.

A final remark for this section regards the number of agents
in the CEO problem, beyond which adding further agents does
not have much effect anymore. To see what this number is,
we can use Taylor expansion of (7) to assert:

∆R(M)

∆R
= 1 +

M0

M
+ O

(

1

M2

)

, (20)

where M0 was defined in (8). We see, then, what Fig. II
demonstrates: There is no point in using much more than the
minimum number of agents,M0.

III. JOINT CEO/MAC CODING FORBW M ISMATCH

In this section we consider the same joint CEO/MAC prob-
lem of Section II, with the restriction of one channel use per
source sample removed: We now assume that for each source
block of lengthNCEO, each encoder emitsNMAC = ρNCEO

channel inputs, whereρ > 0 is the bandwidth expansion
factor. Since a separation-based scheme must obey:

R < ρCMAC ,
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we have that (10) and (11) hold, with the term(1 + SNR)
replaced by(1 + SNR)ρ:

SDRsep< (1 + SNR)ρ (21a)

SDRsep< ρ · SOR· log(1 + SNR) . (21b)

An upper bound on the performance of a scheme for this
joint source/channel setting is given by thecooperation bound,
which assumes that the agents can all cooperate and use a
point-to-point multi-antenna channel3:

SDR≤ 1 +
[

M · SOR
]

↿↾
[

(1 + M · SNR)ρ − 1
]

, (22)

where the noise-accumulation operation↿↾ was defined in (13).
This bounds reflects a gainM with respect to both SOR
and SNR: The first is the gain of estimation from multiple
independent observations, while the second is the coherence
gain (also called “array gain”) of cooperative transmission to
the MAC.

Now we come to the task of closing the gap between this
bound and the performance of a separation-based scheme. First
note, that even a simple linear scheme, which cannot exploit
the full bandwidth of both the source and the channel, may
perform better than a separation-based scheme. To see this,
assume thatρ > 1. Since the above bounds do not depend
on M , even a scheme which transmits analogically only the
first NMAC channel uses and performs according to (12), is
better than the bounds (21) for large enoughM . However, non-
linear joint source/channel coding schemes can also exploit the
full bandwidth of the source and the channel. For example,
a scheme by Nazer and Gastpar based on modulo-lattice
modulation (MLM), achieves for integerρ:

SDR∼= [M ·SOR]↿↾
[

M ·(1+SNR)·
(

1 + SNR
M

)ρ−1
]

. (23)

While this strategy fully exploits the bandwidth, the effective
SNR may deteriorate when increasing the number of agents
M , instead of improving. We now present a scheme which
approaches the cooperation bound (22) in the high-SOR
regime, thus exploits the full bandwidth while achieving the
full coherence gain.

For the sake of simplicity, we assume integerρ, though
the concept may be extended to anyρ > 0. We then
follow the application of modulo-lattice modulation (MLM)
to BW expansion as done by Reznic et al. [17] for joint
source/channel broadcasting, and By Nazer and Gastpar for
transmission of the sum of uncorrelated sources over a MAC
[13] and for the joint CEO/MAC problem [12]: In the first
NCEO channel uses, the encoders employ analog transmission.
In the next uses, the decoder can use the estimate it obtained
as source side-information (SI), and the encoders “zoom in”
on the analog data using MLM with a lattice dimensionNCEO.
This procedure repeats in an iterative manner, until allρNCEO

channel uses are exhausted.

3A tighter bound can be derived by a straightforward extension of the
equal-bandwidth bound (12) of [5], see [12]. However, thesebounds approach
coincide at the high-SOR region in which we will be interested
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Figure 5: Components of the MLM scheme at iterationf .

