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Abstract
Label ranking is the task of ordering labels with
respect to their relevance to an input instance.
We describe a unified approach for the online la-
bel ranking task. We do so by casting the online
learning problem as a game against a competi-
tor who receives all the examples in advance and
sets its label ranker to be the optimal solution of
a constrained optimization problem. This opti-
mization problem consists of two terms: the em-
pirical label-ranking loss of the competitor and a
complexity measure of the competitor’s ranking
function. We then describe and analyze a frame-
work for online label ranking thatincrementally
ascends the dual problem corresponding to the
competitor’s optimization problem. The gener-
ality of our framework enables us to derive new
online update schemes. In particular, we use the
relative entropy as a complexity measure to de-
rive efficient multiplicative algorithms for the la-
bel ranking task. Depending on the specific form
of the instances, the multiplicative updates either
have a closed form or can be calculated very ef-
ficiently by tailoring an interior point procedure
to the label ranking task. We demonstrate the po-
tential of our approach in a few experiments with
email categorization tasks.

1 Introduction and Problem Setting

Label ranking is concerned with the task of ordering labels
which are associated with a given instance in accordance to
their relevance to the input instance. In this paper we de-
scribe an algorithmic framework foronline label ranking.
As an illustrative example consider an email categorization
task in which the instances are email messages. Most email
applications allow users to organize email massages into
user-defined folders. For example, Google’s Gmail users
can tag each of their email messages with one or more la-
bels. The set of labels is also user defined yet it is finite and
typically constitutes of a few tens if not hundreds of differ-

ent labels. The benefit of this approach is the flexibility it
gives users categorizing emails, since an email may be as-
sociated with multiple labels. The approach stands in con-
trast to traditional systems in which an email is associated
with a singlephysical folder. Users may browse all emails
associated with a particular label and can also use the labels
for searching through their emails. However, manually at-
taching the relevant labels to each incoming email message
can be an all-out effort. An online label ranking algorithm
automatically learns how to rank-order labels in accordance
with their relevance to each of the incoming email mes-
sages. Quite a few learning algorithms have been devised
for the category ranking problem such as a multiclass ver-
sion of AdaBoost called AdaBoost.MH [10], a generaliza-
tion of Vapnik’s Support Vector Machines to the multilabel
setting by Elisseeff and Weston [5], and generalizations of
the Perceptron algorithm to category ranking [3, 2].

The category ranking hypotheses this work employs are
closely related to the ones presented and used in [5, 3, 4].
However, we depart from the standard paradigm which is
confined to a specific form of regularization and give a uni-
fied account for online learning for label ranking problems.
Our starting point is the primal-dual perspective we initially
presented in [12] and further developed in [13]. Follow-
ing [12, 13], we cast the problem as an optimization prob-
lem which is solved incrementally as the online learning
progresses. We then switch to the dual representation of
the problem and show that by modifying only the set of
variables corresponding to the example received on a given
trial of the online algorithm we are able to obtain two goals.
First, we devise a general procedure and derive specific on-
line update schemes. Second, we use the primal-dual view
in conjunction with the weak-duality theorem to obtain a
general mistake bound for the label ranking problem. We
demonstrate the power of our approach by deriving new
updates for the label ranking task. In particular, we devise
new multiplicative updates which outperform additive up-
dates in the experiments reported in this paper.

Before proceeding with a formal description of the prob-
lem setting we would like to underscore the contribution



of this work in the light of our previous theoretical work.
The work presented here provides new updates for the la-
bel ranking problem. While our mistake bound analysis is
based on previous work [12, 13], the former was mostly
confined either to binary classification or to regret analy-
sis for general functions. More importantly, we describe
new specific algorithms for entropic regularization. Inter-
estingly, our formal analysis is on par with the experimen-
tal results which give further validation to the formal results
presented in [12, 13] and in this paper.

We start by formally describing the online label ranking
problem. LetX ⊂ R

n be an instance domain and let
Y = {1, . . . , k} be a predefined set of labels. Online learn-
ing is performed in a sequence of trials. On trialt the al-
gorithm first receives an instancext ∈ X and is required
to rank the labels inY according to their relevance to the
instancext. For simplicity, we assume that the predicted
ranking is given in the form of a vectorρt ∈ R

k, where
ρt

r > ρt
s means that labelr is ranked ahead of labels. After

the online learning algorithm has predicted the rankingρt

it receives as feedback a subset of labelsY t ⊆ Y, which are
mostly relevant toxt. We say that the ranking predicted by
the algorithm is correct if all the labels inY t are at the top
of the list. That is, if for allr ∈ Y t ands /∈ Y t we have that
ρt

r > ρt
s. Otherwise, if there existr ∈ Y t ands /∈ Y t for

whichρt
r ≤ ρt

s, we say that the algorithm made a prediction
mistake on trialt. The ultimate goal of the algorithm is to
minimize the total number of prediction mistakes it makes
along its run. Throughout this paper, we useM to denote
the number of prediction mistakes made by an online algo-
rithm on a sequence of examples(x1, Y 1), . . . , (xm, Y m).

