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Abstract

Label ranking is the task of ordering labels with
respect to their relevance to an input instance.
We describe a unified approach for the online la-
bel ranking task. We do so by casting the online
learning problem as a game against a competi-
tor who receives all the examples in advance and
sets its label ranker to be the optimal solution of
a constrained optimization problem. This opti-
mization problem consists of two terms: the em-
pirical label-ranking loss of the competitor and a
complexity measure of the competitor’s ranking
function. We then describe and analyze a frame-
work for online label ranking thahcrementally
ascends the dual problem corresponding to the
competitor's optimization problem. The gener-
ality of our framework enables us to derive new
online update schemes. In particular, we use the
relative entropy as a complexity measure to de-
rive efficient multiplicative algorithms for the la-
bel ranking task. Depending on the specific form
of the instances, the multiplicative updates either
have a closed form or can be calculated very ef-
ficiently by tailoring an interior point procedure
to the label ranking task. We demonstrate the po-
tential of our approach in a few experiments with
email categorization tasks.

Introduction and Problem Setting

ent labels. The benefit of this approach is the flexibility it
gives users categorizing emails, since an email may be as-
sociated with multiple labels. The approach stands in con-
trast to traditional systems in which an email is associated
with asinglephysical folder. Users may browse all emails
associated with a particular label and can also use theslabel
for searching through their emails. However, manually at-
taching the relevant labels to each incoming email message
can be an all-out effort. An online label ranking algorithm
automatically learns how to rank-order labels in accordanc
with their relevance to each of the incoming email mes-
sages. Quite a few learning algorithms have been devised
for the category ranking problem such as a multiclass ver-
sion of AdaBoost called AdaBoost.MH [10], a generaliza-
tion of Vapnik’s Support Vector Machines to the multilabel
setting by Elisseeff and Weston [5], and generalizations of
the Perceptron algorithm to category ranking [3, 2].

The category ranking hypotheses this work employs are
closely related to the ones presented and used in [5, 3, 4].
However, we depart from the standard paradigm which is
confined to a specific form of regularization and give a uni-
fied account for online learning for label ranking problems.
Our starting point is the primal-dual perspective we itiiia
presented in [12] and further developed in [13]. Follow-
ing [12, 13], we cast the problem as an optimization prob-
lem which is solved incrementally as the online learning
progresses. We then switch to the dual representation of
the problem and show that by modifying only the set of
variables corresponding to the example received on a given
trial of the online algorithm we are able to obtain two goals.

Label ranking is concerned with the task of ordering labelgFirst, we devise a general procedure and derive specific on-
which are associated with a given instance in accordance tine update schemes. Second, we use the primal-dual view
their relevance to the input instance. In this paper we dein conjunction with the weak-duality theorem to obtain a
scribe an algorithmic framework famline label ranking.  general mistake bound for the label ranking problem. We
As an illustrative example consider an email categoriratio demonstrate the power of our approach by deriving new
task in which the instances are email messages. Most emalpdates for the label ranking task. In particular, we devise
applications allow users to organize email massages intoew multiplicative updates which outperform additive up-
user-defined folders. For example, Google’s Gmail userslates in the experiments reported in this paper.

can tag each of their email messages with one or more las

bels. The set of labels is also user defined yet it is finite an?
typically constitutes of a few tens if not hundreds of difer

efore proceeding with a formal description of the prob-
em setting we would like to underscore the contribution



of this work in the light of our previous theoretical work. (wf,x!) — (w’,x") < 0 and thust”(of; (x!, Y1) > .

The work presented here provides new updates for the laFhus, thecumulative hinge-lossuffered over a sequence

bel ranking problem. While our mistake bound analysis isof examples upper bounds\/.

based on previous work [12, 13], the former was mostly . . . .
. i ) P To obtain a concrete online learning algorithm we must de-

confined either to binary classification or to regret analy-

. . ; . > termine the initial value of each weight vector and an up-
sis for general functions. More importantly, we describe . .
o ; . o date rule used to modify the weight vectors at the end of
new specific algorithms for entropic regularization. Inter . . . . .
: - . . each trial. Recall that our goal is to derive online learning
estingly, our formal analysis is on par with the experimen-

. . o algorithms which make small number of prediction mis-
tal results which give further validation to the formal résu . i
) s takes. Naturally, without further assumptions on the se-
presented in [12, 13] and in this paper.

guence of examples, any online learning algorithm can be
We start by formally describing the online label ranking forced to make a large number of mistakes. To state a
problem. LetX < R™ be an instance domain and let more realistic goal, we follow the relative mistake bound

