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Abstract— We consider the problem of agents which observe by a Gaussian multiple access channel (MAC). In the original
a noisy version of a source, and communicate with a central setting, all noises are white and the channels all have the

decoder ("CEQ") through a multiple access channel (MAC). We g5 ma handwidth (BW). In the limit of high signal to noise
assume that the source, the observation noises and the chasin - . . . S
ratio (SNR) in the MAC section, as well as in the limit

noise are all Gaussian, and we are interested in reconstrucin ! :

under a mean squared error distortion measure. The solution Of many relays [6], the A&F approach is optimal. A recent

by separation (combination of CEO and MAC coding) is sub- work [8] extended the view to networks where the noises

optimal. When the source and channel bandwidth (BW) are are colored, and specifically to the important case of BW

fo‘iur?c';n_ae';aﬂg?B”V\?’xméisggcgfngspg?ﬁ'ﬁp\t’gﬁcgurisc‘f&timz | Siﬁhtfememismatch between the BC and MAC sections, by introducing
a new relaying strategy, a JSCC approach naResdatch and

limit of low observation noise. We use this scheme to improve
our recently presented Rematch and Forward approach for the Forward (R&F): The encoder uses a codebook of the MAC

parallel relay network, and thus extend the achievable rate section BW; Between the encoder and the relays, a JSCC
scheme suitable for BW mismatch translates the BC into an
. INTRODUCTION equivalent BC with the MAC BW and a “mutual-information-
The emerging field of communication over networks witPreserving” SNR.
nesses the collapse of the traditional distinction betwaeam-  In this paper we further enhance the R&F approach by con-

nel, source and joint source/channel problems. Specificagidering the dual strategy, where the encoder uses a cokiecoo
consider relay-type problems, in which a message source n@f the BC section BW, thus the task of BW conversion shifts
wishes to pass information to a destination node, whileroth® the MAC section.
nodes act as relays, whose sole purpose is to help in thidn the quadratic-Gaussian CEO problem [19], agents ob-
data transfer. Though this is a channel problem, the teciesiq serve a Gaussian source contaminated by Gaussian noise,
used to solve it are diverse. Consider the best known regayifidependent between agents. These agents communicate with
techniques (see e.g. [3]), where each one is known to @eentral decoder through rate-limited channels, and tia go
optimal under different conditions of network topology ands to enable that decoder to estimate the source with minimum
signal-to-noise ratios: mean squared error (MMSE). As noted by Gastpar and Vetterli
1. A channel coding approacbecode and Forward (D&F), [6], the joint source/channel problem of the CEO and MAC
where a relay decodes the message, and then re-encodesi&. connected with the parallel relay network. Namely, this
2. A source and channel coding approaCompress and approach treats the transmitted codeword as a source, the
Forward (C&F), where a relay treats its input as a sourcéelays as agents which receive noisy versions of that spurce
compresses it, and then uses a channel code to forward itand the final decoder as a central processor which needs
3. A joint source/channel coding (JSCC) approaimplify — t0 achieve a good estimation of the source in the MMSE
and Forward (A&F), where a relay simply forwards its input,sense (in order to decode the codeword). Remaining in the
only applying power adjustment. equal-BW case, [6] shows how the superiority of analog
The last is indeed a JSCC approach, since it does not ghsmission over separate CEO and MAC coding leads to
to decode the input, thus it treats it as a source, and th@gymptotic optimality of the A&F strategy. In [12], Nazer
the analog treatment of this source, reminiscent of anal@gd Gastpar consider this JSCC problem with unequal BW,
transmission in Gaussian point-to-point communicatiofis [ @hd consider a scheme which outperforms any separation-
relies upon matching between the statistics of that “sdurceased scheme. Their scheme builds upon the Modulo-Lattice
and of the channel which initiates at the relay. Modulation (MLM) approach [10], using two of its features:
As a simple test-case, consider the Gaussian parallel refd}e analog nature of the signal which is transmitted modulo-
network, first introduced by Schein and Gallager [18]. Irsthilattice, and the structure of the lattice. In this paper we us
network, all the relays are ordered in a parallel manner; TReSimilar approach but show that in many interesting cases,
source is connected to the relays by a Gaussian broad@sg€ven better performance may be obtained, approaching the

channel (BC), while the relays are connected to the degiimatCooperation outer bound for the problem. .
The rest of this paper is organized as follows: In Section Il

