SDCA without Duality, Regularization, and Individual Convexity

Shai Shalev-Shwartz
School of CS and Engineering, The Hebrew University of Jerusalem

"ICML 2016",
New York, June 2016

Minimizing Average-of-Functions

Question: What is the runtime to find w s.t. $F(w) \leq F\left(w^{*}\right)+\epsilon$ where

$$
F(w):=\frac{1}{n} \sum_{i=1}^{n} f_{i}(w)
$$

Minimizing Average-of-Functions

Question: What is the runtime to find w s.t. $F(w) \leq F\left(w^{*}\right)+\epsilon$ where

$$
F(w):=\frac{1}{n} \sum_{i=1}^{n} f_{i}(w)
$$

Classic: Gradient Descent (GD):

- Assume: F is λ-strongly convex and L-smooth
- Runtime: $d \cdot\left(n \cdot \frac{L}{\lambda}\right) \cdot \log \left(\frac{1}{\epsilon}\right)$

Minimizing Average-of-Functions

Question: What is the runtime to find w s.t. $F(w) \leq F\left(w^{*}\right)+\epsilon$ where

$$
F(w):=\frac{1}{n} \sum_{i=1}^{n} f_{i}(w)
$$

Classic: Gradient Descent (GD):

- Assume: F is λ-strongly convex and L-smooth
- Runtime: $d \cdot\left(n \cdot \frac{L}{\lambda}\right) \cdot \log \left(\frac{1}{\epsilon}\right)$

Modern: Stochastic Dual Coordinate Ascent (SDCA):

- Assume: $f_{i}(w)=\phi_{i}(w)+\frac{\lambda}{2}\|w\|^{2}$ and ϕ_{i} is convex and L smooth
- Runtime: $d \cdot\left(n+\frac{L}{\lambda}\right) \cdot \log \left(\frac{1}{\epsilon}\right)$

Outline

(1) SDCA without Duality

- SDCA \in SGD family
- SGD with a stochastic oracle must be slow
- SDCA reduces the variance using a stronger oracle
- A simple convergence proof
(2) Relaxing the Assumptions
- Without Explicit Regularization
- Dependence on Average Smoothness
- Without Individual Convexity

SDCA without Duality

- Objective:

$$
F(w)=\frac{\lambda}{2}\|w\|^{2}+\frac{1}{n} \sum_{i=1}^{n} \phi_{i}(w)
$$

- At w^{*} we have $\nabla F\left(w^{*}\right)=0$:

$$
w^{*}=\frac{1}{\lambda n} \sum_{i=1}^{n} \underbrace{\left(-\nabla \phi_{i}\left(w^{*}\right)\right)}_{:=\alpha_{i}^{*}}
$$

- Primal variable: w
- Pseudo-Dual variables: $\alpha_{1}, \ldots, \alpha_{n}$
- Goal: $w^{(t)} \rightarrow w^{*}$ and for every $i, \alpha_{i}^{(t)} \rightarrow \alpha_{i}^{*}$

SDCA without Duality

- Initialize: $w^{(0)}=\frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_{i}^{(0)}$
- For: $t=1,2, \ldots$
- Pick $i \in[n]$ at random
- Primal update: $w^{(t)}=w^{(t-1)}-\eta\left(\nabla \phi_{i}\left(w^{(t-1)}\right)+\alpha_{i}^{(t-1)}\right)$
- Dual update: $\alpha_{i}^{(t)}=(1-\beta) \alpha_{i}^{(t-1)}+\beta\left(-\nabla \phi_{i}\left(w^{(t-1)}\right)\right)$
(where $\beta=\eta \lambda n$)

SDCA without Duality

- Initialize: $w^{(0)}=\frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_{i}^{(0)}$
- For: $t=1,2, \ldots$
- Pick $i \in[n]$ at random
- Primal update: $w^{(t)}=w^{(t-1)}-\eta\left(\nabla \phi_{i}\left(w^{(t-1)}\right)+\alpha_{i}^{(t-1)}\right)$
- Dual update: $\alpha_{i}^{(t)}=(1-\beta) \alpha_{i}^{(t-1)}+\beta\left(-\nabla \phi_{i}\left(w^{(t-1)}\right)\right)$
(where $\beta=\eta \lambda n$)
- Claim: SDCA is an instance of SGD
- Proof:
- By induction, $\lambda w^{(t-1)}=\frac{1}{n} \sum_{i=1}^{n} \alpha_{i}^{(t-1)}=\mathbb{E}_{i} \alpha_{i}^{(t-1)}$
- Therefore:

$$
\nabla F\left(w^{(t-1)}\right)=\lambda w^{(t-1)}+\mathbb{E}_{i} \nabla \phi_{i}\left(w^{(t-1)}\right)=\mathbb{E}_{i}\left[\alpha_{i}^{(t-1)}+\nabla \phi_{i}\left(w^{(t-1)}\right)\right]
$$