We assume that the prediction of the algorithm at each trial
is determined by a linear function which is parameterized
by k weight vectors,{ωt

1, . . . ,ω
t
k}. Namely, for allr ∈ Y,

the value ofρt
r is the inner product betweenωt

r andxt,
that is,ρt

r = 〈ωt
r,x

t〉. We use the notation̄ωt as an ab-
breviation for the set{ωt

1, . . . ,ω
t
k}. To evaluate the per-

formance ofω̄t on the example(xt, Y t) we check whether
ω̄t made a prediction mistake, by determining whether for
all r ∈ Y t and s /∈ Y t we have〈ωt

r,x
t〉 > 〈ωt

s,x
t〉.

To obtain bounds on prediction mistakes we use a second
evaluation scheme of the performance ofω̄t. This scheme
is based on a generalization of thehinge-lossfunction, de-
notedℓγ(ω̄t; (xt, Y t)), for ranking problems, defined as,

maxr∈Y t,s/∈Y t [γ − (〈ωt
r,x

t〉 − 〈ωt
s,x

t〉)]+ , (1)

where[a]+ = max{a, 0} and whereγ > 0 is a predefined
parameter. The above definition of loss extends the hinge-
loss used in binary classification problems [14] to the prob-
lem of label-ranking. The term〈ωt

r,x
t〉 − 〈ωt

s,x
t〉 in the

definition of the hinge-loss is a generalization of the notion
of marginfrom binary classification. The hinge-loss penal-
izesω̄t for any margin less thanγ. Additionally, if ω̄t errs
on (xt, Y t) then there existr ∈ Y t ands /∈ Y t such that

〈ωt
r,x

t〉 − 〈ωt
s,x

t〉 ≤ 0 and thusℓγ(ω̄t; (xt, Y t)) ≥ γ.
Thus, thecumulative hinge-losssuffered over a sequence
of examples upper boundsγM .

To obtain a concrete online learning algorithm we must de-
termine the initial value of each weight vector and an up-
date rule used to modify the weight vectors at the end of
each trial. Recall that our goal is to derive online learning
algorithms which make small number of prediction mis-
takes. Naturally, without further assumptions on the se-
quence of examples, any online learning algorithm can be
forced to make a large number of mistakes. To state a
more realistic goal, we follow the relative mistake bound
model, and measure the performance of an online learn-
ing algorithm relatively to the performance ofany fixed
set of weight vectors̄ω⋆ = {ω⋆

1, . . . ,ω
⋆
k} ∈ Ωk, where

Ω ⊂ R
n is a set of admissible vectors. The competitor

ω̄⋆ can be chosen in hindsight after observing the entire se-
quence of examples. In particular, if for a given sequence
of examples,(x1, Y 1), . . . , (xm, Y m), there exists a com-
petitor ω̄⋆ for which

∑m
t=1 ℓγ(ω̄⋆; (xt, Y t)) = 0, then we

would like M , the number of prediction mistakes of the
online algorithm, to be independent ofm. The requirement
we cast is thatM is upper bounded byF(ω̄⋆). We make
the assumption thatF, which operates on set of vectorsω̄,
is obtained by applying the same convex function to each
of the constituents of̄ω. Formally, givenF : Ω → R,
which assesses the “complexity” of a single vectorω, and
ω̄ = {ω1, . . . ,ωk}, we defineF(ω̄) to be

∑k
r=1 F (ωr).

In the general case, we provide analysis in whichM is
upper-bounded by a sum of two terms: the first is the com-
plexity of ω̄⋆ as defined byF(ω̄⋆) and the second is the
cumulative hinge-loss suffered bȳω⋆. Formally, letλ and
C be two positive scalars. We say that an online algorithm
is (λ,C)-competitive with the set of vectors inΩ, with re-
spect to a complexity functionF and the hinge-lossℓγ , if
the following bound holds for anȳω⋆ ∈ Ωk,

λM ≤ F(ω̄⋆) + C

m
∑

t=1

ℓγ(ω̄⋆; (xt, Y t)) . (2)

The parameterC controls the trade-off between the com-
plexity of ω̄⋆ (throughF ) and the cumulative hinge-loss of
ω̄⋆. The main goal of this paper is to develop efficient on-
line learning algorithms which achieve mistake bounds of
the form given in Eq. (2).

2 Online Learning by Dual Ascent

We now describe our approach for designing and analyzing
online learning algorithms for label ranking. To motivate
our construction, we would like to note first that the bound
in Eq. (2) can be rewritten as,

λM ≤ inf
ω̄∈Ωk

F(ω̄) + C

m
∑

t=1

ℓγ(ω̄; (xt, Y t)) . (3)



Denote byP(ω̄) the objective function of the minimization
problem given on the right-hand side of Eq. (3). We would
like to emphasize thatP(ω̄) depends on the entire sequence
of examples{(x1, Y 1), . . . , (xm, Y m)} and therefore the
minimization problem can only be solved in hindsight, that
is, after observing the entire sequence of examples. Eq. (3)
requires thatλM lower bounds the optimum of the mini-
mization problemminω̄ P(ω̄).