* This work was supported by the ISF under grant # 1259/07. we address the joint CEO/MAC problem in the equal BW case,
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Figure 1: The joint CEO/MAC problem.
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and discuss the reasons for the sub-optimality of separdtio 10° 10" 10°
Section Il we present our scheme for BW mismatch. Finall_ number of agents (M)

in Section IV we apply these results to the parallel relay

network, to arrive at new achievable rates. ) )
Figure 2: The CEO sum-rate as a function of the number

Il. CEO AND MAC: SEPARATION VS. ANALOG of agents. In this example, SDR 31. The different curves
TRANSMISSION correspond to SOR:= 3, SOR= 5 and SOR= 10, resulting
in My = 10,6 and3, respectively. The lower line corresponds

The CEO and MAC prOblemS are both defined with with “clean” measurements (SO.R 0, thusAR(M) — O)
encoders and a single decoder. We use subscript for the

indexm = 1,..., M, and bold for M -dimensional vectors.
Superscript denotes time indexes, which will be omittednwhe . .

. L an input sum-power constraint
possible, for simplicity.

The quadratic-Gaussian CEO problem [19] is defined as "
follows: A Gaussian i.i.d. sourcg is observed by encoders. p_ Z 1
These observations are contaminated by mutually-indegpend
i.i.d. Gaussian noise sequences:

Var{X{"} |

and define the channel signal to noise ratio as:

Sm=8S+Z, , m=1,....M . (1)
We denote the signal to observation-noise ratios as: SNR = P . (5)
Val"{ZMAc}
SOR, 2 Var{S} @
Var{Z,} The joint CEO/MAC problem is depicted in Fig. 1. We assume

Each of these encoders (“agents”) translates a sourcevabsel? th|s. section that one channel use is allowed per source
tion block of lengthNceo to digital messages of ratgsz,,,}.  'MPUt, 1.e. the block lengthsVceo and Nwac are equal; For
These messages are sent to a central decoder(*CEO"),!d§ setting, we compare the performance of separatioaebas
that the decoder should produce a source reconstruétion Schemes and simple analog transmission.

with minimum mean-squared error (MSE). We measure theFor any separation-based scheme, the CEO agent rates

performance by the signal to distortion ratio: {Rm} must be within the MAC rate-region, and specifically
the CEO sum-rate is bounded by the MAC sum-rate. For
SDR2 Var{S5} _ _ A3) independent messages and a fixed total power constraint, the
NiEo Zﬁ[flo Var{S(m) — S(n)} MAC sum-rate does not depend upon the number of terminals

. ) . M. The resulting necessary condition is:
The Gaussian MAC problem [2] is a channel coding problem

where the decoder observes the sum of the decoder outputs M )
. A
and AWGN: . RZY" Ry < Cuac = 5log(1+SNR) . (6)
m=1
Y = Z Xm + Zuac - (4)
m=1

Here and onward, logarithms are taken to the natural bade, an
The encoders translate independent messages of{fatgsto rates are in nats. We turn, then, to consider the CEO sum-rate
channel input blocks of lengtiVyac. We choose to consider In the symmetric case (SQR= --- = SORy, 2 SOR), this
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In this expression-]* meansmax(-,0), and in the sequel we
assume non-trivial distortion (SDR- 1). The rate is only Znr .

defined forM > M, agents, where m .
M Sm
— Agent M
A SDR-1

Mo="sor ®)

since M, agents would be needed in order to achieve tiRgure 3: The CEO (indirect source coding) problem as a tlirec

desired SDR even if the CEO could see the agents observatigfifititerminal source coding problem for the observations.
directly, i.e. R — oo. The second term in (7) reflects excess