Specifically, at each iteration1 < f ≤ ρ the relation
between the channel inputsXm[f ] and outputY [f ] is given
by (4). We denote aŝS[f ] the source estimation at the decoder
usingY [1], . . . , Y [f ]. The m-th encoder and the decoder are
then given by (see (5)):

Xm[f ] =
[β[f ]Sm + D] mod Λ√

M
(24a)

Ŝ[f ] =
α

β[f ]

[ α√
M

Y [f ] − D − β[f ]Ŝ[f − 1]
]

mod Λ

+ Ŝ[f − 1] , (24b)

where we assume that the latticeΛ has a normalized cell power
P , and that the dither vectorD is uniformly distributed over
the basic lattice cell (for the relevant properties of lattices see
e.g. [10]). The MMSE factorα and the zooming factors{β[f ]}
are set for optimizing performance; Roughly speaking,β2[f ]
is the ratio between the channel input power and the source
uncertainty at the encoder before iterationf , thus it increases
between iterations as the uncertainty decreases.

The improved performance over [12] is achieved by the
use of the same dither by all the agents, combined with the
following assumption:

Assumption 1: Let QΛ(·) be the quantization operation by
the latticeΛ, then

Q(D + Z) = Q(D) = 0 ,

where D is uniform over the basic lattice cell andZ is a
“small” Gaussian perturbation .
We will discuss in the sequel the conditions under which this
assumption holds with high probability.

We are now ready to state the achieved performance,
which equals the bound (22), up to factors which reflect the
lattice loss at finite-dimension: The lattice normalized second
momentG(Λ) and the volume to noise ratio4 µ(Λ), see [10].

4The volume to noise ratio depends on some overflow probability ǫ, which
has to be chosen small enough such that the effect of overflow is not
significant. In the notationµ(Λ) we omit this dependance for the sake of
conciseness.
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Theorem 1: For a suitable choice ofα and {β[f ]}, the
scheme described by (24) approaches:

SDR= 1+
[

M ·SOR
]

↿↾
[

M ·SNR·
(

1 +
M · SNR

G(Λ) · µ(Λ)

)ρ−1

−1
]

,

provided that Assumption 1 holds
Proof: DenotingD̃ = [β[f ]S+D] mod Λ, we have that:

√
MXm[f ] = [β[f ]Sm + D] mod Λ

= [β[f ]S + D + β[f ]Zm] mod Λ

= [D̃ + β[f ]Zm] mod Λ

= D̃ + β[f ]Zm , (25)

where for the last transition we used Assumption 1, which is
applicable since by the properties of the dithered modulo op-
erationD̃ is uniform over the basic lattice cell. Consequently,
defining

S̃ = S +

∑M

m=1 Zm

M

we have that:

Ỹ [f ]
∆
=

Y [f ]√
M

= D̃ + β[f ]

∑M

m=1 Zm

M
+

ZMAC[f ]√
M

= [S̃ + D] mod Λ +
ZMAC[f ]√

M
,

where in the last transition we used again Assumption 1.
Now we identify Ỹ as the decoder input in the point-to-point
MLM scheme for transmission with side information [10].
Specifically, S̃ is the source,Ŝ[f − 1] is the source SI at
the decoder, and the channel signal-to-noise ratio isM ·SNR.
Noting that after the first (linear) iteration the decoder already
knows S̃ with SDR of 1 + M · SNR and incorporating the
results of [10], we have that the decoder has SDR of

(1 + M · SNR)

(

1 +
M · SNR

G(Λ) · µ(Λ)

)ρ−1

with respect toS̃, which translates to the desired results with
respect toS.

The lattice loss factorG(Λ)µ(Λ) is always greater than
or equal to1. In order to minimize it, we need high lattice
dimension. If we take a sequence of latticesΛK which are
simultaneously good for source and channel coding, then we
have:

G(ΛK) · µ(ΛK) → 1 , (26)

ensuring optimality of our MLM scheme. It remains to verify,
though, that Assumption 1 holds; Unfortunately, this demand
seems to be in conflict with the high dimension needed for
G(Λ) and µ(Λ), as we discuss in the sequel. For now, we
present one-dimensional results.

Lemma 1: Let Pe be the probability of Assumption 1 not
to hold. For one-dimensional lattices, this probability satisfies:

Pe <

√

π

24
·
√

σ2
Z

σ2
,

whereσ2
Z is the power of the perturbationZ and σ2 is the

normalized lattice power.
Proof: For a scalar lattice, the basic cell is[−r, r], where

r =
√

3σ2. Then we have:

Pe
∆
= Pr

{

QΛ(D + Z) 6= 0
}

=
1

2 · r

∫ r

−r

[Pr{Z > r − v} + Pr{Z < −r − v}] dv

=
1

r

∫ 2·r

0

Pr{Z > v}dv

<
1

r

∫

∞

0

Pr{Z > v} dv

<
1

r

∫

∞

0

exp

{

− v2

2σ2
Z

}

=

√

2πσ2
Z

2 · r =

√

π

24
·
√

σ2
Z

σ2
.