SGD with a stochastic oracle must be slow

Theorem

Any algorithm for minimizing F that only accesses the objective using oracle that returns a gradient of a random function and has $\log (1 / \epsilon)$ rate must perform $\tilde{\Omega}\left(n^{2}\right)$ iterations

SGD with a stochastic oracle must be slow

Theorem

Any algorithm for minimizing F that only accesses the objective using oracle that returns a gradient of a random function and has $\log (1 / \epsilon)$ rate must perform $\tilde{\Omega}\left(n^{2}\right)$ iterations

Proof idea:

- Consider two objectives (in both, $\lambda=1$): for $i \in\{ \pm 1\}$

$$
F_{i}(w)=\frac{1}{2 n}\left((n-1) \frac{(w-i)^{2}}{2}+(n+1) \frac{(w+i)^{2}}{2}\right)
$$

- A stochastic gradient oracle returns $w \pm i$ w.p. $\frac{1}{2} \pm \frac{1}{2 n}$
- Easy to see that $w_{i}^{*}=-i / n, F_{i}(0)=1 / 2, F_{i}\left(w_{i}^{*}\right)=1 / 2-1 /\left(2 n^{2}\right)$
- Therefore, solving to accuracy $\epsilon<1 /\left(2 n^{2}\right)$ amounts to determining the bias of the coin

Can we improve SGD ?

A stronger oracle:

- The negative result assumes we only see a gradient of a randomly chosen example
- SDCA relies on a slightly stronger oracle: we also see the index of the chosen example
- This suffices to obtain a significantly faster algorithm
- Main idea: variance reduction

Variance Reduction

- SGD update rule: $w^{(t)}=w^{(t-1)}-\eta v$ where $\mathbb{E}[v]=\nabla F\left(w^{(t-1)}\right)$

Variance Reduction

- SGD update rule: $w^{(t)}=w^{(t-1)}-\eta v$ where $\mathbb{E}[v]=\nabla F\left(w^{(t-1)}\right)$
- For vanilla SGD: $v=\nabla \phi_{i}\left(w^{(t-1)}\right)+\lambda w^{(t-1)}$

Variance Reduction

- SGD update rule: $w^{(t)}=w^{(t-1)}-\eta v$ where $\mathbb{E}[v]=\nabla F\left(w^{(t-1)}\right)$
- For vanilla SGD: $v=\nabla \phi_{i}\left(w^{(t-1)}\right)+\lambda w^{(t-1)}$
- For SDCA: $v=\nabla \phi_{i}\left(w^{(t-1)}\right)+\alpha_{i}^{(t-1)}$

Variance Reduction

- SGD update rule: $w^{(t)}=w^{(t-1)}-\eta v$ where $\mathbb{E}[v]=\nabla F\left(w^{(t-1)}\right)$
- For vanilla SGD: $v=\nabla \phi_{i}\left(w^{(t-1)}\right)+\lambda w^{(t-1)}$
- For SDCA: $v=\nabla \phi_{i}\left(w^{(t-1)}\right)+\alpha_{i}^{(t-1)}$
- What is the variance?

$$
\begin{aligned}
\mathbb{E}\left[\|v\|^{2}\right] & =\mathbb{E}\left[\left\|\nabla \phi_{i}\left(w^{(t-1)}\right)-\nabla \phi_{i}\left(w^{*}\right)+\nabla \phi_{i}\left(w^{*}\right)+\alpha_{i}^{(t-1)}\right\|^{2}\right] \\
& =\mathbb{E}\left[\left\|\nabla \phi_{i}\left(w^{(t-1)}\right)-\nabla \phi_{i}\left(w^{*}\right)+\alpha_{i}^{(t-1)}-\alpha_{i}^{*}\right\|^{2}\right] \\
& \leq 2 \mathbb{E}\left[\left\|\nabla \phi_{i}\left(w^{(t-1)}\right)-\nabla \phi_{i}\left(w^{*}\right)\right\|^{2}\right]+2 \mathbb{E}\left[\left\|\alpha_{i}^{(t-1)}-\alpha_{i}^{*}\right\|^{2}\right] \\
& \leq 2 L \mathbb{E}\left[\left\|w^{(t-1)}-w^{*}\right\|^{2}\right]+2 \mathbb{E}\left[\left\|\alpha_{i}^{(t-1)}-\alpha_{i}^{*}\right\|^{2}\right]
\end{aligned}
$$