Duality, which is a central notion in optimization theory,
plays an important role in obtaining lower bounds for the
minimal value of a minimization problem (see for exam-
ple [1]). Formally, if the dual problem ofminω̄ P(ω̄) is
to maximize a dual objective functionD(τ ) over a dual
domainτ ∈ S then the weak duality theorem states that
for any τ ∈ S we have,D(τ ) ≤ infω̄∈Ωk P(ω̄). Be-
fore we derive the dual functionD(τ ) and its domainS,
let us first underscore the implications of the weak dual-
ity theorem for online learning. LetM be the set of tri-
als on which the online algorithm makes a prediction mis-
take. Assume that we can associate a feasible dual solu-
tion τ t with each trial1 ≤ t ≤ m + 1 that satisfies the
following two requirements: (i) The initial dual objective
function is zero,D(τ 1) = 0. (ii) For all t ∈ M, the in-
crease in the dual objective value is bounded from below:
D(τ t+1) − D(τ t) ≥ λ, and fort 6∈ M the increase in the
dual is non-negative. Assuming that these two conditions
are met we obtain that,

λM ≤ D(τ 1) +

m
∑

t=1

(

D(τ t+1)−D(τ t)
)

= D(τm+1) ≤ inf
ω̄∈Ωk

P(ω̄) ,

where the last inequality follows from the weak duality the-
orem. Therefore, Eq. (3) holds and our online algorithm is
(λ,C)–competitive.

We have thus shown that any sequence of feasible dual so-
lutionsτ 1, . . . , τm+1 can be used for analyzing an online
learning algorithm so long as the two conditions described
above hold. As we show in the sequel, the first requirement
is easily satisfied. For the second requirement to hold, we
must relate the sequence of dual solutions to the predictions
of the algorithm. Recall that an online learning algorithm
constructs a sequence of primal solutionsω̄1, . . . , ω̄m+1

where on trialt it employsω̄t for predictingρt. One way
to connect between the sequence of dual solutions to the
predictions of the algorithm can be achieved by construct-
ing each primal solution̄ωt from its dual variableτ t. To
explain this construction we first need to derive the dual op-
timization problem of the minimization problem given on
the right-hand side of Eq. (3).

To simplify our notation, we denote by[m] the set of inte-
gers{1, . . . ,m}. We also use the notationEi as a short-
hand for the setY i × (Y \ Y i). The dual problem asso-
ciates a variableτi,r,s with each examplei ∈ [m] and pair

(r, s) ∈ Ei. A fairly tedious yet routine usage of Lagrange
multipliers yields that the dual domain is,S = {τ ≥ 0 :
∀i ∈ [m],

∑

(r,s)∈Ei τi,r,s ≤ C}. Our expression for the
dual objective function is based on a functionG(θ) which
is the Fenchel conjugate of the complexity functionF ,

G(θ) = sup
ω∈Ω

〈ω,θ〉 − F (ω) . (4)

The dual objective function is

D(τ ) = γ

m
∑

i=1

∑

(r,s)∈Ei

τi,r,s −
k

∑

y=1

G (θy) , (5)

where for ally ∈ [k],

θy =
∑

i:y∈Y i

xi
∑

s/∈Y i

τi,y,s −
∑

i:y/∈Y i

xi
∑

r∈Y i

τi,r,y . (6)

To conclude this section, we would like to underscore a few
important properties of the dual problem given by Eq. (5).
Recall that we would like to associate a dual solutionτ t

with each online trial and we required thatD(τ 1) = 0
and thatD(τ t+1) − D(τ t) ≥ λ whenevert ∈ M. To
satisfy the first requirement we show that a natural choice
for τ 1 is the zero vector. The zero vector,τ 1 = 0, is
indeed a feasible dual solution and the value of the dual
function at0 is, D(0) = −k G(0) = k infω∈Ω F (ω).
SinceF serves as a measure of “complexity” of vectors
in Ω we enforce the requirement that the minimum ofF
over the vectors inΩ is zero. From this requirement we
get thatD(0) = 0, and therefore, by settingτ 1 = 0, we
satisfy the requirementD(τ 1) = 0. The second impor-
tant property of the dual function given by Eq. (5) is that if
for all triplets (i, r, s) such thati > t we haveτi,r,s = 0
thenD(τ ) does not depend onyet to be seenexamples
(xt+1, Y t+1), . . . , (xm, Y m). This fact is true since the
dependence ofD on examples is expressed solely through
the vectorsθy (see Eq. (6)) andθy is a linear combina-
tion of the examples with coefficientsτi,r,s. Therefore, if
τi,r,s = 0 for all i > t thenθy is independent ofxi for
all i > t. This simple property allows us to devise dif-
ferent online update procedures which increase sufficiently
the dual objective function.

3 Derived Online Updates

In this section we present three different online update
schemes that are based on the same principle of ascend-
ing the dual by modifying solely the dual variables corre-
sponding to thetth trial. We start by settingτ 1 = 0 which
results in a zero value forD(τ 1). For t = 1 we have that
τ t
i,r,s = 0 for all i ≥ t. We keep ensuring that the prop-

erty holds for allt ∈ [m]. At the beginning of trialt, we
construct a primal solution,̄ωt, based onτ t as follows.
For simplicity, let us assume that the functionG is differ-
entiable and denote its gradient byg. We first useτ t for



defining the set of vectors{θt
1, . . . ,θ

t
k} as in Eq. (6). We

then defineωt
y = g(θt

y) for all y ∈ [k]. Note that since
τ t
i,r,s = 0 for all i ≥ t we have thatθt

y andωt
y are in-

dependent of the examples(xt, Y t), . . . , (xm, Y m). Next,
we use the set of vectors̄ωt = {ωt

1, . . . ,ω
t
k} for predict-

ing the label rankingρt. Finally, after receiving the feed-
backY t, we find a new dual solutionτ t+1 by settingτ t+1

t,r,s

where for alli ≥ t + 1 the variablesτ t+1
i,r,s are kept at zero.