rate due to the observation noises and the distributed émgod
setting. This term does not vanish even when the numberigfthe equivalent SNR in transmitting a signal through the
agents is large. In fact, we have that concatenation of additive noise channels of SNRand B*.
A SDR- 1 For any M > 1, the performance of the analog scheme is
AR = Mhin AR(M) = 3 SOR (9) strictly better than that of the digital scheme; For example
> ' if SOR > SNR+ 1 then the lower bound in (12) is already
resulting in the longer-known rate for infinite number of age higher then the upper bound (11a) fof = 2 agents. In the
[15]. See Fig. Il for an example of the behavior of the sune-ratest of this section we will try to gain some insight regagdin
as a function of the number of agents. the origins of this phenomenon, previously discussed in [6]
Substituting (7) and (9) in (6), we find a condition for the The fundamental limitation of the digital (CEO) approach,
SDR of a separation-based scheme, even with an unlimiiesh be explained by the fact that the optimum rate (7) can be

number of terminals: achieved by solving the direct multiterminal source coding
1+ SNR SDRyy— 1 problem for the sourcesy,...,Sy. That is, an optimal
log °P (10) scheme for the CEO problem should also bear optimal re-
SDRsep SOR

production of each of the signals observed by the agents
The resulting SDR can be analyzed using known results abgufder a sum-distortion measure), although they are of no
Lambert’s W-function, but for our purposes two immediatéirect interest in the final reconstruction (see Fig. 3). In

upper bounds suffice: particular, such a scheme “wastes” rate resources on desgri
the observation noises to the CEO. In contrast, the analog
SDRsep< 14+ SNR (11a) approach uses the MAC summation to average the observation
SDRsep < SOR: log(1 + SNR) . (11b) noises; The resulting decoder input already contains the su

of the observation noises.
The first bound becomes tight when SOR SNR, i.e.  Specifically, we demonstrate the “noise transmission’atffe
when the performance is limited by the channel noise, anfiterms of an optimum successive-encoding implementation
it is the same as if @ingle agent observed the source. Theonsider the test channel depicted in Fig. 4. In this test
second bound is significant under the opposite conditiothannel, the quantizers are represented by the additise noi
SOR < SNR. These results are particularly disappointinghannels{I¥,,,}, all of which have the same noise variance,
when compared with the performance of a simple analegd we define the signal to quantization-noise ratio as:
scheme, which only applies scalar operations: power adjust
ment at the encoders and MMSE estimation at the decoder. SQR2 Var{Sy } ) (14)
Such a scheme is optimal, as proven by Gastpar in [5], Var{Wp,}
following a technique of Lapidoth and Tinguely [11]. Thi

SThe multipliers are chosen such that
optimal performance is given by: pliers{Ym, m:}

m—1
— A A~
SDRunaiog = 1+ M - (SNRIISOR) Sm =D YmiS; (15)
M =1
> 1+ [min(SNRSOR ~1] , (12) ’
IHere for each channel, the SNR is defined as the ratio of itatitp
where noise power, i.e. for the second channel the “signal” inetuthe noise of the
ANB A A-B 13 first channel. This causes the additional term “1” in the daeinator, without
1B = 1+ A+ B (13) which this would have been a harmonic mean of the SNRs.
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Figure 4: Sequencial-encoding test channel for the CEOl@nob
is the MMSE linear estimator of,,, from 5‘1, ceey Sm_1, With whereE,, is the estimation error of, satisfying:
estimation gains
imation ga Var{En} = Var{S|S+ Zi +Wi,....5 + Zynr + W1}
Var{S,
r, 2 ar{Sm} . (16) _ Var{ S} . (19)
Var{S,,|51,.--,Sm-1} 1+ m- (SQRISOR
The coefficienty is the MMSE estimation (Wiener) factor for This variance is inversely proportional to, thus eventually it
S from the average of;,...,Sy. The resulting signal to Will become much smaller thakar{Z,}, in which case the
distortion ratio (3) is given by: encodersise almost all their rate to describe the observation
noise. Interestingly, the SDR expression (17) resembles the
SDR=1+ M - (SQR/ISOR , (17) analog-transmission expression (12), with the quantinati

noise playing the part of channel noise, and the SDR growing

while the sum of mutual information over the AWGNZ...}  |inearly with 1; However, in the sequential scheme, the in-