Y ={1,...,k} be a predefined set of labels. Online learn-model, and measure the performance of an online learn-
ing is performed in a sequence of trials. On tridhe al-  ing algorithm relatively to the performance afy fixed
gorithm first receives an instansé € X and is required set of weight vectorss* = {wf,...,wi} € QF, where

to rank the labels i) according to their relevance to the 2 C R”™ is a set of admissible vectors. The competitor
instancex’. For simplicity, we assume that the predicted w* can be chosen in hindsight after observing the entire se-
ranking is given in the form of a vectgs® € R*, where  quence of examples. In particular, if for a given sequence
pt > pl means that labelis ranked ahead of label After ~ of examples(x!,Y1),..., (x™, Y ™), there exists a com-
the online learning algorithm has predicted the rankihg petitorw* for which -7 | £7(w*; (x*,Y")) = 0, then we

it receives as feedback a subset of labé&lsC ), whichare  would like M, the number of prediction mistakes of the
mostly relevant toc?. We say that the ranking predicted by online algorithm, to be independent:af The requirement
the algorithm is correct if all the labels ¥’ are atthe top  we cast is thaf\/ is upper bounded b¥ (w*). We make

of the list. Thatis, if for all- € Y ands ¢ Y* we havethat the assumption thdt, which operates on set of vectats

pl. > pt. Otherwise, if there exist € Y ands ¢ Y for is obtained by applying the same convex function to each
whichpl. < pt, we say that the algorithm made a prediction of the constituents of>. Formally, givenF’ : Q — R,
mistake on triak. The ultimate goal of the algorithm is to which assesses the “complexity” of a single vecetorand
minimize the total number of prediction mistakes it makesw = {wy,...,w;}, we defineF () to berzl F(w,).

along its run. Throughout this paper, we ugeto denote
the number of prediction mistakes made by an online algo
rithm on a sequence of examples', Y1), ..., (x™, Y™).

In the general case, we provide analysis in whidhis
upper-bounded by a sum of two terms: the first is the com-
plexity of w* as defined byF(w*) and the second is the
We assume that the prediction of the algorithm at each triatumulative hinge-loss suffered y*. Formally, let\ and

is determined by a linear function which is parameterizedC be two positive scalars. We say that an online algorithm
by k weight vectors{w?, ... ,wj }. Namely, forall- € ¥, s (), C')-competitive with the set of vectors i, with re-

the value ofp!. is the inner product between! andx’,  spect to a complexity functioR and the hinge-los#, if
that is, p!. = (w!,x"). We use the notatiow’ as an ab-  the following bound holds for ang* € QF,

breviation for the sefw?!, ... ,w!}. To evaluate the per- m
formance ofo’ on the exampléx®, Y'*) we check whether AM < F(@*)+C Zw(@*, YY) . ()
@' made a prediction mistake, by determining whether for - — Y

alr € Yt ands ¢ Y' we have(w!,x') > (w! x").

To obtain bounds on prediction mistakes we use a Secon‘ahe_pararleteC controls the trade-off bgtwegn the com-

evaluation scheme of the performancedf This scheme p_)lexny ofw .(throughF) .and the (_:umulanve hlngg-!oss of

is based on a generalization of thimge-lossfunction, de- "f’*' The main goa! of this paper s Fo devglop efficient on-

noted?” (w'; (x', Y*)), for ranking problems, defined as, line Iearnlng aI_gonthms which achieve mistake bounds of
the form given in Eq. (2).

max, ey gy [ — (@hx!) — (whx)], . (1) _ |
2 Online Learning by Dual Ascent

where[a], = max{a,0} and wherey > 0 is a predefined
parameter. The above definition of loss extends the hinge/e now describe our approach for designing and analyzing
loss used in binary classification problems [14] to the prob-online learning algorithms for label ranking. To motivate
lem of label-ranking. The ternw;., x") — (w’,x") inthe  our construction, we would like to note first that the bound
definition of the hinge-loss is a generalization of the motio in Eq. (2) can be rewritten as,
of marginfrom binary classification. The hinge-loss penal- "
izesw! for any margin less tham. Additionally, if ! errs A\M < inf F(@)+C (@ (kv 3
on (x',Y") then there exist € Y' ands ¢ Y such that = sear (@) + tz_; (@G, ¥) - @)



Denote byP(w) the objective function of the minimization (r, s) € E*. A fairly tedious yet routine usage of Lagrange
problem given on the right-hand side of Eq. (3). We wouldmultipliers yields that the dual domain iS, = {r= > 0 :
like to emphasize tha?(w) depends on the entire sequenceYi € [m], 3_, ;) cpi Tirs < C}. Our expression for the
of examples{(x',Y!),..., (x™,Y"™)} and therefore the dual objective function is based on a functi6@) which
minimization problem can only be solved in hindsight, thatjs the Fenchel conjugate of the complexity functién

is, after observing the entire sequence of examples. Eq. (3)

requires that M lower bounds the optimum of the mini- G() = sup (w,0) — F(w) . 4)
mization problemming P(&). wee