While the three update schemes described in the sequel are
based on this approach they vary in their complexity. As we
have shown before, an online learning algorithm is(λ,C)–
competitive, if on all trialst ∈ M we ensure a minimal
increase in the dualD(τ t+1) − D(τ t) ≥ λ while on the
rest of the trials we ensure that the dual is non-decreasing.
Despite the varying complexity of the updates, all the three
of them satisfy these conditions and achieve the same mis-
take bound. However, the added complexity does result in
improved empirical performance (see Sec. 5).

Update I: fixed-size dual ascent w.r.t. a single constraint
The first update we consider makes a simple predefined
change to one variable ofτ at the end of each erroneous
trial. Formally, if on trial t the algorithm did not make
a prediction mistake we do not changeτ at all and set
τ t+1 = τ t. If there was a prediction error we let,

(r′, s′) = argmin
(r,s)∈Et

〈ωt
r′ − ωt

s′ ,xt〉 . (7)

That is, the pair(r′, s′) designates the labels which mostly
violate the required preference constraints. Since there was
a prediction mistake, we get that〈ωt

r′ − ωt
s′ ,xt〉 ≤ 0. We

now set the(t, r′, s′) element ofτ to C and leave the rest
of the elements intact. Formally, fort ∈M the new vector
τ t+1 is set as follows,

τ t+1
i,r,s =

{

C if (i, r, s) = (t, r′, s′)
τ t
i,r,s otherwise

(8)

This form of update implies that the components ofτ are
either zero orC. Using the definition ofθy given in Eq. (6)
we get that the corresponding update ofθy is,

θt+1
r′ = θt

r′ + C xt , θt+1
s′ = θt

s′ − C xt ,

∀y ∈ Y−{r′, s′} : θt+1
y = θt

y .

By construction, ift /∈ M thenD(τ t+1) − D(τ t) = 0.
The lemma below gives sufficient conditions for which the
increase in the dual objective on erroneous trials is strictly
positive.

Lemma 1 Letτ t ∈ S be a dual solution such thatτ t
i,r,s =

0 for all i ≥ t. Assume thatt ∈ M and letτ t+1 be as
defined in Eq. (8). Assume in addition thatG is twice dif-
ferentiable with a HessianH which satisfies the condition
that〈xt,H(θ)xt〉 ≤ 1/2 for all θ. Then the increase in the
dual,D(τ t+1)−D(τ t), for t ∈M is at least,γ C− 1

2 C2.

The proof is given in Appendix A. In summary, we have
shown thatD(τ 1) = 0, D(τ t+1) − D(τ t) ≥ 0 for all t,
andD(τ t+1) − D(τ t) ≥ λ for t ∈M whereλ = γ C −
1
2 C2. Therefore, the resulting online learning algorithm is
(λ,C)–competitive.

Update II: optimal dual ascent w.r.t. a single constraint
The previous update scheme modifiesτ only on trials for
which there was a prediction mistake (t ∈M). The update
is performed by settingτt,r′,s′ to C and keeping the rest
of the variables intact. We now enhance this update in two
ways. First, note that while settingτ t+1

t,r′,s′ to C guarantees
a sufficient increase in the dual, there might be other values
of τ t+1

t,r′,s′ which might lead to larger increases of the dual
objective. Furthermore, we can also updateτ on trials on
which the prediction was correct so long as the dual does
not decrease. Our second update setsτ t+1

t,r′,s′ to be the value
which results in the largest increase in the dual objective.
Formally, we set the dual variables on the next trial to be
the solution of the following,

τ t+1 = argmax
τ∈S

D(τ )

s.t. ∀(i, r, s) 6= (t, r′, s′), τi,r,s = τ t
i,r,s ,

(9)

where(r′, s′) are as defined in Eq. (7). By construction,
the increase in the dual due to the update given in Eq. (9)
is guaranteed to be at least as large as the increase due
to the previous update from Eq. (8). Thus, this update
scheme results in an online algorithm which is also(λ,C)–
competitive withλ again being equal toγ C − 1

2 C2.

Update III: optimal dual ascent w.r.t multiple con-
straints The two updates above were restricted to modi-
fying a singleelement ofτ and were thus been based on
a single constraint of the primal problem. the third update
scheme potentially modifies all the dual variables of the
current example. Formally, we defineτ t+1 to be the solu-
tion of the following optimization problem,

τ t+1 = argmax
τ∈S

D(τ )

s.t. ∀i 6= t, ∀(r, s) ∈ Ei, τi,r,s = τ t
i,r,s .

(10)

The increase in the dual due to this update is no smaller
than the increase due to the update from Eq. (8). Thus, this
update scheme results in an online algorithm which is also
(λ,C)–competitive withλ again being equal toγ C− 1

2 C2.

4 Efficient Implementations

Update II and III described above are given in an implicit
form as a solution for reduced optimization problems as de-
scribed by Eq. (9) and Eq. (10). In this section we describe
efficient implementations of the two updates. For update II
we derive analytic solutions for two popular choices ofF
while for update III we describe a general solver based on



an interior point (IP) method which exploits the structure
of the label ranking problem. The result is a specialized
algorithm which is more efficient than general IP methods.