IS: troduction of each additional agents results in a non-vamgs
M & & rate penalty according to (18), while in analog transmissio
1 m ) y Mm— .y " ” .
R = Z B log (1 + Var{SV|81 i S 1}> no additional “rate” resources are required.
m=1 ar{Wn} A final remark for this section regards the number of agents
Mo SQR in the CEO problem, beyond which adding further agents does
= Y 5108 <1 + F—) (18) not have much effect anymore. To see what this number is,
m=1 " we can use Taylor expansion of (7) to assert:
By using arguments from [21], [20], it can be shown that, AR(M) M, 1
for any choice of the SQR, these SDR and rate are related N ViR <W) ; (20)

according to (7). This test channel leads to an implemenrtati

of the CEO encoders, where the AWGN channels represdéfitere Mo was defined in (8). We see, then, what Fig. I
quantizerd. Now consider the signa$,., the “new” infor- demonstrates: There is no point in using much more than the

mation quantized by then-th encoder. Since the optimalMinimum number of agentsi/o.
estimator ofS,, is also optimal forS, we have that: . JOINT CEO/MAC CODING FORBW MISMATCH

S = Em + Zp In this section we consider the same joint CEO/MAC prob-
lem of Section II, with the restriction of one channel use per
2The AWGN channels are materialized by entropy-constraididtiered Source sample removed: We now assume that for each source
quantization (ECDQ) elements, while the substraction ef éistimation is plock of length Nceo, each encoder emit8/yac = pNceo

done at the decoder; In this Gaussian setting, using a WEingi¥WZ) side- . . . :
information approach bears no loss, thus the desired ti@ioand mutual channel Inputs, Wher@’ > 0 is the bandwidth &pansion

informations may be achieved by WZ-ECDQ quantizers (fomgxa by a factor. Since a separation-based scheme must obey:
nested lattice structure, see [22]). It is worth mentionthgt a sequential
approach to the CEO problem was first suggested by Draper [4] R < pCyuac



we have that (10) and (11) hold, with the tefih+ SNR)

D

replaced by(1 + SNR)”:
e n el

SDRsep < (1 4+ SNR)? (21a)

SDRsep < p - SOR-log(1 + SNR) . (21b) (a) Encodermn
An upper bound on the performance of a scheme for this D
joint source/channel setting is given by @wperation bound, y | _A\ | S0
which assumes that the agents can all cooperate and use a I/;W (o mod A Iﬂf%/ @
point-to-point multi-antenna chanrel _ 1 + 1

S =1

SDR§1+{M180@HB1+ArSNmP—1 . (22) BIASIE 1]
(b) Decoder

where the noise-accumulation operatipmvas defined in (13).
This bounds reflects a gaif/ with respect to both SOR Figure 5: Components of the MLM scheme at iteratjin
and SNR: The first is the gain of estimation from multiple
independent observations, while the second is the coherenc
gain (also called “array gain”) of cooperative transmissio

Specifically, at each iteration < < the relation
the MAC. P y =0

between the channel inpufs,,[f] and outputY'[f] is given

Now we come to the task of closing _the gap between t Y (4). We denote aS|f] the source estimation at the decoder
bound and the performance of a separation-based schersie. 7 ing Y[1] Y[f]. Them-th encoder and the decoder are

note, that even a simple linear scheme, which cannot explmg ; b 5)):
the full bandwidth of both the source and the channel, may n given by (see (5):
perform better than a separation-based scheme. To see thisX ] = [B[f]Sm + D] mod A

assume thap > 1. Since the above bounds do not depend VM (242)
on M, even a scheme which transmits analogically only the 4, .. « o .