. L L L The dual objective function is
Duality, which is a central notion in optimization theory,

plays an important role in obtaining lower bounds for the m k

minimal value of a minimization problem (see for exam-  D(T) = 7> > Tirs — »_G(0,) , (5
ple [1]). Formally, if the dual problem ofiing P(@) is i=1 (r,5)€E’ y=1

to maximize a dual objective functioP’(r) over a dual
domainT € S then the weak duality theorem states that
forany = € S we have,D(7) < infgcqr P(w). Be- _ i o i ‘

fore we derive the dual functio®() and its domains, Oy = z;x z; T Z;X z; Tiry - (0)
let us first underscore the implications of the weak dual- e o e e
ity theorem for online learning. LeM be the set of tri-
als on which the online algorithm makes a prediction mis-
t_ake. As;ume that_we can associate a feasib_le_dual SOllf!iecall that we would like to associate a dual solutign
tion 7t with each triall < ¢t < m + 1 that satisfies the with each online trial and we required th&(+!) — 0

;oIIO\;\./mg. two relq)ulr?me_ntg: (.|.) 'Ir:he w;;t;al dﬁl (tjr?Jeptlve and thatD(r*+1) — D(r!) > A whenevert € M. To
unction is zero, (7 ) o (i) oralli € M, thein- satisfy the first requirement we show that a natural choice
crease in the dual objective value is bounded from below;

for ! is the zero vector. The zero vectar! = 0, is
t+1) t . . ; ;
D(r""") = D(r") = A and fort ¢ M the increase in the indeed a feasible dual solution and the value of the dual

dual is non-negative. Assuming that these two condition§unc,[ion ato is, D(0) — —kG(0) = k infuco F(w)
3 - = - weE .

are met we obtain that, Since F' serves as a measure of “complexity” of vectors

where for ally € [k],

To conclude this section, we would like to underscore a few
important properties of the dual problem given by Eq. (5).

m in Q we enforce the requirement that the minimumrof

AM < D(r')+ > (D(r'F) = D(r")) over the vectors inf) is zero. From this requirement we
t=1 get thatD(0) = 0, and therefore, by setting! = 0, we

= D(r"th) < a,i&fzkp(@) ; satisfy the requiremeriP(r') = 0. The second impor-

tant property of the dual function given by Eq. (5) is that if
where the last inequality follows from the weak duality the- for all triplets (i, r, s) such that > ¢ we haver;, s = 0
orem. Therefore, Eq. (3) holds and our online algorithm isthen D(7) does not depend oyet to be seemxamples
(), C)—competitive. (xHL Yyt o (x™, Y™). This fact is true since the
(g:lependence ab on examples is expressed solely through
e vectorsd, (see Eq. (6)) and, is a linear combina-
(}ion of the examples with coefficients . ;. Therefo‘re, if
irs = 0foralli > tthen@, is independent ok’ for

We have thus shown that any sequence of feasible dual s
lutions 7!, ..., 7™+ can be used for analyzing an online
learning algorithm so long as the two conditions describe
above hold. As we show in the sequel, the first requirement’™: o . .
is easily satisfied. For the second requirement to hold, wi i > ti. Thlst|mpIe prc;jperty augvrv]s_ us to dev'?f .d'f'l
must relate the sequence of dual solutions to the predgtion erenton In€ up ate procedures which increase su Igient
of the algorithm. Recall that an online learning algorithmthe dual objective function.

constructs a sequence of primal solutians, ..., o™ !
where on trialt it employsaw! for predictingp®. One way

to connect between the sequence of dual solutions to th|e . . . .
. ) . n this section we present three different online update
predictions of the algorithm can be achieved by construct-

: . I . . : schemes that are based on the same principle of ascend-
ing each primal solutiow,” from its dual variabler®. To ing the dual by modifying solely the dual variables corre-
explain this construction we first need to derive the dual op 9 y g y

timization problem of the minimization problem given on sponding to theth trial. We start by setting'! = 0 which
P P g results in a zero value fdP(+!). Fort = 1 we have that

the right-hand side of Eq. (3). Tiﬁm = 0 forall i > t. We keep ensuring that the prop-
To simplify our notation, we denote byn] the set of inte-  erty holds for allt € [m]. At the beginning of triak, we
gers{l,...,m}. We also use the notatiofi’ as a short- construct a primal solutionp?, based onr’ as follows.
hand for the set’* x (¥ \ Y*). The dual problem asso- For simplicity, let us assume that the functiéhis differ-
ciates a variable; ,. ; with each example € [m] and pair  entiable and denote its gradient hy We first user’ for