An efficient implementation of Update II WhenF(ω̄) =
∑

r F (ωr) whereF (ωr) = 1
2‖ωr‖2, standard use of La-

grange multipliers yields thatτ t+1
t,r′,s′ is the minimum be-

tweenC and(γ + 〈ωt
s′ − ωt

r′ ,xt〉)/(2‖xt‖2). We would
like to note that this form of update was suggested and ana-
lyzed by several authors for the simple case of binary clas-
sification [7] and multiclass problems [2]. In the following
we show that the update can be utilized with the less stud-
ied case in whichF (ωr) =

∑n
j=1 wr,j log(wr,j/(1/n)).

To devise an analytic solution, we further assume that each
instancext is a binary vector in{0, 1}n. While this as-
sumption seems restrictive, many text processing applica-
tions use term appearances as features which distill to bi-
nary vectors. In this case the conjugate ofF is G(θ) =

log
(

∑n
j=1 exp(θj)

)

− log(n). Upon selecting the label

pair(r, s), the change in the dual due to update II is a scalar
function inτ t+1

t,r,s which we simply abbreviate byτ . Omit-
ting terms which do not depend onτ t+1

t,r,s this change in the
dual amounts to,∆t = γτ −G(θt

r + τ xt)−G(θt
s− τ xt).

Since the original dual objective is concave in its dual
variables, the change in the dual is also a concave func-
tion in τ . Furthermore,τ resides in the compact inter-
val [0, C] and thus there exists a unique value ofτ which
maximizes the increase in the dual. To find this opti-
mal value we introduce the following auxiliary functions,
qr = 1

Zr

∑

j:xj=1 eθr,j ; Zr =
∑n

j=1 eθr,j and qs =
1

Zs

∑

j:xj=1 eθs,j ; Zs =
∑n

j=1 eθs,j . Equipped with these
definitions we now take the derivative of∆t with respect to
τ and equate it to zero to get that,

γ − qre
τ

qreτ + (1− qr)
+

qse
−τ

qse−τ + (1− qs)
= 0 .

Definingβ = eτ we get the quadratic equation,β2qr(1 −
qs)(1−γ)−βγ(qrqs +(1− qr)(1− qs))− qs(1− qr)(1+
γ) = 0, Sinceβ must be non-negative, the minimum
between the positive root of the above equation andC gives
the optimal value forβ. From β we obtainτ by setting
τ = log(β).

An Efficient Implementation of Update III While the
first two update schemes use only asinglevariable to form
the update, the third update scheme employs theentireset
of variables associated with the example. Recall that each
example is associated with|Ei| dual variables. Thus, the
optimization problem given in Eq. (10) is over|Ei| dual
variables which can be on the order ofk2. To obtain an
efficient update we derive an equivalent, more compact,
optimization problem which has exactlyk variables. The

compact problem is

max
αt,1,...,αt,k

γ
∑

y∈Y t αt,y −
∑k

y=1 G(θt
y + αt,yx

t)

s.t.
k

∑

y=1

αt,y = 0 ,
∑

y∈Y t

αt,y ≤ C , (11)

∀y ∈ Y t : αt,y ≥ 0 , ∀y /∈ Y t : αt,y ≤ 0

In Appendix B we prove that the problem given in Eq. (11)
is equivalent to the problem given in Eq. (10). A rather
complex algorithm for solving the compact problem in the
special case where the complexity function isF (ωr) =
1
2‖ωr‖2 was presented in [11]. Here we present an effi-
cient primal-dual interior point algorithm (PDIP) for solv-
ing the compact optimization problem which is applica-
ble to a larger family of complexity functions. We de-
scribe the PDIP algorithm for a slightly more general op-
timization problem which still exploits the structure of the
problem and leads to a very efficient PDIP algorithm. Let
{fr|fr : R → R}dr=1 be a set ofd twice differentiable
functions from and denote by{f ′

r} and{f ′′
r } their first and

second derivatives. Letp andq be two vectors inRd, A be
a2× d matrix, andb a two dimensional vector overR. In-
stead of the original problem defined by Eq. (11), we work
with the following minimization problem,

min
α∈Rd

d
∑

r=1

fr(αr) s.t.Aα = b, ∀r prαr ≤ qr . (12)

It is easy to verify that the problem defined by Eq. (11) can
be reformatted and described as an instance of the problem
defined by Eq. (12).

To motivate the derivation of the PDIP algorithm, let
us first note that the dual of Eq. (12) is the problem
maxλ∈R

d
+

,ν∈R2 D(λ,ν) whereD(λ,ν) is

min
α∈Rd

d
∑

r=1

fr(αr) +

d
∑

r=1

λr(prαr − qr) + 〈ν, (Aα− b)〉 .