A simple convergence proof

- Potential: $C_{t}=\frac{1}{2 L} A_{t}+\frac{\lambda}{2} B_{t}$ with $A_{t}=\mathbb{E}_{j}\left\|\alpha_{j}^{(t)}-\alpha_{j}^{*}\right\|^{2}, B_{t}=\left\|w^{(t)}-w^{*}\right\|^{2}$

A simple convergence proof

- Potential: $C_{t}=\frac{1}{2 L} A_{t}+\frac{\lambda}{2} B_{t}$ with $A_{t}=\mathbb{E}_{j}\left\|\alpha_{j}^{(t)}-\alpha_{j}^{*}\right\|^{2}, B_{t}=\left\|w^{(t)}-w^{*}\right\|^{2}$
- Algebraic Manipulations:
$\mathbb{E} A_{t}-(1-\eta \lambda) A_{t-1}=\eta \lambda \mathbb{E}\left(\left\|\nabla \phi_{i}\left(w^{(t-1)}\right)-\nabla \phi_{i}\left(w^{*}\right)\right\|^{2}-(1-\beta)\|v\|^{2}\right)$
$\mathbb{E} B_{t}-B_{t-1}=-2 \eta\left(w^{(t-1)}-w^{*}\right)^{\top} \nabla F\left(w^{(t-1)}\right)+\eta^{2} \mathbb{E}\|v\|^{2}$

A simple convergence proof

- Potential: $C_{t}=\frac{1}{2 L} A_{t}+\frac{\lambda}{2} B_{t}$ with $A_{t}=\mathbb{E}_{j}\left\|\alpha_{j}^{(t)}-\alpha_{j}^{*}\right\|^{2}, B_{t}=\left\|w^{(t)}-w^{*}\right\|^{2}$
- Algebraic Manipulations:
$\mathbb{E} A_{t}-(1-\eta \lambda) A_{t-1}=\eta \lambda \mathbb{E}\left(\left\|\nabla \phi_{i}\left(w^{(t-1)}\right)-\nabla \phi_{i}\left(w^{*}\right)\right\|^{2}-(1-\beta)\|v\|^{2}\right)$
$\mathbb{E} B_{t}-B_{t-1}=-2 \eta\left(w^{(t-1)}-w^{*}\right)^{\top} \nabla F\left(w^{(t-1)}\right)+\eta^{2} \mathbb{E}\|v\|^{2}$
- S.c. of F, $\left(\left(w^{(t-1)}-w^{*}\right)^{\top} \nabla F\left(w^{(t-1)}\right) \geq \epsilon_{t-1}+\frac{\lambda}{2} B_{t-1}\right)$, gives

$$
\mathbb{E} B_{t}-(1-\eta \lambda) B_{t-1} \leq-2 \eta \epsilon_{t-1}+\eta^{2} \mathbb{E}\|v\|^{2}
$$

A simple convergence proof

- Potential: $C_{t}=\frac{1}{2 L} A_{t}+\frac{\lambda}{2} B_{t}$ with $A_{t}=\mathbb{E}_{j}\left\|\alpha_{j}^{(t)}-\alpha_{j}^{*}\right\|^{2}, B_{t}=\left\|w^{(t)}-w^{*}\right\|^{2}$
- Algebraic Manipulations:

$$
\begin{aligned}
& \mathbb{E} A_{t}-(1-\eta \lambda) A_{t-1}=\eta \lambda \mathbb{E}\left(\left\|\nabla \phi_{i}\left(w^{(t-1)}\right)-\nabla \phi_{i}\left(w^{*}\right)\right\|^{2}-(1-\beta)\|v\|^{2}\right) \\
& \mathbb{E} B_{t}-B_{t-1}=-2 \eta\left(w^{(t-1)}-w^{*}\right)^{\top} \nabla F\left(w^{(t-1)}\right)+\eta^{2} \mathbb{E}\|v\|^{2}
\end{aligned}
$$

- S.c. of F, $\left(\left(w^{(t-1)}-w^{*}\right)^{\top} \nabla F\left(w^{(t-1)}\right) \geq \epsilon_{t-1}+\frac{\lambda}{2} B_{t-1}\right)$, gives

$$
\mathbb{E} B_{t}-(1-\eta \lambda) B_{t-1} \leq-2 \eta \epsilon_{t-1}+\eta^{2} \mathbb{E}\|v\|^{2}
$$