3 Derived Online Updates



defining the set of vector§d?, ..., 0%} as in Eq. (6). We The proof is given in Appendix A. In summary, we have
then definew!, = ¢(0;) for all y € [k]. Note that since shown thatD(r') = 0, D(r*™) — D(r!) > 0 for all ¢,

rt,, = 0foralli >t we have thaB), andw!, are in- andD(r***) —D(r*) > Afort € M whereA = yC —
dependent of the examplés?, Y*), ..., (x™, V™). Next, 1 C2. Therefore, the resulting online learning algorithm is
we use the set of vectois’ = {w!,...,w!} for predict- (A, C)—competitive.

ing the label ranking?. Finally, after receiving the feed-

. ) i T Update II: optimal dual ascent w.r.t. a single constraint
backY", we find a new dual solution™" by Settingr; ... The previous update scheme modifiesnly on trials for
where for alli > ¢ + 1 the variables; | are kept at zero. hich there was a prediction mistaked M). The update
While the three update schemes described in the sequel age performed by setting; .. . to C' and keeping the rest
based on this approach they vary in their complexity. As Weyf the variables intact. We now enhance this update in two
have shown before, an online learning algorithriNsC')—  ways, First, note that while setting*! , to C guarantees
competitive, if on all trialst € M we ensure a minimal 3 syfficient increase in the dual, there might be other values
increase in the duaD(r**!) — D(7') > A while onthe  of 71 \which might lead to larger increases of the dual

rest of the trials we ensure that the dual is non—decreasing)bjééti’ve_ Furthermore, we can also updaten trials on

Despite the varying complexity of the updates, all the threqynich the prediction was correct so long as the dual does
of them satisfy these conditions and achieve the same Misot decrease. Our second update sgts, to be the value

take bound. However, the added complexity does result ijyhich results in the largest increase in the dual objective.
improved empirical performance (see Sec. 5). Formally, we set the dual variables on the next trial to be

Update I: fixed-size dual ascent w.rt. a single constraint ~ the solution of the following,
The first update we consider makes a simple predefined
change to one variable of at the end of each erroneous
trial. Formally, if on trial¢ the algorithm did not make
a prediction mistake we do not changeat all and set
Tt = 7t If there was a prediction error we let,

7 = argmax D(7)
TES (9)
st V(i,r, ) # (61',8"), Tips =Tl s
where(r’,s") are as defined in Eq. (7). By construction,
(r',s') = argmin (W' — w',, x') . ) Fhe increase in the dual due to the update givep in Eq. (9)
(r.s)CE* is guaranteed to be at least as large as the increase due
to the previous update from Eq. (8). Thus, this update
That is, the pai(r’, s’) designates the labels which mostly scheme results in an online algorithm which is gls0C")—
violate the required preference constraints. Since thase w competitive with\ again being equal t9 C' — % C?.
a prediction mistake, we get thav!, — w?,,x") < 0. We
now set the(t, r’, ) element ofr to C' and leave the rest
of the elements intact. Formally, fore M the new vector
7!+l is set as follows,

Update IlI: optimal dual ascent w.rt multiple con-
straints The two updates above were restricted to modi-
fying a singleelement ofr and were thus been based on
a single constraint of the primal problem. the third update
C if (i,7,5) = (t,r,5) scheme potentially modifies all the dual variables of the
7_?54‘»1 _ \ s 1y AN (8 -n'é+1 )
i,rys Tt otherwise current example. Formally, we defi to be the solu
v tion of the following optimization problem,
This form of update implies that the componentsrodire o
either zero oCC'. Using the definition 08, given in Eq. (6) T = argmax D(7)
. TES (10)
we get that the corresponding updatedgfis, ,
St Vi#t, V(r,s) € E*, 7,5 = Tf,ns
ot =0!, + Ozt 0 =6, —Caf
" ' ) ’tHS . ° ' The increase in the dual due to this update is no smaller
Vyey—{r,s'}: 0,7 =6, . than the increase due to the update from Eq. (8). Thus, this
update scheme results in an online algorithm which is also

By construction, ift ¢ M thenD(r""!) —D(r) = 0. () ‘o) _competitive withh again being equal tpC'— 1 (.