The first equality follows, since by the properties of dithered
quantization,v = [D + Z] mod Λ is uniform over the basic
lattice cell. The rest follows by algebraic manipulation and the
known bound on the integral over a Gaussian distribution

This result can be extended to find the probability of error
in at least one agent ofM , whereD is equal for all but the
perturbations are independent. Since the error events in the
different agents are highly dependent, the union bound is far
from being tight. This error probability can be bounded byPe

of the Lemma, multiplied by a factor

A(M)
∆
=

M
∑

m=1

(−1)m+1

√
m

·
(

M

m

)

which grows very slowly withM : Numerical examination
shows that it is slower thanlog(log M).

Applying this to our setting, we seek the condition for the
first transition in (25) to hold with high probability. In this
case, the lattice normalized power isP while the perturbation
power at iterationf is β2[f ] Var{Zm}. Going back to the
proof of the MLM scheme in [10], we find that the zooming
factor β satisfies:

β2[f ] ≤ P

Var{Ŝ[f − 1] − S̃}

= (1 + M · SNR)

(

1 +
M · SNR
G(Λ)µ(Λ)

)f−2

· P

Var{S̃}
.

(27)

Since this is growing withf , we find that the worst probability
of error is at the last iteration, where:

Pe <

√

√

√

√

√

π

24
·
(1 + M · SNR)

(

1 + M·SNR
G(Λ)µ(Λ)

)ρ−2

1
M

+ SOR
. (28)

Consequently, Assumption 1 will hold with high probability
throughout the iterations as long as:

SOR≫ A2(M)·(1+M ·SNR)

(

1 +
M · SNR
G(Λ)µ(Λ)

)ρ−2

. (29)
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This implies continuity of the achievable distortion as SOR→
∞, but a more interesting case from the practical point of view
occurs when

M · SOR∼= (1 + M · SNR)ρ ,

i.e. the contributions of the observation noise and of the
channel noise to the cooperation-bound distortion (22) are
similar. In that case, ignoring the finite dimension effects, the
condition becomes:

SNR≫ A2(M) . (30)

Recalling the slow growth ofA(M), the required SNR is
reasonable.

Trying to close the gap to the cooperation bound by
increasing the lattice dimension turns out to be a difficult
task5. This occurs, since “good” lattices in the sense of (26)
must have ball-like cells, and consequently most of their mass
is concentrated close to their surface in the limit of high
dimension, where a small perturbation may take the signal
outside the cell. Furthermore, this shape of the cells means
that an error would cause a shift in all coordinates. There
may exist lattices, different than the conventional “good”ones,
which strike a good balance between the desired properties of
low normalized second moment, immunity to channel noise
and immunity to source perturbation; This subject is left fot
further research.

Remarks about the MLM scheme:
1. Optimality for the SI setting: Clearly, this also presents

a scheme for the joint CEO/MAC problem with source SI in
the decoder.

2. Adding a channel interference: Suppose that a dirty-
paper interference, known at all the encoders, is added to
the channel output. This would not affect performance, since
part of this interference can be subtracted before the modulo
operation at each encoder, resulting in an operation equivalent
to interference cancelation in the point-to-point setting[10].
On the other hand, if a sum of interferences is added, where
each encoder only knows one of them - then the different sub-
traction which has to be made at each encoder cannot coexist
with the local linearity demand reflected in Assumption 1. This
problem bears similarity to the loss of the dirty MAC problem
[16].

3. Working with non-integer ρ: If ρ is non-integer, then
the iterative approach cannot utilize the full channel BW.
An alternative approach which will work for anyρ ≥ 1,
is performing source prediction at the decoder in the time
domain, and using the predictor output as SI - as done by the
Analog Matching scheme [9] in the point-to-point setting. The
same approach can be used to exploit the memory of a colored
source.