(13)
Denote byP(α) the objective function of the problem in
Eq. (12). As the name implies, the PDIP algorithm main-
tains strictly feasible primal (α) and dual(λ,ν) solutions
at all times. (To remind the reader, a strictly feasible solu-
tion of a given problem satisfies all the constraints of the
problem, where each inequality constraint holds with strict
inequality.) Assume that we have on hand a strictly fea-
sible primal-dual solution(α,λ,ν). We now define the
following function, η(α,λ) =

∑d
r=1 λr(qr − prαr) .

We next show thatη(α,λ) is a lower bound on the duality
gap of our primal-dual solution. The definition ofD(λ,ν)
implies that,

D(λ,ν) ≤
d

∑

r=1

(fr(αr) + λr(prαr − qr)) + 〈ν, Aα− b〉

= P(α) + η(α,λ) , (14)



where the second equality is due to the fact thatα is a fea-
sible dual solution, thusAα = b. Therefore, the duality
gap is bounded below by

P(α)−D(λ,ν) ≥ η(α,λ) . (15)

Moreover, if

∀r ∈ [d], f ′
r(αr) + λrpr + ν1A1,r + ν2A2,r = 0 , (16)

thenα attains the minimum of Eq. (13). Therefore, both
Eq. (14) and Eq. (15) hold with equality. In this case,
η(α,λ) amounts to be the duality gap of the primal-dual
solution(α,λ,ν).

The PDIP algorithm is an iterative procedure where on
each iteration it finds a new strictly feasible primal-dual
solution. The primary goal of the update is to decrease
the duality gap. To do so, we use the fact that Eq. (15)
establishesη(α,λ) as a lower bound on the duality gap.
Thus, the main goal of the update is to decreaseη(α,λ)
on each iteration while ensuring that the actual duality gap,
P(α) − D(λ,ν), stays close toη(α,λ) as much as pos-
sible. Additionally, we need to make sure that the new
primal-dual solution is also strictly feasible. We are now
ready to describe the core update of the PDIP algorithm.
Let us denote by(α,λ,ν) the current primal-dual solution
of the algorithm. The new primal-dual solution is obtained
from the current solution by finding a step-size parameter,
s ∈ (0, 1) for a triplet (∆α,∆λ,∆ν) and the update it-
self takes the formα ← α + s∆α, λ ← λ + s∆λ, and
ν ← ν + s∆ν. To compute the triplet(∆α,∆λ,∆ν) we
linearize each summand ofη(α + ∆α,λ + ∆λ) using a
first order Taylor approximation and get,

(λr + ∆λr) (qr − pr(αr + ∆αr)) ≈
(λr + ∆λr)(qr − prαr)− λrpr ∆αr .

We require that the value ofη for the new solution is ap-
proximately a fraction of the value at the current solu-
tion. This is achieved by solving the following set of linear
equalities in∆αr and∆λr,

∀r ∈ [d], (λr+∆λr)(qr−prαr)−λrpr ∆αr = 0.1 η(α,λ)
d .
(17)

The choice of the contraction constant0.1 was set empiri-
cally. Assuming that the above set of equations hold, then
η(α + ∆α,λ + ∆λ) ≈ 0.1 η(α,λ). To recap, solving
the system of linear equations given by Eq. (17) serves as
a proxy for achieving a substantial decrease inη. Next, we
need to make sure thatη at the new parameters provides
a rather tight lower bound. We do so by making sure that
the linearization of the left hand side of Eq. (16) is approxi-
mately zero by casting the following set of linear equations,
to Eq. (16),

∀r ∈ [d], f ′
r(αr) + f ′′

r (αr)∆αr + (λr + ∆λr)pr+

(ν1 + ∆ν1)A1,r + (ν2 + ∆ν2)A2,r = 0 .

(18)

Solving Eq. (18) helps us in tightening the lower bound on
the duality gap given in Eq. (14). Last, we need to make
sure that the new set of parameters is indeed a feasible pri-
mal solution by requiring the equalityA(α + ∆α) = b

to hold. The triplet(∆α,∆λ,∆ν) is thus found by find-
ing the solution of all the sets of linear equations described
above. The step sizes is found by a backtracking search
(see for instance pp. 612-613 in [1]).

There exists both theoretical and empirical evidence that a
PDIP algorithm reaches the optimal solution (within com-
puter accuracy) afterO(

√
d) iterations [1, 6, 9]. On each

iteration we need to solve a set of2d + 2 linear equations.
A direct implementation would requireO(d3) operations
for each iteration of the PDIP algorithm. However, as we
now show, we can utilize the structure of the problem to
solve the set of linear equations in linear time. Thus, the
complexity of update III isO(d

√
d) = O(k

√
k). To obtain

an efficient solver, we first eliminate the variables∆λ by
rewriting Eq. (17) as

∀r, (λr + ∆λr) = λrpr

qr−prαr
∆αr + 0.1η(α,λ)

d(qr−prαr) , (19)

and substituting the above into Eq. (18). We now define
ur = −f ′

r(αr)− 0.1η(α,λ)
d(qr−prαr) − ν1A1,r − ν2A2,r, andzr =

f ′′
r (αr) + λrpr/(qr − prαr), and rewrite Eq. (18)

∀r ∈ [d], zr ∆αr = ur + A1,r∆ν1 + A2,r∆ν2 . (20)

Finally, we rewrite the set of two equalitiesA(α + ∆α) =
b asA∆α = 0. Substituing∆αr with the right hand side
of Eq. (20) in the linear set of equalitiesA∆α = 0, we
obtain a system of2 linear equations in2 variables which
can be solved in constant time. From the solution we ob-
tain ∆ν and then compute∆α as described in Eq. (20).
From∆α we now compute∆λ using Eq. (19). The over-
all complexity of the procedure of assigning new values to
the primal-dual feasible solution is thusO(d).