The lemma below gives sufficient conditions for which the

increase in the dual objective on erroneous trials is §trict o )
positive. 4 Efficient Implementations

Lemma 1 Let7! € S be a dual solution such tha}i,,?s = Update Il and Ill described above are given in an implicit
0 for all i« > ¢t. Assume that ¢ M and letT**! be as  form as a solution for reduced optimization problems as de-
defined in Eqg. (8). Assume in addition ti@G@tis twice dif-  scribed by Eq. (9) and Eq. (10). In this section we describe
ferentiable with a Hessiaif which satisfies the condition efficient implementations of the two updates. For update Il
that (x!, H(0)x"') < 1/2forall 8. Then the increase inthe we derive analytic solutions for two popular choicesrof
dual, D(7'!) —D(7!), fort € MisatleastyC— 3 C?  while for update Il we describe a general solver based on



an interior point (IP) method which exploits the structure compact problem is
of the label ranking problem. The result is a specialized

k t t
algorithm which is more efficient than general IP methods. ., |-, , ¥ Lyevt Aty — 2y=1 G0y + oy X)
An efficient implementation of Update || WhenF(w) = k
>, F(w,) whereF(w,) = +|w,|?, standard use of La- st Y =0, Y ay, <C, (11)
grange multipliers yields that/ ', is the minimum be- v=1 t yey! t
tweenC and (y + (wt, — wt,,x*))/(2]x!||?). We would VyeY': ary 20, VY ¢ Y : ayy <0

like to note that this form of update was suggested and angg, Appendix B we prove that the problem given in Eq. (11)
lyzed by several authors for the simple case of binary clas;g equivalent to the problem given in Eq. (10). A rather
sification [7] and multiclass problems [2]. In the following complex algorithm for solving the compact problem in the
we show that the update can be utilized with the less StUdépeciaI case where the complexity functionfigw, ) =

led case in whichF'(w,) = 377 wy;log(w,;/(1/n)). L)y |12 was presented in [11]. Here we present an effi-
To devise an analytlc solutlon,'we further assume that eacBignt primal-dual interior point algorithm (PDIP) for selv
instancex" is a binary vector inf0, 1}". While this as-  jng the compact optimization problem which is applica-
sumption seems restrictive, many text processing applicasjq g 5 larger family of complexity functions. We de-
tions use term appearances as fegtures which distill to biscripe the PDIP algorithm for a slightly more general op-
nary vectors. In this case the conjugatefofs G(6) = imization problem which still exploits the structure ofth
log (Z};l exp(ej)) — log(n). Upon selecting the label problem and leads to a very efficient PDIP algorithm. Let

pair (r, s), the change in the dual due to update Il is a scalai f+|f- : R — R}{_; be a set ofd twice differentiable

function in7/*. which we simply abbreviate by. Omit-  functions from and denote by} and{ "} their first and

t,r,s . . .
ting terms which do not depend ofi., this change in the second derivatives. Lgt andq be two vectors ilR¢, A be
e a2 x d matrix, andb a two dimensional vector ové. In-

dual amounts ta); = y7 — G(6". +7x') — G(8" — 7 x"). o .
Since the original dual objective is concave in its duaISt.e"’ld of the or_|g|nallp.ropler_n defined by Eq. (11), we work
with the following minimization problem,

variables, the change in the dual is also a concave func-

tion in 7. Furthermore,r resides in the compact inter- d
val [0, C] and thus there exists a unique valuerafvhich min > frlaw)stAa =D, Vrpo, <g. . (12)
maximizes the increase in the dual. To find this opti- « r=1

mal value we introduce the following auxiliary functions, Itis easy to verify that the problem defined by Eq. (11) can

qr = Z%ijjzl iy Z, = Z?Zl e’ and g, = be reformatted and described as an instance of the problem
le ij:l i Zy = Z;;l efs.i . Equipped with these defined by Eq. (12).

definitions we now take the derivative &f; with respect to

. To motivate the derivation of the PDIP algorithm, let
7 and equate it to zero to get that,

us first note that the dual of Eq. (12) is the problem
MAXy R yer2 D(A,v) whereD(A,v) is

qTeT qse—ﬂ' d d
T e+ (1—q) ’ e+ (1—qs) v féﬁ?d 2 Jrlar) + Z; Arlprar = gr) £ (v, (A = b))
T T (13)
Denote byP(«) the objective function of the problem in
Defining 3 = ™ we get the quadratic equatiofi?q,. (1 — Eqg. (12). As the name implies, the PDIP algorithm main-
qs)(1—=7)—Bv(grgs + (1 —qr)(1 —gs)) —gs(1 —g-)(1+  tains strictly feasible primale) and dual(, v) solutions
v) = 0, Since must be non-negative, the minimum at all times. (To remind the reader, a strictly feasible solu

between the positive root of the above equation@muives  tion of a given problem satisfies all the constraints of the
the optimal value fors. From $ we obtainT by setting  problem, where each inequality constraint holds with stric