- Summing with weights $\left(\frac{1}{2 L}, \frac{\lambda}{2}\right)$ cancels the $\mathbb{E}\|v\|^{2}$ term and gives

$$
C_{t}-(1-\eta \lambda) C_{t-1} \leq \eta \lambda\left(\frac{1}{2 L} \underset{i}{\mathbb{E}}\left\|\nabla \phi_{i}\left(w^{(t-1)}\right)-\nabla \phi_{i}\left(w^{*}\right)\right\|^{2}-\epsilon_{t-1}\right)
$$

A simple convergence proof

- Potential: $C_{t}=\frac{1}{2 L} A_{t}+\frac{\lambda}{2} B_{t}$ with $A_{t}=\mathbb{E}_{j}\left\|\alpha_{j}^{(t)}-\alpha_{j}^{*}\right\|^{2}, B_{t}=\left\|w^{(t)}-w^{*}\right\|^{2}$
- Algebraic Manipulations:

$$
\begin{aligned}
& \mathbb{E} A_{t}-(1-\eta \lambda) A_{t-1}=\eta \lambda \mathbb{E}\left(\left\|\nabla \phi_{i}\left(w^{(t-1)}\right)-\nabla \phi_{i}\left(w^{*}\right)\right\|^{2}-(1-\beta)\|v\|^{2}\right) \\
& \mathbb{E} B_{t}-B_{t-1}=-2 \eta\left(w^{(t-1)}-w^{*}\right)^{\top} \nabla F\left(w^{(t-1)}\right)+\eta^{2} \mathbb{E}\|v\|^{2}
\end{aligned}
$$

- S.c. of F, $\left(\left(w^{(t-1)}-w^{*}\right)^{\top} \nabla F\left(w^{(t-1)}\right) \geq \epsilon_{t-1}+\frac{\lambda}{2} B_{t-1}\right)$, gives

$$
\mathbb{E} B_{t}-(1-\eta \lambda) B_{t-1} \leq-2 \eta \epsilon_{t-1}+\eta^{2} \mathbb{E}\|v\|^{2}
$$

- Summing with weights $\left(\frac{1}{2 L}, \frac{\lambda}{2}\right)$ cancels the $\mathbb{E}\|v\|^{2}$ term and gives

$$
C_{t}-(1-\eta \lambda) C_{t-1} \leq \eta \lambda\left(\frac{1}{2 L} \underset{i}{\mathbb{E}}\left\|\nabla \phi_{i}\left(w^{(t-1)}\right)-\nabla \phi_{i}\left(w^{*}\right)\right\|^{2}-\epsilon_{t-1}\right)
$$

- ϕ_{i} is L-smooth and convex $\Rightarrow \mathbb{E}_{i}\left\|\nabla \phi_{i}\left(w^{(t-1)}\right)-\nabla \phi_{i}\left(w^{*}\right)\right\|^{2} \leq 2 L \epsilon_{t-1}$

A simple convergence proof

- Potential: $C_{t}=\frac{1}{2 L} A_{t}+\frac{\lambda}{2} B_{t}$ with $A_{t}=\mathbb{E}_{j}\left\|\alpha_{j}^{(t)}-\alpha_{j}^{*}\right\|^{2}, B_{t}=\left\|w^{(t)}-w^{*}\right\|^{2}$
- Algebraic Manipulations:

$$
\begin{aligned}
& \mathbb{E} A_{t}-(1-\eta \lambda) A_{t-1}=\eta \lambda \mathbb{E}\left(\left\|\nabla \phi_{i}\left(w^{(t-1)}\right)-\nabla \phi_{i}\left(w^{*}\right)\right\|^{2}-(1-\beta)\|v\|^{2}\right) \\
& \mathbb{E} B_{t}-B_{t-1}=-2 \eta\left(w^{(t-1)}-w^{*}\right)^{\top} \nabla F\left(w^{(t-1)}\right)+\eta^{2} \mathbb{E}\|v\|^{2}
\end{aligned}
$$

- S.c. of F, $\left(\left(w^{(t-1)}-w^{*}\right)^{\top} \nabla F\left(w^{(t-1)}\right) \geq \epsilon_{t-1}+\frac{\lambda}{2} B_{t-1}\right)$, gives

$$
\mathbb{E} B_{t}-(1-\eta \lambda) B_{t-1} \leq-2 \eta \epsilon_{t-1}+\eta^{2} \mathbb{E}\|v\|^{2}
$$