first Nwac channel uses and performs according to (12), is Sl = Blf] [my[f] =D = Blf1S(f —1]) mod A
better than the bounds (21) for large enodghHowever, non- + S[f —1 (24b)

linear joint source/channel coding schemes can also expoi
full bandwidth of the source and the channel. For examplghere we assume that the lattitdhas a normalized cell power
a scheme by Nazer and Gastpar based on modulo-lattleeand that the dither vectdd is uniformly distributed over
modulation (MLM), achieves for integer. the basic lattice cell (for the relevant properties of s see
1+ SNR\ " e.g. [10]). The MMSE factorr and the zooming facto@ﬁ[f]}
SDR2 [M-SOR1| M- (14+SNR)- <T> } . (23) are set for optimizing performance; Roughly speakifig)f]

is the ratio between the channel input power and the source
While this strategy fully exploits the bandwidth, the etiée uncertainty at the encoder before iteratipnthus it increases
SNR may deteriorate when increasing the number of agebtstween iterations as the uncertainty decreases.
M, instead of improving. We now present a scheme which The improved performance over [12] is achieved by the
approaches the cooperation bound (22) in the high-SQiSe of the same dither by all the agents, combined with the
regime, thus exploits the full bandwidth while achieving thfollowing assumption:
full coherence gain. Assumption 1: Let Q4(-) be the quantization operation by

For the sake of simplicity, we assume integerthough the latticeA, then

the concept may be extended to apy > 0. We then
follow the application of modulo-lattice modulation (MLM) QD+2)=Q(D)=0 ,
to BW expansion as done by Reznic et al. [17] for joint
source/channel broadcasting, and By Nazer and Gastpar | !
transmission of the sum of uncorrelated sources over a MAgMall” Gaussian perturbation - _ _
[13] and for the joint CEO/MAC problem [12]: In the first We will discuss in the sequel the conditions under which this
Nceo channel uses, the encoders employ analog transmissidgsumption holds with high probability.
In the next uses, the decoder can use the estimate it obtaineWe are now ready to state the achieved performance,
as source side-information (SI), and the encoders “zoom iwhich equals the bound (22), up to factors which reflect the
on the analog data using MLM with a lattice dimensigeo. lattice loss at finite-dimension: The lattice normalizedosal
This procedure repeats in an iterative manner, untipalkeo  MomentG(A) and the volume to noise rafigi(A), see [10].
channel uses are exhausted.

re D is uniform over the basic lattice cell and is a

4The volume to noise ratio depends on some overflow probgahilitvhich
3A tighter bound can be derived by a straightforward extensi® the has to be chosen small enough such that the effect of overffowot
equal-bandwidth bound (12) of [5], see [12]. However, thesends approach significant. In the notation.(A) we omit this dependance for the sake of
coincide at the high-SOR region in which we will be intereste conciseness.



Theorem 1: For a suitable choice ofv and {3[f]}, the whereo? is the power of the perturbatiod and o2 is the
scheme described by (24) approaches: normalized lattice power.
Proof: For a scalar lattice, the basic cell[isr, 7], where

. p—1
SDR— 1+[M-SOR’}H[M-SNR-<1 n &NRQ ~1] , = V302, Then we have:

G(A) - p(A
. , P, éPr{QA(D+Z) ;Ao}
provided that Assumption 1 holds

Proof: DenotingD = [3[f]S+ D] mod A, we have that: — % ' [Pr{Z>r—v}+Pr{Z< —r—ov}dv
VM X n[f] = [BLf]Sm + D] mod A Lo
= [BLf]S + D + BIf) Z] mod A =;A Pr{Z > vidv

= [D + B[f]Zm] mod A
=D+ B[f1Zm , (25)

0o U2
where for the last transition we used Assumption 1, whichis < —/ eXp{ 502 }
applicable since by the properties of the dithered modulo op

erationD is uniform over the basic lattice cell. Consequently, _V 27Wz / /C’z

1 o0
<—/ Pr{Z > v} dv
™ Jo

defining
-5+ ng:l Zm The first equallty foIIows, since by the properties of ditxbr
M quantizationpy = [D + Z] mod A is uniform over the basic
we have that: lattice cell. The rest follows by algebraic manipulatioriahe

known bound on the integral over a Gaussian distributimn

M
712 Y _p. 811 Yim=1Zm  Zwaclf] This result can be extended to find the probability of error
VM M VM in at least one agent o/, where D is equal for all but the
Zmaclf] perturbations are independent. Since the error eventsein th

=[5+ D] mod A + VM different agents are highly dependent, the union boundris fa

from being tight. This error probability can be boundedBy

where in the last transition we used again Assumption f the Lemma, multiplied by a factor