7 = log(f). inequality.) Assume that we have on hand a strictly fea-
An Efficient Implementation of Update Il While the sible prlmal-dgal soluhor(a,A,u).d We now define the
first two update schemes use onlgiaglevariable to form  following function, n(a, A) = 370, Ar(¢r — prav)

the update, the third update scheme employetitzeset W& next show thaj(a, A) is a lower bound on the duality
of variables associated with the example. Recall that eacf@P Of our primal-dual solution. The definition DA, )
example is associated witt’| dual variables. Thus, the MPlies that,

optimization problem given in Eq. (10) is oveE?| dual d
variables which can be on the order/of. To obtain an D(\,v) gz (fr(a) + Ae(praw — qr)) + (v, Aae — b)
efficient update we derive an equivalent, more compact, r=1

optimization problem which has exactlyvariables. The = Pla)+nla, ), (14)



where the second equality is due to the fact thag a fea-  Solving Eq. (18) helps us in tightening the lower bound on
sible dual solution, thuslae = b. Therefore, the duality the duality gap given in Eq. (14). Last, we need to make

gap is bounded below by sure that the new set of parameters is indeed a feasible pri-
mal solution by requiring the equalitd(a + Aa) = b
Ple) =D v) = e, A) (15) 1o hold. The triplett A, AX, Av) is thus found by find-
Moreover, if ing the solution of all the sets of linear equations desckibe

above. The step sizeis found by a backtracking search
Vr e [d], filar)+Aepr + 1141, + 1242, = 0, (16)  (see for instance pp. 612-613 in [1]).

then « attains the minimum of Eq. (13). Therefore, both There exists both theoretical and empirical evidence that a
Eqg. (14) and Eqg. (15) hold with equality. In this case, PDIP algorithm reaches the optimal solution (within com-
n(a, A) amounts to be the duality gap of the primal-dual puter accuracy) afte®(v/d) iterations [1, 6, 9]. On each
solution(a, A, v). iteration we need to solve a setf + 2 linear equations.
: . . . A :

The PDIP algorithm is an iterative procedure where onA direct |_mple_mentat|on would reqw@(d ) operations

. S . : : for each iteration of the PDIP algorithm. However, as we
each iteration it finds a new strictly feasible primal-dual

solution. The primary goal of the update is to decreasd'®" show, we can utilize th? strL_Jctgre of Fhe problem to
olve the set of linear equations in linear time. Thus, the

the duality gap. To do so, we use the fact that Eq. (15)S : . N .
establishes)(a, A) as a lower bound on the duality gap. complie?uty of update III.|sO(d§/Zl_) - O(k\/E)'. To obtain
Thus, the main goal of the update is to decrea@e, ) an efficient solver, we first eliminate the variablas\ by
on each iteration while ensuring that the actual duality, gapreWrItIng Eq. (17)as

P(a) — D(A,v), stays close to)(a, A) as much as pos-
sible. Additionally, we need to make sure that the new
primal-dual solution is also strictly feasible. We are now I . .
ready to describe the core update of the PDIP algorithm‘fﬂnd_sub?mUtlng Bhﬁ,(ibf)" e Into AEq. (181'1 we :gw d_eflne
Let us denote bya, A, v) the current primal-dual solution " ~ —frlen) — G Splay — A ~ V2/iz;r, ANAZ, =

of the algorithm. The new primal-dual solution is obtained /r (@) + Arpr/(¢r — prav;), and rewrite Eq. (18)

from the current solution by finding a step-size parameter, B

s € (0,1) for a triplet (A, AX, Av) and the update it- vr € ld, 2 Aoy =ur + A1pAvy + AgpAry - (20)
self takes the fornex — a + sAa, A — X + sAX, and
v «— v + sAv. To compute the tripletAa, AN, Av) we
linearize each summand gfa + Aa, A + AX) using a
first order Taylor approximation and get,

Vr, (A + AN,) = 2P Aq, 4 Snled) )

qr —PrQr d(q'r_prar) ’

Finally, we rewrite the set of two equalitie o + Aax) =

b asAAa = 0. SubstituingAa«,. with the right hand side

of Eqg. (20) in the linear set of equalitiesAa = 0, we

obtain a system ot linear equations i2 variables which

Ar + AN (qr — proy + Aay)) =~ can be solved in constant time. From the solution we ob-
O+ AN (gr — pran) — Aepy Acry. tain Av and then computéd\a as described in Eqg. (20).

From Aa we now computeA using Eg. (19). The over-

We require that the value of for the new solution is ap- all complexity of the procedure of assigning new values to

proximately a fraction of the value at the current solu-the primal-dual feasible solution is tha¥d).

tion. This is achieved by solving the following set of linear

equalities inAa,. andA\,, 5 Experiments

Vr € [d], (A4+AN) (gr—pra)—Arpr A = 0.1 @ .