4. Bandwidth compression:For ρ < 1, channel prediction
(“precoding”) has to be performed at the encoder, and the
predictor output can be seen as a dirty-paper SI, see [9]. When

5Actually, we know that it cannot be completely closed, sincefor any finite
SOR the bound of [5] is tighter.
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Figure 6: The parallel relay network.

the SOR is high enough, this SI is almost identical at all the
agents, allowing optimum operation as in point 2 above.

IV. A PPLICATION TO THEPARALLEL RELAY NETWORK

The parallel relay network [18] consists of a single encoder
which needs to convey a messageW to a single decoder,
with the help ofM parallel relays, see Fig. 6. It is convenient
to look at this network as the concatenation of two parts, a
broadcast (BC) section from the encoder to the relays, and a
MAC section from the relays to the decoder. We assume a
Gaussian symmetric setting, i.e. all noises are Gaussian and
mutually independent, and the noise variances in different
branches are equal. We define the signal to noise ratios of
the two sections as:

SNRBC
∆
=

PBC

Var{Zm} (31a)

SNRMAC
∆
=

∑M
m=1 Pm

Var{ZMAC}
. (31b)

When the bandwidths of the BC and MAC sections are
equal, the decode and forward (D&F) strategy is optimal
for SNRBC ≥ M · SNRMAC, while the amplify and forward
(A&F) strategy is optimal in the limit SNRMAC ≫ SNRBC.
As mentioned in the introduction, A&F can be seen as a joint
source/channel approach. Namely, we identify the codeword
transmitted to the channel,XBC, as the source, the BC section
noises as observation noises and the relays and agents. For the
resulting joint CEO/MAC with equal BW, A&F simply means
that the agents apply the optimal analog strategy.

A recent work [8] presented therematch and forward
(R&F) strategy, which extends the advantages of A&F to the
bandwidth mismatch case, where we are allowedρ MAC-
section uses per each BC-section use. In this strategy, the
codebook always has the MAC section BW. Again the chosen
codeword is seen as a Gaussian signal, but now it is not
identical to the channel input since there is a BW mismatch
between this codeword and the BC. The R&F strategy uses
joint source/channel coding to overcome this mismatch. The
“source” reconstruction at the relays is now seen as the agents
observation, resulting in an equivalent CEO problem with

SOR= (1 + SNRBC)
1
ρ − 1 . (32)
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For any ρ < 1 we can directly apply (12) to find that the
codeword can be reconstructed at the final decoder with

SDR= 1 + M ·
(

[(1 + SNRBC)
1
ρ − 1]↿↾SNRMAC

)

, (33)

and transmission with rate (normalized to BC section uses)

RR&F =
ρ

2
log(SDR) (34)

is feasible.
For ρ > 1, the original R&F strategy encounters the

problem of correlated observation noises: When the source
BW is larger than the channel BW, the channel does not
supply enough degrees of freedom for the reconstruction errors
to be independent. Using joint CEO/MAC coding with BW
expansion, we can now overcome this problem. We change
the R&F strategy, then, by choosing the codebook BW to be
the minimum between the BW of the two sections. Forρ > 1 it
equals the BC section BW, thus the encoder directly transmits
the chosen codeword and the relays perform the bandwidth
expansion. Under the conditions discussed in the previous
section and ignoring the finite lattice dimension losses, we
know that the encoder can estimate the codeword with SDR
approaching the cooperation bound (22), with SNRBC playing
the part of the SOR. The resulting rate is given by1

2 log(SDR),
again normalized to BC section uses. Seeing that (33) also
approaches the cooperation bound for high enough SNRBC,
we conclude that for anyρ we can have:

RR&F
∼= 1

2
log
(

[M · SNRBC]↿↾[(M · SNRMAC)ρ]
)

. (35)

Finally, we turn back to verify that Assumption 1 actually
holds in cases of interest. Recalling (30), we find that when
the BC and MAC sections have similar capacities, i.e. neither
D&F nor C&F are optimal, then the assumption does hold
with high probability, for reasonably large SNRMAC.
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