5 Experiments

In this section we present experimental results that demon-
strate different aspects of our proposed algorithms. Our
experiments compare the three updates given in Sec. 2
using two complexity functions. The first is the squared
norm as a complexity functionF (ω) = 1

2‖ω‖2 with the
domainΩ = R

n and the second is the entropy function
F (ω) =

∑n
j=1 ωj log(ωj) + log(n) with the domain

Ω = {ω : ωj = 0,
∑

j ωj = 1}. We would like to note
that using update I with the first complexity function yields
an algorithm which was previously proposed and studied
in [3] while using update II with the same complexity
function yields the PA algorithm described in [2]. We
experimented with the Enron email dataset (available from
http://www.cs.umass.edu/∼ronb/datasets/enronflat.tar.gz).
The task is to automatically classify email messages into



Table 1:The average number of online mistakes for different algorithms on seven users from the Enron datasets.

F (ω) = 1

2
‖ω‖2

F (ω) =
Pn

j=1
ωj log(nωj)

username |Y| m update I update II update III update I update II update III
beck-s 101 1971 58.5 55.2 51.9 54.0 50.2 47.1
farmer-d 25 3672 29.5 23.3 22.7 27.6 22.6 22.0
kaminski-v 41 4477 50.2 44.5 41.9 46.7 42.9 40.0
kitchen-l 47 4015 48.2 41.9 40.4 41.9 38.3 36.0
lokay-m 11 2489 24.9 19.1 18.4 24.0 18.7 18.2
sanders-r 30 1188 31.7 28.3 27.2 28.3 24.2 23.4
williams-w3 18 2769 5.0 4.5 4.4 4.2 3.4 3.1

user defined folders. Thus, the instances in this dataset
are email messages while the set of classes is the email
folders. Note that our online setting naturally captures the
essence of this email classification task. We represented
each email message as a binary vectorx ∈ {0, 1}n with
a coordinate for each word, so thatxi = 1 if the word
corresponding to the indexi appears in the email message
and zero otherwise. We ran the various algorithms on
sequences of email messages from7 users. For update
II we used the closed form solution derived in Sec. 4
and for update III we used the PDIP algorithm. We
found out in our experiments that the number of iterations
required by the PDIP algorithm never exceeded15. The
performance of the different algorithms on the datasets
is summarized in Table 1. It is apparent that regardless
of the complexity function used, update III consistently
outperforms update II which in turn consistently outper-
forms update I. However, the improvement of update II
over update I is more significant than the improvement of
update III over update II. Comparing the two complexity
functions we note that regardless of the update used, the
complexity function based on the entropy consistently
outperforms the complexity function based on the squared
norm. Note that when using update I with the squared
norm as a complexity function we obtain an adaptation of
the Perceptron algorithm for the label ranking task while
when using update I with the entropy complexity function
we obtain an adaptation of the EG algorithm [8]. The
superiority of the entropy-based complexity function over
the squared norm was underscored in [8] for regression
and classification problems.
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A Proof of Lemma 1

Proof Denote∆t = D(τ t+1)−D(τ t). From the definition
of τ t+1 we have that,

∆t = γ C −G(θt
r′ + C xt) + G(θt

r′)

−G(θt
s′ − C xt) + G(θt

s′) .
(21)

Using Taylor expansion ofG aroundθt
r′ we get that there

existsθ for which,

G(θt
r′ + Cxt) ≤ G(θt

r′)+C〈xt, g
(

θt
r′

)

〉+ C2〈xt,H(θ)xt〉
2

≤ G(θt
r′) + C 〈xt,ωt

r′〉+ 1

4
C2 ,

(22)

where for the last inequality we used the fact that ifG is
differentiable thenωt

r′ = g
(

θt
r′

)

and our assumption that
〈xt,H(θ)xt〉 ≤ 1/2. Similarly, using Taylor expansion
of G aroundθt

s′ we get that there existsθ′ for which,
G(θt

s′ − C xt) ≤ G(θt
s′)− C 〈xt,ωt

s′〉+ 1
4 C2. Plugging

this inequality and Eq. (22) into Eq. (21) gives that
∆t ≥ γ C + C 〈ωt

r′ − ωt
s′ ,xt〉 − 1

2 C2. Recall that the
choice of(r′, s′) implies that〈ωt

r′ − ωt
s′ ,xt〉 ≤ 0. We

therefore get that∆t ≥ γ C − 1
2 C2.



B The Reduced Dual Problem

In this section we derive a reduced dual problem which is
equivalent to the dual problem given in Eq. (5). Using the
definition of the hinge-loss from Eq. (1) we can rewrite the
primal problem at the right-hand side of Eq. (3) as

inf
ω̄∈Ωk,ξ≥0

k
∑

r=1

F (ωr) + C
m

∑

i=1

ξi (23)

s.t.∀i ∈ [m] , ∀(r, s) ∈ Ei, 〈ωr − ωs,x
i〉 ≥ γ − ξi .