(17)  Inthis section we present experimental results that demon-
The choice of the contraction constdnt was set empiri-  Strate different aspects of our proposed algorithms. Our
cally. Assuming that the above set of equations hold, thef§xperiments compare the three updates given in Sec. 2
n(a + Aa, A + AX) ~ 0.1n(c, A). To recap, solving Using two complexity functions. The first is the squared
the system of linear equations given by Eq. (17) serves aB0rm as a complexity functiod’(w) = j|lwl|* with the

a proxy for achieving a substantial decreasg.iblext, we ~ domain{2 = R™ and the second is the entropy function
need to make sure thatat the new parameters provides F(w) = 377 wjlog(w;) + log(n) with the domain

a rather tight lower bound. We do so by making sure tha? = {w : w; = 0,3, w; = 1}. We would like to note
the linearization of the left hand side of Eq. (16) is approxi that using update | with the first complexity function yields
mately zero by casting the following set of linear equatjons @n algorithm which was previously proposed and studied

to Eq. (16), in [3] while using update Il with the same complexity
function yields the PA algorithm described in [2]. We
Vreld], filar)+ f(er)Aay + (A + AN )pr+ experimented with the Enron email dataset (available from
(1 + Av)Ar, + (2 + Avg)As, = 0. http://www.cs.umass.edufonb/datasets/enrditat.tar.gz).

(18) The task is to automatically classify email messages into



Table 1:The average number of online mistakes for different algorithms oersesers from the Enron datasets.

F(w) = 3lw]? F(w) =377 wj log(nw;)
username |V m updateI update I update ] update update IT  update Il
beck-s 101 1971 58.5 55.2 51.9 54.0 50.2 47.1
farmer-d 25 3672 295 23.3 22.7 27.6 22.6 22.0
kaminski-v 41 4477 50.2 445 41.9 46.7 42.9 40.0
kitchen-| 47  4015| 48.2 41.9 40.4 41.9 38.3 36.0
lokay-m 11 2489 24.9 19.1 18.4 24.0 18.7 18.2
sanders-r 30 1188 31.7 28.3 27.2 28.3 24.2 234
williams-w3 18 2769 5.0 4.5 4.4 4.2 34 3.1

user defined folders. Thus, the instances in this datase{6] A. Forsgren, P. E. Gill, and M. H. Wright. Interior methods
are email messages while the set of classes is the email for nonlinear optimizationSIAM Review44(4), 2002.
folders. Note that our online setting naturally captures th 1 M. Herbster. Learning additive models online with fast eval-

. . e uating kernels. I'COLT, pages 444-460, 2001.
essence of this email classification task. We represente%] J. Kivinen and M. Warmuth. Exponentiated gradient ver-

each email message as a binary vestoe {0,1}" with sus gradient descent for linear predictohsformation and
a coordinate for each word, so that = 1 if the word Computation132(1):1-64, January 1997.
corresponding to the indexappears in the email message [9] Y. Nesterov and A. Nemirovskilnterior-Point Polynomial
and zero otherwise. We ran the various algorithms on  Algorithms in Convex ProgrammingSIAM Studies in Ap-

- plied Mathematics, 1994.
sequences of email messages fr@.mlsers._ For_ update [10] R. E. Schapire and Y. Singer. Improved boosting algo-
Il we used the closed form solution derived in Sec. 4° ° (ithms using confidence-rated predictiomdachine Learn-
and for update Ill we used the PDIP algorithm. We ing, 37(3):1-40, 1999.
found out in our experiments that the number of iterationd11] E- |Sha|EV-SEW8rtht and Y-t_SiHQEF-t Eﬂifiﬁmdg;\min@f Off la-

H H el rankin SO rojectons onto po earaournal o
required by the PDIP algorithm never exceedéd The Machine L%a%ing FEes!aarpﬁ:lSG?—lggg, 006,
performan(_:e of_the different glgorlthms on the dataset 12] S. Shalev-Shwartz and Y. Singer. Online learning meets op-
is summarized in Table 1. It is apparent that regardless  timization in the dual. IrCOLT, 2006.
of the complexity function used, update Il consistently [13] S. Shalev-Shwartz and Y. Singer. Convex repeated games
outperforms update Il which in turn consistently outper- and fenchel duality. IINIPS 2006. _
forms update |. However, the improvement of update (1[14] V. N. Vapnik. Statistical Learning Theorywiley, 1998.
over update | is more significant than the improvement of
update Il over update II. Comparing the two complexity A Proof of Lemma 1
functions we note that regardless of the update used, the
complexity function based on the entropy consistentlyProof DenoteA, = D(r**!)—D(r"). From the definition
outperforms the complexity function based on the square@f 7" we have that,
norm. Note that when using update | with the squared Ay = vC —G(0L +Cx') + G(6:)
norm as a complexity function we obtain an adaptation of " ' "
the Perceptron algorithm for the label ranking task while — G0, - Cx) +GO) .
when using update | with the entropy complexity function Using Taylor expansion aff aroundd’, we get that there
we obtain an adaptation of the EG algorithm [8]. The exists for which,
superiority of the entropy-based complexity function over
the squared norm was underscored in [8] for regressiontz(6,, + Cx") < G(6.)+C(x',g(6%.))
and classification problems.