- Summing with weights $\left(\frac{1}{2 L}, \frac{\lambda}{2}\right)$ cancels the $\mathbb{E}\|v\|^{2}$ term and gives

$$
C_{t}-(1-\eta \lambda) C_{t-1} \leq \eta \lambda\left(\frac{1}{2 L} \underset{i}{\mathbb{E}}\left\|\nabla \phi_{i}\left(w^{(t-1)}\right)-\nabla \phi_{i}\left(w^{*}\right)\right\|^{2}-\epsilon_{t-1}\right)
$$

- ϕ_{i} is L-smooth and convex $\Rightarrow \mathbb{E}_{i}\left\|\nabla \phi_{i}\left(w^{(t-1)}\right)-\nabla \phi_{i}\left(w^{*}\right)\right\|^{2} \leq 2 L \epsilon_{t-1}$
- Therefore: $\mathbb{E} C_{t} \leq(1-\eta \lambda) \mathbb{E} C_{t-1} \leq(1-\eta \lambda)^{t} C_{0}$

Outline

(1) SDCA without Duality

- SDCA \in SGD family
- SGD with a stochastic oracle must be slow
- SDCA reduces the variance using a stronger oracle
- A simple convergence proof
(2) Relaxing the Assumptions
- Without Explicit Regularization
- Dependence on Average Smoothness
- Without Individual Convexity

GD vs SDCA

Classic: Gradient Descent (GD):

- Assume: F is λ-strongly convex and L-smooth
- Runtime: $d \cdot\left(n \cdot \frac{L}{\lambda}\right) \cdot \log \left(\frac{1}{\epsilon}\right)$

Modern: Stochastic Dual Coordinate Ascent (SDCA):

- Assume: $f_{i}(w)=\phi_{i}(w)+\frac{\lambda}{2}\|w\|^{2}$ and ϕ_{i} is convex and L smooth
- Runtime: $d \cdot\left(n+\frac{L}{\lambda}\right) \cdot \log \left(\frac{1}{\epsilon}\right)$

SDCA Without Explicit Regularization

Original objective:

$$
F(w)=\frac{1}{n} \sum_{i=1}^{n} \phi_{i}(w)
$$

Rewrite the objective as

$$
F(w)=\frac{1}{n+1} \sum_{i=1}^{n+1} \phi_{i}(w)+\frac{\lambda}{2}\|w\|^{2}
$$

where

- For $i \leq n, \phi_{i}(w)=\frac{n+1}{n} f_{i}(w)$
- $\phi_{n+1}(w)=\frac{-\lambda(n+1)}{2}\|w\|^{2}$

Dependence on Average Smoothness

- Assume that ϕ_{i} is L_{i}-smooth
- Let $\bar{L}=\mathbb{E}_{i} L_{i}$
- Sample $i \sim q$ where $q_{i}=\frac{L_{i}+\bar{L}}{2 n \bar{L}}$
- Convergence rate now depends on \bar{L} instead of on $\max _{i} L_{i}$

SDCA without Individual Convexity

- Remove the assumption that ϕ_{i} is convex and only assume that F is λ-strongly convex
- The bound $\mathbb{E}_{i}\left\|\nabla \phi_{i}\left(w^{(t-1)}\right)-\nabla \phi_{i}\left(w^{*}\right)\right\|^{2} \leq 2 L \epsilon_{t-1}$ no longer holds
- Instead, $\mathbb{E}_{i}\left\|\nabla \phi_{i}\left(w^{(t-1)}\right)-\nabla \phi_{i}\left(w^{*}\right)\right\|^{2} \leq L^{2} \|\left(w^{(t-1)}-w^{*} \|^{2}\right.$
- Yields a runtime of $d \cdot\left(n+\left(\frac{L}{\lambda}\right)^{2}\right) \cdot \log \left(\frac{1}{\epsilon}\right)$
- Using acceleration gives runtime of $\tilde{O}\left(d \cdot\left(n+n^{3 / 4} \sqrt{\bar{L} / \lambda}\right)\right)$
- Compare to the convex case: $\tilde{O}\left(d \cdot\left(n+n^{1 / 2} \sqrt{\bar{L} / \lambda}\right)\right)$

Summary

- SDCA without duality as a variance reduced SGD
- Simpler proof
- Relaxing the assumptions on individual functions
- Open: is the extra $n^{1 / 4}$ factor necessary ?