The core idea for deriving the compact representation is
to introduce virtual variables, one for each example. Each
variable acts as a threshold for separating the predictions
for the labels inY i from the predictions for the rest of the
labels. The complicating factor in proving the equivalence
of the primal problems is due to the fact thatξi might be
strictly positive. Letb ∈ R

m denote the vector of virtual
thresholds, then the more compact optimization problem is
defined as follows,

inf
ω̄∈Ωk,b,ξ≥0

k
∑

r=1

F (ωr) + C

m
∑

i=1

ξi

s.t.∀i ∈ [m] ∀(r, s) ∈ Ei :

〈ωr,x
i〉 ≥ bi + γ/2− ξi/2 ;

〈ωs,x
i〉 ≤ bi − γ/2 + ξi/2 .

(24)

Since the objective function of Eq. (24) and Eq. (23) are
identical andb has no effect on the objective function, but
rather on the constraints, it suffices to show that for any
feasible solution(ω̄, ξ) of Eq. (24) there exists a feasible
solution(ω̄,b, ξ) of Eq. (23) and vice versa.

Let (ω̄,b, ξ) be a feasible solution of Eq. (24). Then, for
any pair of labelsr ∈ Y i ands 6∈ Y i we get that,

〈ωr−ωs,x
i〉 ≥ γ/2+bi−ξi/2−(bi−γ/2+ξi/2) = γ−ξ .

Therefore,(ω̄, ξ) is a feasible solution of Eq. (23). Proving
that if (ω̄, ξ) is a feasible solution of Eq. (23) then there
existsb such that(ω̄, b, ξ) is a feasible solution of Eq. (24)
is a bit more complex to show. We do so by first defining
the following two variables for eachi ∈ [m],

b̄i = min
r∈Y i
〈ωr,x

i〉 − γ/2 + ξi/2 ;

bi = max
s 6∈Y i
〈ωs,x

i〉+ γ/2− ξi/2 .
(25)

Let j and l denote the indices of the labels which attain,
respectively, the minimum and maximum of the problems
defined by Eq. (25). Then, by construction we get that,

b̄i − bi = 〈ωj − ωl,x
i〉 − γ + ξi ≥ 0 ,

where the last inequality is due to feasibility of the solution
(ω̄, ξ) with respect to the problem defined by Eq. (23). We

now definebi = (b̄i+bi)/2 which immediately implies that
bi ≤ bi ≤ b̄i. We therefore get that for any labelr ∈ Y i

the following inequality hold,

〈ωr,x
i〉 ≥ 〈ωj ,x

i〉 ≥ b̄i + γ/2− ξi/2

≥ bi + γ/2− ξi/2 ,

and similarly for any labels 6∈ Y i we get,

〈ωs,x
i〉 ≤ 〈ωl,x

i〉 ≤ bi − γ/2 + ξi/2

≤ bi − γ/2 + ξi/2 .

We have thus established a feasible solution(ω̄, b, ξ) as
required.

We next derive the dual of the more compact problem de-
fined by Eq. (24). We now associate a Lagrange multi-
plier with each constraint and then follow the same line of
derivation used to obtain the dual of the original problem.
We briefly review this derivation. The Lagrangian of the
compact problem defined by Eq. (24) is,L(ω̄, b, ξ,α) =
∑

r F (ωr)+C
∑

i ξi +
∑

i

∑

r∈Y i αi,r(bi +γ/2−ξi/2−
〈ωr,xi〉) +

∑

i

∑

s/∈Y i αi,s(〈ωr,xi〉 − bi + γ/2− ξi/2).
Analogous to the original problem the dual is now defined
to be,D(α) = infω̄∈Ωk,b,ξ≥0 L(ω̄, b, ξ,α) . We now
overload our notation and redefine the following vector,

θy =
∑

i:y∈Y i

αi,yx
i −

∑

i:y/∈Y i

αi,yx
i . (26)

Taking the derivative of the Lagrangian with respect to each
bi and equating it to zero gives the following constraint

∀i ∈ [m],
∑

r∈Y i

αi,r −
∑

s/∈Y i

αi,s = 0 . (27)

Analogous to the constraint that
∑

(r,s) τi,r,s ≤ C, by tak-
ing the derivative of the Lagrangian with respect to eachξi

and equating it to zero, we now obtain that
∑

r∈Y i αi,r ≤
C. Let us now depart from the standard notation and rede-
fine αi,s to be−αi,s for all s /∈ Y i and for alli. Eq. (27)
distills to the constraint

∑k
y=1 αi,y = 0 and finally the dual

of the compact form distills to the following constraint op-
timization problem,

max
α

γ
m

∑

i=1

∑

y∈Y i

αi,y −
k

∑

y=1

G(θy)

s.t.∀i ∈ [m],

k
∑

y=1

αi,y = 0 ,
∑

y∈Y i

αi,y ≤ C ,

∀y ∈ Y i : αi,y ≥ 0 , ∀y /∈ Y i : αi,y ≤ 0

. (28)

We denote the reduced dual objective function byD(α).
Finally note that the optimization problem given in Eq. (10)
can be rewritten as the problem of maximizingD(α) over
the variablesαt,1, . . . , αt,k.