Now we identifyY as the decoder input in the point-to-point

MLM scheme for transmission with side information [10]. - (—1)m+l M
Specifically, S is the source,S[f — 1] is the source SI at AM) = Z ym \m
the decoder, and the channel signal-to-noise ratitd isSNR. m=1

Noting that after the first (linear) iteration the decodeeatly Which grows very slowly withAZ: Numerical examination
knows S with SDR of 1 + M - SNR and incorporating the Shows that it is slower thalvg(log M).

results of [10], we have that the decoder has SDR of Applying this to our setting, we seek the condition for the
. first transition in (25) to hold with high probability. In thi
M -SNR \” case, the lattice normalized powerAswhile the perturbation
(1+ M -SNR —_
G(A) - p(A) power at iterationf is 32%[f] Var{Z,,}. Going back to the

roof of the MLM scheme in [10], we find that the zooming

with respect taS, which translates to the desired results.wn ctor 3 satisfies:

respect toS.

The lattice loss factoiG(A)u(A) is always greater than 2] < _ P _
or equal tol. In order to minimize it, we need high lattice Var{S[f — 1] — S}
dimension. If we take a sequence of lattickg which are M -SNR\ /2 P
simultaneously good for source and channel coding, then we = (1+ M -SNR) ( + W) ' m :
have: (27)

G(Ag) - u(A 1, 26 . _ . . i -
(Ar) - pldr) = (26) Since this is growing witty, we find that the worst probability
ensuring optimality of our MLM scheme. It remains to verifypf error is at the last iteration, where:
though, that Assumption 1 holds; Unfortunately, this dechan 2
seems to be in conflict with the high dimension needed for (1+ M -SNR) (1 + M)
- ; 7T G(M)u(A)

G(A) and u(A), as we discuss in the sequel. For now, we P. < 7l T . (28)
present one-dimensional results. a +SOR

Lemma 1: Let P, be the probability of Assumption 1 notConsequently, Assumption 1 will hold with high probability
to hold. For one-dimensional lattices, this probabilitfisfees: throughout the iterations as long as:

Y 02 . p=2
P, < \/% \/g : SOR>>> A%(M)-(1+M-SNR) (1 + C%T%) . (29)




This implies continuity of the achievable distortion as SOR
oo, but a more interesting case from the practical point of view
occurs when

M -SOR= (14 M -SNR | W fencosef e

i.e. the contributions of the observation noise and of the Power Fac

channel noise to the cooperation-bound distortion (22) are
similar. In that case, ignoring the finite dimension effetit®
condition becomes:

SNR > AQ(M) . (30) Power Py

Recalling the slow growth ofA(M), the required SNR is
reasonable. Figure 6: The parallel relay network.
Trying to close the gap to the cooperation bound by

increasing the lattice dimension turns out to be a d|ff|c1gje SOR s high enough, this SI is almost identical at all the

task. This occurs, since “good” lattices in the sense of (2 . X . ; .
gents, allowing optimum operation as in point 2 above.

must have ball-like cells, and consequently most of theissna
is concentrated close to their surface in the limit of highIV. APPLICATION TO THEPARALLEL RELAY NETWORK

dimension, where a small perturbation may take the signalThe parallel relay network [18] consists of a single encoder
outside the cell. Furthermore, this Shape of the cells meamﬁu:h needs to convey a messa@é to a Sing'e decoder'
that an error would cause a shift in all coordinates. Themth the he'p of M para”e' re|aysl see F|g 6. It is convenient
may exist lattices, different than the conventional “goodes, o |ook at this network as the concatenation of two parts, a
which strike a good balance between the desired propefftiesyppadcast (BC) section from the encoder to the relays, and a
low normalized second moment, immunity to channel noisg@AC section from the relays to the decoder. We assume a
and immunity to source perturbation; This subject is left fazgussian symmetric setting, i.e. all noises are Gaussidn an

further research. mutually independent, and the noise variances in different
Remarks about the MLM scheme: branches are equal. We define the signal to noise ratios of
1. Optimality for the Sl setting: Clearly, this also presentsthe two sections as:

a scheme for the joint CEO/MAC problem with source Sl in A Pac

the decoder. SNRsc = VarlZo] (31a)
2. Adding a channel interference: Suppose that a dirty- M "