(21)

N C?(x" H(0)x")
2
1
<G(0') + C (x' wh) + 1 c?
References (22)
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B The Reduced Dual Problem now defineb; = (b;+b;)/2 which immediately implies that
b; < b; < b;. We therefore get that for any labelc Y

In this section we derive a reduced dual problem which ighe following inequality hold,

equivalent to the dual problem given in Eg. (5). Using the

definition of the hinge-loss from Eq. (1) we can rewrite the (wr,x) > (w),x') > bi+7y/2-&/2
primal problem at the right-hand side of Eq. (3) as > bi+v/2-&/2,
k m and similarly for any labet ¢ Y we get,
Y Fe)+CY g 23 viranyimhe gy
REERO = (waX') < (wi,x) < b —7/2+6/2
stVie[m] , V(rs)€E, (w, —wsx)>v—& . < bi—/246)2 .

The core idea for deriving the compact representation iye have thus established a feasible solutianbd, £) as
to introduce virtual variables, one for each example. Ead?equired.

variable acts as a threshold for separating the predictions

for the labels iny’ from the predictions for the rest of the We next derive the dual of the more compact problem de-
labels. The complicating factor in proving the equivalencefined by Eq. (24). We now associate a Lagrange multi-
of the prima' prob'ems is due to the fact tffatm|ght be plier with each constraint and then follow the same line of
Stricﬂy positive_ Letb € R™ denote the vector of virtual derivation used to obtain the dual of the Original prOblem.
thresholds, then the more compact optimization problem i¥Ve briefly review this derivation. The Lagrangian of the

defined as follows, compact problem defined by Eq. (24) B(w,b, &, o) =
. 2o Flwr) +C3 0 &+22 2 ey i (bi+7/2- 62—
. . (Wi, X)) + 32, D sgyi dis({wr, Xi) = bi +7/2 = §/2).
QEQ%PEQO D Flw)+C Y& Analogous to the original problem the dual is now defined
TS =" =1 i=1

to be,D(a) = infgeorpe>o L(w,b,€,a) . We now

s.t.Vi € [m] Y(r,s) € E*: (24)  overload our notation and redefine the following vector,
{wryx") 2 bi+7/2 = &/2; : :
i 0, = O X" — X (26)
(W X') <bi —7/2+&/2 . ! ze:y ’ %:Y !

Smce; the objective function of Eq. (2,4) gnd Eqg. _(23) areTakingthe derivative of the Lagrangian with respect to each
identical andb has no effect on the objective function, but b, and equating it to zero gives the following constraint

rather on the constraints, it suffices to show that for any
feasible solutionw, &) of Eq. (24) there exists a feasible Vi e o ) 27
solution (@, b, &) of Eq. (23) and vice versa. i€ lml, Z Vi Z .o ' 27)

Let (w, b, &) be a feasible solution of Eq. (24). Then, for
any pair of labels: € Y% ands ¢ Y we get that,

rey’ sgY'?

Analogous to the constraint thE(T,’S) Tirs < C, by tak-
ing the derivative of the Lagrangian with respect to egch
(wrp—wg,X') > 7/24b;—& | 2— (bi—7/24&; /2) = y—€ . and equating it to zero, we now obtain that . a;, <

C. Let us now depart from the standard notation and rede-
Therefore (w, §) is a feasible solution of Eq. (23). Proving fine a; ; to be—a; ; for all s ¢ Y* and for alli. Eq. (27)
that if (w, €) is a feasible solution of Eq. (23) then there distils to the constraink_:_, a;,, = 0 and finally the dual

existsb such tha{w, b, £) is a feasible solution of Eq. (24)  of the compact form distills to the following constraint op-
is a bit more complex to show. We do so by first definingtimization problem,

the following two variables for eache [m],

m k
b — mi iy _ "y N
i = min{w,, x°) —7/2+&/2; max 7y Z Z iy G(8y)
b by )2 €2 (23) e !
Y = Eéay}f<wsvx > + ’Y/ - Ez/ . . (28)

k
s.t.Vi € [m], i, =0, iy <C,
Let j and! denote the indices of the labels which attain, yzzjl ! 1,; !

respectively, the minimum and maximum of the problems Vi g > Vi g <
defined by Eq. (25). Then, by construction we get that, Yy eV iy 20, Wy g Y aiy <0
We denote the reduced dual objective functiondfex).
Finally note that the optimization problem given in Eq. (10)

where the last inequality is due to feasibility of the sajnti  can be rewritten as the problem of maximizifge) over
(@, &) with respect to the problem defined by Eq. (23). Wethe variablesy, 1, ..., a; k.

Ez_bzz<w]_wl7xz>_7+§l20 5