paper interference, known at all the encoders, is added to SNRyac 2 2m=1 P ) (31b)

the channel output. This would not affect performance,esinc Var{Zwvac }

part of this interference can be subtracted before the noodul When the bandwidths of the BC and MAC sections are
operation at each encoder, resulting in an operation elgmt/a equal, the decode and forward (D&F) strategy is optimal
to interference cancelation in the point-to-point settji§]. for SNRsc > M - SNRyac, while the amplify and forward
On the other hand, if a sum of interferences is added, whe&pe&F) strategy is optimal in the limit SNRac > SNRsc.
each encoder only knows one of them - then the different sulis mentioned in the introduction, A&F can be seen as a joint
traction which has to be made at each encoder cannot coesistirce/channel approach. Namely, we identify the codeword
with the local linearity demand reflected in Assumption lisThtransmitted to the channeXgc, as the source, the BC section
problem bears similarity to the loss of the dirty MAC problenmoises as observation noises and the relays and agentaig-or t
[16]. resulting joint CEO/MAC with equal BW, A&F simply means

3. Working with non-integer p: If p is non-integer, then that the agents apply the optimal analog strategy.
the iterative approach cannot utilize the full channel BW. A recent work [8] presented theematch and forward
An alternative approach which will work for any > 1, (R&F) strategy, which extends the advantages of A&F to the
is performing source prediction at the decoder in the tinftandwidth mismatch case, where we are allowe®AC-
domain, and using the predictor output as Sl - as done by tsection uses per each BC-section use. In this strategy, the
Analog Matching scheme [9] in the point-to-point settingeT codebook always has the MAC section BW. Again the chosen
same approach can be used to exploit the memory of a colooedleword is seen as a Gaussian signal, but now it is not
source. identical to the channel input since there is a BW mismatch

4. Bandwidth compression:For p < 1, channel prediction between this codeword and the BC. The R&F strategy uses
(“precoding”) has to be performed at the encoder, and tf@nt source/channel coding to overcome this mismatch. The
predictor output can be seen as a dirty-paper Sl, see [9]nWHsource” reconstruction at the relays is now seen as thetagen

observation, resulting in an equivalent CEO problem with
5Actually, we know that it cannot be completely closed, sifareany finite

SOR the bound of [5] is tighter. SOR= (1 +SNRsc)? — 1 . (32)



For anyp < 1 we can directly apply (12) to find that the[11] A. Lapidoth and S. Tinguely. Sending a bi-variate géarssource over
codeword can be reconstructed at the final decoder with

SDR=1+ M - ([(1 + SNRec)” — 1]lISNRuac) , (33)

and transmission with rate (normalized to BC section uses);3;

Rrr = £ 10g(SDR) (34)

is feasible.

For p > 1, the original R&F strategy encounters th
problem of correlated observation noises: When the souree]
BW is larger than the channel BW, the channel does not
supply enough degrees of freedom for the reconstructiamsrr
to be independent. Using joint CEO/MAC coding with BW
expansion, we can now overcome this problem. We chan@gé

the R&F strategy, then, by choosing the codebook BW to
the minimum between the BW of the two sections. por 1 it

equals the BC section BW, thus the encoder directly trassmlil
the chosen codeword and the relays perform the bandwidth
expansion. Under the conditions discussed in the previous)
section and ignoring the finite lattice dimension losses, we
know that the encoder can estimate the codeword with S

approaching the cooperation bound (22), with $NRlaying
the part of the SOR. The resulting rate is givenlzblpg(SDR),

again normalized to BC section uses. Seeing that (33) also
approaches the cooperation bound for high enough ggNR

we conclude that for any we can have:

RRer %1og([]V[ - SNRec]1[[(M - SNRMAc)”])

Finally, we turn back to verify that Assumption 1 actually

holds in cases of interest. Recalling (30), we find that when
the BC and MAC sections have similar capacities, i.e. neithe
D&F nor C&F are optimal, then the assumption does hold

(35)

with high probability, for reasonably large SNR-.

(1]

(2]
(31
(4]

(5]

(6]
(7]
(8]

El
[10]
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